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IRREDUCIBLE MODULES OVER GROUP RINGS

Talk delivered at Universitat Autónoma de Barcelona, 19 April 1979,

by B . Hartley .

Throughout, K denotes a field and G a group . We begin with :

Maschke's Theorem If G is finite and char K Ir IGI, then every KG-mo-

dule is completely reducible .

Thus, if V is a KG-module and U a submodule, then U is complemented

in V ; in particular this holds for irreducible submodules U .

Definition If R is a ring and U an R-module, then U is injective

if U is a direct summand of every larger R-module .

(Conventions : all rings have identity element 1, al] modules are ri~it

modules, and 1 acts as the identity on all R-modules) . Thus, from Mascwe's

Theorem :

Proposition 1

	

1,
f G is finite and char K X

	

IGI, then every irreduci-

ble KG-module is injective .

If U is any irreducible KG-module, we have án exact sequence

0

	

->

	

U '

	

->

	

KG

	

->

	

U

	

->

	

0

of right modules, and by Maschke's Theorem KG - U' (D U, if G is finite

and char K ~ IGI . Thus

Proposition 2 If G is finite and char K X IGI, then every irreduci-

ble right KG-module is isomorphic to a minimal right ideal of KG .

We will discuss what happens to these propositions when G is allowed

to be infinite .
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and then ag is not a scalar multiple of a . Thus

Lemma 1 .1 If G is infinite then KG does not contain a 1-dimensional

right ideal . In particular the trivial KG module K is not isomorphic to

a minimal right ideal of KG .

Thus Proposition 2 is false whenever G is infinite, so we modify our

question : which irreducible KG-modules are isomorphic to minimal right

ideals of KG? When does KG contain a minimal right ideal?

This is mostly work of J . S . Richardson (Proc . London Math . Soc . (3)

35 (1977)) .

Conjecture : If KG possesses a minimal right ideal, then G is locally fin¡-

te .

This is known to be true under fairly mild restrictions on G, but the

general case:seems difficult .

We will restrict ourselves to the locally finite case .

Example of an infinite group G such that QG contains a minimal right

ideal

Let

If G is infinite and 0 # ac KG, then a = x 1 9 1 + . . .+ a n án

I . Minimal r ight ideals

G = C
p
- = < x l , x 2 , . . .

	

:xp = 1, xi+lp = x i >

mThus G =F1 =< ~ 1 '~2 ' . . .> where ~m
= e2ni/p



We have a homomorphism q : QG - L = Q(~1 ,C2 " . .) < T, induced by xm -> im'

Let

	

e =
P

(1 + x 1 + . . .+ xi -1 ) . Clearly e e ker q . Conversely, if e e ker q,

then a e Q < xm > for some m, and we can write a = f(xm ) where f e Q[X]

and_f has degree at most pm- 1 . Since f(Cm ) = 0, we have f(X) = g(X) 4>(X)

where g(X)

	

c Q(X)

	

and'- D(X) = 1 + Xpm-1+ . X2Pm- 1 + . . .+X(P-1 ) Pm-1.lhus,substi-

tuting xm for X, a = g(xm ) (1 + x1 + . . .+ xl-1 ) e eQG . It follows that

ker q = eQG, and if f = 1 - e, then as e is an idempotent, QG = f QG +

+

	

eQG,

	

and

	

fQG

	

= L .

	

Since L

	

is a

	

field,

	

fQG

	

is a minimal

	

ideal

	

of QG .

This example is fairly representative of the general situation . Note

that if G is the above group, then T G contains no minimal right ideals .

This is because as (E is algebraically closed, every irreducible d G-modu-

le is one-dimensional, and then Lemma 1 .1 applies .

Theorem 1 .2 (B . Hartley, J .S . Richardson, J . London Math . Soc . 1977) .

Let G he locally finite . Then KG contains a minimal right ideal if and

only if

(i) G contains a normal subgroup H of finite index such that

H = C
p1
- x . . .x Cp - , where the primes p1 , . . .,pt are all distinct and

t
different from char K .

(ii)

	

[KO(H)(1

	

K

	

:

	

KO]

	

<

	

.

Here KO is the prime field of K, K is an algebraic closure of K, and

KO (H)

	

is the field generated over KO by the primitive pi - the roots of

1 for 1 < i < t, n = 1,2,3, . . ., in other words, by the primitive roots

of 1 corresponding to the orders of the elements of H .

The proof of this result is quite involved and in fact depends on

thé Feit - Thompson Theorem via work of lunkov .



When KG contains a minimal right ideal, there are a number of strong

consequences for the structure of KG . For example, suppose further that G

has no elements of order p = char K .

Define the socle of KG : S 1 (KG) is the submodule generated by the

minimal submodules (i .e . minimal right ideals) of KG, and S i+l (KG)/Si (KG)=

= S 1(KG/Si(KG)) . Then with the hypotheses and notation of Theorem 1 .2,

S Q+1 (KG) = KG

and each factor S i+l (KG)/S i (KG) is a ring, in general without 1, which is

a direct sum of matrix rings over division rings, each generated by a

centrally primitive idempotent in KG/S i (KG) .

If V is an arbitrary irreducible KG-module, then if C is the kernel

of the corresponding representation of G, let i be the number of groups

Cpl-
9� 9

Cpt
. contained in C . Then V is isomorphic to a submodule of

S i (KG)/Si -l (KG) .

In particular, i f V is faithful, then V is isomorphic to a minimal right

ideal of KG .

For the proof of there and other results, see the paper of Richardson

mentioned above .

II Injective modules .

Now we ask : which irreducible KG-modules are injective? and how far

can an irreducible KG-module depart from injectivity?

Essential extensions Let U be a submodule of an R-module N . We say

that N is an essential extension of U, if M n U ~ 0 for every non-zero sub-

module M of N .



The injective hull of an R-module U can be characterized as a minimal

injective module containing U, or a maximal essential extension of U . It

is known that every R-module U possesses an injective hull U, which is

unique up to isomorphism . The complexity of U is in some sense a measure

of how far U departs from being injective .

Theorem 2.1 (Farkas and Snider (1974) ; B . Hartley, Quarterly J . Math .

(1977))Let G be a countable group . Then every irreducible KG-module is

injective if and only if (i) G is a locally finite p'-group (p = char K >O)

(ii) G has an abelian subgroup of finite index .

A p'-group is one which has no elements of order p . If'p = 0 this is

no restriction .

The proof of the sufficiency of (i) and (ii) is quite easy . The proof

of necessity has two stages :

(a) G is a locally finite p'-group . This just uses the fact that the tri-

vial module is injective .

(b) If V is any irreducible module for R = KG and RO is the annihilator

of V,

	

then R/RO is simple artinian, and so if E = End KG V,

	

then dimE V < ~ .

Of course, E is a division ring .

The proof is concluded by

Theorem 2 .2 If G is a locally finite p'-group (p = char K) then

every irreducible KG-module has finite dimension over its endomorphism

ring if and only if G has an abelian subgroup of finite index .

An account of this work can also be found in Passman's book "The

Algebraic Structure of Group Rings" . In Theorem 2 .2, if we drop the res-

triction that G is a p'-group, we can conclude that G/Op(G) has an abelian

subgroup of finite index (B . Hartley

	

unpublished) .



Musson (Math . Proc . Cambridge Philos . Soc . 1978) has shown that

the conclusions of Theorem 2 .1 hold under weaker hypotheses on the irredu-

cible modules ; for example if G is locally finite and the injective hull of

every irreducible KG-module has countable dimension, then G has an abélian

p'-subgroup of finite index (p = char K) . More results of this kind can

be found in his paper .

Next we consider the question : How bad can essential extensions of

irreducible modules be?

Theorem 2 .3 Let K be a field of characteristic p > 0, G be a coun-

table locally finite p'-group, and V be an irreducible KG-module, with

E = End KG V . Then there are two possibilities :

(i) dimE V < ~, and V is injective

(ii) dimE V

	

and there is a non-split exact sequence 0

	

V } W 4

U + 0, where U is a direct sum of x1 irreducible modules .

Thus the departure from injectivity is very wild . By Theorem 2 .1, if

G does not have an abelian subgroup of finite index, then (ii) occurs for

some V . A version of this with x 1 replaced by 1 is in B . Hartley, Quar-

terly J . Math . 1977 .

Also it can happen, with the notation of 2 .3, that V is a submodule

of a module W whose proper submodules, under inclusion, form a well orde-

red set whose order type is the first uncountable ordinal (B . Hartley,

Proc . London Math . Soc . 1977) . The exact conditions under which this hap-'

pens are not clear, but for example if G is the direct product of an infi-

nite number of dihedral groups of order 8 and char k ~ 2, then this kind

of behaviour occurs .



Thus, except under rather strong restrictions, irreducible modules

are a long way from being injective . But here is a positive result :

Theorem 2 .4 Let G be a polycyclic -by- finite group and k be the

integers or an algebraic extension of a finite field . Then

(i) Every irreducible kG-module has finite dimension (over k, or owr

a /pa for some p, if k = a ) (Roseblade, J . Pure Applied Algebra 1973) .

(ii) If V is an irreducible kG-module, then the injective hull of V

is artinian (Musson, Jategaonkar (not yet published)) .

I understand that S . Donkin (Warwick) has extended (ii) to the case

when k has characteristic zero and V is finite dimensional . The proof of

(ii) in . the abóve case uses quite complicated ring,theoretic methods and

involves an interesting application of Morita duality .




