
1. Introduction. The Shannon-Whittaker theorem 

We start with the Shannon-Whittaker theorem, known to a
wide range of scientists and engineers. In digital signal pro-
cessing, the signals (functions to be analyzed) have finite
energy; written f�L2(�), or more explicitly 

.

These functions can be represented as a superposition of si-
nusoids of different frequencies: by the Fourier representation

,

where the Fourier transform

gives the spectrum content of f.
This representation of signals is useful because many of

the operations f a Tf that are performed on signals (filter-
ing, amplification, modulation) are linear and time-invariant,
that is, they do not depend on the choice of a particular
time origin. In mathematical terms, T commutes with the
translations (τa f)(t) = f(t – a), i.e. T(τa f )(t) = τa(T f ) for
every origin a. The point is that the exponentials are eigen-
vectors for all such T: if eω( f) = eiωt, then T(eω) = M(ω)eω.

Hence the way T acts on f is transparent in the Fourier re-
presentation: 

.

This is the main reason why the Fourier transform is ubiq-
uitous in applications. 

Communication engineers work only with signals f (t) that
do not have a frequency content at arbitrarily high frequen-
cies. Some limitations are related to the way signals are pro-
duced. For instance, the sound of an adult human male does
not exceed 8000 herzs. Besides, even if the original signal
had very high frequencies, these would be attenuated by the
transporting media. Thus we are forced in a natural way to
consider as a model for the more common onedimensional
signals the space PWτ of functions with finite energy and
spectrum in (–τ,τ). These functions are called bandlimited
with band-width τ, and can be represented as 

(1) , 

with  f̂ (ω) arbitrary of finite energy in (–τ,τ). 
Functions cannot be simultaneously time-limited (with

compact support, meaning f (t) = 0 for t ≥T) and band-lim-
ited. This is so because in this case f̂ would be an analytic
function, and analytic functions may vanish only in discrete
sets. This mathematical fact seems to contradict the intuition
we have for “real life” signals, which appear to be of this
kind. As argued in [S76] this is not an unapproachable ob-
stacle. It makes no sense to discuss whether real-life func-
tions are band-limited or time-limited, since this would need

f(t) =
1

2π

∫ τ

−τ
f̂(ω)eiωtdω

f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eiωtdω −→ Tf(t) =

1

2π

∫ ∞

−∞
f̂(ω)M(ω)eiωtdω

f̂(ω) =

∫ ∞

−∞
f(t)e−itωdt

f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eitωdω

‖f‖2
2 =

∫ ∞

−∞
|f(t)|2dt < ∞.
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to be checked by measuring the signal in remote or future
times, with arbitrarily high precision, something obviously
out of reach. The notions of band-limited and time-limited ex-
ist only in the mathematical model and do not belong to real
life. What happens in reality is that there exist band-limited
functions that outside a time interval are very small, in a
sense indistinguishable from the experimental signals, and
this makes functions in PWτ a suitable model for engineers.

The Shannon-Whittaker theorem states that a signal f �

PWτ can be recovered from its samples at the Nyquist rate
f( ), k � �, through the so-called cardinal series 

where sinc x = sin
πx

πx, Moreover, 

.

Any sequence of samples (ak)
∞
k = –∞ such that Σkak2 <∞

may appear, for 

defines in this case f � PWτ such that f( ) = ak.
Shannon made this theorem popular in the engineering

community in the 40’s as an important part of his theory of in-
formation; in the former Soviet Union it was independently
formulated by Kotelnikov. But in fact the result had already
appeared in the mathematical literature by the end of the XIX
century. We give a detailed proof of this result, since it will
motivate some basic definitions. 

The space L2(�) of functions with finite energy becomes a
Hilbert space with the inner product 

.

Two functions f and g are called orthogonal when 〈 f ,g〉 =
0. Plancherel’s theorem states that 〈 f ,g〉 = 〈 f$,g$〉, and in
particular k fk2

2 = k f$k2
2. Thus the Fourier transform estab-

lishes an isometry (up to a factor of 2π) between the space
PWτ of band-limited functions with band-width τ and L2(–τ,τ)
endowed with the inner product 

.

In an abstract Hilbert space H with inner product 〈·,·〉 a
family of vectors {ei}i�I is called an orthonormal basis if they
are pairwise orthogonal (i.e. 〈ei,ej〉 = δij), keik = 1, and they
(topologically) generate H, meaning that every υ � H can
be arbitrarily approximated by finite linear combinations
Σi�Iλiei. It then follows that every υ � H has a unique rep-
resentation as an infinite linear combination (series) υ =
Σiλiei, and the coefficients are the correlations λi = 〈υi,ej〉.
Moreover, the Pythagorean identity kυk2 = ΣiOλip

2 holds,
and υ = Σλiei, with ΣOλip

2<∞, is the general expression of υ
� H

One may think of L2(–τ,τ) as being the space of 2τ-perio-
dic functions with finite energy in one period. By the theory of
Fourier series, we know that the normalized sines and
cosines of that same period, that is constitute an
orthonormal basis of L2(–τ,τ). Then, according to Plancher-
el’s theorem, band-limited functions in PWτ whose Fourier
transform is constitute an orthonormal basis in
PWτ. Writing the expansion of f � PWτ in this basis one ob-
tains exactly Shannon’s theorem. 

Thus, Shannon’s theorem states that { sinc (2τt –
k)}k�� is an orthonormal basis of PWτ. We point out one par-
ticular feature: we have a single function sinc 2τ t, whose
translates to the points (k/2τ), k � �, constitute an orthonor-
mal basis. This basic function has the property that for arbi-
trary x � �,

(2)

2. Mathematical notions for discretization

The ShannonWhittaker theorem leads naturally to the intro-
duction of the following notions, all addressed to support
mathematically the connection from the analog to the dis-
crete domain, or digitalization. 

Let X be a space of functions with finite energy X�L2(�).
In the most general situation, a discretization process for X
consists of a linear map assigning to each f � X a discrete
set of scalar coefficients 

f � X aD (ci(f))i�I,

which is one to one, that is, f is completely determined by its
coefficients (ci( f ))i�I. A common situation occurs when we
are given a collection of functions gi � X and the coefficients
ci( f ) are the correlations ci( f) = 〈 f ,gi〉; in this case injectivity
of D means that 〈 f ,gi〉 = 0∀i should imply f = 0, which
amounts to the fact that the (gi)i�I topologically generate X.
We also say that the gi are complete in X. Another situation
occurs when the ci( f ) are samples of f at certain points
xi:ci( f ) = f (xi); injectivity of D means here that f (xi) = 0∀i
should imply f ≡ 0. We say then that the set {xi}i�I is a unique-
ness set for X. 

Even though this notion leads to interesting mathematics,
it has no practical application. A stability requirement needs
to be introduced; one says that the process D is a stable dis-
cretization process if there exist two constants A, B such
that 

Ak fk2
2 ≤ Σ

i
Oci( f )p2 ≤ Bk fk2

2 f � X.

Clearly, this says that Ak f – gk2
2 ≤ Σi Oci( f ) – ci(g)p2 ≤ Bk f –

gk2
2, meaning that small errors in in the coding (ci( f ))i�I pro-

duce small errors in f. In the first situation, when ci( f ) = 〈 f ,gi〉
stability reads as

Ak fk2
2 ≤ Σ

i
O〈 f,gi〉p2 ≤ Bk fk2

2, f � X.

f(x) =
1

2π

∫ τ

−τ
f̂(ω)eiωxdω =

1

2π
〈f̂ , e−iωt〉 = (Plancherel’s)

=
1√
2τ

∫ ∞

−∞
f(t) sinc (2τt− x)dt

1√
2τ

1√
2τ

1√
2τ

eπ
k
τ
iω

1√
2τ

eπ
k
τ
iω

〈F,G〉 =
∫ τ

−τ
F (ω)G(ω) dω

1
2π

1
2π

〈f, g〉 =
∫ ∞

−∞
f(t) g(t) dt

k
2τ

f(t) =
∑
k

ak sinc [2τ
(
t− k

2τ

)
]

2τ

∫ ∞

−∞

∣∣f(t)∣∣2dt = ∞∑
k=−∞

∣∣f( k

2τ

)∣∣2

f(t) =
∞∑

k=−∞
f
( k

2τ

)
sinc

[
2τ

(
t− k

2τ

)]
k
2τ
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We say that {gi}i�I is a frame for X, a notion that of course
can be considered in any abstract Hilbert space H. In the
second situation, when ci( f ) = f(xi), we have 

(3) Ak fk2
2 ≤ Σ

i
O f(xi)p

2 ≤ Bk fk2
2.

One says that {xi}i�I is a sampling set for X.
A natural question arises: how do we identify f through the

ci( f )? Is there an explicit reconstruction? The answer is pro-
vided by the following result, in fact not difficult to prove: if
{ei}i�I is a frame in a Hilbert space H, then there exists anoth-
er frame , called the dual frame, such that 

υ = Σ
i

〈υ,ei〉 ẽi ∀υ � H.

Besides, the dual frame of {ẽi}i�I is {ei}i�I, and υ = Σ
〈υ,ẽi〉ei too. We can look at these reconstruction formulas as
analogues to the expansion υ = Σ 〈υ,ei〉ei when {ei}i�I is an
orthonormal basis of H. However, there is an important dif-
ference between frames and orthonormal bases, namely, for
a general frame {ei}i�I one may have redundancy in the cod-
ing 〈υ,ei〉 coming from “hidden” relations of type 

Σ
i

µi ei = 0

between the {ei}i�I. Thus, the {ei}i�I need not be “topological-
ly linearly independent”. For instance, we obtain a frame if
we just gather a finite number of orthonormal bases. It is not
hard to see that the frame has no redundancy (the {ei}i�I are
topologically linearly independent) if and only if the following
property holds: for an arbitrary sequence (ai)i�I of complex
numbers such that ΣiOaip

2 < ∞, there exists υ � H such that
〈υ,ei〉 = ai∀i. In general, a family of vectors {ei}i�I (not neces-
sarily a frame) in a Hilbert space H having this property is
called a free system or a Riesz-Fischer family. 

For a non-redundant frame {ei}i�I with dual frame {ẽi}i�I in
a Hilbert space H, every υ � H therefore has two unique ex-
pressions 

υ = Σ
i

λiei = Σ
i

µi ẽi,

where λi = 〈υ,ẽi〉, µi = 〈υ,ei〉 and both ΣiOλip
2, ΣiOµip

2 are com-
parable to kυk2. For this reason they are also called Riesz
bases or biorthogonal bases. The orthonormal bases are
those for which ei = ẽi and keik = 1.

Let us review these notions for the specific case X = PWτ,
the space of τ-band limited functions. The analogue of a free
system is the notion of interpolating set {xi}i�I for X: for an ar-
bitrary (ai)i�I with ΣOaip

2 < ∞, there exists f � X with f(xi) = ai,
i � I. We first normalize so that 2τ = 1. As we have seen in
Section 1, both properties can occur at the same time, be-
cause f(x) = 〈 f ,τxg〉 with g the sinc function. Therefore,
{xi}i�I is a uniqueness set for PWτ if and only if {τxi

sinc}i�I

spans PWτ, and it is a sampling set for PWτ if and only if {τxi

sinc}i�I is a frame for PWτ.
Moreover, by Plancherel’s theorem and (2) these con-

cepts can be transported to L2(–τ,τ) and expressed in terms
of the characters ε(Λ) = {eiωx}x�Λ. Thus, {xi}i�I being a
uniqueness set for PWτ (resp. a sampling set) amounts to
the set of exponentials {eiωxi}i�I spanning L2(–τ,τ) (resp. be-
ing a frame). 

In the following sections we will consider all these notions
for various spaces of functions and survey the most impor-
tant results. We will pay attention to the techniques used in
the proofs. 

3. Uniqueness sets for Paley-Wiener spaces.
Beurling-Malliavin density, generators 

Let us replace the real variable t by a complex variable z � �

in the representation (1) of functions f � PWτ.

.

This defines an entire function, and a crude estimate
shows that Of(z)p ≤ CeτOIm zp. One says that f has exponential
type lower or equal than τ. The converse is also true: if f is an
entire function of exponential type ≤ τ whose restriction to �
has finite energy, then f � PWτ. The space of entire functions
of exponential type ≤ τ with finite energy on � is called the
Paley-Wiener space. 

This is quite straightforward; nevertheless, given the pow-
er of complex analysis, it has very important consequences.
The complexification of time allows also an extension of the
previous notions. Namely, when discussing uniqueness,
sampling or interpolation sets we may replace the real points
{xi} by complex ones {zi}; the problem becomes then “better
posed” and it is a fully complex analysis problem. However,
for the sake of simplicity, we will continue assuming in our
description of results that the points are real. 
Let us first discuss uniqueness sets Λ = {xi} � � for PWτ,
that is, sets for which f � PWτ and f (xi) = 0 ∀i implies f ≡ 0.
Since every f � PWτ is entire, it is clear that every set Λ with
a finite accumulation point is a uniqueness set; it is also
transparent that a finite set cannot be a uniqueness set, so
we assume from now on that Λ is infinite and has no finite ac-
cumulation point. In such case we can write Λ as a se-
quence Λ = {xn}n�� with Oxnp → ∞. It is intuitively clear that Λ
must be dense in some sense, so that fOΛ = 0 implies f = 0.
Now, if f � PWτ and f(α) = 0, then the function

is again in PWτ and g(β) = 0; this means that
we can move arbitrarily any finite number of points of Λ with-
out changing the problem (by the way, a non trivial fact to
prove without complex analysis). Consequently, the control
on the density of the sequences Λ should be asymptotic, de-
pending just on how Λ behaves “at infinity”. 

In a series of deep and very famous papers, Beurling and
Malliavin (see [K96]) proved some results giving an almost
complete description of uniqueness sets for PWτ. They intro-
duced a density DBM(Λ), now called the Beurling-Malliavin
density, and proved that 

DBM(Λ) > 2τ ⇒ Λ is a uniqueness set for PWτ ⇒ DBM(Λ) ≥ 2τ. 

The definition of DBM(Λ) is complicated, but geometric in
nature, and will not be given here. It is called a density be-
cause the number DBM(Λ) depends on how many points Λ has
in large intervals. It is closely related to the classical density 

g(z) = f(z) (z−β)
(z−α)

f(z) =
1

2π

∫ τ

−τ
f̂(ω)eiωzdω
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,

where nΛ(r) indicates the number of points of Λ in [–r,r]. In
particular, DBM(Λ) ≥

—
D(Λ).

We have already pointed out that Λ = {xn} is a uniqueness
set for PWτ if and only if the characters ε(Λ) = {eiωxn}xn�Λ

span L2(–τ,τ). The completeness radious of a family of expo-
nentials ε(Λ) is defined as 

R(Λ) = sup {ρ > 0,ε(Λ) spans L2(0,ρ)}.

Of course, by translation we can replace (0,ρ) by any in-
terval of length ρ. The theorem of Beurling and Malliavin im-
plies then the beautiful equality 

R(Λ) = DBM(Λ).

The exact description of uniqueness sets for PWτ howev-
er remains unsolved. 

The Beurling-Malliavin density also shows up in other
problems related to uniqueness sets and spanning families.
We have seen that if Λ = {xn} is a uniqueness set for PWτ,
then the translates of sinc (2τt) by Λ span PWτ. The reverse
implication is actually true as well. A natural question arises:
for the whole space L2(�), or more generally for Lp(�), 1 ≤ p
< ∞ do there exist pairs (ϕ,Λ), Λ discrete, such that the trans-
lates {τxϕ}x�Λ are complete in Lp(�)? We say then that ϕ is a
Λ generator of Lp(�), or that Λ is a ϕ-translation set for Lp(�).

In this context, we must first recall that according to
Wiener’s theorem all translates of ϕ � L1(�) span L1(�) if
and only if ϕ̂ never vanishes. In the same direction, Beurl-
ing’s theorem states that all translates of ϕ � L2(�) span
L2(�) if and only if ̂ϕ is not zero almost everywhere. Obvious-
ly, there are then necessary conditions for generators in
L1(�), L2(�), respectively.

Let T(ϕ,Λ) denote the linear span of the Λ-translates of ϕ.
Since translations correspond to multiplication by charac-
ters in the frequency domain, we may write 

(4) T(ϕ,Λ)∧ = ϕ̂ ε(Λ)

where ε(Λ) denotes, as before, the linear span of the char-
acters eiωxn, xn � Λ. 

When Λ is a regular lattice Λ = γ�, that is, when we deal
with regularly spaced translates of a fixed function, it is easy
to prove that neither L1(�) nor L2(�) contain Λ-generators.
For L2(�) this easily follows from (4) and Plancherel’s theo-
rem, because if Λ is a lattice then ε(Λ) consists entirely of γ–1

periodic functions and ϕ̂ ε(Λ) cannot be dense in L2(�). For
L1(�) it will be proved below. 

Surprisingly enough, in Lp(�), p > 2, there do exist �-gen-
erators. This result was established in [AO96], and another
proof can be obtained from results of [N70], [N74] (see also
[F81]). Later, using Fourier series techniques, Olevskii [O97]
showed that an arbitrary perturbation of � of the form 

Λ = {n + an} an ≠ 0, an → 0

admits a generator ϕ � L2(�). In L2(�), using (4) and
Plancherel’s theorem, it is immediate to see that the density
of T(ϕ,Λ) in L2(�) coincides with the density of ε(Λ) in the

weighted L2-space L2(�,w), with w = Oϕ̂p2 (which is nonvan-
ishing a.e., by Beurling’s theorem). In particular, denoting
Eε,N = {ε ≤ w ≤ N}, ε(Λ) will be dense in L2(Eε,N) and OEε,Np →
∞ as ε → 0, N → ∞. Thus, if Λ has a generator in L2(�), then
ε(Λ) is dense in L2 in sets of arbitrarily large measure. 

This shows the connection of these questions with the
subject of density of exponentials ε(Λ) in function spaces
and, in particular, with Beurling-Malliavin and Landau’s re-
sults. Landau [L67a] constructed sets Λ as in (2) such that
ε(Λ) is dense in L2 on any finite union of intervals (2π(k – 1)
+ ε, 2πk – ε), ε > 0 (in particular, sets with arbitrarily large
measure). By reversing, in a sense, the above argument,
Olevskii and Ulanovskii [OU03] have recently shown that if
the an satisfy Oanp ≤ CrOnp, with r < 1, then a Λ-generator ϕ for
L2(�) exists, and moreover it can be chosen in the Schwartz
class. 

In L1(�) the situation is simpler than in L2(�), because
here ϕ̂ is continuous and nonvanishing, and what is involved
is therefore the density of ε(Λ) with respect to weights that
are bounded above and below on each interval. From here it
is easy to deduce that if T(ϕ,Λ) spans L1(�) then ε(Λ) must
be dense in L2(I) for all intervals I. Indeed, from the trivial
estimate k f$k∞ ≤ k fk1 it follows that an arbitrary f$, with f �
L1(�), can be approximated in the sup-norm by functions in
ϕ̂ε(Λ). Since ϕ�f � L1(�), ϕ̂f$ can be approximated as well.
Now fix ρ > 0; every test function � supported in (–ρ,ρ)
serves as f$, and therefore ϕ̂� is well approximated by ϕ̂ε(Λ)
in the sup-norm. Since ϕ̂ is continuous and non-vanishing, it
is bounded below on (–ρ,ρ) and hence every � is approxi-
mated in the sup-norm by ε(Λ). The density of such � in L2(I)
shows that ε(Λ) is dense in L2(I), and ρ being arbitrary, one
has R(Λ) = ∞. This is the easy part of the characterization
obtained in [BOU03]: a discrete Λ admits a generator � �

L1(�) if and only if DBM(Λ) = ∞. We explain now the ideas for
the proof of the converse direction, as it again shows con-
nections with uniqueness sets.

By duality, ϕ will be a Λ-generator if and only if h � L∞(�)
and (h�ϕ̌)(λ) = ∫∞

–∞ h(t)ϕ(t – λ)dt = 0, λ � Λ implies h ≡ 0 (here
ϕ̌(t) = ϕ(–t). Since h�ϕ̌has Fourier transform h$(ζ)ϕ̂(–ζ) and ϕ̂
≠ 0 everywhere, this is restated by saying that Λ is a unique-
ness set for the class Y = L∞(�)�ϕ̂ . Now, typically, the
classes admitting discrete uniqueness sets are the quasian-
alytic ones, including of course the analytic classes. In this
way, when finding conditions ensuring that a given transla-
tion set Λ admits a generator in L1(�), we are led to looking
at uniqueness sets for quasianalytic classes. The most typi-
cal ones are the Denjoy-Carleman classes C{Mn} associated
to a sequence of positive numbers Mn, M0 = 1. It consists of
all f � C∞(�) such that 

O f (n)(x)p ≤ Cf Mn, n = 0, 1, 2,... x � �.

Without loss of generality (Mn) can be assumed to be log-
convex, that is, M2

n ≤ Mn–1Mn+1, M0 = 1 (see [K92, vol. 1]); this
implies that M1

n
/n increases. In case limn M1

n
/n < ∞, it is imme-

diate to check that C{Mn} is contained in some class PWτ,
and conversely. Hence the classes C{Mn} with M1

n
/n bounded

fill exactly the union of all Paley-Wiener classes PWτ. 

D (Λ) = lim
r→0

nΛ(r)

2r
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The class C{Mn} is quasi-analytic (meaning that f �

C{Mn} and f (n)(0) = 0 ∀n imply f ≡ 0) if and only if 

.

This is the Denjoy-Carleman theorem (see [K96, vol 1]). In
case (Mn/n!)1/n → 0, C{Mn} consists of entire functions, and
we call it of analytic type. The idea for the converse implica-
tion is first to show that if DBM(Λ) = ∞ then Λ is a uniqueness
set for some analytic class C{Mn} with Mn

1/n → ∞, and that
this in turn implies that a generator ϕ can be found in C{Mn}.
In doing that, one can restrict attention to analytic classes of
entire functions with infinite type. The proof also shows that
the sequences with infinite Beurling-Malliavin density are ex-
actly those which are uniqueness sequences for some qua-
sianalytic class C{Mn} with Mn

1/n → ∞.
In L2(�), ϕ̂ may vanish and have “holes”, so what is in-

volved is the density of ε(Λ) in more complicated sets. Both
in L1(�) and L2(�), the description of generators admitting a
discrete Λ seems at present out of reach. 

4. Sampling, frames and interpolation for
bandlimited functions

In this section we discuss sampling, interpolation and bases
for PWτ. Recall that Λ = {xi}i�I is sampling for PWτ, if there
exist two constants A, B > 0 such that (3) holds for f � PWτ.
It follows from the Shannon-Whittaker theorem that the only
equally spaced sequences Λ which are sampling for PWτ

are those having Nyquist density at least 1/2τ. Here we deal
with general sequences, possibly irregular. This is a nice
hard mathematical field, and it is tied to applications too.
Suppose we have a signal that has been perturbed by noise
in an inhomogeneous way, so that the signal has more noise
in some locations than others. According to this circum-
stance it seems reasonable to sample irregularly. 

On the other hand, in some instances we are interested in
the converse situation. We start with a sequence of discrete
values (ai)i�I and want to build a band-limited function carry-
ing the information (the sequence of values) with stability.
This situation arises for example in modems transmitting dig-
ital data through an analog telephonic signal. Recall that Λ =
{xi}i�I is an interpolating sequence for PWτ whenever for any
(ai) with ΣO aip

2 < ∞, there exists f � PWτ with f (xi) = ai ∀i.
One may think of Λ as an appropriate collection of time mo-
ments where we can place the desired information. It would
be very convenient if we could take many such points very
close together, because this would allow us to transmit a lot
of information in a very short time. Of course there is a limita-
tion given by the band width τ. The situation was very early
understood for regularly spaced sequences Λ, but, as point-
ed out before, we might be interested in irregular se-
quences. 

The pioneering work was done by Beurling [B89], and
Landau [L67a]. The central notion is the Nyquist density,
whose definition for general sequences is as follows. A real

sequence Λ = {xn}n�� is called separated if there exists ε > 0
such that O xn – xmp ≥ ε > 0 for xn, xm � X, n ≠ m. Interpolating
sequences must be separated; this is intuitively clear: we
cannot prescribe very different values at very close points
because this would imply high oscillations which are not
possible in bandlimited functions. For a separated se-
quence Λ, the upper density is defined as 

while the lower density is 

.

Here � denotes cardinality. Notice that these are uniform
densities. 

A sampling sequence always contains a separated sam-
pling sequence. For separated sequences, Beurling’s re-
sults imply 

The precise description of sampling sequences for PWτ

was, however, an open problem until J. Ortega-Cerdà and
K. Seip closed it in [OS02]. Their description involves the De
Branges spaces of entire functions and will not be repro-
duced here. Their results have interesting consequences
such as the following: if Λ = {xk}k�� is sampling, there is a
complete interpolating sequence Λ: = {x:k} (see next section
for a precise definition) such that (x:k,x:k+1) contains at least
one point of Λ. Roughly speaking, this means in particular
that a sampling sequence is always denser than some inter-
polating sequence. 

5. Optimal sampling. The multiband problem.
Higher dimensions and the Fuglede conjecture 

For obvious reasons it is extremely important to have sam-
pling sequences Λ with no redundancy. We mentioned be-
fore that this is so if Λ is both sampling and interpolating.
There is an intuitive way to look at nonredundant sampling
sequences: they are exactly the minimal sampling se-
quences, meaning that if we remove just one point of Λ we
are left with a sequence that is no longer sampling. Then one
encodes the analog signal with a minimal set of points. In the
other direction, we may be interested in an interpolating se-
quence as packed as possible, so that whenever we add
just one point we get a noninterpolating sequence. These
are the nonredundant sampling sequences. For this reason,
they are also known as complete interpolating sequences. 

Recall that Λ = {xn}n�� is a nonredundant sampling se-
quence for PWτ if and only if {sinc (2τt – xn)}n is a Riesz basis
for PWτ, or equivalently if ε(Λ) = {eiωxn}xn�Λ is a Riesz basis
for L2(–τ,τ). Among these we have the orthonormal bases,
the nicer ones, of which the regular sequence Λ = � found
in the Shannon-Whittaker theorem is a canonical example.

1
2τ

D−(Λ) > 2τ ⇒ Λ sampling ⇒ D−(Λ) ≥ 2τ

D+(Λ) < 2τ ⇒ Λ interpolating ⇒ D+(Λ) ≤ 2τ

D−(Λ) = lim
r→∞

min
x∈R

#Λ ∩ [x− r, x+ r)

2r

D+(Λ) = lim
r→∞

max
x∈R

#Λ ∩ [x− r, x+ r)

2r

∞∑
n=1

Mn−1

Mn

= ∞
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Indeed, this is essentially the only example of orthonormal
basis: it is not hard to prove that if ε(Λ) is an orthonormal ba-
sis for L2(–τ,τ) then Λ is a translation of �. There are also
many “perturbative”’ results, that go as far back as Wiener.
The best known among them is Kadec’s theorem: if supn��

O xn – np < 1/4, then ε(Λ) is a Riesz basis for L2(0, 1).
The full description of the non-redundant sampling se-

quences for PWτ, was achieved by Pavlov [Pav84]. It con-
sists of three conditions: a) Λ is separated, b) the infinite
product F(z) = converges and defines an en-
tire function of exponential type πτ, c) the positive function
w(x) = O F(x + 1)p2 satisfies 

(∫I w) (∫I w
–1) ≤ const O Ip2

for all intervals I � �. 
The second condition is basically the density condition,

since the density of the zeros is tied to the type. The third
one is an extremely delicate balance condition. In particular,
it is destroyed if we add or remove a point, as it should be. 

Let us now briefly consider multiband signals, that is,
functions in L2(�) whose spectrum is contained in a set S
consisting of a finite number of disjoint intervals, I1,..., Im, We
denote this space by PW2

S. No easy description of PW2
S as a

space of entire functions is available, and none of the usual
complex analysis methods work. Using operator-theory Lan-
dau [L67a] proved that whenever Λ is sampling for PW2

S,
one has D–(Λ) ≥ O Sp and D+(Λ) ≤ O Sp, where O Sp denotes the
total length of S = I1�···�Im. It must be pointed out that in
the multiband case the Beurling-Landau conditions cannot
provide a complete solution to these problems; arithmetic
relations among the points of Λ play an important role and no
density condition seems appropriate. That no density plays
a role here is already seen when dealing with uniqueness
sets. We mentioned before that Landau [L67a] constructed
a symmetric sequence Λ arbitrarily close to the integers for
which ε(Λ) is complete in L2(S), where S is any finite union of
the intervals O x – 2πnp < π – δ, with arbitrarily large measure.
A recent improvement of Landau’s results is due to
Ulanovskii [U]; however the following basic question re-
mains unanswered. 

Question: Does there exist, for  every finite union 
S = I1�···�Im of finite intervals, a real sequence Λ such that
ε(Λ) is a Riesz basis in L2(S)?
It is known that there exist complex sequences Λ lying in

horizontal strips such that ε(Λ) is a Riesz basis. The answer
to the questions is yes if the lengths of the intervals Ii are
commensurable, and also for two intervals [LS97]. The
question is essentially trivial if S is a convenient explosion of
an interval of the same length O Sp.

All the problems we have discussed can be stated mu-
tatis mutandis in the multidimensional situation. We consider
signals in L2(�n) such that the support of its spectrum con-
tent lies in a fixed set E. This space of signals will be denot-
ed by PWE. When E is a bounded set PWE is a Hilbert
space of entire functions, which however is nicely described
in terms of size only when the set E is convex. This is the

(technical) reason that explains why there are many more re-
sults when the spectrum is assumed to be convex. In such a
general situation there is a result by Gröchenig and Razafin-
jatovo [GR96], which is an adaptation of some ideas of Ra-
manathan and Steeger [RS95], that roughly states that in PWE

a sampling sequence is always denser than an interpolating
sequence. From this comparison theorem it is possible to re-
obtain the results of Landau [L67a] providing necessary den-
sity conditions for sampling and interpolation. In several di-
mensions the density conditions are far from being sufficient.
The difficulties are greater and many basic problems remain
open. Among the most striking ones is the following. 

Conjecture. There are no Riesz bases of exponentials in
L2(B), where B is a ball in �n, n > 1. 
It is rather surprising that this is unknown, because it is very
close in spirit to the original work of Fourier. In dimension 2
there are Riesz bases of exponentials in L2(K) when K is a
convex polygon symmetric with respect to the origin [LR00].
So in this context the basic problem is not the description of
Riesz bases, but more basically, whether they exist at all. 

One could be more strict and ask when the sequence
{eixnx}xn�Λ is an orthogonal basis for L2(E). When E is an inter-
val we mentioned before that all orthogonal basis of exponen-
tials have frequencies that are just a translate of the integers.
For more complex sets E this apparently trivial problem be-
comes hard and interesting. Take a set E � �n of measure 1.
We may ask ourselves whether there is a sequence Λ � �n

such that the exponentials {ei〈x,xn〉}xn�Λ are an orthonormal ba-
sis in L2(E). This is an open problem even in dimension 1 for a
general set E. In this context Fuglede’s conjecture states:

Conjecture (Fuglede). There is an orthonormal basis of
exponentials in L2(E) if and only if E tiles �n. 
We say that a set E tiles �n whenever there is a sequence Σ
� �n (with no relationship a priori with the sequence of fre-
quencies) such that the translates E + y, y � Σ constitute, up
to sets of zero measure, a partition of �n. 

There has been considerable interest in this problem in
recent years. This conjecture has been recently proved
[IKT01] in the case that E is a two dimensional convex set
and disproved [T03] in dimension 5 and higher. On the other
hand, it is shown that no convex body with a point of positive
definite curvature, e.g. the ball, admits an orthonormal basis
of exponentials. 

6. Localization. Windowed Fourier Transform

In many situations it is important to know the frequency con-
tent of a given signal f (t) locally in time. The Fourier trans-
form f̂ gives information on the signal’s frequency content,
but information concerning time-localization (for example,
short-lived high frequency features) is not always easy to
read off from f̂ . 

A standard way to achieve time-localization consists of
first looking at the signal f through a “window” g, so that only

∏
n(1− z

xn
)e

z
xn

1
2τ
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a well localized part of f is looked at, and then taking Fourier
transform. For a window function g, i.e. a positive function lo-
calized around 0 both in time and frequency (and normal-
ized with kgk2 = 1), this gives the associated continuous win-
dowed Fourier transform of f:

(Wg f )(s,ω) = ∫ ∞

–∞ f (t)g(t – s)e–itωdt.

Denote gs,ω(t) = g(t – s)eitω. The analogue of Fourier’s for-
mula holds for every f � L2(�), 

and

.

Thus, f a Wg f is an isometry (up to a constant) between
L2(�) and a closed subspace Hg of L2(�2). In time, gs,ω is
“centered” at s and it has most of its energy in the interval [s
– σ(g), s + σ(g)], where σ(g) = ∫∞

–∞t2pg(t)s2dt. Similarly, if ĝ is
concentrated around 0 as well, ĝs,ω is “centered” at ω and it
has most of its energy in [ω – σ(ĝ), ω + σ(ĝ)]. This is so be-
cause ĝs,ω(ξ) = eisω–ξĝ(ξ – ω). We can (loosely) assume that
gs,ω occupies in the time-frequency plane a box centered at
(s,ω), with sides σ(g) and σ(ĝ) respectively. The uncertainty
principle states that σ(g)σ(ĝ) is bounded below by a positive
constant, and therefore it is not possible to make the local-
ization box arbitrarily small. The product σ(g)σ(ĝ) attains its
minimum value for the Gaussian window g(t) = π–1/4e–t2/2.

For some windows g the space Hg is isometric to a Hilbert
space of entire functions. This is the case of the Gaussian
window: letting z = s – iω one sees that 

,

where Bf denotes the Bargmann transform 

.

The functions F = Bf arising in this way thus satisfy 

,

and constitute the Bargmann-Fock space F (see [F89,
Chap.I, & 6]). 
More than the continuous windowed transform described
above, what is useful in many applications is a discrete ver-
sion {(Wg f )(sk,ωk)}k��, where Λ = {(sk,ωk)}k�� is an appropri-
ately chosen sequence in the time-frequency plane. The
most common case in applications corresponds to regu-
larly spaced values in time and frequency, i.e. Λs0,ω0

=
{(ns0,mω0)}n,m��, where s0,ω0 > 0. If g is compactly support-
ed it is clear that, with ω0 suitably chosen, the Fourier
coefficients are enough to reconstruct f (·)g(· – ns0). As n
changes one recovers the portion of f(t) localized around
the time ns0, in such a way that putting all the pieces to-
gether f(t) can be regained. 

For the Gaussian window, the discrete families of win-
dowed Fourier functions have been studied extensively. This
is mainly due to their relevance in communication theory

[G46] (where are called Gabor wavelets), and in quantum
mechanics (where they are known as canonical coherent
states for the Weyl-Heisenberg group; see [P85] and refer-
ences therein). As we have already mentioned, the link be-
tween Gabor and Bargmann-Fock functions makes it possi-
ble to rephrase the results concerning families g(Λ) :=
{gsk,ωk}k (being a frame, a free system or spanning L2(�)) in
terms of properties of the sequence Λ = {(sk,ωk)}k�� for F
(being sampling, interpolation or uniqueness). Exploiting
this link, Bargmann et al. [BBGK71] and, independently,
Perelomov [P71] proved that a regular Gabor family g(Λs0,ω0

)
spans all of L2(�) if and only if s0ω0 ≤ 2π. 

If one wants good localization in both time and frequency,
one needs to take the strict inequality s0ω0 < 2π, that is,
frames g(Λs0,ω0

) with s0ω0 = 2π have necessarily bad localiza-
tion either in time or in frequency. Indeed, the Balian-Low
theorem states that if g(Λs0,ω0

) = {gns0,mω0}n,m�� is a frame in
L2(�), either σ(g) = ∞ or σ(ĝ) = ∞. Therefore, in strong con-
trast with the Paley-Wiener case, no Riesz basis of Gabor
wavelets can exist in L2(�), or no complete interpolating se-
quence can exist for the Bargmann-Fock space. 

More generally, one can ask: for what discrete sequences
Λ = {(sk,ωk)}k�� in �2 the family g(Λ) is complete, a frame, or
a Riesz basis for L2(�)? Of course this is equivalent to asking
when Λ is uniqueness, sampling or complete interpolating
for the space Hg, respectively. In order to handle these
questions for separated sequences Λ = {(sk,ωk)}k�� one
needs to consider the Beurling-Landau upper and lower
densities, defined respectively as 

(5) and

.

Here D(z,r) denotes the disk centered at z with radius r. A
computation shows that for regular sequences Λs0,ω0

=
{(ns0,mω0)}m,n��, the equality D–(Λs0,ω0

) = D+(Λs0,ω0
) = (ω0s0)

–1

holds. 
Ramanathan and Steger proved a general comparison

theorem between the density of sampling sequences (or
frames) and interpolating sequences (or Riesz families) that
avoids Landau’s subtle eigenvalue estimates [RS95]: if I is
an interpolating sequence for F and S is a separated sam-
pling sequence for F, then D+(I) ≤ D+(S) and D–(I) ≤ D–(S).
Comparing with regular nets Λs0,ω0

one then deduces that a
frame g (Λ) must satisfy D–(Λ) ≥ 1/2π, whereas a free system
g (Λ) must have D+(Λ) ≤ 1/2π. In particular, Riesz bases can
occur only when D–(Λ) = D+(Λ) = 1/2π. In the next section we
will explain how complex analysis methods provide a pre-
cise description of sampling and interpolation sequences in
terms of these densities. 

7. Complex analysis developments 

In the previous sections we have indicated how several
problems arising in signal analysis are brought in a natural

D−(Λ) = lim inf
r→∞

inf
z∈C

#Λ ∩D(z, r)

πr2

D−(Λ) = lim sup
r→∞

sup
z∈C

#Λ ∩D(z, r)

πr2

∫
C

|F (z)|2e− |z|2
2 dA(z) < ∞

Bf(z) = π−1/4e−
|z|2
4

∫ ∞

−∞
f(t)e−

t2

2 etzdt

Wg(s, ω) = e−
i
2
sω− 1

4
|z|2Bf(z)

∫ ∞

−∞
|f(t)|2dt = 1

2π

∫ ∞

−∞

∫ ∞

−∞
|(Wgf)(s, ω)|2dωds

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
(Wgf)(s, ω)g

s,ω(t)dωds
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way into the common domain of complex analysis. This pro-
vides a new insight and, as a consequence, new possibili-
ties of further development. 

In all situations we have the following general setting. As-
sume that H is a reproducing kernel Hilbert space of holo-
morphic functions, i.e H is such that there exists a reproduc-
ing kernel K(z,ζ) holomorphic in z: 

f(z) = 〈 f,K(z,·)〉 f � H.

In this situation the point evaluation functional z a f(z) is
bounded for each z, and the norm of this functional coin-
cides with .

The standard problems of interpolation and sampling in
Hilbert spaces of functions with reproducing kernels can be
rephrased as follows. 

A sequence Λ = {zn} is interpolating for H (denoted Λ �
Int H) if the interpolation problem 

f (zn) = an n � �

has a solution f � H for all sequences of complex values a =
{an}n such that the weighted l2-norm 

is finite. Equivalently, Λ is interpolating when the normalized
kernels K

~
(zn,·) = (K(zn,zn))–1/2K(zn,·), n � �, form a Riesz ba-

sis in its closed linear span in H. 
Given a function f, denote fpΛ = { f (zn)}n��. The sequence

Λ is sampling for H (denoted Λ � Samp H) if there exists C >
0 such that 

C–1k fpΛk l(H) ≤ k f k H ≤ Ck fpΛk l(H).

Equivalently, Λ � Samp H if and only if {K
~

(zn,·)}n�� is a
frame in H. Finally, Λ is a complete interpolating sequence
when it is is both sampling and interpolating, i.e, when
{K

~
(zn,·)}n�� is a Riesz basis in H. 
In this section we discuss some particular spaces of holo-

morphic functions that play an important role in signal analy-
sis together with the Paley-Wiener spaces: the Bargmann-
Fock, and Bergman spaces. 

The classical Bergman space B2 consists of the holomor-
phic functions f in the unit disk such that ∫�O f p2dA < ∞. It ap-
pears as a model for quantum mechanics on a half-line,
where the disk with its hyperbolic metric represents physical
phase space [P84]. More generally, one considers the
weighted versions 

B2
α = {f � H(�):k f k2

B2
α

= ∫�p f(z)p 2(1 – p zp 2)αdA(z) < ∞} α > –1

These spaces appear naturally in signal processing as
transforms of the socalled analytic wavelets, see [D92]. 

It is only for Paley-Wiener spaces that there exist complete
interpolating sequences, and these are fully understood (as
we have seen in Section 4). However, the work of Ortega-
Cerdà and Seip also shows that there cannot exist a com-
plete geometric description of sampling or interpolating se-
quences only in terms of densities. For Bargmann-Fock and
Bergman spaces, which in many ways behave similarly, the

situation is quite different: there is a complete geometric de-
scription (in terms of densities) which excludes the possibili-
ty of finding the two properties simultaneously in the same Λ.
Thus, for the spaces we are dealing with, geometric density
conditions characterize sampling and interpolation se-
quences if and only if there are no complete interpolating se-
quences. This raises the following question: what properties
of a Hilbert space of entire functions determine the existence
of complete interpolating sequences? 

A common feature of the spaces we are discussing is that
the pointwise growth of their functions is controlled by a
function eφ, where φ is a subharmonic weight (φ(z) = p Im (z)p
for PW, φ(z) = p zp 2 for F and φ(z) = log 1/(1 – p zp 2) for B). The
densities describing sampling and interpolation are ex-
pressed in each case in terms of the measure ∆φ. 

7.1. Bargmann-Fock spaces
Given a subharmonic weight φ in �, consider the space F2

φ

of entire functions f such that 

.

The classical Bargmann-Fock space described in the
previous section corresponds to φ(z) = szp2/4. K. Seip and R.
Wallstén ([S92] and [SW92]) gave a complete characteriza-
tion of sampling and interpolating sequences in the classical
case by means of the Beurling-type densities defined in (5):
Λ is interpolating if and only if it is separated and D+(Λ) < ,
whereas Λ is sampling if and only if it is a finite union of sep-
arated sequences containing a separated subsequence Λ:

such that D–(Λ:) > . It is interesting to point out that interpo-
lating sequences for Fszp2 can also be characterized by an
analytic condition similar to the classical Carleson condition
for Hardy spaces. However, in contrast to the Hardy situa-
tion, the characterization does not carry over F p

szp2 for p > 2,
and, in particular, it does not work for p = ∞ [S00].

The geometric description of sampling and interpolation
was extended by Berndtsson and Ortega Cerdà [BOC95),
and Ortega-Cerdà and Seip [OS98] to the case of weights φ
such that the metric defined by ∆φ is equivalent to the Eu-
clidian metric, that is, such that ∆φ is bounded above and
below by positive constants (notice that in the classical case
∆φ = 1). In this situation the norm given in (6) is 

.

Similarly to the classical case, the upper and lower densi-
ty of a sequence ∆ are defined respectively as 

and

.

Notice that in the classical case φ(z) = szp2/4 one has
∫D(z,r)∆φ = πr2, thus the definition above coincides with (5),
where the densities just count (asymptotically) the propor-

D−
φ (Λ) = lim inf

r→∞
inf
z∈C

#Λ ∩D(z, r)∫
D(z,r)

∆φ

D+
φ (Λ) = lim sup

r→∞
sup
z∈C

#Λ ∩D(z, r)∫
D(z,r)

∆φ

‖v‖�(F2
φ) =

( ∞∑
n=1

|an|2e−2φ(zn)
)1/2

1
2π

1
2π

‖f‖F2
φ
=

(∫
C

|f |2e−2φ

)1/2

< ∞.

‖a‖�(H) =

(∑
n∈N

|an|2
K(zn, zn)

)1/2

√
K(z, z)
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tion between the number of points of Λ in a given disk and its
area. In the general case the “area” is computed with re-
spect to the metric ∆φ. The characterization in this more gen-
eral case is as before, with the adapted densities given in (7)
taking the place of (5). The result implies, in particular, that
there are no sequences which are simultaneously sampling
and interpolating (it should be mentioned that this is not ob-
tained as a corollary of the theorems; it is actually an impor-
tant ingredient of the proofs that has to be proved before-
hand). 

The results above have recently been extended to a more
general setting [MMO02]. If φ is a weight such that the mea-
sure µ = ∆φ is positive and doubling (i.e. there exists C > 0
such that µ(D(z,2r)) ≤ Cµ(D(z,r)) for all disks D(z,r) then the
characterization above still holds, provided that all the terms
are appropriately interpreted according to the distance in-
duced by ∆φ, which is 

.

where the infimum is taken over all smooth curves γ joining z
and ζ. This means, in particular, that the disks D(z,r) have to
be replaced by Dφ(z,r) = {ζ � � : dφ(z,ζ) < r}, and the norms
defining the spaces F2

φ, l(F2
φ) need to be adapted to dφ. Ca-

nonical examples of weights with doubling Laplacian are
φ(z) = szpα, with α > 0. For such weights, 

dφ(z,ζ) G sz – ζp z szpα /2–1 if sz –ζp e 1

Notice that in the previous case, where ∆φ is assumed to
be bounded above and below, one has dφ(z,ζ) G sz – ζp,
hence the disks Dφ are equivalent to the usual ones. 

The problems of sampling and interpolation for
Bargmann-Fock spaces have been studied in several relat-
ed settings, which we now review : 
Interpolation and sampling with multiplicities. Instead of pre-
scribing the value of f on each zn � Λ one can prescribe the
Taylor polynomial of a certain order qzn

. This gives the no-
tions of sampling and interpolation with multiplicities. In
[BS93] it was proved that in case supnqzn

< ∞ the geometric
characterization of sampling and interpolating sequences
for the classical Bargmann-Fock space is still valid, provid-
ed that the densities count each point according to its multi-
plicity, i.e. 8Λ�D(z,r) = Σzn � D(z,r)(qzn

+ 1).
Sampling measures. From the viewpoint of signal process-
ing, the sampling problem is also natural for general mea-
sures. A measure µ in � is called sampling for F2

φ if there ex-
ists a constant C > 0 such that 

for all  .

The definition of sampling sequence Λ then corresponds
to the measure µ = Σn δzn

, where δzn
, denotes the Dirac Mass

on zn. Using the result for sequences, Ortega-Cerdà  gave a
description of such measures for the spaces F2

φ, ∆φ bound-

ed, again in terms of an appropriate density associated to
the measure µ [O98] (see also [L00]). A neater description
was given later by Lindholm [L01]. 
Sampling and interpolation in �n. There are some partial re-
sults concerning Bargmann-Fock spaces of functions of
several complex variables. The classical Bargmann-Fock
space was studied in [MT00], where a necessary and a
sufficient density condition for interpolation were obtained.
The sufficient condition is formally as in the plane, whereas
the density appearing in the necessary condition compares
the number of points in a ball B(z, r) with its 2n-dimensional
volume cnr2n. As often happens in higher dimension, the gap
between the two conditions is large, and it cannot be
bridged by means of analogue density conditions. This is
easily seen by considering two extreme cases: when Λ be-
longs to a coordinate plane, the best sufficient condition is
as in dimension one; on the other hand, it is easy to see that
a 2n-dimensional net Λa+ib = {(a + ib)m}m��n is interpolating if
a, b> 0 are big enough, while 

.

N. Lindholm obtained necessary density conditions for
sampling and interpolation in Bargmann-Fock spaces of �n

for weights φ such that i∂p∂φ is equivalent to the Euclidian
metric [L01]. These densities are as in (7), where ∫D(z, r)∆φ is
replaced by the Monge-Ampère mass ∫B(z, r)(i∂p∂φ)n. The pre-
cise result is that a separated sampling sequence has D–

φ(Λ)
≥ , while an interpolating sequence is separated with
D+

φ(Λ) ≤ . It is worthwhile explaining why (i∂p∂φ)n takes
the place of ∆φ. Let’s take the simple example with φ(z1, z2) =
α1sz1p

2 + α2sz2p
2 in �2 and a lattice Λ = Λ1 × Λ2, Λi = ai(� × i�).

If Λ is sampling, then both Λ1, Λ2 are sampling in one vari-
able, and according to the results for the classical
Bargmann-Fock space, 1/a2

i > 2αi/π. The asymptotic num-
ber of points of Λ in a big ball B(z, r) is vol (B (z, r)) / a2

1a2
2,

which exceeds vol (B(z, r)) , an expression which in-
volves (i∂p∂φ)n rather than ∆φ.
Interpolation in related spaces of functions. Interpolation
problems for Fréchet algebras of functions defined by sub-
harmonic weights have been considered by Squires, and
Berenstein and Li (see for instance [S83], [BL95] and the ref-
erences therein). Given a weight φ, let Aφ be the algebra of
entire functions f such that 

.

Using the subharmonicity of o f o it is easy to see that Aφ.=
�α>0 F 2

αφ Given the characteristic growth of Aφ, a sequence
Λ is called Aφ-interpolating if the interpolation problem f (zn)
= an has a solution f � Aφ for every sequence of values {an}λ

such that

.

There exist geometric descriptions of such sequences for
a wide range of subharmonic weights φ. For the sake of clar-

sup
n∈N

log |an|
φ(zn)

< ∞

sup
z∈C

log |f(z)|
φ(z)

< ∞

4α1α2

π2

1
(2π)nn!

1
(2π)nn!

lim sup
r→∞

sup
z∈C

n(z, r)

r2n
> 0

f ∈ F2
φ

1

C

(∫
C

|f |2e−2φdµ

)1/2

≤ ‖f‖F2
φ
≤ C

(∫
C

|f |2e−2φdµ

)1/2

dφ(z, ζ) = inf

∫
|γ′(t)|

√
∆φ(γ(t)) dt
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ity we restrict ourselves to the model case φ(z) = ozoα, α > 0.
Given a sequence Λ let n(z,r) = 8Λ�B(z,r) and define the
integral counting function 

(8)

,

which takes into account not only the number of points of Λ
around z but also their separation from z. In [BL95] (see also
[HM00]) it was proved that Λ is Aozoα-interpolating if and only
if 

.

The same proof shows that these conditions are still
sufficient (but not necessary) in �n, n > 1. This complements
the earlier sharp necessary condition 

n(z, r) ≤ C(ozoα + rα)n z � �n, r > 0

given by Li and Taylor [LT96]. A different sufficient condition
was obtained by Ounaies [OU00, Theorem A]. Let dn = min
(1, infm≠n ozn – zmo). If dn

–2 log(1/dn) = O(ozno
a–2) then Λ is Aozoα-in-

terpolating.

7.2. Bergman spaces
Let � denote the unit disk in � and let φ be a weight such
that (1 – ozo2)2∆φ is bounded above and below by positive
constants. This amounts to saying that the  metric induced
by ∆φ is equivalent to the hyperbolic metric in the disk. Con-
sider the Hilbert space B2

φ of holomorphic functions f such
that 

.

The classical Bergman corresponds to the choice φ(z) =
–1/2log(1 – ozo2) in our notation. The spaces B2

φα
, with φα(z) =

–α log(1–ozo2) are the weighted Bergman spaces defined
previously, and were first studied by Djrbashjan (see
[DS88]). We denote B2

α instead of B2
φα

.
In the definitions of sampling and interpolation for B2

φ the
sequence of values satisfying (6) are those with 

.

In a celebrated work, Kristian Seip gave a geometric
characterization of sampling and interpolating sequences
for the classical case [S93a]. This was later extended to
weights with (1 – ozo2)2∆φ bounded (see [BOC95] for the
sufficient condition and [OS98] for the necessary one). The
description is again given in terms of a density similar to (5),
adapted to the hyperbolic metric in � and to ∆φ. Still denot-
ing these densities by D+(∆) and D–(∆), one has: a sequence
Λ � � is interpolating for B2

φ if and only if it is separated (with
respect to the hyperbolic distance) and D+

φ(Λ) < 1; a se-
quence Λ � � is sampling for B2

φ if and only if is a finite union
of separated sequences (with respect to the hyperbolic dis-

tance) and there exists Λ: � Λ separated such that D–(∆:) >
1. The densities are usually hard to compute. However, in
certain regular cases such computation can be done explic-
itly (see [S93b], [DSS00]). This provides canonical exam-
ples of sampling and interpolation sequences. 

As in the previous subsection, the results described so far
can be extended in several directions: 

At each zn � Λ one can prescribe the Taylor polynomial of
a certain degree, or more generally, the divided differences
up to a certain fixed order. For the classical Bergman space
the density condition given above still characterizes such in-
terpolation, provided that each point is counted according to
its multiplicity (see [KS01] for interpolation with multiplicities
and [M00] for interpolation of divided differences). 

There are two natural extentions of the unit disk to higher
dimension, namely the polydisk �n = {z = (z1,...,zn) � �n :
supi=1,...,n ozio < 1} and the unit ball �n = {z = (z1,...,zn) � �n :
ozo2 = Σn

i=1 ozio
2 < 1}. A first qualitative study of interpolating

sequences for Bergman spaces of the ball was carried in
[A78] and [Ro82]. In [JMT96] it was studied the relationship
between the spaces of interpolating sequences for various
weights, and a geometric sufficient condition was provided.
The proofs can be adapted to give similar conditions for the
polydisk.

On the disk (or the ball) one can also consider the alge-
bras of functions such that log o f(z)o ≤ Cφ(z), where φ is a giv-
en subharmonic weight. Here also Aφ = �α>0 B2

αφ. Interpolat-
ing sequences for these spaces have been characterized
for a wide range of radial subharmonic weights. For the clas-
sical case φ(z) = –log(1 – ozo2) the space above is denoted
A–∞. Bruna and Pascuas showed that the A–∞ -interpolating
sequences are characterized by a condition which is essen-
tially Korenblum’s conditions for non-uniqueness sequences
made invariant by automorphisms of � (see [BP89]). Later, it
was shown in [M99] that Int A–∞ is described by a certain
density adapted to the hyperbolic metric. The same density
condition is sufficient (but not necessary) for interpolation by
A–∞ functions in the ball �n. On the other hand, the tech-
niques used by Li and Taylor in �n, applied to the ball, yield
the necessary condition 

.

Another interesting (and particularly simple) case corre-
sponds to weights �α(z) = (1 – ozo2)–α, α > 0, which define the
space of holomorphic functions in � of order at most α. It
was shown in [HM01] that Λ � Int A�α

if and only if 

sup
n � �

(1 – ozno
2)αN(zn, 1/2) < ∞.

Here N(z,r) denotes the integral counting function
defined in (8), associated to the hyperbolic disks. As in the
A–∞ case, this is also a sufficient condition for sequences in
�n to be A�α

-interpolating, whereas Li and Taylor’s tech-
nique’s yield here the necessary condition 

z ∈ Bn, r > 0

#Λ ∩B(z, r) ≤ C
1

(1− r)n−1

(
log

1

1− r
+ log

1

1− |z|
)n

‖v‖�(B2
φ) =

( ∞∑
n=1

|an|2e−2φ(zn)(1− |zn|2)
)1/2

‖f‖B2
φ
=

(∫
D

|f |2 e−2φ

1− |z|2
)1/2

< ∞

sup
r>0

N(0, r)

rα
< ∞ and sup

n∈N

N(zn, |zn|)
|zn|α < ∞

z ∈ C, r > 0,

N(z, r) =

∫ r

0

n(z, t)− n(z, 0)

t
dt+ n(z, 0) log r
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.

It is not so clear what is the right definition of sampling for
these spaces. In [HKP97] Horowitz, Korenblum and Pinchuk
gave a definition of sampling set for A–∞ and studied its
properties. Later, Khôi and Thomas proposed alternative
definitions and showed the precise relationship among
these notions [KT01]. 

8. Concluding remarks 

In this survey we have described how, in the last few years,
some important problems motivated by applications have
influenced complex function theory and suggested new de-
velopments. The interplay also goes in the other direction,
and the powerful methods of complex analysis have led to
the solution of some central problems in signal analysis. 

Yet, not all problems are suitable to be treated by complex
analytic function methods. We have seen some of them: the
multiband problem, Fuglede’s conjecture, etc. A similar situa-
tion occurs in wavelet theory, the most important development
in signal analysis in the last years. The usual wavelet bases
Ψk,n(t) = 2

k
2 Ψ(2kt –n) correspond to a couple of parameters

(s,t), the dilation parameter s being 2–k and a translation para-
meter t being n2–k. This is a regular choice of parameters in
the hyperbolic metric. Construction of irregular wavelet bases
or irregular wavelet frames leads to hard mathematical prob-
lems that can rarely be attacked with complex function theory.
This is in fact another research line of our group. 
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