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Abstract

The study of the phase transitions produced in ensembles of
metastable superconducting granules by magnetic field
variations is important both for fundamental physics and for
applications in particle detectors. Theoretical study of the
problem has long been hampered by the difficulty in dealing
with the diamagnetic interactions between granules. In this
review we describe the behaviour of such systems, develop
numerical procedures to deal with them, and present some
experimental and numerical results.

Resum

L'estudi de les transicions produïdes en conjunts de grànuls
superconductors metastables té interès tant per a la física
fonamental com per a aplicacions com ara els detectors de
partícules. L'estudi teòric d'aquest problema ha estat obsta-
culitzat per la dificultat del tractament de les interaccions
diamagnètiques entre grànuls. En aquesta revisió descrivim
el comportament d'aquests sistemes, desenvolupem el mè-
tode numèric del tractament i presentem uns quants resul-
tats experimentals i numèrics.
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Introduction

The magnetic properties of ensembles of superconducting
granules immersed in an external magnetic field have been
subject of long-standing interest in both basic and applied
condensed matter physics. Historically, measurement of the
supercritical fields of such suspensions has yielded determi-
nations of the Ginzburg-Landau parameters [1], and has also
provided evidence for the non-local behaviour of Type I ma-
terials near the critical temperature. More recently, the su-
perheated-to-normal phase transitions of Type I suspen-
sions, induced by irradiation, have served as the basis for
the development of particle detectors in a variety of areas,
such as dark matter [2,3], neutrino [4], neutron [5], x-ray [6]
and transition radiation [7] detection.

The response of a superconducting grain depends on its
location within the (T, H) phase space, as shown in Figure 1.
This location is different for each microgranule of a disper-
sion due to size distribution, surface defects, and mainly dia-
magnetic interactions between microgranules. These ef-
fects yield a typical 20% spread of the transition fields in the

ensemble. The uncertainty in the minimum energy neces-
sary for the transition makes it difficult to interpret the results
of device response [8,9].

In order to decrease this spread, ordered arrays of spher-
ical indium grains produced from thin films deposited on my-
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Figure 1. Phase diagram for a type I superconductor. *H and *T
represent the increase of either the magnetic field or the tempera-
ture needed for a metastable superconductor grain at Ha, Ta to tran-
sit.
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lar foils using photolithography techniques have been ex-
plored [10]. Such PASS (Planar Arrays of Superconducting
Spheres) devices [11] have yielded differential superheat-
ing curves in which the field spread is reduced by an order
of magnitude. A PASS device was recently used to provide
information about the Leggett «baked Alaska» mechanism,
relevant to the formation of topological defects in cosmolog-
ical phase transitions [12].

An important point, often neglected in the response analy-
sis of both disordered and ordered ensembles, whether or
not they have been irradiated, is that the local surface mag-
netic field on each sphere is not constant, but changes after
transitions of other spheres due to diamagnetic interactions.
Therefore, in order to understand basic device response, it is
necessary to know the variation of the local magnetic field at
the surface of the superconducting granules in the presence
of the ensemble-modified external field.

Calculations involving magnetostatic interactions be-
tween many bodies are not trivial. The first theoretical analy-
ses of this problem concerned the dielectric interactions be-
tween spheres within a dipolar and two-body approximation
[13,14], and hence were only valid for very low densities. To
date, the most systematic effort in the theoretical interpreta-
tion of experiments has been the perturbative analyses of
Geigenmüller [15,16], which yielded results on the succes-
sive transitions of the spheres when the magnetic field is in-
creased from zero. In the regime of dilute suspensions,
Geigenmüller [15] constructed a perturbative theory able to
calculate statistics of local surface fields on the granules,
and of the transitions induced by the external field. This the-
ory is formally based on a cluster expansion, in such a way
that all the quantities are expanded in powers of the volume
fraction @ occupied by the microgranules. In practice, the
expansion is performed up to first order, which means that
only two-body interactions are considered [15].

In this paper we review some recent advances in the in-
terpretation of experiments involving superconducting gran-
ules. In the next section we describe the essential ingredi-
ents of the phase space behaviour of a grain ensemble,
using a «hot border» model developed for particle detection
[17]. In the following section we detail our numerical method
for calculating local surface fields [18]. This method solves
the complete Laplace equation for the magnetic field in the
presence of a large number of superconducting granules.
The maximum field values on the surfaces of granules can
be worked out, thus enabling simulations of granule transi-
tions to be performed. In subsequent sections, we present
numerical results for two typical experimental configura-
tions. The first, which we refer to as «disordered», corre-
sponds to the spheres being homogeneously diluted in a di-
electric wax [19]. The second configuration, which we call
«regular», corresponds to the PASS structure [11]. In each
section, we provide results on both the maximum magnetic
field on the surfaces of the microspheres, and on the suc-
cessive transitions which occur when the external field is
slowly increased from zero [20]. Quantitative results for the
surface magnetic field on the superconducting spheres dur-

ing these transitions are also obtained. In addition, we com-
pare simulation results in the disordered case with those ob-
tained from the perturbative theory [21.]. The last section is
devoted to conclusions.

The ensemble phase space

The behaviour of each superconducting grain in an applied
magnetic field, Ha,, depends on its location in (T, H) phase
space. Figure 2 shows the state of a generic grain ensemble
at fixed temperature below Te [17]. For a particular configu-
ration of granule positions, surface defects and grain sizes,
the distribution of maximum fields at the equator of each of
the grains can be represented by the vertical line xy. With re-
gard to granules in the superconducting state, those with a
greater number of defects are generally located nearer the
transition line, and hence will transit earlier under a Ha in-
crease; the grains with lower values in the field distribution
are those which are more metallurgically perfect.

For a given Ha some fraction of the suspension has tran-
sited to the normal state; each of the remaining grains has a
different maximum local field, Hl, resulting in a distribution
*T=[Tsh (Hl)-Ta] required for transitions to the normal state,
where Tsh(Hl) is the superheated critical temperature for Hl.
With an increase of Ha, an increasing fraction of the distribu-
tion transits to the normal phase. The loss of a part of the su-
perconducting population alters the field distribution of the
remaining superconductors, in general reducing all local
fields. Near the end of the field increase, the superconduct-
ing population is severely reduced and the diamagnetic ef-
fects are smaller; the last grain to transit is effectively a sin-
gle grain transition without diamagnetic interactions, and
represents the fundamental superconducting response of
the material to magnetic fields. Measurements performed in
this way enable determinations of the maximum superheat-

Figure 2. Standard «hot border» phase diagram.
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ing field Hsh, which is related to the Ginzburg-Landau para-
meter A by

(1)

where hsh=Hsh/Hc.

Detector applications are based on the heating of a grain
by the energy deposited by incident radiation which, de-
pending on the grain location within the phase space, may
or may not be sufficient to raise the temperature *T across
the phase line. In principle, the maximum *Emax is able to in-
duce the transitions of all grains within the region *Hmax =
Hsh(Ta) - H@ for which *T = *Tmax B C-I

p * Emax.
For sufficiently long irradiation times or intense radiation

fields, all of the grains within this region should become nor-
mal. The presence of the radiation field should thus create a
quasi-phase boundary at H@, which is determined by the
maximum energy loss of the incident radiation and Cp. This
«hot border» is not a conventional phase boundary: a grain
transiting this border is turned into the normal state only by
thermal nucleation; no magnetic nucleation is possible until
the highest local field has achieved the usual superheated-
normal transition value.

For a subsequent increase of Ha by )H, where Hsh - H@ <
Ha + )H < Hsh, the maximum local fields of all grains that are
still superconducting are similarly increased, in effect shift-
ing xy upwards across the hot border by )H so that grains in
the region H@ - )H spread into *Hmax. However, these can
transit to the normal state only as a result of temperature
changes induced by the corresponding higher portion of the
energy loss distribution, at a rate dependent upon the radia-
tion flux and interaction cross-section. By sequentially in-
creasing )H, xy is increasingly shifted upwards so that an in-
creasingly greater fraction of the grains below H@ are spread
into this region; an increasingly smaller amount of energy
deposition is required to heat them into the normal state. The
number of grains which transit for each )H is proportional to
the corresponding energy loss by the incident radiation, and
therefore to the incident radiation that undergoes this energy
loss.

As originally set up, this model subsumes any considera-
tion of grain size within the distribution of local magnetic field
states since it has been shown that with the absence of size ef-
fects at low temperatures, transition fields and grain size are
effectively uncorrelated [17]. Since the distribution of magnet-
ic field states is independent of size, each field state may be
considered as populated by a distribution of grain sizes.

What is not size-independent is the heating of the grain in-
duced by the energy deposition of the incident radiation,
which in a global heating model is given, in general, by

(2)

where V is the grain volume. For the same deposition ener-
gy, smaller grains are heated up more; larger grains may,

however, absorb more energy. Following irradiation, each
state will be depopulated according to a *Emax for which V
yields a *T greater than that required for the phase transi-
tion; this does not, however, guarantee that, following a suffi-
ciently long time, a given magnetic state will be completely
depopulated.

Eq. 2.2 effectively implies the existence of a *Tmax C
*Emax / Vmin with Vmin being the minimum grain size of the sus-
pension and * Emax the maximum energy deposited into Vmin.
All grains of size Vmin lying near the phase line will transit un-
der this energy deposition; larger grains will not, since *T
will be insufficient to reach the phase line. This, of course,
implies the existence of a *Tmin C*EDmax / Vmax where EDmax >
* Emax in general, since *E = *E(V). This represents the min-
imum temperature increase of a suspension grain provoked
by the irradiation. Following a sufficiently large *EDmax and
long irradiation, the true «hot border zone», i.e. the region in
which no superconducting grains exist, should lie only *Hmin

C *Tmin below the phase line [22]. Between *Hmin and *
Hmax, the superconducting grain population is only partially
depleted and is ordered according to decreasing size as
distance increases from the phase line. An increase of the
applied field after a pause, but in the absence of radiation,
should yield no transitions until H pause + *Hmin, and the irradi-
ated-non-irradiated differential superheating curves should
again be identical at H pause + *Hmax.

Numerical method

It is now clear that proper interpretation of experiments in-
volving transitions of superconducting granules requires in-
formation on the distribution of local magnetic fields on the
granules surface. In this section we describe the numerical
method employed to calculate these surface fields, taking
the complete diamagnetic interactions between granules
into account. Let us consider a dispersion of N supercon-
ducting spheres placed at given positions Ri according to
the desired geometry. We consider that all the spheres have
the same radius, a, much greater than the London penetra-
tion length, and that the transitions of each to the normal
phase is considered to be complete when the local magnet-
ic field at any point on its surface reaches a threshold value
Bth. Hence, we do not consider partial transitions to the inter-
mediate state. Finally, it is assumed that the spheres remain
at constant temperature, that is, we neglect the latent heat
released by the microspheres when they transit.

The magnetic field B(r) is determined from a scalar poten-
tial U(r)

B(r) =-*U(r), (3)

which satisfies the Laplace equation

E2U(r) = 0. (4)
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Two boundary conditions must be imposed. Firstly, for
any superconducting sphere the magnetic field is tangential
to the surface, i.e. the normal derivative of the potential van-
ishes. Secondly, the value of the field very far from the sam-
ple should match Bext:

U(r) : - r · Bext (r :F). (5)

The scalar potential U(Rj + rj) near sphere j can be ex-
panded in multipoles [15, 16] which, introducing the bound-
ary conditions at the surface of the sphere, can be written as

(6)

where Y/µ(
^rj) are spherical harmonics, and c/µ(j) and K(j) are

the coefficients of the expansion. There is one of these ex-
pansions for each sphere. After determining the values of
the unknown c/µ(j) and K(j) for a given configuration, it is
possible to calculate the surface fields from Eq. 6. The aim is
to do this by cutting these expansions at some appropriate
multipolar order, according to the required precision.

Taking all the expansions together with the boundary con-
ditions, the coefficients satisfy the following equations [16]:

(7)

(8)

where the constants A/µ,/DµD(j,k) are given in Ref. [18]. In Eq. 8
we have placed the external field in the z-direction.

The constants K(j) only give additive contributions to the
potential and do not affect the magnetic field values, so the
problem is, in principle, to solve the (very large) set of linear
equations 8 for the unknown c.

To directly find the values of the coefficients c for a given
configuration with a representative number N of spheres
proves impractical. We therefore develop the following itera-
tive method [18]. Eq. 8 can formally be written as a matrix
equation for the vector of unknown c

c=b+Ac (9)

whose solution is

c=(I-A)-1b (10)

which can be expanded as a power series in A,

c=(I+A+A2+A3+...)b. (11)

One practical way to perform numerically this expansion is
to apply the iteration

ci+1=b+Aci,

c0=b. (12)

It can be shown that this expansion is convergent as long as
spheres do not touch each other, and the greater the dis-
tance between spheres, the faster the convergence. The de-
sired precision is achieved by applying Eq. 12 iteratively un-
til the change of the c coefficients is lower than a prescribed
value.

Using the preceding numerical method we have calculat-
ed the local magnetic field on the surface of the spheres
and, by standard minimization routines, the maximum mag-
netic surface field on each of the spheres. This information
can then be employed in the interpretation of experimental
results, for example, within the framework of the 'hot border'
model above, or for performing simulations of relevant situa-
tions. Examples of such simulations will be presented in the
following sections.

Disordered distributions of granules

In this section we present numerical results corresponding
to the ensemble of spatially-disordered configurations of
spheres. Experimentally this corresponds to configurations
obtained by immersing the granules in paraffin wax and
through a repeated number of baker's transformations [19].

Static field response

We considered samples of size LxLx0.1L, immersed in an
external magnetic field applied in the direction normal to the
sample. The value of L is given by the fraction @ of volume
occupied by the spheres (the filling factor) and by the num-
ber of granules N in the dispersion. We simulated samples
with values of @=0.01, 0.025, 0.05, 0.10, 0.15 and 0.20. Con-
sidering the number of granules, and due to the large order
of the interactions, one should work with systems that are as
large as possible, and perform some kind of extrapolation to
infinite-sized systems (experiments are indeed performed
using values of N that are much larger than what is feasible
by simulation techniques).

The effect of the dependence of the results on N is
shown in Figure 3, where typical distributions of maximum
surface fields for the cases of @=0.01. and 0.20 are pre-
sented for systems with different number of spheres. In the
most dilute case (Figure 3.a) it can be seen that the distrib-
ution is very narrow, with a high fraction of spheres having
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values of Bmax very close to the value corresponding to an
isolated sphere 3/2 Bext. The highest maximum fields corre-
spond to spheres in close proximity, with an inter-sphere
gap of order 0.1 times the radius, which generates strong
local fields. In the more concentrated case (Figure 3.b),
diamagnetic interactions are more important and so the
maximum fields take on much larger values. The broaden-
ing of the field distributions induced by disorder appears to
increase with N, and is associated with a tendency to reach
greater maximum field values.

An analysis of the statistical properties of these distribu-
tions reveals a strong dependence of the mean field values
on N for the largest filling factor, and only an extrapolation for

l/N : 0 would, in principle, permit a result
for an infinite system. For the larger @, the
variances of standard deviation are larger,
fluctuating around a roughly constant val-
ue. The results of higher distribution mo-
ments, skewness and kurtosis surprisingly
show a stronger dependence on N for di-
lute systems. For the smaller @, the vari-
ability of these quantities is larger than in
the most dense system. In particular, the
kurtosis presents a clear increase with N,
and we cannot exclude the possibility of a
divergent value for an infinite system.
However, for the largest filling factor these
values are nearly constant and very close
to zero, i.e. the distribution seems to be
more Gaussian.

The effect of spheres concentration is
shown in Figure 4, where we present the
distribution of maximum surface fields for
several values of the filling factor, and for

the greatest N employed in each case (N = 100 for smaller @
and N =150 for @ = 0.15 and 0.20). The distribution for the
most diluted case is peaked near the isolated sphere value
3/2 Bext, and tends to broaden and shift to higher field values
as @ increases. This may be due to the fact that there is a
greater probability of finding close spheres when @ increas-
es, with the consequent increase of diamagnetic interac-
tions. These effects are more clearly shown in Figure 5,
where we plot the mean value and the standard deviation of
Bmax. In order to estimate the statistical uncertainty, we have
employed two independent configurations for each @=0.01,
0.15 and 0.20. Both the mean of Bmax and the standard devi-
ation present a fairly linear behaviour in @ over the range of
filling factors employed in the simulations.

In Figure 6 the values of the skewness and the kurtosis of
the distribution are represented as functions of @. Both quan-
tities show a rapid decay to small values as @ reaches values
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Figure 4. Fraction P of spheres with maximum surface field lower
than the x-axis value (in units of Bext) for disordered configurations.
N=100 except for @=0.15 and 0.20, for which N=150.
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of the order of 0.1. In particular, the kurtosis is very close to
zero and the skewness only slightly greater, with a very small
statistical uncertainty. We therefore conclude that for such
dense systems the distributions of maximum surface fields
are clearly Gaussian. It is worthwhile noting the large statisti-
cal variability observed in the kurtosis for the least dense
case.

Increasing field behaviour

Knowledge of the maximum local surface field of each
sphere allows us to study transitions produced in the en-
semble. We will consider here transitions induced by an in-
crease of the external magnetic field, but
one could, in principle, also consider radi-
ation-induced transitions. An interesting
feature of performing direct numerical
simulations is that one can monitor quanti-
ties such as these local fields during tran-
sitions, this being information that is not
experimentally accessible.

In the calculus, we assume that the
granules remain superconducting until
their local surface fields reach a threshold
value Bth, for which the spheres are com-
pletely in the normal state. The threshold
value for a defect-free sphere would be
the superheating field value Bsh. In order
to take into account the possibility of de-
fects, which can act as nucleation cen-
tres, we employed a distribution of Bth val-
ues that was consistent with experiments
for tin microspheres dispersed in paraffin
[23]. This distribution was fitted by a para-
bolic distribution in a range of values be-
tween 0.8 Bsh and Bsh [15, 16]. As men-
tioned above, we consider that the

sample is maintained at constant temperature and in our
calculations the latent heat released in the transitions is ne-
glected.

The procedure in our simulations is thus as follows: N su-
perconducting spheres are placed at random according to
the desired geometry and filling factor. The threshold value
Bth for each sphere is also assigned by using the aforemen-
tioned distribution. Applying the iterative method described
above, local values of the magnetic field and its maximum
value on the surface of any sphere are determined. Compari-
son of these maximum surface fields with the respective val-
ues of Bth permits selection of the first superconducting
sphere that will transit to the normal phase under an increase
of the applied magnetic field. Furthermore, the precise value
of Bext at which the transition occurs is calculated. Subse-
quently, the system becomes one of N - 1 superconducting
spheres. The long-range nature of the diamagnetic interac-
tions changes the surface magnetic field values of the re-
maining superconducting spheres on any transition. This
leads us to repeat the same calculation process after each
transition until all spheres have transited. The transitions af-
fect the volume occupied by the spheres that remain super-
conducting, and an effective filling factor @e�, lower than the
initial @ value, can be defined.

Results shown in this section correspond to simulations
on systems with a number of initially superconducting
spheres N = 250 for dilute dispersions with @ values from
0.001 up to 0.05, and N = 150 for denser systems with @ up
to 0.20. For each case we performed averages over a num-
ber of independent configurations between 2 to 7. The field-
induced transitions are presented in Figure 7. In this figure
the fraction � of remaining superconducting spheres during
an increase of the external field versus Bext is shown for dif-

Figure 6. Skewness (�) and kurtosis (▫) of the distribution of Bmax /
Bext versus @ (disordered configurations).
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ferent values of the initial filling factor @. The continuous line
furthest to the right in this figure shows the expected behav-
iour for isolated spheres, for which the maximum surface
field is equal to 3/2 Bext, and therefore can be directly related
to the distribution of Bth values. From the results of our simu-
lations, represented by symbols in the figure, we observe
that the transitions are produced for external field values
very close to the threshold distribution values for the more
dilute systems, except for a few transitions occurring at low-
er Bext than expected. These transitions correspond to
spheres whose distances to their nearest neighbour are not
very large (about 0.10-0.15 times the radius value). There-
fore, for such a dilute case, the observed spread in the tran-
sition field values can be mainly attributed to surface de-
fects. In the same figure we can observe that transitions
appear for lower external fields as the concentration increas-
es, and consequently the interval of external fields for which
the transitions occur broadens. This effect is produced by
diamagnetic interaction between the spheres, whose contri-
bution to the local surface magnetic field becomes more im-
portant as the system becomes denser. We see that dia-
magnetic interactions begin to be the most important factor
in transition spreading for filling factors of a few percent. In-
deed, half of the spheres have undergone transitions at
Bext=0.48Bsh for @=0.20, while for @=0.001 a field Bext=0.60
Bsh is required.

Similar behaviour is observed experimentally. In Figure 8,
we show results reported by Dubos et. al. [24] and by Larrea
et. al. [25]. The first set was obtained from a suspension of
tin grains with diameters of 20-30 microns with a volume fill-
ing factor of 20%. In contrast, the results of Larrea et. al.
were obtained from measurements on suspensions of Sn mi-
crospheres, of diameter 33-40 microns with volume filling
factors of 4% and 25%. As it can be seen in Figure 8, half of
the spheres transited at Bext=0.48 Bsk for @=0.25, at
Bext=0.50 Bsh for @=0.20, and at Bext=0.53 Bsh for @=0.04.
This agreement confirms that the mechanisms involved in
the simulations (presence of surface defects and influence
of diamagnetic interactions) are essentially correct.

The stronger diamagnetic interactions correspond to the
nearest spheres, so these will transit first. This fact modifies
the spatial distribution in such a way that, after successive
transitions, the remaining superconducting microgranules
are further away, and present a certain spatial order. This is
shown in Figure 9 where we compare two configurations. In
the first we see the N=25 spheres that remain superconduct-
ing after transitions due to the increase of the external mag-
netic field over a system with initially N=150 superconduct-
ing spheres placed at random, corresponding to @=0.20. In
the other, we see the spatial distribution of N=25 spheres
placed at random in the same volume.

The spatial order induced by an increasing external field
will be reflected in the maximum surface magnetic field dis-
tributions, which is essential in analysing transitions. In Fig-
ure 10 the results of our simulations for the distributions of
maximum surface magnetic fields are represented by sym-
bols for a configuration with initial @=0.20 and for different

Figure 8. Experimental results of the fraction � of spheres that re-
main superconducting versus Bext / Bc, after an increase of the ex-
ternal magnetic field from zero, for different occupied volume frac-
tions @.
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values of external applied field, for which the configurations
reach different values of @e� after successive transitions. It
can be seen that the width of the distributions decreases
and consequently the maximum surface field values be-
come more similar as Bext (and hence the number of transi-
tions) increases. This reveals the transitions to be a strong
ordering mechanism, both in the spatial sense and in terms
of the surface magnetic distribution. This behaviour is also
reflected experimentally in Figure 8, where the @=0.20-0.25
results converge to those of @=0.04.

Statistical properties of surface field distributions are
shown in Figure 11. In this figure their mean values and
standard deviations are represented versus the effective fill-
ing factor @e�. It can be seen that the maximum surface field
approaches the isolated-sphere value 3/2 Bext as Bext in-
creases (@e� decreases), and the standard deviation tends
to zero, indicating an increase of the uniformity of the sys-
tem. This confirms the homogenizing effect produced by
transitions. In the inset on the same figure, the skewness
and kurtosis of distributions are shown as a function of @e�.
Values of kurtosis, which are very close to zero for the
dense random configuration, evolve to values very close to -
1 after several transitions. Therefore, the distribution of
fields is much flatter than the Gaussian distribution. On the
other hand, skewness values drop to zero with transitions,
i.e. random configurations present a strongly asymmetrical
field distribution that evolves to a symmetrical distribution
for transited samples.

Our results agree geometrically with those presented in
[13] for two-dimensional samples, but we have no evidence
of the clustering effect for three-dimensional samples pre-
dicted in the same reference from mean-field calculations.
This is probably due to our use of very thin samples (with a

height-width ratio of 0.1) in simulations. As regards the max-
imum surface field distribution, the higher moments from our
simulations present an asymmetrical distribution of maxi-
mum field values, which evolve to a non-Gaussian symmetri-
cal distribution. However, results in Ref. [14] (for @=0.10),
where only two-body dipolar interactions were taken into ac-
count, showed a symmetrical Gaussian-like distribution that
evolved to a strongly asymmetrical distribution. It can be
concluded that the complete calculation, which uses higher
order multipolar and multibody contributions to the magnetic
field, is an essential ingredient of this kind of simulation.

It is interesting to compare the evolution of several con-
figurations with different initial @, which after a different
number of transitions, reach the same final @e�. In Figure 12
the maximum surface field distributions for systems in
which the remaining superconducting spheres correspond
to the same final @e�=0.02 are shown. They are compared
with a configuration corresponding to @=0.02 with the gran-
ules placed at random without transitions. It can be seen
that when these systems evolve towards the same @e�, the
order induced by the successive transitions produces a fi-
nal situation with much smaller field spreading. This is more
evident in configurations with higher initial @ that have un-
dergone a greater number of transitions. In the random
configuration, the effect of disorder is reflected in the width
of the distribution. The mean maximum field value and the
standard deviation, in the inset of this figure, confirm the
homogeneity of the transited systems compared with the
random system.

In all these results, the tendency to regularity or homo-
geneity in magnetic fields can be interpreted as a conse-
quence of the positional order induced by the successive
transitions. A measure of this order can be made by study-
ing the distances between each sphere that is still supercon-
ducting to the nearest superconducting sphere. The mean
value of this magnitude is represented in Figure 13 for the
same configurations as in Figure 12, as a function of their ini-

Figure 11. Mean value (�) and standard deviation (▫) of the distribu-
tion of maximum surface field for evolution of a configuration with,
initially, @=0.20 and N=150 as a function of @e�. Results are aver-
ages of 5 independent samples. In the inset the corresponding
skewness (�) and kurtosis (G) are shown for @e� 2 0.10 (statistical er-
rors for these quantities are too large for smaller @e�, owing to the
small number of superconducting spheres involved). The results
from the perturbative theory mean value (*) and standard deviation
(×) are represented.
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tial @. In this figure, all the configurations have the same ef-
fective filling factor, but the distances between supercon-
ducting spheres increase strongly with the initial @, and con-
sequently with the number of transitions.

Comparison with perturbative theory

The perturbative theory developed by Geigenmüller [15] is
formally based on a cluster expansion that takes into ac-
count diamagnetic interactions and the influence of defects.
In this theory all the quantities are expanded in powers of the
filling factor @ occupied by the microgranules.

In the dilute regime, the perturbative theory was applied
to calculate statistics of local surface fields on the granules
and of the transitions induced by the external field. Within
this framework the fraction of spheres that remain supercon-
ducting for an external magnetic field value, Bext, can be
written as:

�( Bext , @) = � 0(Bext) + @ �1 (Bext) + O(@2) (13)

where the zeroth order term corresponds to isolated
spheres. Therefore, �0(Bext) corresponds exactly to the distri-
bution of threshold fields Bth if we take into account the fact
that the maximum surface field of an isolated sphere is 
3/2 Bext, i.e. the zeroth order is the same predicted @=0 value
as represented in Figure 7. One interesting consequence is
that this expansion can be used to obtain the distribution of
Btx from experimental data by performing measurements on
samples of different densities and extrapolating the results
to @ : 0 [15,16, 23].

In the expansion 13, each order can be calculated from
the distribution of threshold fields Bth, and involves increas-
ingly higher order contributions both in the number of
spheres and in multipolar interactions. In the present state of
the theory, calculations are performed up to first order,
which is equivalent to considering only two-body interac-

tions. Comparing our simulations with the results of the
Geigenmüller theory gives an idea of the contribution of
multibody interactions and enables us to define the range of
validity of the linear approximation; it also provides an in-
sight into the effects of higher order terms.

To this end, Figure 7 also shows the predictions of Eq. 13
and Ref. [15] for @=0, 0.01, 0.05 and 0.10 as continuous
lines. It can be seen that the theory does contain the ob-
served trend of transitions occurring for lower external fields
due to diamagnetic interactions, but there does not appear
to be quantitative agreement, except for extremely dilute
samples. For the 5% case, agreement appears to be rather
poor and is even worse for denser systems.

A more appropriate test of the linear approximation in-
volved in Eq. 13 is the study of the dependence of � on the
density @ for different values of Bext. This is shown in Figure
14, where symbols represent simulation results and lines are
the perturbative predictions of Eq. 13. Note that the evolution
of a system during successive transitions is represented by
points at constant @ and increasing values of Bext. It can be
seen that the perturbative calculation of Eq. 13 provides a
correct qualitative picture of the transitions. However, for in-
termediate values of Bext, the differences between theory
and simulations start to become non-negligible at volume
fractions between 2-5%. These results further indicate that @
: 0 extrapolations of experimental results, performed in or-
der to obtain information on the distribution of values of Bth,
should only be made with very dilute systems. This may ex-
plain the apparent discrepancies between theory and ex-
periment found in Refs. [15, 23], where the values of �0 and
�1 were evaluated by linear extrapolations of experimental
data up to @=5%. In view of Figure 14, this procedure should
yield erroneous results in the range of the most interesting
values of Bext, where transitions mostly occur. It is precisely

Figure 13. Mean value of the distances between each sphere to its
nearest neighbour, in units of the radius of the spheres a, for sys-
tems that evolve to the same final @e�=0.02, versus the initial @.
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in this range where the contribution of �1 in Eq. [13] is more
important, so it is here where a breakdown of the perturba-
tive scheme is expected [15].

Geigenmüller's theory also provides estimates of the dis-
tribution of values of such maximum fields in the small-densi-
ty expansion [15]:

P(Bmax , @) = P0(Bmax) + @ P1(Bmax) + O(@2) (14)

In this equation P(Bmax , @) stands for the fraction of super-
conducting spheres with a maximum surface magnetic field
smaller than Bmax . We have omitted the implicit dependence
of such quantities on Bext - P0 (Bmax) is the step function
'(Bmax - 3/2 Bext), i.e. the result for isolated spheres. The lin-
ear term describes the broadening of the distribution due to
magnetic interactions [15]. These interactions change at
each transition during the increase of the external field, and
therefore are history dependent. This is the reason why the
broadening described by P1 depends on Bext.

For dilute systems we compared the results of surface
magnetic field distributions from our simulations with the the-
oretical calculus in dispersions with several values of @.
Again, although the perturbative theory contains the qualita-
tive behaviour, it only appears to be quantitatively correct for
very small values of the occupied volume fraction. As in the
case of the simulations, the evolution of a system under an
external field is analysed. The results obtained from the the-
ory are represented by continuous lines in Figure 10 for
@=0.20. It can be seen that the large discrepancies ob-
served at Bext=0.2 Bsh evolve to a reasonable agreement for
Bext=0.5 Bsh or Bext=0.6 Bsh.

From the statistical results obtained by the perturbative
theory, Figure 11 shows that it only predicts transitions for
external fields greater than 0.2 Bsh. There is also a similar
qualitative behaviour between theory and simulation, but
the quantitative results from theory approach the simulation
results quite satisfactorily for external fields greater than 0.4

Bsh (or in terms of fraction of volume of spheres that remain
superconducting, @e�=0.1). This agreement between simu-
lations and theory after transitions is quite surprising for
such a dense case, and appears to be better than that ob-
tained for low densities and low external fields. In order to
check the effect of dilution produced by transitions, Figure
10 also represents the distribution of maximum fields for a
configuration with the same @e� (slightly lower than 0.1) as
that of Bext=0.5 Bsh, but with positions completely at random,
and the corresponding predictions from perturbative theory.
Note the good agreement between theory and simulations
for the system which has been ordered by transitions com-
pared with the discrepancies observed for the last random
configuration with the same effective filling factor. It can be
concluded that the perturbative theory implicitly includes
the homogenising effect of transitions. However, this good
behaviour of theory is not completely explained by the de-
crease of the effective filling factor during the transition
process.

Ordered distributions of spheres

In this section we present results from simulations of PASS
systems, or ensembles of superconducting spheres placed
in regular 2D square lattices of variable cell length d. The
configurations studied correspond to planar arrays with Bext

normal to the plane, and do not correspond to a recent re-
port of PASS response in a parallel field configuration [26].
Such regular configurations are not affected by disorder ef-
fects, but important finite-size effects can arise in this situa-
tion.

Static field response

The simulations were performed on systems with several
concentrations (i.e. several lattice spacings) and different
numbers of spheres up to N=169. We selected configura-
tions with lattice spacing values d/a=7.482, 4.376, 3.473,
3.034, and 2.757, which would correspond to tridimensional
lattices for filling factor values 0.01, 0.05, 0.10, 0.15 and
0.20, in order to compare them with disordered configura-
tions. The long range of diamagnetic interactions led us to
select the largest number of spheres possible, in particular
for denser configurations, for which the finite size of systems
will be more important.

The effect of the number of spheres considered in the
study is shown in Figure 15, where distributions of Bmax are
represented for several values of N and for filling factors
@=0.01, 0.1 and 0.2. For the most dilute case, the values of
surface fields are nearly the same as on isolated spheres,
and the effect of the number of spheres is not noticeable, as
it corresponds to a spatial distribution where the spheres
are very far away. However, when the concentration of
spheres is increased, the increment of diamagnetic interac-
tions is very sensitive to the environment of each sphere.

Figure 15. Fraction P of spheres with maximum surface field lower
than the x-axis value (in units of Bext) for ordered configurations with
several values of N. (a) @=0.01; (b) @=0.10; (c) @=0.20.
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This is made clear in distributions for which an increment of
N presents a clear increment in the surface magnetic fields.
Spatial symmetry, with equivalent positions, is reflected in
this distribution as a discontinuous appearance, more evi-
dent for denser systems, where for symmetry reasons only a
few maximum values of the surface field are possible. The
distributions are very asymmetrical, with a tendency for Bmax

to assume values close to the largest one, and with strong
finite-size effects. We can explain these features by
analysing what happens in a large system and comparing it
to an infinite system. In an infinite planar lattice, all the field
lines have to pass between the spheres, and all spheres
have a high value of the maximum surface field. However,
for a finite system most of the field lines can easily round the
sample, and the surface fields turn out to be distinctly small-
er than in the infinite system. This is a manifestation of the
well-known fact that diamagnetic interactions are long
range.

All this is clearly illustrated by the results for the statisti-
cal properties of the distributions. The mean values of Bmax

present important size effects. Low standard deviation val-
ues show that the system has a number of nearly equiva-
lent positions, those far from the borders, whose proportion
should increase with the size of the system. Indeed, for the
largest systems the standard deviation decreases with the
number of spheres. Skewness and kurtosis values are very
different from zero, and their absolute values tend to in-
crease with N. As in the most dilute disordered case, the
kurtosis seems to diverge in the large N limit. The values of
these moments present a non-Gaussian, very asymmetrical
distribution.

The effect of different lattice spacing on the surface mag-
netic field distribution is presented in Figure 16 for the
largest systems simulated. The shape of these distributions
is very different from the disordered shape, but does not
show great qualitative changes with the increase of the filling
factor. However, the field values and distribution widths
show a strong increase with @. This is due to the aforemen-
tioned effect of finite size. In dilute configurations, the finite
size of the system does not have a great influence on dia-
magnetic interaction, so the surface fields are very similar.
As the lattice spacing decreases, this finite size has a
greater influence. The spheres in the middle of the system
will have a large number of closer neighbours, and conse-
quently the surface field will be enhanced. This magnitude
will be lower for spheres near the boundary of the system.
This can be seen in Figure 17, where the surface field values
are represented as a function of the granule position for
@=0.1 and 0.2. It can be seen that the boundary effects are
more important at higher filling factors. On the other hand,
for more dilute systems the values of maximum fields are
more similar.

Figure 18 shows the mean values of the maximum surface
fields corresponding to the distributions represented in Fig-
ure 16, and the maximum of each distribution as a function
of the lattice spacing. The values tend to diverge for concen-
trated systems as in the disordered cases. We see similar

Figure 16. Fraction P of spheres with maximum surface field lower
than the x-axis value (in units of Bext) for ordered configurations.
N=144 except for @=0.10 and 0.20, for which N=169.
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ties are represented versus @.
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behaviour of the standard deviation, which is represented in
Figure 19 for the same distributions.

The values of the higher moments of the distributions are
shown in Figure 20 for the largest systems as a function of
the lattice spacing. Again, results for these quantities turn
out to behave in an opposite fashion to those of the disor-
dered configurations. In particular, both absolute values in-
crease with concentration. Moreover, the kurtosis seems to
diverge. We conclude that, for ordered configurations, the
non-Gaussianess of the distribution of maximum fields is
higher for more concentrated systems.

Increasing field behaviour

Transitions were studied following the same procedure as in
disordered suspensions. The effect of possible defects on
the surface of spheres was included with the same threshold
distribution values Bth. In order to discover the evolution of

systems from successive transitions we monitored the maxi-
mum magnetic field on the surface of remaining supercon-
ductor in each transition. The configurations selected in this
analysis correspond to plane arrays with distances (d) be-
tween the centre of spheres, in units of radius 'a' of
d/a=7.482, 4.376, 3.473, 3.034, 2.756 and 2.5. The number
of spheres N considered is 169 except for the most dilute
case, for which transitions were analysed for 144 microgran-
ules.

Results from simulations are shown in Figure 21, where
the fraction of remaining superconducting spheres as a
function of the external field value (in units of Bsh) is repre-
sented for several lattice distances. We observe that for di-
lute systems, transitions are produced for external field val-
ues closest to the threshold distribution, but the transitions
begin for lower external field values as the distance between
spheres is decreased. This is a consequence of diamagnet-
ic interactions, which are stronger for closer spheres, and is
analogous to the same effect observed in the disordered
configurations. An interesting result from this figure is the
breakdown of the continuous response of dilute systems
when the concentration increases, with the appearance of a
«plateau zone». This effect is produced for a fraction of re-
maining superconducting spheres of about 0.25. In this
zone there is a gap in the external field increment needed to
generate the following transition. The width of this gap in-
creases as lattice spacing is lowered.

A similar «plateau zone» was observed by Esteve et al.
[27] in a previous study. They studied configurations with a
large number of spheres (100x100), but for which only two-
body interactions and short-range interactions were taken
into account, and with an ad hoc choice of transition rules of
a random nature. They showed a «plateau zone» that
changed with the distance between spheres, but that was
always located around �(Bext)=0.3.

Figure 19. Standard deviation of the distribution of Bmax / Bext versus
the lattice spacing. In the inset the same quantities are represented
versus @.

2.0 3.0 4.0 5.0 6.0 7.0 8.0
d/a

0.000

0.010

0.020

0.030

0.040

σ

0.00 0.05 0.10 0.15 0.20
 ρ

0.000

0.010

0.020

0.030

0.040

 σ

Figure 20. Skewness (�) and kurtosis (▫) of the distribution of Bmax /
Bext versus the lattice spacing. In the inset the same quantities are
represented versus @.
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In order to analyse this effect, we studied the dynamics of
the system in its evolution with an increase of the external
field, both in the spatial configuration and in its distributions
of surface field. Some of our results are represented in Figure
22, which shows the maximum surface magnetic field distrib-
utions for a configuration with d/a=2.756 for some external
applied fields (always in Bsh units). We see that the transitions
induced by the external field make the field distribution split
into two branches with a gap or plateau between them. This
discontinuity between both branches eventually disappears
for a sufficiently high external field. By looking closely at the
spatial position of the spheres, we observe that each branch
corresponds to spheres that either have or lack supercon-
ducting nearest neighbours. When a microgranule transits,
the surface field of the closest neighbours decreases as a
consequence of diamagnetic interactions. Indeed, each
time that a sphere transits the next neighbour undergoes a
significant loss of its local surface field, which is reflected in
the figure as the switching of that sphere from one branch to
the other. When the first branch disappears the system is in
the «plateau zone» and none of the spheres has a supercon-
ducting nearest neighbour. For high concentration and a
great number of spheres, another «plateau zone» with a low-
er interval for the disappearance of second neighbours
could be observed. This subject is presently under study.

The «plateau zone» has interesting consequences for
PASS operation, since it corresponds to an effective «hot
border» in the phase diagram, as described above. In the
case of disordered configurations, the border is created by
raising the magnetic field above Hpause by )H, then reducing
Ha to Hpause. In the present case, the zone width is dictated
by the plateau. As the field is slowly increased across the
plateau, no magnetically-induced transitions occur; any
transitions would correspond uniquely to irradiation-induced
phase transitions.

There is at present no experimental evidence in support
of either the existence of the plateau zone or its irradiation

response. The majority of PASS experiments have been
done with a fixed magnetic field under temperature varia-
tions [10]; the recent report of PASS behaviour by the Bern
group [26], while magnetically-driven, was obtained from ar-
rays with effective concentrations that were too low to ob-
serve the plateau.

Conclusions

In this review we have described numerical and experimen-
tal results involving systems of metastable supermagnetic
granules. Transitions of such systems are important for both
fundamental and applied studies in condensed matter
physics. In particular, we have addressed situations which
are relevant to applications in particle detection.

A crucial point in the study of these systems is the calcu-
lation of the local magnetic field. The numerical method de-
veloped for our simulations allows us to achieve the desired
precision by considering multipolar and multi-body interac-
tions. This method has been applied to both disordered and
ordered configurations of superheated superconducting mi-
crogranules. Disordered configurations correspond to ex-
periments employing dispersions of granules diluted in a
wax matrix. Ordered configurations correspond to the PASS
experimental set-up.

We obtained Gaussian-like behaviour for surface magnet-
ic field distributions of disordered systems, especially for
higher concentrations. In contrast, the ordered configura-
tions present non-Gaussian field distributions, principally for
higher concentrations. Moreover, these ordered configura-
tions show important finite size effects.

The possibility of calculating the maximum local surface
field on each granule allows simulations of transitions to be
performed. Results are presented for transitions produced by
increases in the external applied field. These offer further in-
formation, such as local fields on the granules, that cannot be
easily obtained in experiments, and provide an insight into
the physics involved in the process; they also enable the test-
ing of models constructed to interpret experimental results.

Simulations of the evolution of initially disordered configu-
rations show that the configurations obtained after several
transitions are much more ordered, in the sense that the po-
sitions of the remaining superconducting granules are not
completely random. On the other hand, the spheres tend to
keep apart from each other and, as a consequence, the lo-
cal surface fields become more uniform in the system. This
has important practical consequences in estimating and re-
ducing uncertainties in experiments involving superheated
superconducting granules.

From the results on transitions in initially ordered systems,
we observe that dense configurations present a discontinu-
ity or 'plateau zone' as a consequence of spatial distribution
evolution. This plateau corresponds to an effective 'hot bor-
der' with interesting consequences for PASS operations.

We have also compared our numerical results with exist-
ing perturbative theory. The theory qualitatively predicts the

Figure 22. Fraction P of spheres with maximum surface field lower
than the x-axis value (in units of Bext), in the evolution of a configura-
tion with initially lattice spacing d/a=2.756 (@=0.20) and N=169.
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transitions and the local field statistics. However, the theory
is quantitatively correct only for very dilute samples, with oc-
cupied volume fractions of, at most, 1 - 2%. Therefore, such
expansions, although providing a very useful framework for
analysing experimental results, should be used with caution
when obtaining quantitative information. In particular, ex-
trapolation to the zero concentration limit of experimental
data should only be performed for very dilute samples, with-
in the validity range of the expansion. This range increases
for systems initially at higher densities after having under-
gone a large number of transitions.

Direct simulations of SSG systems appear to be a promis-
ing technique in analysing and complementing experimen-
tal results. In particular, diamagnetic interactions, which
were only partially considered in previous studies, can be
completely incorporated into simulations and seem to be an
essential ingredient in the behaviour of such systems. The
consideration of radiation-induced transitions, currently un-
der study, should be of relevance in particle detection appli-
cations.
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