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Resum

Los nanotubos de Carbono combinados con polímeros con-
ductores intrínsecos contribuirán en un futuro al progreso en 
nanoelectrónica y al desarrollo de nuevos y mejores dispositi-
vos electrónicos y optoelectrónicos. Este artículo resume nu-
estro trabajo en materiales compuestos polianilina-nanotubos 
de carbono altamente funcionales y procesables, y muestra la 
estrecha relación existente entre las interacciones polímero-
nanotubo y la funcionalidad y comportamiento en el procesado 
de los materiales obtenidos.

Paraules clau:	nanotubos de carbon · polímeros 
conjugados · nanocomposites

Abstract

Carbon nanotubes combined with intrinsically conducting pol-
ymers may contribute to further progress in nanoelectronics 
and to the development of improved electronic and optoelec-
tronic devices. This article summarizes our work on highly 
functional and processable polyaniline-carbon nanotube com-
posite materials. It also demonstrates the close relation be-
tween functionality and processing behavior and describes 
nanotube-polymer interactions.

Keywords:	carbon nanotubes · conjugated 
polymers · nanocomposite materials

1.	 Introduction

Organic electronics, a growing field of research, can improve 
the semiconducting, conducting, and light-emitting properties 
of organic materials through novel synthesis and self-assembly 
concepts. Performance improvements, coupled with the use of 
traditional casting/printing/stamping techniques to process 
these “electroactive” materials on large areas of materials such 
as plastic or paper, mean that they could be used in optoelec-
tronic applications, including low-cost information displays on 
flexible plastic for e-newspapers, and low cost memory and 
logic for smart cards. These types of novel products will con-
tribute to meeting society’s demands for access to instant in-
formation, data handling, and communication. Today, two 
classes of materials are of paramount interest in the field of re-
search into the optoelectronic applications of organic electron-
ics: electroactive polymers [1] and carbon nanotubes [2].

Electroactive polymers (or intrinsically conducting polymers) 
are polymers that possess the electrical, electronic, magnetic 
and optical properties of a metal and the mechanical properties 
(flexibility, toughness and processing) of a conventional poly-

mer. Their properties are intrinsic to “doped” forms of poly-
mers. In the doped state, the backbone of a conducting poly-
mer consists of a truly conjugated and delocalized p electron 
system that provides semiconducting, conducting and other 
electroactive properties. Doping may be carried out chemically 
or electrochemically and always involves dopant counterions 
which stabilize the doped state.

The concept of doping is illustrated in Figure 1, which shows 
a non-redox doping process in polyaniline (PANI), using prot-
onic acids. During this doping process the number of electrons 
associated with the polymer backbone does not change. How-
ever, the energy levels are rearranged and a stable polysemiq-
uinone radical cation (a polaron) is produced, leading the poly-
mer into a highly conducting regime. The highly conducting 
form of polyaniline, which corresponds to a salt, can be revers-
ibly dedoped into its non-conducting base form. Moreover, the 
whole process is accompanied by very beautiful and reversible 
changes in color. Some other typical intrinsically conducting 
polymers are polypyrrole, polythiophene, poly-3,4-ethylenedi-
oxythiophene (PEDOT) and poly-(para-phenylene). Just over 
10 years after the discovery of intrinsically conducting polymers 
[3], the first organic light-emitting devices (OLEDs) [4] have 
been developed. This represents a tremendous boost for the 
further development of various types of electronic and optoe-
lectronic devices made out of electroactive polymers [5]. The 
key to further progress lies in improving charge carrier mobility 
and processing. Here, novel nanoscale concepts such as na-
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nostructuring and novel nanomaterials will enable further im-
provements to be made in the field of organic optoelectronic 
applications. 

Carbon nanotubes (CNTs)—highly attractive nanobuilding 
blocks—are now being used in this field [6]. CNTs are nanos-
cale objects consisting of one or several graphene sheets that 
are seamlessly closed to form single-wall or multi-wall carbon 
nanotubes (SWNTs or MWNTs respectively). With their unique 
structural, mechanical, thermal, electronic and optical proper-
ties, [2] they offer a broad range of applications in various fields 
of science and technology, [7] such as nanoelectronics (from 
conducting wires to semiconducting logic switches), field-emit-
ting devices (flat panel displays, movable X-ray scanners) and 
nanoelectromechanical systems (NEMS, including nanoactua-
tors as well as chemical and biochemical sensors). Further-
more, carbon nanotubes blended into common plastic materi-
als yield highly reinforced, supertough and/or conducting 
composites, i.e. new classes of advanced materials. Carbon 
nanotubes can also be considered natural partners for intrinsi-
cally conducting polymers. Their dimensions and electronic 
structure combine well with the chain structure and the delo-
calized electron system of these electroactive polymers. Their 
mutual interactions may lead to highly favorable synergetic ef-
fects between both constituents, which might contribute to fur-
ther improvements in organic electronic devices.

With these considerations in mind, we carried out intensive 
research on novel composite materials, based on carbon nan-
otubes and electroactive polymers. We focused on two key is-
sues: enhanced functionality and the processing properties of 
the obtained materials. These issues are directly linked to favo-
rable interactions between the carbon nanotubes and the poly-

mer chains. Thus, they are also closely related to the synthesis 
approach and self-assembling processes. We will outline this 
approach in the following description of our research on poly-
aniline (PANI)-carbon nanotube (CNT) composites.

2.	 Synthesis	and	processing

First, we produced straight and well-graphitized multi-wall car-
bon nanotubes (MWNTs) in our own electric arc-discharge 
system. Pure graphite anodes were evaporated under 66kPa 
of helium by applying 60 A and 25 V. The obtained nanotubes 
had micrometer lengths and diameters of 20-40 nm.

For the synthesis of PANI-MWNT composites, we applied 
an in-situ approach for the first time, i.e. we carried out the po-
lymerization of aniline in the presence of MWNTs (Figure 2a) 
[8,9]. An aniline monomer solution in HCl 1M was added to 
MWNTs suspended in HCl 1M and the oxidant (NH4)2 S2O8 
(ammonium peroxodisulfate, APS) was added to initiate the 
polymerization process. This rapidly resulted in a dark green 
suspension. After several washing and filtering cycles we ob-
tained PANI powder in its primary doped form, i.e. emeraldine 
salt (ES). In a next step, we transformed ES into its soluble em-
eraldine base (EB) form [9]. We dedoped both ES and the ES-
MWNT composite with 3 wt% of aqueous ammonium hydrox-
ide (NH4OH). After several washing and filtering cycles, EB and 
EB-MWNT composite were obtained as powders. Assuming 
that no MWNTs got lost in the washing and filtering cycles, and 
taking into account the process yields, we estimated the con-
tent of MWNTs in the final EB-MWNT composite at about 50 
wt%. SEM microscopy showed that the MWNTs were embed-
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Figure 1. Non-redox doping process in 
polyaniline (PANI), resulting in transformation 
from its insulating state into a conducting 
state.
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Figure 2. (a) Synthesis of PANI-MWNT composite. In-situ polymerization yields the green emeraldine salt-MWNT composite which is subsequently 
transformed into the blue, soluble emeraldine base-MWNT composite. (b) SEM image of the emeraldine base-MWNT solid powder.
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ded in the polymer matrix (Figure 2b). The MWNTs were com-
pletely covered by EB throughout the material and could only 
be seen sticking out at the edges of the polymer blocks.

Like pure EB itself, EB-MWNT containing about 50 wt% of 
MWNTs was completely dispersed in n-methylpyrrolidinone 
(NMP), resulting in a stable, blue solution. No black MWNTs (or 
agglomerates thereof) could be seen. Attempts to transform 
the EB-MWNT solution into an ES-MWNT solution by adding a 
few drops of HCl immediately led to the fall-out of small ag-
glomerates. After a day, the solution was completely colorless 
and all the agglomerates had settled to the bottom of the flask. 

Curiously, when applying an ex-situ synthesis in which MWNTs 
were added directly to ES and then transformed to EB, the re-
sulting EB-MWNT material did not disperse as well as it did in 
the in-situ material. Agglomerates form and fall out with time 
(Figure 3).

Blue colored films were obtained by casting NMP solutions 
of EB-MWNT and EB onto glass substrates, followed by vacu-
um drying at 70ºC for 24 h. Subsequent immersion of these 
films in distilled water resulted in free-standing blue films of EB 
and EB-MWNT, which could easily be transformed into the 
corresponding green films of ES and ES-MWNT by exposure 
to HCl vapor for a few seconds (Figure 3). These observations 
clearly show the importance of in-situ polymerization in further 
processing of the EB-MWNT composite material obtained.

3.	 Results	and	discussion

Directly after synthesis, we took a UV-Vis spectrum of EB and 
EB-MWNT solutions in NMP (Figure 4a). The maximum at 320 
nm corresponded to the p-p* transition centered on the benze-
noid unit of EB. The maximum at 624 nm corresponded to the 
quinoid exciton band. However, it was striking that the EB-
MWNT solution showed a new and very strong band with its 
maximum at 283 nm. This band was related to the p-p* transi-
tion centered on the quinoid unit. It would seem that the pres-
ence of MWNTs led to the enhanced response of the quinoid-
related rings. The rest of the features were identical to pure EB. 
This led us to assume that this is a two-phase system: free EB, 
and a new phase of EB whose conformation is more planar, a 
fact that is related to the presence of MWNTs. Thermogravi-
metric analysis (TGA) (Figure 4b) clearly confirmed the exist-
ence of an additional MWNT-related EB phase, which started 
to decompose at temperatures about 150 ºC higher than the 
backbone of pure EB. 

In addition, infra-red spectroscopy (Figure 4c) revealed sig-
nificant changes in the EB-MWNT composite, most of which 
were directly related to a relative increase in the vibration 
strength of C-C bonds of the quinoid versus benzenoid groups 
(range 1585-1380 cm-1), as well as changes related to ring-
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Figure 3. Processing properties of EB-MWNT. (a) Solution in NMP. 
Addition of HCl results in (b) fall out and (c) settling of the solid material. 
The solution becomes clear. (d) Casted film from EB-MWNT blue solu-
tion onto glass. (e) Exposure of blue EB-MWNT film from (d) to HCl va-
por results in a green ES-MWNT film. (f) Free-standing film from (d). (g) 
Free-standing film obtained from (e) which can also be obtained from a 
free-standing EB-MWNT film (f) after exposure to HCl vapor. (h) Ex-situ 
polymerization results in agglomerates and non-stable solutions.
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Figure 4. Characterization of EB and the EB-MWNT composite. (a) UV-Vis spectra of solutions; (b) TGA powder material and (c) FTIR spectra of 
pressed pellets. Figures adapted from our own work published in [9].
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deformations of the quinoid and benzenoid groups (range 
1105-950 cm-1).

As a next step, we tested the functionality of the material. 
First, we performed temperature-dependent conductivity 
measurements (Figure 5a) on the bulk powder materials. The 
room temperature value for EB fell below the experimental limit 
(below 10-10 S/cm). Therefore, no temperature dependence 
could be measured. However, with about 0.1 S/cm, the room 
temperature conductivity for the EB-MWNT powder drastically 
increased by at least nine orders of magnitude compared to 
EB. Its temperature dependence resembled that of the 
MWNTs, indicating that conduction occurred through a perco-
lated three-dimensional network of MWNTs. However, the 
room temperature value of the EB-MWNT composite did not 
reach the value of a pure MWNT network, which is expected to 
be one or two orders higher in magnitude. This indicates the 
existence of additional tunneling barriers between the MWNTs, 
formed by the EB coating around the MWNTs. As a further in-
dication of functionality, we observed the enhanced thermal 
stability of the composite, which decomposes in air at temper-
atures 150 ºC higher than the backbone of pure EB. Secondly, 
we investigated the photophysical properties of the composite 
and measured its photoluminescent behavior (lexc=330 nm) 
[10] (Figure 5b). EB shows a broad emission maximum at 
about 400 nm caused by reduced benzenoid/amine groups. 
This is usually suppressed drastically when EB is transformed 
by chemical doping into a highly conducting state. However, 
EB-MWNT also luminesced and essentially maintained the fea-

tures of EB. Here, the reduction of the long-wave emission 
band was in agreement with a more planar conformation of EB 
on MWNTs. It is highly remarkable that the presence of 50 wt% 
of MWNTs in the EB-MWNT composite, which make it highly 
conductive, did not result in a quenching of luminescence. 

More recently, we studied the optical activity properties of 
PANI-MWNT solutions. It is well known that the addition of chi-
ral acids transforms EB into the corresponding emeraldine salt 
(ES), whose backbone then adopts a chiral structure which is 
responsible for its optical activity. Therefore, the starting point 
in our case was the stable, blue EB-MWNT solution. To this 
solution, we added the chiral S-(+)-10-camphorsulfonic acid 
(HCSA). In contrast to the addition of HCl, which results in pre-
cipitation of the MWNTs, the addition of HCSA resulted in a 
stable, green solution of the corresponding emeraldine salt 
(ES-MWNT). Figure 6a shows the UV-Vis spectrum of the re-
sulting ES-MWNT composite and that of ES for comparison. 
The three characteristic bands at 345, 415, and 810 nm are 
associated with p-p*, polaron-p* and p-polaron band transi-
tions of ES. The broad p-polaron band at 810 nm is typical of 
an arrangement of polymer chains in the “compact coil” form 
[11]. ES-MWNT essentially showed the same features, as well 
as a dominant band at 295. As in the case of EB-MWNT, this 
band corresponded to the p-p* transition centered on the qui-
noid unit and was related to the coating of EB onto MWNTs. 
Furthermore, both solutions had become optically active (Fig-
ure 6b). These observations are consistent with the polymer 
adopting a “compact coil” conformation. The circular dichr-
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oism spectrum for ES-MWNT showed that the polymerization 
of aniline in the presence of nanotubes and doping did not in-
hibit the polymer’s ability to become optically active. The ef-
fects of introducing optical chirality into PANI-CNT composites 
and its technological implications are being investigated in 
more detail by our group, in a joint research program with the 
group of Dr. Marc in het Panhuis at the University of Wollon-
gong (Australia).

4.	 Conclusions

In this article we have described the formation of a highly func-
tional and completely soluble polyaniline-multi-wall carbon na-
notube composite. This composite has enhanced conductivity 
and improved thermal stability. It is also luminescent, optically 
active and can be processed from solutions into films, coatings 
and fibres [12]. We believe that these findings provide the basis 
for novel smart organic materials of great use in smart optoe-
lectronic applications and devices.
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