
Opportunistic Aggregation over Duty Cycled
Communications in Wireless Sensor Networks

Jonathan Benson, Tony O’Donovan, Utz Roedig+, Cormac J. Sreenan.
Mobile and Internet Systems Laboratory, Dept. of Computer Science , University College Cork, Ireland.

+InfoLab21, Lancaster University, UK.

Abstract— To implement duty cycles with packet based
transceivers, a sender transmits a trail of identical packets (which
we call framelets) of which the receiver is able to catch one in
its active listening phase. This communication concept is used in
the standard low power listening (LPL) protocol shipped with
TinyOS 2.x. This existing solution has many shortcomings which
result in a very limited network performance. In this paper, we
firstly present an alternative framelet based low power listening
implementation called Framelet Communications (FrameComm)
that eliminates these shortcomings. Secondly, we present a
novel additional improvement to FrameComm - Interception
and Aggregation of Framelet Communications (i-FrameComm) -
that further improves network performance by opportunistically
aggregating packets over the radio channel. A prototype imple-
mentation of the proposed FrameComm mechanism in TinyOS
2.02 is used for evaluation and comparison. The experiments
show that the interception and aggregation method increases
network throughput and lifetime as communication resources
are used more efficiently.

I. INTRODUCTION

A major constraint in the design of wireless sensor networks
is the need of autonomous, untethered operation for extended
periods of time. The system lifetime is ultimately defined by
the energy-efficiency of the design which is especially affected
by the way the communication system is operated. Generally,
a sensor node transceiver can be set to one of four states:
transmitting, receiving, listening or sleeping. Energy efficient
operation of transceivers is achieved essentially by keeping
them in sleeping mode as often as possible. The sleeping
state generally consumes orders of magnitude less energy than
the active states (transmitting/receiving/listening). However, as
communication cannot take place between nodes while the
transceivers are in sleeping state, sender and receiver actions
must be synchronised for successful transmission of messages
to take place.

Different strategies can be used to provide transmitter-
receiver synchronisation such as the use of wake-on radios,
shared time basis or radio duty cycles. The common element
of all these techniques is the need to establish, in an efficient
way, an intersection of data transmission and listening activi-
ties enabling effective communication between transceiver and
receiver. Such an intersection can be achieved at different costs
by each technique or a combination of them.

Due to its simplicity, many sensor networks implement
a radio duty cycle approach. Thus, additional hardware and
complex mechanisms needed to implement wake-up radios or
time synchronisation can be avoided. In a simple radio duty

cycle approach, a potential receiver alters the transceiver state
periodically between listening and sleeping. The ratio between
listening and sleeping periods dominates the communication
related energy consumption pattern of the node. The sender
must keep transmitting long enough such that the receiver is
guaranteed to enter its listening period during the transmission.

Currently wireless sensor nodes such as the MICAz
or TelosB platforms incorporate packet based transceivers
(e.g. the Chipcon CC2420 or the Nordic nRF2401). These
transceivers handle complete data packets independently from
the microcontroller. As consequence, channel access can only
be controlled on a per packet level. To implement radio duty
cycles with packet based transceivers, a sender might transmit
a trail of identical packets (which we call framelets [14]) of
which the receiver is able to catch one in its active listening
phase. This received packet might already contain the data
that has to be transmitted or it might only be used to syn-
chronise sender and receiver for the actual data transmission.
To practically use the described framelet based radio duty
cycle technique, it has to embedded efficiently within a MAC
protocol.

In this paper we present our own framelet based com-
munication framework (which we name FrameComm). The
implementation of FrameComm is based on previous work
in this area described in [14]. FrameComm is quite similar to
Low Power Listening (LPL) which is a well known implemen-
tation of a duty cycled MAC protocol using framelet based
communication. LPL is shipped with TinyOS 2.x for nodes
using the CC2420 transceiver. However, our experimental
evaluation of the LPL revealed that its usage in a realistic
deployment scenario results in a very high packet loss rate.
These high losses are caused by the applied clear channel
assessment methods and back-off strategies. These problems
are avoided in our implementation of FrameComm.

FrameComm represents an efficient and simple framelet
based communication framework. However, many more op-
timisations and improvements are possible; some of these
are sketched in [14] and [15]. One possible optimisation
is explored within this paper: transmission interception and
aggregation. A sensor node in the vicinity of two other
communicating nodes might be able to overhear an ongoing
framelet transmission. This is likely to happen during carrier
sense prior to sending or at a scheduled listen period. The
overhearing node can intercept an ongoing transmission if it
has data to transmit to the same destination. The interception

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/390243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is done by interrupting the framelet transmission before the
originally intended receiver is able to receive it. Subsequently,
the overhearing node is able to take control of the channel and
continue the intercepted transmission including its own data.
Thus, the intercepting node is able to gain faster access to
the channel, perform in-communication data aggregation and
reduce contention. Within the paper we present a modification
and evaluation of the basic FrameComm that includes the
interception and aggregation mechanism. We refer to this mod-
ified FrameComm as i-FrameComm. As the evaluation shows,
i-FrameComm improves throughput and network lifetime as
communication resources are used more efficiently.

In summary, the contributions of this paper are:
• FrameComm: a framelet based communication frame-

work that remediates shortcomings of the standard
TinyOS2.x CC2420 LPL

• i-FrameComm: a framelet based communication frame-
work that improves FrameComm performance by inte-
grating interception and aggregation techniques

• A comparative evaluation of LPL, FrameComm and i-
FrameComm

The rest of this paper is organised as follows. Section II
discusses related work in the area of duty cycles and data
aggregation. Section III describes the basic concept of framelet
based communication. Section IV describes the FrameComm
concept and its improvements compared to the standard
TinyOS LPL. Section V explains the additional improve-
ments that are included in i-FrameComm. Section VI details
the implementation of FrameComm and i-FrameComm in
TinyOS. Section VII presents the comparative evaluation of
LPL, FrameComm and i-FrameComm. Finally conclusions
and future work are discussed in Section VIII.

II. RELATED WORK

A great deal of research has been devoted to energy efficient
methods of communication in wireless sensor networks. One
particular aspect of this body of research deals specifically
with duty cycled communications and medium access control
(MAC) protocols which exhibit duty cycled or power saving
behaviour. Where duty cycles are used typical trade offs
are presented including latency and throughput versus energy
efficiency.

One approach commonly used to improve the efficiency
of sleeping nodes is to synchronise or coordinate the wake
up phases of sensor nodes. For example S-MAC [3] coordi-
nates the sleep cycles for groups of neighbouring nodes by
exchanging schedules and synchronisation messages. Like S-
MAC, T-MAC [8] operates using synchronisation messages
but extends the active listening period when there is additional
traffic for a particular node and allows for limited prioritisation
of the channel for nodes with full or near full sending queues.
RMAC [2] uses Pioneer (PION) frames to set up relaying
or forwarding nodes to wake up at a particular time so that
data can be quickly moved through the network. The PION
messages are sent across multiple hops prior to the initiation of
data transfer and inform forwarding nodes when they should

be awake to handle the arriving data. This has the effect of
decreasing the overall latency experienced and in addition
helps to remove contention in areas with high traffic loads.
Contention is also avoided by transferring data during the
SLEEP period. The AWAKE period is simply used to send
PIONs to set up the relaying nodes to remain awake for data
transfer while any other nodes return to sleep mode. Unlike
these approaches our protocols do not use synchronisation and
its associated overhead.

An alternative approach is to use out of band signalling such
as that described in PAMAS [4] which uses probe packets
to determine when and for how long it should deactivate its
radio transceiver. Other approaches assume the presence of an
ultra-low power “wake on radio” that can be used to activate
the main radio when signalled [9]. Note that both of these
approaches assume the presence of additional hardware which
is a major drawback to their deployment.

It is also possible to implement an asynchronised duty cycle
behaviour. One of the advantages of this approach is much
simpler than synchronous approaches and does not require
any additional hardware to operate. One such protocol is B-
MAC described in [7] which is implemented under TinyOS
1.x. WiseMAC [5] also operates in an asynchronous manner
but learns when potential receivers will wake up in order to
reduce the amount of preamble transmitted and received before
payload data transmission occurs.

Methods of implementing asynchronous duty cycles in
packetised radios are described in the X-MAC [6] and CSMA-
MPS [1] protocols. These approaches reduce the amount of
preamble that must be both sent and received by leaving gaps
in the preamble so that the receiver can send an acknowl-
edgement and data transfer can begin without further delay
and further unnecessary preamble. The principal difference
compared to [14] and our protocols is that these protocols
do not send full data packets all the time but send a sequence
of headers or strobes before sending a packet containing any
payload. When one of these strobes is heard by the receiver an
acknowledgement is sent and data transmission begins. Finally
it must be stated that none of the above protocols attempts to
perform aggregation of data over an active radio channel. To
our knowledge this is an entirely novel approach.

Aggregation in wireless sensor networks has been a subject
of intensive research as there are a great many benefits in
terms of energy saving by using this approach. A common
approach implement aggregation is to abstract aggregation
from the underlying network operation by implementing a
SQL like query layer which a programmer or end user can use
to pose queries to the sensor network [11], [12], [13], [10]. In
essence the sensor network is treated like a distributed database
running distributed queries. Other forms of aggregation exist
and many are application specific. Nevertheless a common
trait in all aggregation implementations is the need to store
data at a point (typically a parent node) and await the arrival
of more data (typically from the remaining child nodes) to
perform aggregation. [16] discusses how and where best to
spend time waiting if each message has a latency bound. [12]

implements a cascading system whereby each node must wait
before transmission so that all its children and sub-children
can report. Unlike these approaches neighbouring nodes can
perform aggregation on the fly using our framelet interception
method thus reducing the overall latency necessary to perform
aggregation.

III. FRAMELET BASED DATA TRANSMISSION

A basic problem introduced by the use of radio duty
cycles as an energy saving technique is the need to establish
rendezvous between transmitter and receiver. Since commu-
nication can only take place when the receiver’s radio is
active, the transmission of frames needs to somehow overlap
with this active period. Transmitter-receiver rendezvous is
the overlapping of data transmission and listening activities
enabling effective communication.

To implement the duty cycle approach, no time synchroni-
sation between communicating nodes is necessary. However,
this can only be achieved at the expense of extra overhead per
frame communicated. In the following paragraphs, an imple-
mentation of rendezvous in duty-cycled systems is described
for packet based radios.

A. Assumptions and Definitions

It is assumed that the clock of transmitter/receiver operates
at approximately the same rate. Note that this does not imply
time or sleep cycle synchronisation, rather the clock drift
between any two nodes is insignificant over a short period.
It is also assumed that a fixed rate radio duty cycle is used,
i.e., each node periodically activates its radio for a fixed time
interval to monitor activity in the channel. The duty cycle
period is represented as P = ∆ + ∆0, where ∆ is the time
the radio remains active and ∆0 is the time the radio is in
sleeping mode. The duty cycle ratio , or duty cycle for short,
is defined as:

Duty Cycle =
∆
P

=
∆

∆ + ∆0
(1)

B. Rendezvous using Framelets

In general framelets can be described as small, fixed-
sized frames that can be transmitted at relatively high speeds.
Certain types of ultra low-power transceivers, such as the
Nordic nRF2401, are able to transmit small frames at speeds
of typically 1Mb/s. A sensor network frame of 32 bytes can
therefore be transmitted in 1/4 of a millisecond. Framelets
are defined as having a fixed or limited size. For example
the maximum size of a CC2420 packet is defined at compile
time (the default is 40 bytes in total including the header) and
cannot be exceeded during run time without fragmentation.
Instead, rendezvous requires the repeated transmission of
several frames containing the entire payload as depicted in
Fig. 1. If the receiver captures one framelet, the payload is
received. The trail of framelets is defined by three parameters:

• Number of transmissions n
• Time between framelets: δ0

• Framelet transmission time: δ

Sender

Ack

Receiver

Fig. 1. Framelet-rendezvous

In order to ensure rendezvous, a proper relation between
the parameters and ∆, ∆0, n, δ, and δ0 must be obeyed.
First, the listening phase of duty cycle ∆ must be such that
∆ ≥ 2 · δ + δ0. This ensures that at least one full framelet
will be intercepted during a listen phase. Furthermore, to
ensure overlap between transmission and listening activities,
the number of retransmissions n needs to comply with the
following inequality when ∆0 > 0

n ≥
⌈

∆0 + 2 · δ + δ0

δ + δ0

⌉
(2)

This ensures that a framelet trail is sufficiently long to guar-
antee rendezvous with the listening phase of the receiver and
ensures that at least one framelet can be correctly received.

In general, the values of δ and δ0 should be as small as
possible, as this influences according to equation 1 the minimal
possible active time ∆ of the duty cycle. The duration of
the time ∆ determines message delay, throughput and energy
savings as shown in the next section.

C. Acknowledgements

Framelets can be individually acknowledged by the receiver
as shown in Fig. 1. Combined with the use of data replica
framelets, this technique allows the transmitter to stop re-
sending framelets shortly after rendezvous is established thus
minimising energy expenditure and freeing the data channel.
If acknowledgements are not used, or are used only after
the successful delivery of the last frame, the transmitter is
forced to resend no less than the number of frames specified
in inequality 2.

D. Fragmentation

Although many applications of wireless sensor networks are
expected to require very small frames, some deployments will
involve larger payloads. If the physical layer of the sensor
node only supports framelets, a fragmentation layer becomes
necessary. The first fragment may be transmitted multiple
times to guarantee rendezvous with the receiver. After ren-
dezvous is established and the first fragment is acknowledged,
each remainder fragment can be subsequently transmitted. It
is assumed that the first framelet trail indicates of how many
individual framelets the whole message consists. This allows
the receiver to determine how long the radio must be kept
active.

IV. FRAMECOMM DESIGN

The previously described method to implement duty cycles
with framelets must be embedded in a MAC protocol. The
following describes one possible instance of a framelet based
MAC protocol that was used as a starting point to implement
the interception technique described next. Another implemen-
tation is Low Power Listening which is part of the TinyOS 2.x
suit of protocols which come with the standard distributions.
Details of the implementation of LPL are described in Section
VI.

By far the most common MAC protocol found on wireless
sensor networks is CSMA. This is primarily due to its sim-
plicity and low implementation requirements. For this reason
we choose a CSMA style MAC protocol and modify it to suit
the particular characteristics of framelet based transmission.
To do this we must ensure correct carrier sense and choose a
suitable backoff strategy.

A. Carrier Sense

There are a number of methods and techniques of perform-
ing carrier sense using wireless radios. First the channel may
be briefly sampled just long enough to detect a signal above
the noise threshold. This is commonly used on the CC2420
radios as they support clear channel assessment (CCA) which
provides this feature. This is a very energy efficient approach
as the channel is sampled for only the briefest of times. Note
that this time is not long enough for a packet to be received.

A second approach is to activate the radio for a fixed period
of time. If data is received then it can be concluded that the
channel is busy. This is a simple way of assessing the channel
but is more costly as the radio is kept active for slightly longer.

In order to perform carrier sense when framelet based
transmissions are used it is necessary to have the radio listen
for the duration ∆. This is the only way to guaranteed
successful rendezvous between the listening radio and the
transmitter. There are two possible methods to perform this
listen which will be discussed next.

The CCA method can easily be adapted to this scenario. To
do this a CCA must be performed every δ for the duration of
∆. If any CCA checks should fail then the channel will be
deemed to be busy and a backoff will occur.

Alternatively the radio could be kept in a listen mode for the
duration ∆ and this is the approach that we use in this paper.
Under most circumstances a packet trail will be intercepted
and a whole packet will be received. If a packet arrives a
backoff will occur. However there are circumstances where
another node may begin transmitting near to the end of the
listen phase. In this case an entire packet will not be received,
no backoff will ensue, and a collision may occur. To avoid
this a CCA check is made at the end of the listen phase to
ensure a new framelet trail has not started. If the channel is
not clear the listen phase is extended.

At first it may seem that using solely the CCA method
is clearly better than simply listening for the duration ∆.
While it is true that the CCA method is more efficient,
activating the radio to receive data has a number of advantages.

First the current sender on the channel may be attempting
to send a packet to the listening node (who also wishes to
send and is hence performing a carrier sense listen). This
packet can be acknowledged and the channel will become
clear thereafter whereupon transmission can begin without
further delays. Second, since an unscheduled listen has been
performed during carrier sense the next scheduled listen period
can be rescheduled to a time ∆0 afterwards thus minimising
the time a radio is active. In addition if a node wishes to send
but is already in a scheduled listening period the scheduled
listening period itself can be used for carrier sense. Third,
the data from overheard packets can be used to influence
the backoff times. Forth, overheard data can be used for
aggregation which is discussed in detail later.

B. Backoff
The second problem is how to determine the correct backoff

strategy and backoff times. We adopt the non persistent
backoff approach which is commonly used in wireless commu-
nications. That is, if the channel is busy the node will backoff
for a period of time and the repeat the carrier sense. This
process is repeated until the node gives up or the channel is
acquired. The question of how long to backoff for is a little
more complex.

Ideally when a node finds the channel to be busy its radio
will be deactivated and it will awake as close to the end
of the previous transmission as possible and attempt to gain
the channel. (Naturally, some randomisation among competing
nodes is necessary here to avoid collisions.) This behaviour
minimises the time that the channel is unnecessarily idle
and minimises latency. With this in mind we have developed
a backoff strategy that takes into account the fundamentals
of framelet based transmission and leverages overheard data
to influence backoff times. The longest backoff times are
when broadcast transmissions and unicast transmissions not
requesting an acknowledgement are detected. These transmis-
sions must span a full period P and must run to completion
before releasing the channel thus requiring relatively long
backoffs when encountered. Unicast transmissions requesting
acknowledgement received a shorter backoff since it is likely
that an acknowledgement will arrive and cut short the framelet
trail possibly leaving the channel free thereafter. In both cases
when any backoff occurs a record of the sender ID and the
sequence number of the packet is kept. After the first backoff
occurs if the same packet as was previously detected is still
being transmitted then it is likely that this transmission will
end very soon and only a very short backoff is needed. The
backoff times become progressively smaller if the same packet
is encountered repeatedly. The following is the formula used
to calculate the backoff times,

Tbackoff =
P

2b
+

Rand[0, P]
2b

(3)

where b, 0 < b < 5, is the number of times a node has
backed off due to a particular transmission. The value of b
is initialised to 2 when a unicast packet requesting acknowl-
edgement is first detected and is initialised to 1 otherwise. For

Sender1

Receiver-Sender2

Ack

Fig. 2. Gaining the channel after carrier sense

each subsequent detection of that particular transmission b is
incremented by 1 up to a maximum of 4. When a different
packet is detected b reverts to its original value and the sender
id and sequence number are overwritten with the data from
the newer packet. Note that the random element along with
the fact that an “educated guess” is made regarding when a
transmission will be finished ensures that competing nodes
to not all try to gain access to the channel simultaneously
after another transmission has completed. Also if b exceeds its
bounds it is also reset to its initial value (i.e. either 1 or 2). This
ensures that if a node within the network is malfunctioning and
causing other nodes to backoff that the backoffs do not become
excessively small increasing contention to unacceptable levels.

V. I-FRAMECOMM DESIGN

A node (called Sender2 for example) with a message to
send must first sample the channel for a fixed duration to
ensure that the channel is clear. During this phase its radio
transceiver is on and messages on the channel can be heard.
If the channel is busy a node will keep its radio active
long enough to receive a single framelet. Should Sender2
receive a packet addressed to it (from Sender1 for example)
an acknowledgement will be sent in the normal way and the
channel will then be clear to transmit the original packet as
seen in Fig. 2. If the received packet is not addressed to the
node it must check if the addressee is the same addressee of
the message it is currently trying to send (i.e. a message is
being sent by a peer node to the same parent). If so then both
messages can possibly be aggregated. Sender2 checks to see
that aggregation is possible (i.e. there is adequate space in
the payload) and builds an aggregate packet. An interrupt is
then sent to the original sender (Sender1). Upon receipt of this
interrupt Sender1 will cease its transmissions and Sender2 will
take over the channel and begin to transmit a framelet trail of
its own which continues from the previous framelet trail as in
Fig. 3. Should the received packet not be addressed to either
Sender2 or its parent then the message will be discarded and
Sender2 will activate is backoff mechanism.

A. Collision avoidance

Under normal circumstances the number of neighbouring
nodes accessing a shared radio channel is limited in order to
reduce collisions. In particular sampling the channel before
transmission is a means to attempt to eliminated collisions
among one hop neighbours. Note that when interrupts of
framelets are used there is an increased chance of collisions
among neighbouring nodes seeking to interrupt the current

Sender1

Sender2

Interrupt Ack
Aggregate Packets

Fig. 3. Interrupts

framelet trail. Should two interrupts occur simultaneously from
different nodes (Sender2 and Sender3 for example) a collision
may occur. There is the potential that the current sender
(Sender1) and Sender2 and Sender3 will all try to send their
framelet trail simultaneously. This situation can be avoided
by the use of a handshaking mechanism similar to the CTS-
RTS method as in Fig 3. The method works as follows. After
sending an interrupt message to Sender1 both nodes will wait
and listen for Sender1 to acknowledge the interrupt or to
send its next packet. If either node should be successful in
its attempt to interrupt Sender1 then Sender1 will send an
acknowledgement to the successful interrupter. Both Sender2
and Sender3 will hear the acknowledgement and know if their
bid to interrupt Sender1 was successful or not. The winning
node (Sender2) will assume control of the channel while the
losing node (Sender3) will back off and retry at a later time to
interrupt the current sender. If neither packet were successful
due to both attempted interrupts colliding then Sender1 will
continue its framelet trail as normal and both Sender2 and
Sender3 will use a short random backoff before trying to
interrupt again.

B. Expected benefits

Conceptually it is relatively easy to see the situations in
which this form of aggregation are advantageous. First there
must be a reasonable amount of traffic so that a framelet trail
may be interrupted by its peers. Second as duty cycles become
more aggressive the length and time span of the framelet
trails become longer thus increasing the likelihood that an
interrupt may occur during this period. Third the chances of an
interrupt occurring will also depend on the number of peers
a transmitting node has. For example, a bushy tree should
produce more favourable results than a sparse tree. Therefore
if a very short duty cycle is assumed in a bushy tree and traffic
occurs in sporadic bursts we should expect our protocol to be
particularly effective.

Note that in the scenario outlined above there should be
a significant advantage in terms of overall next hop message
delivery latency (i.e. if there are many messages to be delivered
from different nodes the time taken to deliver all messages
should be shorter). Using a fixed duty cycle with no interrupts
and aggregation the best case time taken to deliver n messages
from n peer nodes to a fixed duty cycled receiver will be
approximately (n − 1)P . Recall that P = ∆ + ∆0. The first
message will be delivered somewhere between 0 and P and
all remaining messages will be delivered sequentially during
the following listening periods and will therefore take and

additional (n − 1)P . Assuming that on average 0.5P will
expire before rendezvous the the next hop latency can be given
by the following approximation:

0.5P + (n− 1)P

In comparison if we assume that m messages, can be aggre-
gated on average during a period ∆ then the total next hop
latency reduces to the following approximation:

0.5P +
⌈

n− 0.5m

m
P

⌉
For example if we have n = 8 messages from different peers
and m = 4 messages can be aggregated during a time period
the latency is 2.5P . This is significantly better that the 7.5P it
would take under normal conditions. Note that this approach is
also more energy efficient for the senders since less time need
collectively be spent with their radios active. An alternative
way of looking at this is to consider that the individual packet
latency reduces to the latency that would be experienced on a
contention free channel (assuming that there is always room
to aggregate packets and only peer nodes are contending to
send).

The data throughput of the network is also increased signifi-
cantly. In the example above 8 messages are sent in time 2.5P
compared to 7.5P under normal circumstances. The use of
interrupts and interception allows a variable throughput despite
having a fixed length listen period. Previous research allowed
for variable throughput by increasing the listening time of
the receiver to cope with additional data transfer. In order to
modify the listening period a node must first wake up from
its sleep cycle. This means that there is a latency directly
related the length of the duty cycle before any extra traffic
can be handled. In addition the increasing of the listening
period requires that when a packet is received that the radio
must be kept on for some minimum additional time regardless
of whether there is additional data or not. If bursts of high
traffic are rare then this can present a significant overhead.
Our protocol does not need such modifications and is highly
reactive to bursty traffic. The advantage of this approach is
that a network can be configured to operate in an extremely
low power duty cycle mode yet deal seamlessly with increases
in traffic due to local sensor events.

C. Alternative aggregation methods

Rather than aggregate the data payload of a packet it is
possible to aggregate multiple data packets into a framelet
trail in a number of ways. One such way is to simply
append the extra packets onto the end of the framelet trail.
The receiver can deduce that there are additional packets
to be receiver by examining a flag in the header field.
Whenever a node has additional packets to send it would set
the ADDITIONAL_PACKETS flag to 1 in each header. For
example a sender with packets 1, 2 & 3 to send would send
a trail of framelets consisting of packet 1 with the ADDI-
TIONAL_PACKETS flag set to 1. On waking and hearing the
first packet a receiver would acknowledge packet 1 and extend

Sender1

Sender2 Interrupt

Ack

New Aggregate Packet Trail

Aggregate Packet Trail

New Packet
(appended)

Fig. 4. Alternative Aggregation Method

its listening period to receive packet 2 which would also have
its ADDITIONAL_PACKETS flag to 1. Again the receiver
would acknowledge packet 2 and extend its listening period.
Finally packet 3 would be received and the listening period
would end since the ADDITIONAL_PACKETS flag is set to
0.

It is apparent that when data is combined in this manner that
energy savings similar to aggregation occur with very little
overhead. This is particularly the case with very aggressive
duty cycles where the length of the framelet trails are very
long. Note that data types not suitable for aggregation can be
handled in this manner, a significant advantage over traditional
aggregation approaches.

It would be especially beneficial if we could use our inter-
rupt approach to combine these messages on the fly. However
this is difficult to do when the sending node has multiple
packets to send. If a single packet is being sent an interrupt
can be used in the normal manner. Otherwise all messages
must be transfered to the interrupter. One method to do this
is to perform a normal interrupt and the send the additional
messages to the interrupting node sequentially. There are
several problems with this approach. First the transfer period
may overlap with the original destinations listen period and the
original destination node may resume a sleep state before the
transfer has been completed. Second the interrupter may have
a single message while the original sender may have several.
Transferring several messages to be aggregated with one is
not energy efficient. An alternative approach in this particular
may be to use some kind of handshaking so that the node with
less messages passes them to the node with more messages.
This has the disadvantage of increasing the complexity of the
protocol and does not solve the first problem.

We propose the following alternative as a solution to the
problems outlined above. Rather than send each packet trail
sequentially the framelet trail will alternate between each
packet that has to be sent. For example if packets 1, 2, and
3 are to be sent as in the previous example the framelet
trail will be 1,2,3,1,2,3.........etc. Header fields in each will
indicate that each is a member of a trail and its order in the
trail (i.e. 1 of 3, 2 of 3, etc.). A node wishing to interrupt
will realise that it must listen to all packets in the sequence
before an interrupt can be sent. When all packets have been
received an interrupting node can send and interrupt and the
usual mechanism is followed. This procedure is illustrated
in Fig. 4. In order to avoid conflicts the responsiveness of

the intended receiver is greater that any potential interrupting
node. Upon hearing a packet the intended receiver sends an
acknowledgement for that packet immediately whereas an
interrupting node must wait for the full sequence to complete.
If an ack is received by the sender before an interrupt arrives
the sender will ignore any further attempted interrupts and
complete delivery to the intended receiver. Any interrupting
nodes will backoff and retry. At this stage all transmissions
will be finished or acknowledgements from the intended
receiver will be heard. In either case the additional packets will
be dropped and the attempted interrupter will resume normal
operation. This method is not implemented in this paper but
will form part of our future work.

VI. IMPLEMENTATION

FrameComm and i-FrameComm were both implemented in
TinyOS 2.02. and both of these were compared in Section VII
where telosb nodes were used in a small deployment, with Low
Power Listening which is the default duty cycle protocol in the
Tiny0S 2.02 release. FrameComm and i-FrameComm have the
same components but the difference lies in their usage. In Fig.
5 the component graph for LPL is shown. Note that this is very
similar to the implementation of FrameComm in Fig. 6. The
primary difference is that the DefaultLPLC component and it’s
associated components are replaced by a CC2420DutyCycleC
component. Thus the inclusion of FrameComm does not upset
the existing TinyOS 2.02 architecture to any significant degree.

Since FrameComm and i-FrameComm are very similar
(the former is a subset of the functions of the latter) they
are both contained within the same component. It must be
decided at compile time which protocol to use. At present
this is done by altering some of the code. In future versions
of the code we will adopt the TinyOS 2.x methodology of
having variable components. This can be seen in the use
of dummy components that are wired into place according
to preprocessor definitions at compile time. For example
if LOW_POWER_LISTENING is not defined an alternative
component called DummyLPLC is wired into the configura-
tion rather than the DefaultLPLC component. Both compo-
nents provide the same i-faces to higher level components and
are aliased as LplC.

The implementation of FrameComm and LPL are very
similar in a number of ways but there are some important
differences. In terms of similarities they both use framelet
trails to ensure rendezvous and the listening cycle length is
dictated by the duty cycle and the times δ and δ0. LPL however
does not listen in the same manner as the implementation of
FrameComm. LPL repeatedly polls the CCA to detect if the
channel is busy for a fixed time of 11ms. If during this time a
packet is detected the listening phase is extended to ensure that
the packet is received correctly. FrameComm on the other hand
performs a normal listen for 12ms which should guarantee
interception of any packets transmitting and performs a brief
CCA at the end of the listen period in case another framelet
has begun transmitting. If so the listen period is extended.
As a result of the longer listen period ∆ FrameComm had

a longer sleep period ∆0 than LPL. A 2% duty cycle using
FrameComm has a period P=600ms whereas LPL has a period
P = 550ms. Therefore LPL should theoretically be able to
handle more traffic than FrameComm at the same duty cycle.

Another major difference is the way in which the carrier
sense is performed. Whereas FrameComm uses a full listen,
as described above, LPL merely uses a brief CCA before
beginning its transmissions. The use of this brief CCA is
insufficient to ensure that the channel is in fact clear and a
number of problem arose when LPL experienced contention
for the channel. These problems are described in sectionVII.

Yet another difference between the two implementations
was the backoff strategy. FrameComm make use of a full
listen and exploited the overheard information to influence
it backoff strategy. LPL does not do this since it does not
receive packets during its carrier sense phase. In addition
the backoff strategy of LPL is unrelated to the duty cycle
and resulted in numerous backoffs which were insufficient to
remove unnecessary contention for the channel.

With regard to the implementation of i-FrameComm we
adopted a packet stuffing approach whereby spare space in the
packet payload was filled with data from interrupted packets.
Note that additional and alternative forms of aggregation could
be implemented as long as any operations are sufficiently fast.
Information from the CC2420 header regarding the size of
the payload was used to quickly ascertain if aggregation was
feasible.

In the implementation of i-FrameComm it was vital that
the different types of packet could be quickly and easily
distinguished from each other. This was done by examining
the CC2420 packet header which contained an 1 byte type
field. Thus interrupts could be quickly distinguished from data
packets or control messages.

VII. EXPERIMENTAL EVALUATION

In this section the behaviour of just a few nodes is observed
in detail. The reason for this is to gain a clear insight
into the effectiveness of the protocols evaluated without any
obscuring factors such as network dynamics, background
traffic or queueing effects. While this approach does not
accurately represent the potential “in the field” performance
of the protocols, it does offer an extremely transparent and
fair evaluation. In all of the experiments a simple and small
tree-like structure was used. This consisted of a base-station
and an intermediate forwarding node and two to four leaf
nodes. All nodes are unsynchronised. In all experiments 100
messages are generated by each leaf node. A debug packet was
sent at the end of each run by every leaf node which logged
various attributes. These attributes included the total number of
packets sent, the total radio on time, the total backoff time, the
number of backoffs and, where applicable, data on aggregation
events. Each experiment run was repeated three times for each
data point.

We consider 3 individual experiments. The first experiment
examines how many messages are successfully delivered to
the base station at varying message generation intervals. We

Fig. 5. TinyOS implementation of Low Power Listening (LPL)

Fig. 6. TinyOS implementation of FrameComm

do not use a buffer to hold excess messages. If a message
is generated while a node is already sending the message is
simply dropped. The power consumption is also examined here
and we use the time the radio is active as our metric.

The second experiment considers the throughput of the three
protocols for a fixed message generation rate. Here we use a
virtual infinite buffer unlike the previous experiment where
there is no buffer. This means that no packets are lost at the
node due to queue overflows but that additional time is used
to complete the sending of the 100 messages. This provides an
accurate and fair way to gauge the characteristic throughput
of each protocol.

In the final experiment we adopt a fixed message generation

rate and progressively reduce the duty cycle. As in the first
experiment there are no buffers. Data losses are examined with
respect to duty cycle for FrameComm and i-FrameComm.

A. Experiment 1

Data was generated at each leaf node periodically at varying
rates. Every 500, 1600, 2700, 3800 and 4900 milliseconds re-
spectively. Each node generated 100, 5 byte, sensor messages
per run. The 5 byte sensor message included a 16 bit node
ID an 8 bit sequence number and a 16 bit data reading. A
maximum of 5 packets could be aggregated into a 28 byte
payload.

One striking thing that can be seen from the graphs (Fig

 0

 50

 100

 150

 200

 250

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
es

sa
ge

s
R

ec
ei

ve
d

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 7. Data delivered with 2 leaf nodes

 0

 50

 100

 150

 200

 250

 300

 350

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
es

sa
ge

s
R

ec
ei

ve
d

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 8. Data delivered with 3 leaf nodes

7, 8 and 9) is that the data losses for FrameComm and i-
FrameComm is much less than that of LPL. LPL appears
to be only able to deliver an approximately 120 sensor
messages irrespective of topology or data generation rate. It
must be noted that LPL appears to have significant problems
with interleaving and its backoff strategy. The problems with
interleaving of messages, evident from data traces generated
during experiments, seem to stem from the fact that LPL does
not perform an adequate listen before sending. LPL merely
performs a very brief Clear Channel Assessment (CCA) before
sending each packet. If this CCA falls in the gap between
successive transmissions from a neighbouring node, as it often
does, then interleaving will occur. This interleaving often
results in one or both of the packets being lost.

Also, is is apparent that FrameComm is handling much
more packets than would seem theoretically possible. This
is due to the fact that prior to sending a listen period is
used by the intermediate forwarding node. During this period
another packet may be received. The first packet is quickly
sent (since the base station is always on) and the second packet

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
es

sa
ge

s
R

ec
ei

ve
d

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 9. Data delivered with 4 leaf nodes

is passed back down to the lower layers for sending. Again
a listening period is used prior to sending and this process
continues until nothing is received during the listen period.
Therefore there are more listening periods at the intermediate
forwarding node than the duty cycle would suggest. Note
that this phenomenon does not happen all the time but the
likelihood of such occurrences increases with respect to the
traffic. Therefore our implementation of FrameComm seem to
be somewhat traffic aware, albeit inadvertently, and modifies
the amount of listening periods used accordingly. This is one
reason why FrameComm and i-FrameComm correspond quite
closely with respect to packet losses. Another reason is that
any losses of an aggregate mean that the equivalent of several
sensor messages are lost. This fact tends to skew the results
against i-FrameComm somewhat. Examination of the raw data
verifies that i-FrameComm has far fewer incidences of loss but
the magnitude of individual losses tend to be greater.

In terms of radio on time, and thus energy consumption, i-
FrameComm appears to be the clear winner and significantly
out performs both FrameComm and LPL at higher data
rates and bushier topologies. It is clear that the multiplexing
ability of the i-FrameComm approach drastically shortens the
transmission times compared to simply transmitting the data
sequentially. Some of the results may be unduly misleading
however. For example where two node are generating data
at a high rate the message will be passed back and forth as
each node interrupts the other multiple times, adding a sensor
message each time. This scenario would seem to be unlikely
in a real deployment.

It can also be seen from Fig. 10,?? and 12 that the plots for
aggregation have very large error bars. This is due to the fact
that the workload on the nodes is uneven. Some nodes will
typically aggregate more than their peers while others will
aggregate less. Thus some nodes may do a lot less work than
their counterparts leading to the large error bars seen on the
graphs.

The radio on time from the LPL experiments in Fig. 10,
11 and 12 is unexpected. It appears from the graphs that the

 0

 10000

 20000

 30000

 40000

 50000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

[m
s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 10. Radio On Time with 2 leaf nodes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

[m
s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 11. Radio On Time with 3 leaf nodes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

[m
s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 12. Radio On Time with 4 leaf nodes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

P
er

 M
es

sa
ge

 R
ec

ei
ve

d
[m

s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 13. Radio On Time per message with 2 leaf nodes

performance of LPL improves as the number of leaf nodes
increase. Note however that LPLs radio on time is nearly
constant between the 3 graphs. This is primarily because the
data losses using LPL were so high. Indeed LPL tended to
deliver approximately 120 messages regardless of the number
of leaf nodes or the data generation rate. The rest of the data
is lost and results from a mixture of interleaving and dropped
packets. Due to the fact that so many packets were not sent
correctly in relation to the other protocols it is a somewhat
unfair comparison. A more fair comparison is shown in Fig.
13, 14 and 15 where the radio on time per sensor message
sent is shown. Here we can see that both FrameComm and
i-FrameComm significantly outperform LPL. Note that in Fig.
13 there is no significant benefit to using i-FrameComm over
FrameComm at the slower data generation rates. However
a significant distance can be seen when the generation rate
is at it’s fastest and therefore there are more opportunities
to aggregate. Likewise it can be easily seen from Fig 14
and Fig. 15 that i-FrameComm easily outperforms the other
approaches. This confirms our suspicions that the effectiveness
of i-FrameComm method increase with respect to both the
data generation rate and the number of active peer nodes
(or bushiness of the topology). This is also reinforced upon
examination of Fig. 16 which plots the number of aggregation
events against the data generation interval for the various
topologies.

B. Experiment 2

In this experiment we examine the time taken by each of
the protocols to deliver a fixed amount of messages. As before
the experiment is performed for 2, 3 and 4 leaf nodes and
100 messages are generated and sent. A message is generated
at each node every 300ms. Should the radio be busy the
message attempts to resend again in another 300ms. The
message generation process will continue until 100 messages
are sent by each leaf node. The time taken to complete the
operation is a good indication of the potential throughput of
each of the protocols. Fig. 17 show the time taken for each

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

P
er

 M
es

sa
ge

 R
ec

ei
ve

d
[m

s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 14. Radio On Time per message with 3 leaf nodes

 0

 500

 1000

 1500

 2000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ad

io
 O

n
T

im
e

P
er

 M
es

sa
ge

 R
ec

ei
ve

d
[m

s]

Message Generation Interval [ms]

i-FrameComm
FrameComm

LPL

Fig. 15. Radio On Time per message with 4 leaf nodes

 0

 200

 400

 600

 800

 1000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
gg

re
ga

tio
n

E
ve

nt
s

Message Generation Interval [ms]

2 Nodes
3 Nodes
4 Nodes

Fig. 16. Aggregation Events

 0

 50000

 100000

 150000

 200000

 250000

 2 3 4

T
im

e
[m

s]

Nodes

i-FrameComm
FrameComm

LPL

Fig. 17. Time taken to deliver 100 messages per node

node to send all 100 messages. Note that LPL has a fixed
time on the graph. This is due to the fact that LPL fails to
do a correct carrier sense as discussed previously and fails
to do sufficient backoff. Therefore messages are pushed onto
the network irrespective of whether it is busy or not causing
collisions and packet losses. LPLs data losses during this
experiment were very high and similar to those experienced in
the previous experiment. This confirms that the majority of the
losses experienced by LPL in the previous experiment were
due to network failures/errors rather than dropped packets.
It is also clear that i-FrameComm offers significant benefits
compared to FrameComm.

C. Experiment 3

As previously mentioned a possible benefit of i-
FrameComm is that it can support much lower duty cycles
while delivering similar throughput compared to another pro-
tocol using a less aggressive duty cycle. Imagine the maximum
message generation rate per node is known and bounded. If
the topology is known then it is possible to implement a
minimal duty cycle sufficient to handle the maximum amount
of possible traffic. In this experiment we continually introduce
a progressively lower duty cycle to a fixed topology using
three leaf nodes. Naturally, if a particular duty cycle cannot
sustain the volume of traffic generated then the packets will be
dropped. Thus our success criteria is that a fixed percentage of
packets are successfully received. In this experiment we adopt
a similar topology to the one used in the previous experiments.
Three leaf nodes generate a 4 byte message, thereby allowing
a possible 7 messages per payload while aggregating, every
300 ms which is then forwarded to an intermediate node. As
before this node forwards the received messages to a base
station. All data is unbuffered as described in section VII-A.

Consider Fig. 18. Here FrameComm is compared to i-
FrameComm. LPL was not considered due to its poor per-
formance in previous tests. From the graphs it is obvious that
i-FrameComm is able to support a much lower duty cycle
while maintaining a low data loss rate. One particular scenario

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 1 1.5 2

D
at

a
R

ec
ei

ve
d

Duty Cycle [%]

i-FrameComm
FrameComm

Fig. 18. The effects of reducing the duty cycle on data loss

where i-FrameComm would be especially beneficial is where
an event based system is used. Should an event occur the
network must be able to handle the traffic generated and yet
conserve as much energy as possible when no events occur.
Unlike other duty cycled approaches i-FrameComm offers a
way to do this in a flexible and simple manner.

VIII. CONCLUSIONS AND FUTURE WORK

A method of aggregating data on the fly over duty cycled
communications, i-FrameComm, has been described and eval-
uated. To our knowledge this is an entirely novel approach
to data aggregation in sensor networks. It is clear that this
approach to data aggregation has significant benefits in sensor
networks where energy efficiency and adaptability to variable
traffic are a concern. In particular this work helps to address
some of the fundamental tradeoffs inherent in implementing
duty cycled communications. We have shown that our ap-
proach can deliver improved throughput and latency. Energy
efficiency is also greatly improved compared to conventional
duty cycled approaches. Our approach also show a great deal
of flexibility in its ability to handed varying traffic loads and
is particularly useful in event driven systems.

We have also evaluated FrameComm and LPL and shown
that there are significant problems with the current imple-
mentation of LPL in TinyOS 2.x. It must be noted that
FrameComm and LPL are based on a similar design concept
and only differ in a few important design choices, primarily
the length of the listen period and the implementation of the
CSMA feature. We have also shown how a full and correct
listen to implement CSMA leads to a more correct operation of
the sensor network and less data loss. We believe that LPL may
have much better performance if these issues are addressed.
We have suggested a number of way in which data gleaned
from a full CSMA listen can be exploited and proposed some
optimisations to the backoff strategies used with duty cycled
transmissions.

Our future work will exploit additional forms of aggregation
such as that described in Section III. Apart from exploring the

possibilities of varying types of aggregation there are a number
of possibilities that arise from the use of interrupts. Priority
channel capture using interrupts is a particular area which we
will examine in our future work.

IX. ACKNOWLEDGEMENTS

Mr. O’Donovan is supported by Microsoft Research through
its European PhD Scholarship Programme and the EMBARK
Initiative of the Irish Research Council for Science, Engineer-
ing and Technology.

REFERENCES

[1] S. Mahlknecht and M. Boeck. "CSMA-MPS: A Minimum Preamble
Sampling MAC Protocol for Low Power Wireless Sensor Networks". In
Proceedings of the 5th IEEE International Workshop on Factory Com-
munication Systems (WFCS2004), Vienna, Austria, September 2004.

[2] S. Du, A. K. Saha and D. B. Johnson. “RMAC: A Routing-Enhanced
Duty-Cycle MAC Protocol for Wireless Sensor Networks”. In Pro-
ceedings of the 26th IEEE International Conference on Computer
Communications (INFOCOM 2007). May 2007 Page(s):1478 - 1486.

[3] W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol
for wireless sensor networks," in IEEE Infocom 2002, Jun 23-27 2002,
vol. 3, pp. 1567.

[4] S. Singh and C. S. Raghavendra, PAMAS: Power aware multi-acces
protocol with signalling for ad hoc networks, ACM Computer Commu-
nications Review., vol. 28, no. 3, pp. 5-26, July 1998.

[5] A. El-Haiydi, WiseMAC, An Ultra Low Power MAC Protocol for the
WiseNET Wireless Sensor Network, ACMSenSys, Los Angeles, 5-7
Nov 2003.

[6] Michael Buettner, Gary V. Yee, Eric Anderson, Richard Han: X-MAC: a
short preamble MAC protocol for duty-cycled wireless sensor networks.
SenSys 2006: 307-320

[7] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In The Second ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 95-107, November
2004.

[8] W. Ye, J. Heidemann, and D. Estrin, An energy-efficient MAC protocol
for wireless sensor networks. In IEEE Infocom 2002, Jun 23-27 2002,
vol. 3, pp. 1567.

[9] Eugene Shih, Paramvir Bahl, Michael J. Sinclair. Wake on wireless:
an event driven energy saving strategy for battery operated devices.
In Proceedings of the 8th annual international conference on Mobile
computing and networking, MobiCom 2002.

[10] J. Gehrke, Y. Yao. Query Processing for Sensor Networks. IEEE
Pervasive Computing 2004, vol 3, number 1, pages 46-55.

[11] P. Bonnet, J. Gehrke, T. Mayr, P. Seshadri. Query Processing in a Device
Database System. Tech. Report, number 99-1775, Cornell University,
Ithaca, NY, USA, 1999.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. Proc. of the 5th
Annual Symposium on Operating Systems Design and Implementation,
2002.

[13] J. Beaver, M. A. Sharaf, A. Labrinidis, Panos K. Chrysanthis. Power-
Aware In-Network Query Processing for Sensor Data. Proc. of the 2nd
Hellenic Data Management Symposium, 2003.

[14] Andre Barroso, Utz Roedig, and Cormac J. Sreenan. Use of Framelets
for Efficient Transmitter-Receiver Rendezvous in Wireless Sensor Net-
works. In Fifth International IEEE Workshop on Wireless Local Net-
works (WLN2005), Sydney, Australia, November 2005.

[15] Utz Roedig, Andre Barroso, and Cormac J. Sreenan. f-MAC: A De-
terministic Media Access Control Protocol Without Time Synchronizati
on. In Proceedings of the third IEEE European Workshop on Wireless
Sensor Networks (EWSN2006), Zurich, Switzerland, February 2006.

[16] Utz Roedig, Andre Barroso, and Cormac J. Sreenan. Determination of
Aggregation Points in Wireless Sensor Networks. In Proceedings of the
30th Euromicro Conference (EUROMICRO2004), Rennes, France, pp.
503:510, IEEE Computer Society Press, August 2004.

