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Abstract

A novel way to learn and track simultaneously the appearance of a previously non-seen face without
intrusive techniques can be found in this article. The presented approach has a causal behaviour: no future
frames are needed to process the current ones. The model used in the tracking process is refined with each
input frame thanks to a new algorithm for the simultaneous and incremental computation of the singular
value decomposition (SVD) and the mean of the data. Previously developed methods about iterative compu-
tation of SVD are taken into account and an original way to extract the mean information from the reduced
SVD of a matrix is also considered. Furthermore, the results are produced with linear computational cost
and sublinear memory requirements with respect to the size of the data. Finally, experimental results are
included, showing the tracking performance and some comparisons between the batch and our incremental
computation of the SVD with mean information.

1 Introduction

The last years have witnessed extraordinary advances in computer and communications technology, leading to
an increasing availability of information and processing capabilities of multimedia data [1], [2]. This fact is
resulting in a higher and wider demand for easier access to information [3]. On one hand, this information is
mainly stored in digital format, so its acces is limited to the user’s ability to communicate with computers. On
the other hand, it has been remarked the great expressive power of the natural language used in human-human
communication, as well as its intrinsic multimodal features [4]. Consequently, the acces to digital information
could be carried out using this natural language: reducing the necessity of knowing a specific way to interact
with the computer and taking advantage of its expressive features. Moreover, multimodal interfaces with an
audio visual system like a talking head could be used in order to speak to the user in natural language. As a
result, talking heads used in multimodal interfaces seem to be a proper solution for making acces to information
easier and more pleasing for human users.

As explained in [4], multimodal input analysis is necessary when working with multimodal interfaces and
relies on interaction devices e.g. facial trackers. Some non-intrusive visual trackers can be used in this sheme
because they retain information regarding to position, scale, orientation and appearance of the tracked element,
e.g. [5], [6], [7], [8] and [9]. Nevertheless, the whole sequence is needed by these algorithms to be processed
off-line (they have a non-causal behaviour); as a result, a real time implementation of these methods is impossi-
ble, even without considering their computational cost. This temporal restriction is caused by the computation
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of a Singular Value Decomposition (SVD) over the whole observed data. Moreover, memory resources are
greatly affected by this fact, limiting the duration of the observed sequence. Incremental SVD computation
techniques as [10], [11] and [12] may be useful in this case, but they do not take into consideration the mean of
the data, which is crucial in the classification of the different gestures. Fortunately, this is taken into account in
[13] and [14]. By one hand, the work presented in [13] does not does not propose a method to extract the mean
information from a given SVD and it can only update the SVD from two other known SVD. By the other hand,
Skočaj presented in [14] a method with a similar performance to the one achieved in this paper, but he focused
on incremental Principal Component Analysis rather than incremental SVD.

In this paper, a new method for updating both SVD and mean information as well as extracting the mean of
the data contained in a given SVD without increasing the cost order of either time or memory is presented in
Sect. 2. The application of this new method is carried out in Sect. 3 by a causal algorithm for the tracking and
learning of the facial appearance of a person. Experimental results are given in Sect. 4 and concluding remarks
are explained in Sect. 5.

2 Incremental SVD with Mean Update

2.1 Fundamentals

The singular value decomposition of matrix Mp×q =[m1· · ·mq] is given by:

Mp×q = Up×pΣp×qVT
q×q , (1)

where U = [u1 · · · up] and V = [v1 · · · vq] are orthonormal matrices; ui are the eigenvectors of MMT

and span the column space of M; vi are the eigenvectors of MTM and span the row space of M; and Σ is
a diagonal matrix with the singular values of either MMT and MTM in descending order. Notice that if M
is a rank r matrix, where r ≤ p and r ≤ q, its corresponding Σ has only r non-null singular values and (1)
can be rewritten as the thin SVD: Mp×q = Up×rΣr×rVT

q×r. By the other hand, let Cr×q = UT
p×rMp×q be

the projections of the columns of M over the eigenspace spanned by U. Using the thin SVD expression the
projections matrix C = [c1 · · · cq] can be written also as Cr×q = Σr×rVT

q×r.
In other fields, like classification problems pointed by [13], a more suitable representation of M can be

achieved including mean information m = 1
q

∑q
i=1 mi in (1), which has to be computed and substracted

previously from M in order to be able to generate the SVD of M− m · 1:

Mp×q = Up×rΣr×rVT
q×r + mp×111×q . (2)

2.2 Updating SVD

Assuming an existing SVD (1), if new columns Ip×c = [I1 · · · Ic] are added in order to obtain a new matrix
M

′
p×(q+c) =

[
Mp×q Ip×c

]
, the SVD of M

′
can be updated from (1) using methods like [11] and [12],

achieving:

M
′
p×(p+c) = U

′
p×r′Σ

′
r′×r′V

′T
(q+c)×r′ . (3)

Otherwise, if the representation of M
′

is chosen to be as (2) and m
′

is set to 1
q+c

(∑q
k=1 mk +

∑c
l=1 Il

)
the

SVD becomes:

M
′
p×(q+c) = U

′
p×r′Σ

′
r′×r′V

′T
(q+c)×r′ + m

′
p×111×(q+c) . (4)

Starting from (2) and matrix I, (4) can be obtained using the method proposed by [13] if the SVD of I is
previously computed and q and c are known beforehand. A new method for updating both the SVD and the
mean using only the new observations and previous factorization is presented in Sect. 2.3.
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2.3 Updating SVD and Mean

Begining with an existing factorization of Mi as in (5), it is desired to obtain the SVD and mean of Mf shown
in (6):

Mi = UiΣiVT
i + mi1 . (5)

Mf =
[
Mi I

]
= UfΣfVT

f + mf1 . (6)

Defining M̂i (7) and centering new columns I around mi (8), it can be written:

M̂i = Mi − mi1 = UiΣiVT
i . (7)[

Mi I
]− mi1 = UfΣfVT

f + mf1− mi1 . (8)[
Mi − mi1 I− mi1

]
= UfΣfVT

f + (mf − mi)1 . (9)[
M̂i Î

]
= UtΣtVT

t . (10)

The new columns Ip×c (see sect. 2.2) will be known through this paper as the update block. Note that (10) is
the updated SVD from (7) when some new observations Î are added. This update can be done as [12] suggests:

[
M̂i Î

]
=
[
Ui Qi

]·[Σi UT
i Î

0 QT
i Î

]
·
[
VT

i 0
0 1

]
=
[
Ui Qi

]·UdΣdVT
d·
[
VT

i 0
0 1

]
=UtΣtVT

t (11)

where QR-decomposition is done to Î−UiUT
i Î = QiRi to obtain an orthogonal basis Qi for the reconstruction

error. Next, the mean update algorithm can be executed starting from the knowledge of VT
t = V̂T

t +vt1, where
vt = 1

q+c

∑q+c
k=1 vk:[

M̂i Î
]

= UtΣtV̂T
t + UtΣtvt1 = UtΣtV̂T

t + mt1 . (12)[
M̂i Î

]
= UtΣtRT

v QT
v+ mt1 = UfΣfVT

u QT
v+ mt1 = UfΣfVT

f + mt1 . (13)[
M̂i Î

]
+ mi1 = UfΣfVT

f + mt1 + mi1 . (14)[
Mi I

]
= UfΣfVT

f + mf1 . (15)

It is assumed QvRv as the QR-decomposition of V̂t, UfΣfVT
u as the SVD of UtΣtRT

v and mf = mt + mi.
Note that (15) and (6) are the same expression.

2.4 Mean Extraction from a Given SVD

The previous method can also be used to extract the mean information from an existing SVD, e.g. trying to
express S = UtΣtVT

t as S = UfΣfVT
f + s · 1 setting

[
M̂i Î

]
= S and mt = 0 in (12) to (15).

2.5 Time and Memory Complexity

The mean update presented in section 2.3 does not increase the order of resources required in methods of
incremental SVD developed in [10], [12], [11], [13] and [14] . The computational cost becomes O

(
qr2 + pr2

)
and the memory complexity is O (pr + qr), as shown in Table 1.

3 On-the-fly Face Training

In this paper, On-the-fly Face Training is defined as the process of learning the photo-realistic facial appearance
model of a person observed in a sequence in a rigorous causal fashion. This fact means that it is not necessary to
take into account subsequent images when adding the information of the current one, which is considered only
once. Note that the facial appearance is learnt in the same order as the captured images, allowing a real-time
learning capability in near future, as computational resources are constantly being increased.
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Table 1: Resource order requirements of the proposed mean update algorithm

Operation Comp. cost Mem. requirements

VT
q×r −

(
1
q

∑q
k=1 (vk)r×1

)
11×q → V̂T

q×r O (qr) O (qr + r)

V̂q×r → (Qv)q×r (Rv)r×r O
(
qr2
)

O
(
qr + r2

)
(Ui)p×r (Σi)r×r

(
RT

v

)
r×r

→ Tp×r O
(
pr2 + r3

)
O
(
pr + r2

)
Tp×r → (Uf )p×r (Σf )r×r

(
VT

u

)
r×r

O
(
pr2
)

O
(
pr + r2

)
(Vf )q×r → (Qv)q×r (Vu)r×r O

(
qr2
)

O
(
qr + r2

)
Totals, assuming p � r and g � r O

(
qr2 + pr2

)
O (pr + qr)

3.1 Data Representation

An N image sequence S = [I1 · · · IN ] and a set of four masks Π=
{
π1, . . . , π4

}
, attached to four facial

elements (like mouth, eyes or foerehead), are given. For each image It, its specific mouth, eyes and fore-
head appearance are extracted using Π, obtaining four observation vectors ort (see Fig. 1). Therefore, four
observation matrices Or can be obtained from the application of the set of masks Π over the sequence S.
Dimensionality reduction of Or can be achived using SVD [15]: Or= [or

1 · · · or
N ] = UrΣr (Vr)T+ or11×N ,

where or= 1
N

∑N
k=1 or

k. Note that facial element appearances can be parameterized as Cr =Σr (Vr)T (see
Sect. 2.1). In the example proposed in this paper, faces composed of 41205 pixels could be codified with 35
coefficients, representing a reduction of more than 99.9% without any loss of perceptual quality (see Fig. 2).

3.2 Training Process

One major drawback of the parametrization presented in section 3.1 consists in the image alignment of the
sequence [5]. Unless all face images through the whole sequence have the same position, ghoslty results may
appear and suboptimal dimensionality reduction will be achieved. The tracking scheme presented in this paper
combines simultaneously both processes of learning and alingment. First of all, the four masks πr are manually
extracted from the first image I1 of sequence S and the first observation vectors o1

1, . . . ,o
4
1 are obtained. Next,

Figure 1: (a) Masks πr. (b) Image It. (c) Regions Rr
t , obtained from the application of each mask πr over

image It. (d) Vectors or
t related to the defined regions.
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(a) (b)

Figure 2: (a) Three observed frames of a subject’s face. (b) The same synthesized frames after learning the
appearance model of this person.

the corresponding alignment coefficients a1 are set to 0; they represent the affine transformation used to fit the
masks onto the face on each frame [5]. Using the tracking algorithm presented in [7] over the second image
I2, observations o1

2, . . . ,o
4
2 and alignment coefficients a2 are stored. At this point, each facial element r can

be factorized as [or
1 or

2] = Or
2 = Ur

2Σ
r
2 (Vr

2)
T+ or

2 = Ur
2 (Cr

2)
T+ or

2, where the current mean observation is
generated by or

2 = or
1+or

2
2 , the eigenvectors of Or

2 (Or
2)

T are found in Ur
2 and the texture parametrization of

the r-th facial element in images I1 and I2 is obtained in Cr
2. Once this initialization is done, the On-the-fly

Training Algorithm (Figure 3) can be executed. Besides, only those columns of Ur
t+1 and Vr

t+1 whose values
of Σr

t+1 exceed a threshold τ are considered, keeping only those eigenvectors with enough information. The
value of τ decreases from 0, 5 to 0, 5 ·10−3 in the first images (1 seconds at 25 im/s) in order to allow better face
localization when almost no information is known about its appearance [14]. Notice that alignment parameters
a can be used to extract gestural information in a multimodal input system [16].

On-the-fly Training Algorithm

In: U2,Σ2,V2, ō2, alignment coefficients a2 and set of four masks Π

1. Set k = 2

2. Using Uk,Σk,Vk, ōk, ak and Π, the images of the new update block are aligned, generating
L observation vectors or

k+1 and alignment information ak+1 for each image.

3. Obtain Uk+1,Σk+1,Vk+1 and ōk+1 from Uk,Σk,Vk, ōk, and ok+1 (4)-(8).

4. Trim Uk+1 and Vk+1 according to Σk+1.

5. Set k = k + 1 and go to Step 2 until there is no more new images.

Out: Uf ,Σf ,Vf , ōf and alignment coefficients af for each image.

3.3 Cost analysis

In this section, the computational cost and memory requirements of the incremental computation of matrices
Uf , Σf and Vf and vector ōf of the previous On-the-fly algorithm is presented in table 2. As could be seen in
the previous section, this incremental process consists of successive SVD and data mean updates, explained in
section 2.3 to achieve a final factorization of the whole observation matrix O:

Op×q = (Uf )p×s (Σf )s×s

(
(Vf )q×s

)T
+ ōp×1 · 11×q (16)

The value s consists in the number of eigenvectors kept in matrices Uk+1 (step 4 of the On-the-fly algorithm).
Also, it must be noted that he update block size is specified by c. In this analysis, we presuppose that p > q,
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Table 2: Resource order requirements of the proposed SVD and mean update algorithm over a matrix Op×q

using update block size c and the s eigenvectors corresponding to the largest s singular values of Op×q. To
obtain more compact expressions, value n = s + c has been used. Value k identifies the iteration number.

Id. Operation Computational cost Memory requirements

SVD

([
Σk UT

k Î
0 QT

k Î

]
n×n

)
O
(
n2
)

O
(
n2
)

[
Uk Qk

]
p×n

· (Ud)n×n O
(
pn2
)

O (pn)

(
VT

d

)
n×n

·
[
VT

k 0
0 1

]
n×(kc+c)

O
(
(kc + c) n2

)
O ((kc + c) n)

Mean update O
(
s2 (p + kc + c)

)
O (s (p + kc + c))

Total O
(
q
(

s2

c + n
)

(n + p + q)
)

O
(
n (p + q + s) + c2

)

q > s and q > c. Moreover, if additional considerations are taken into account for the values of c and s,
particular cost functions can be described as follows:

• When c and s are of small order of magnitude (o.o.m.) compared to q, the lowest computational cost is
obtained: O (sq (p + q)).

• If only c has small o.o.m., the computational cost becomes the highest one: O
(
qs s

c (s + p + q)
)
.

• For small o.o.m of s only, the computational cost becomes O (qc (c + p + q)).

• When all c,s,p and q are of the same o.o.m., O (q (s + c) (s + c + p + q)).

The computational cost order of the batch process is O (pq (p + q)), which is higher than the first assumption
and slightly higher than the two last ones. Note that the two last cases have also a similar cost.

Regarding to memory costs, the batch process has memory requirements of order O
(
q2 + sp

)
, while the

proposed incremental approach has O
(
(c + s) (p + q + s) + c2

)
. As can be noted, for small values of c and s

the presented approach achieves great memory reduction and do not increase its order in the other cases.

Figure 3: Block diagram of the On-the-fly Training Algorithm
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(a) (b)

Figure 4: Output tracking results of the learning process for: (a) the On-the-fly Training Algorithm and (b) the
non-causal algorithm.

4 Experimental Results

In this section, the performance of our incremental algorithm is shown. First, tracking results are specified in
section 4.1, showing a comparison between the presented algorithm and its previous version. Next, precision
results about incremental SVD with mean update are presented in section 4.2. Finally, in section 4.2.2 execution
time is put in correspondence with the cost analysis obtained from section 3.3.

4.1 On-the-fly training algorithm

The On-the-fly Training Algorithm has been tested over a short sequence and a long one, both recorded at a
frame rate of 25 im/s. The short sequence consists of 316 images and it has been used to compare the results
obtained from our On-the-fly Training Algorithm and its previous non-causal version [7]. Achieving the same
quality in the results (see Fig. 4), the presented algorithm has reduced the execution time about 66% with respect
to [7] and has required about 7 Mbytes in front of the 200 Mbytes consumed by [7] (see the comparison in Fig.
5). Later, if we focus on the long sequence (10000 frames), its processing requirements were impossible to
met with the non-causal algorithm [7] because its huge memory cost of 6000 Mbytes, although massive storage
systems (e.g. hard drives) were used; the On-the-fly Training Algorithm reduced the memory requirements to
17 Mbytes with a processing time of a little more than 10 hours (using a 2GHz processor) (see Fig. 5).

4.2 Incremental SVD and mean computation

In this section, the goodness of the results given by the proposed incremental SVD and mean update algorithm
(sect. 2.3) is analyzed and compared to the ideal performance offered by the batch solution.

4.2.1 Precision comparisons

Some experiments have been developed in order to test the analysis shown in the previous section (3.3). Two
video sequences have been recorded and the face has been aligned in each one using our On-the-fly training
algorithm. Starting from these aligned observations set stored columnwise in every Ok, we have factorized it
using both the batch SVD process and our incremental SVD with mean update algorithm (sect. 2.3), obtaining
two approximations of the form:

Ok
p×q ≈ Uk

p×sΣ
k
s×s

(
Vk

q×s

)T
+ ōk

p×1 · 11×q (17)
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(a) (b)

Figure 5: Solid line represents the On-the-fly Training Algorithm performance while the dashed one belongs to
the non-causal algorithm presented in [7]. (a) Computation time in seconds. (b) Memory used in bytes.

Ok
p×q ≈ Ûk

p×sΣ̂
k
s×s

(
V̂k

q×s

)T
+ ôk

p×1 · 11×q (18)

where matrices Uk, Σk and Vk are the trimmed version of the thin-SVD of Ôk = Ok − ōk · 1 and ōk is the
mean column of Ok; matrices Ûk, Σ̂k and V̂k and vector ôk are the corresponding ones when obtained with
the incremental approach presented in section 2.3. This incremental process has been executed with different
sizes of update block c and different threshold τ (sect. 3.2); the higher the threshold, the lesser eigenvalues kept
in the model (with a non-linear case specific relation s = f (c, τ, k)). Next, we define:

eb (c, τ) =
∑
∀k

∥∥∥∥Mk
p×q − Uk

p×sΣ
k
s×s

(
Vk

q×s

)T − ōk
p×1 · 11×q

∥∥∥∥
2

(19)

ei (c, τ) =
∑
∀k

∥∥∥∥Mk
p×q − Ûk

p×sΣ̂
k
s×s

(
V̂k

q×s

)T − ôk
p×1 · 11×q

∥∥∥∥
2

(20)

Function eb is shown in fig. 6(a) and ei is represented in fig. 6(b). Following the reduction and compression
of matrices teorem found in [15], it can be assured that eb (c, τ) ≤ ei (c, τ) for any c and τ . Figure 6(c)
represents the relative error as a function of c and τ . This relative error is measured as ei(c,τ)−eb(c,τ)

eb(c,τ) and, as
can be observed, all three figures achieve it lowest value when both c and τ have low values (1-5 and 0.001,
respectively).

4.2.2 Execution time

We have measured the execution time of both the batch and our incremental computation process done in
section 4.2.1. The execution time of our incremental SVD and mean update algorithm is depicted in fig. 7 as a
function of update block size and treshold (sect. 3.2) and has been obtained as the mean execution time related
to the observation matrices Ok.

It can be noted that the analysis made in sect. 3.3 is reflected in fig. 7. It must be noted that the fastest results
(about a third of the computation time belonging to the batch approach) can be achieved for small update block
sizes and large threshold, which translates in taking into account few (1-2) eigenvectors. By the other hand, the
heaviest computational load corresponds to the assumption of small block size (1-5) and low threshold (0.001),
which translates to a larger number of eigenvectors (30) and further overcomes the computation time of the
batch process. Finally, it can also be seen that as the block size grows, the computational cost becomes more
independent with respect to the threshold (or number of eigenvector kept).
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(a) Batch SVD (b) Incremental algorithm (c) Relative error

Figure 6: (b) Error between the original data matrix O and the factorization obtained by our incremental SVD
and mean update algorithm.

Figure 7: Execution time of the algorithm with different number of eigenvectors and update block size

4.2.3 Conclusions

It can be concluded that the best alternative consists in using a small block size (i.e. 1-10) with a relatively
small threshold (i.e. 0.01, obtaining about 10 eigenvectors); it achieves a relative error of less than 10−3 with
half the computation time of the corresponding batch process. Moreover, when both update block size and
threshold are small enough (τ = 0.001, obtaining more than 30 eigenvectors, and c = 1), the incremental SVD
and mean update algorithm achieves the best performance but with the heaviest computational load. By the
other hand, the fastest option, achieved with small update block size and high threshold (τ = 0.1, c = 1), offers
a poor precision compared to the previous cases. Finally, if we increase the update block size (c > 10), both
computational and precision results also get worse.

5 Concluding Remarks

In this paper, a new method for extracting the mean of an existing SVD is presented, without increasing ei-
ther the cost order of memory or time. This fact has allowed us to offer an incremental computation of SVD
preserving a zero data mean, which has been analyzed and compared with the batch approach. The precision
offered by our method is high enough to allow photorealistic reconstructions of observed face images using half
the computation time of the non-incremental processes. Fields that can benefit from it can be, e.g.: classifica-
tion problems, where the mean information is used to center the data; incremental computation of covariation
matices, which need to be centered around its mean; causal construction of eigenspaces, where the principal
components of the data are included, as well as the mean information. With respect to the latter, the On-the-fly
Algorithm is presented in this work. Given an image sequence and a set of masks, this algorithm is capable of
generating a separate eigenspace for each facial element (learning all their appearance variations due to changes
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in expression and visual utterances) and effectively tracking and aligning them. Furthermore, longer sequences
than previous methods [5], [7] can be processed with the same visual accuracy when no ilumination changes
appear. Finally, we plan to add more robustness to this algorithm using methods like [5] and more work will
be done in order to achieve real time perfomance, so specific appearance models can be obtained as a person is
being recorded.
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[4] E. André: Natural language in multimedia/multimodal systems. Handbook of Computational Linguistics,
R. Miktov, Ed., Oxford Univ. Press, 2003, 650-669

[5] F. de la Torre and M. Black: Robust parameterized component analysis: Theory and applications to 2d
facial modeling. ECCV, 2002, 654-669

[6] T. Ezzat, G. Geiger and T. Poggio: Trainable videorealistic speech animation. ACM SIGGRAPH, San
Antonio, Texas, July 2002, 225-228

[7] J. Melenchón, F. de la Torre, I. Iriondo, F. Alı́as, E. Martı́nez and Ll. Vicent: Text to visual synthesis with
appearance models, ICIP, 2003, vol I, 237-240

[8] D. Cosker, D. Marshall, P. Rosin and Y. Hicks: Video realistic talking heads using hierarchical non-linear
speech-appearance models. Mirage, France, 2003

[9] B.J. Theobald , J.A. Bangham, I. Matthews and G.C. Cawley: Near-videorealistic synthetic talking faces:
Implementation and evaluation (submitted on invitation), Speech Communication Journal, 2004.

[10] M. Gu and S.C. Eisenstat: A Stable and fast algorithm for updating the singular value decomposition.
Tech. Rep. YALEU/DCS/RR-966, New Haven, 1993

[11] S. Chandrasekaran, B. Manjunath, Y. Wang, J. Winkeler and H. Zhang: An eigenspace update algorithm
for image analysis. GMIP, vol. 59, no. 5, 1997, 321-332

[12] M. Brand: Incremental singular value decomposition of uncertain data with missing values. ECCV, 2002,
I: 707 ff.

[13] P.M. Hall, D.R. Marshall and R. Martin: Adding and substracting eigenspaces with eigenvalue decompo-
sition and singular value decomposition. ICV, vol. 20, no. 13-14, december 2002, 1009-1016
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