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Discrete alpha-skew-Laplace distribution

S. Shams Harandi and M. H. Alamatsaz

Abstract

Classical discrete distributions rarely support modelling data on the set of whole integers. In this

paper, we shall introduce a flexible discrete distribution on this set, which can, in addition, cover

bimodal as well as unimodal data sets. The proposed distribution can also be fitted to positive

and negative skewed data. The distribution is indeed a discrete counterpart of the continuous

alpha-skew-Laplace distribution recently introduced in the literature. The proposed distribution can

also be viewed as a weighted version of the discrete Laplace distribution. Several distributional

properties of this class such as cumulative distribution function, moment generating function,

moments, modality, infinite divisibility and its truncation are studied. A simulation study is also

performed. Finally, a real data set is used to show applicability of the new model comparing to

several rival models, such as the discrete normal and Skellam distributions.

MSC: 60E, 62E

Keywords: Discrete Laplace distribution, discretization, maximum likelihood estimation, uni-bimo-

dality, weighted distribution.

1. Introduction

The traditional discrete distributions (geometric, Poisson, etc.) have limited applicability

in modelling certain real situations such as data on the set of integersZ= {0,∓1,∓2, . . .}
or bimodal data sets. Thus, several researchers have attempted to develop new classes of

discrete distributions to cover such situations. Recall that any continuous distribution on

R with probability density function (pdf) f admits a discrete counterpart supported on

the set of integers Z= {0,∓1,∓2, . . .} whose probability mass function (pmf) is defined

as

P(X = x) =
f (x)

∑
∞
y=−∞ f (y)

, x ∈ Z . (1)
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For instance, Roy (2003) introduced a discrete version of normal distribution to cover

discrete data on the whole set of integers Z = {0,∓1,∓2, . . .} and, similarly, Inusah

and Kozubowski (2006) considered a discrete analogue of Laplace (DL) distribution.

Kozubowski and Inusah (2006) proposed a discrete version of the skew Laplace

(skewDL) distribution as a generalization of discrete Laplace distribution which is useful

for unimodal data sets. Also, Barbiero (2014) and Jayakumar and Jacob (2012) intro-

duced other discrete distributions based on skew Laplace and wrapped skew Laplace

distributions on the integers, respectively.

The aim of this paper is to propose a more flexible distribution on Z which can

cover unimodal as well as bimodal data. The new discrete distribution can also fit both

positively and negatively skewed data. In fact, using (1), we provide a discrete version of

the alpha-skew-Laplace distribution which was recently introduced by Shams Harandi

and Alamatsaz (2013). The probability density function of the alpha-skew-Laplace

distribution is

f (x;α,µ,σ) =
1

4σ(1+α2)
[1+(1− α

σ
(x−µ))2]e

−|x−µ|
σ , x ∈ R, (2)

where α ∈ R is the skewness parameter and µ ∈ R and σ > 0 are its location and

scale parameters, respectively. The discrete version of (2) which is considered here can

be fitted to unimodal as well as bimodal data sets having positive as well as negative

skewness.

The rest of the article is organized as follows. Section 2 introduces the discrete alpha-

skew-Laplace (DASL(p,γ)) distribution and discusses some of its important features and

properties. In Section 3, we shall provide some distributional properties such as moment

generating function and moments. Maximum likelihood estimations of parameters

involved will be discussed in section 4. Section 5 describes a simulation study. In Section

6, we shall consider some interesting modification of DASL distribution. In Section 7,

we attempt to fit the proposed model and its special cases to a real data set and compare

it with several rival models such as the discrete normal, DL, skewDL and Skellam

distributions.

2. The family of discrete alpha-skew-Laplace distributions

In this section, we present the pmf of our new class of discrete distributions on Z by

discretizing alpha-skew-Laplace distribution (2). We let µ = 0 and use relation (1) to

obtain

p(x; p,α) =C(p,α)[1+(1+αx log p)2]p|x|, x ∈ Z, (3)

where C(p,α) = 1
2

1−p

1+p
[1+α2(log p)2 p

(1−p)2 ]
−1, 0 < p = e−

1
σ < 1 and α ∈ R.
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Since σ = (− log p)−1, to simplify, we let γ= α

σ
. Then, we have

p(x; p,γ) =C(p,γ)[1+(1−γx)2]p|x|, x ∈ Z, p ∈ (0,1),γ ∈ R, (4)

where C(p,γ) = 1
2

1−p

1+p
[1+γ2 p

(1−p)2 ]
−1. We denote this distribution by X ∼ DASL(p,γ).

Remark 1 Recall that for a distribution with pdf (pmf) f , we can construct a new

distribution with pdf (pmf)

g(x;Θ1,Θ2) =
w(x;Θ1,Θ2)

EΘ1
[w(x;Θ1,Θ2)]

f (x;Θ1),

where Θ1 and Θ2 can be two vectors of parameters and w is called a weighted distribu-

tion of f . It is worth noting that pmf (4) can also be viewed as the weighted version of the

discrete Laplace distribution of Inusah and Kozubowski (2006). To see this, it is suffi-

cient to consider the weight function w(x;Θ1,Θ2) = (1+(1−γx)2) with Θ1 = p, Θ2 = γ

and f (x; p) = 1−p

1+p
p|x|.

Some special cases of this new class of discrete distributions are revealed below:

1. If α = 0 in (3), or equivalently γ = 0 in (4), we obtain the discrete Laplace (DL)

distribution.

2. If α→ ∞ in (3), or equivalently γ→ ∞ in (4), we have

p(x; p,γ)→ (1− p)3

2p(1+ p)
x2 p|x|, x ∈ Z

which is a symmetric and bimodal discrete distribution.

3. If X ∼ DASL(p,γ), then −X ∼ DASL(p,−γ).

4. By considering the continuous version of the alpha-skew-Laplace distribution

of Shams and Alamatsaz (2013), we can conclude that DASL(p,γ) is unimodal

for log p < γ < − log p and bimodal for γ ≥ − log p or γ ≤ log p, respectively.

Equivalently, if we consider the pmf in (3), then the distribution is unimodal for

−1 < α< 1 and bimodal for α≤−1 or α≥ 1, respectively.

Figure 1 below illustrates several plots of DASL(p,γ) distribution for selected values

of the parameters p and γ which confirms our result on modality of the distribution. We

note that for γ< 0, all plots are symmetric.
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Figure 1: Illustrations of pmf of DASL(p,γ) for different values of p and γ.

The cumulative distribution function (cdf) of the random variable X ∼DASL(p,γ) is

given by

F(x; p,γ) = P(X ≤ x)

=C(p,γ)





p−[x][ 2
1−p

+γ2 p2([x]+1)2−p(2[x]2+2[x]−1)+[x]2

(1−p)3

−2γ
(1−p)[x]−p

(1−p)2 ], x < 0

2(1+p)
1−p

+2γ2 p(1+p)

(1−p)3 − p[x]+1[γ2 (1−p)2([x]+1)2+2p(1−p)([x]+1)+p(1+p)

(1−p)3

−2γ
(1−p)([x]+1)+p

(1−p)2 + 2
1−p

], x ≥ 0.

3. Moments

The moment generating function of a random variable X ∼ DASL(p,γ) is given by

MX(t) = E(etX) =C(p,γ)

[
2p

et − p
+

2

1− pet
+2γ

pet

(et − p)2

−2γ
pet

(pet −1)2
+γ2 pet(p+ et)

(et − p)3
+γ2 pet(pet +1)

(1− pet)3

]
, |t|> log p.
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Replacing t in MX(t) by it, i =
√
−1, we can easily obtain the characteristic function of

DASL(p,γ).

To find the moments, using the combinatorial identity

∞

∑
x=1

xn px =
n

∑
x=1

S(n,x)
x!px

(1− p)x+1
,

(see, e.g., formula (7.46), p. 337, of Graham et al., 1989), where

S(n,x) =
1

x!

x−1

∑
k=0

(−1)k

(
x

k

)
(x− k)n

is the Stirling number of the second kind, we obtain the n-th moment of X ∼DASL(p,γ)

for n > 1 as

µn = E(Xn) =C(p,γ)
n

∑
x=1

x!px

(1− p)x+1

[(
2S(n,x)+γ2S(n+2,x)

)
(5)

×
(

1+(−1)n
)
−2γS(n+1,x)

(
1+(−1)n+1

)]

+C(p,γ)
pn+1(n+1)!

(1− p)n+2

{
[γ2(1+(−1)n)(S(n+2,n+1)

+ p
n+2

1− p
S(n+2,n+2))−2γ(1+(−1)n+1)S(n+1,n+1)]

}
.

We can easily observe that for even n,

µn = 2C(p,γ)

{
n

∑
x=1

x!px

(1− p)x+1

[
2S(n,x)+γ2S(n+2,x)

]

+
pn+1(n+1)!

(1− p)n+2

[
γ

2(S(n+2,n+1)+ p
n+2

1− p
S(n+2,n+2))

]}
.

and for odd n,

µn =−4γC(p,γ)

{
n

∑
x=1

x!px

(1− p)x+1
S(n+1,x)

+
pn+1(n+1)!

(1− p)n+2
S(n+1,n+1)

}
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In particular, we have

E(X) =−2γ
p

(1− p)2
[1+γ2 p

(1− p)2
]−1,

E(X2) = p
[ 2

(1− p)2
+γ2 (p2 +10p+1)

(1− p)4

]
[1+γ2 p

(1− p)2
]−1,

E(X3) =−2γp
p2 +10p+1

(1− p)4
[1+γ2 p

(1− p)2
]−1,

E(X4) =
p

(1− p)4

[
2(p2 +10p+1)+

γ
2(p4 +56p3 +246p2 +56p+1)

(1− p)2

]

[1+γ2 p

(1− p)2
]−1

and thus

Var(X) =
p

(1− p)2

[
2+γ2 p2 +10p+1

(1− p)2
−4γ2 p

(1− p)2 +γ2 p

]
[1+γ2 p

(1− p)2
]−1.

Skewness and kurtosis of our distribution can be evaluated easily. But since their

formulas are too long, they are omitted and we only show their behaviour by their graphs

in Figure 2.
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Figure 2: Illustrations of the skewness and kurtosis as functions of p and γ.
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4. Maximum likelihood estimation

To apply maximum likelihood for estimating p and γ, assume that x1,x2, . . . ,xn are the

observed values of a random sample of size n from a DASL(p,γ) distribution. The log-

likelihood function becomes

ℓ(p,γ) =−n log2+n log(1− p)−n log(1+ p)−n log(1+γ2 p

(1− p)2
)

+
n

∑
i=1

log(1+(1−γxi)
2)+

n

∑
i=1

|xi| log p.

Then, the likelihood equations for p and γ are given by

∂ℓ(p,γ)

∂ p
=

∑
n
i=1 |xi|

p
− 2n

1− p2
−nγ2 1+ p

(1− p)3 + pγ2(1− p)
= 0 (6)

and

∂ℓ(p,γ)

∂γ
=− 2nγp

(1− p)2 + pγ2
−2

n

∑
i=1

xi

(1−γxi)

1+(1−γxi)2
= 0. (7)

The solutions of likelihood equations (7) and (8) provide the maximum likelihood

estimators (MLEs) of p and γ, which can be obtained by a numerical method such

as the Newton-Raphson type procedure.

Since the MLEs of the unknown parameters (p,γ) can not be obtained in closed

forms, it is not easy to derive the exact distributions of MLEs. One can show that the

DASL family satisfies the regularity conditions which are fulfilled for parameters in the

interior of the parameter space but not on the boundary (see, e.g., Ferguson, 1996, pp.

121). Hence, by using the simplest large sample approach, the MLE vector (p̂, γ̂) is

consistent and asymptotically normal, i.e.,

(p̂− p, γ̂−γ)→ N2(0, I
−1(p̂, γ̂)),

where I−1 is the variance covariance matrix of the unknown parameters (p,γ) and the

covariance matrix I−1, as the Fisher information matrix, can be obtained by

I−1(p,γ) =




−E

(
∂ 2ℓ

∂ p2

)
−E

(
∂ 2ℓ

∂ p∂γ

)

−E

(
∂ 2ℓ

∂γ∂ p

)
−E

(
∂ 2ℓ

∂γ2

)




−1

=

[
Var(p̂) Cov(p̂, γ̂)

Cov(p̂, γ̂) Var(γ̂)

]
,
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whose elements are evaluated by using the following expressions:

∂ 2ℓ

∂ p2
=−∑

n
i=1 |xi|
p2

−4n
p

(1− p2)2
−nγ2 2(1− p)2(2− p)+γ2(p2 +2p−1)

[(1− p)3 + pγ2(1− p)]2
,

∂ 2ℓ

∂ p∂γ
=−2nγ

1− p2

[(1− p)2 +γ2 p]2

and

∂ 2ℓ

∂γ2
= 2n

p

(1− p)2 +γ2 p
[
(1− p)2 −γ2 p

(1− p)2 +γ2 p
]−2

n

∑
i=1

x2
i

1− (1−γxi)
2

[1+(1−γxi)2]2
.

To find expectations of the above expressions, we need to compute E|X | and

E{X2 1−(1−γX)2

[1+(1−γX)2]2
}. The Fisher’s information matrix can be computed using the approx-

imation

I(p̂, γ̂) =−




∂ 2ℓ

∂ p2
|p̂,γ̂

∂ 2ℓ

∂ p∂γ
|p̂,γ̂

∂ 2ℓ

∂γ∂ p
|p̂,γ̂

∂ 2ℓ

∂γ2
|p̂,γ̂


 ,

as the observed Fisher’s information matrix.

The normal approximation can then be used to construct confidence intervals for p

and q to test hypothesis of the kind H0 : p = p0 and H0 : γ= γ0, respectively, as

(p̂− zα/2I(p̂), p̂+ zα/2I(p̂))

and

(γ̂− zα/2I(γ̂), γ̂+ zα/2I(γ̂)).

where I(p̂) and I(γ̂) refer to the roots of diagonal elements of the inverse Fisher’s

information matrix.

5. Simulation

Here, we assess the performance of the maximum-likelihood estimate given by Equa-

tions (7) and (8) with respect to the sample size n. The simulation study assessment is

based on the inversion method with 1000 iterations.
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Table 1: MLEs of p and γ in DASL(p,γ) for different values of n.

γ −2

p 0.25 0.6

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2521 −2.0304 0.0009 0.1699 0.5994 −2.3095 0.0004 1.3711

200 0.2499 −2.0199 0.0004 0.0796 0.5997 −2.0784 0.0002 0.2564

400 0.2501 −2.0081 0.0002 0.0324 0.5999 −2.0431 0.0001 0.1072

γ −0.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2411 −0.5797 0.0023 0.1270 0.5974 −0.5193 0.0023 0.0413

200 0.2451 −0.5363 0.0011 0.0467 0.6002 −0.5046 0.0005 0.0069

400 0.2481 −0.5126 0.0004 0.0121 0.5999 −0.5031 0.0002 0.0034

γ 0.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2434 0.5697 0.0020 0.0935 0.5994 0.5160 0.0010 0.0165

200 0.2461 0.5378 0.0011 0.0458 0.5997 0.5083 0.0004 0.0069

400 0.2475 0.5106 0.0005 0.0125 0.5998 0.5048 0.0002 0.0032

γ 1.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2523 1.5352 0.0014 0.1430 0.6002 1.6370 0.0004 0.3117

200 0.2512 1.5146 0.0006 0.0599 0.6001 1.5402 0.0002 0.0845

400 0.2507 1.5079 0.0003 0.0293 0.6001 1.5231 0.0001 0.0356

These results are presented in Table 1 accompanied by their estimated variances

( ˆVar), for different values of n. Table 1 shows how the MLEs and estimated variances

of parameters vary with respect to n. The difference between real and estimated values

of the parameters are not too large and, thus, the method works well.

6. Some special cases

In this section, we consider the distribution of the random variable X ∼ DASL(p,γ)

truncated at zero. This distribution is an important case, because it is a weighted version

of geometric distribution and may be useful in fitting count or time data sets.

Let Y = X |X ≥ 0, then the pmf of Y is given by

pY (y; p,γ) =C∗(p,γ)(1+(1−γy)2)py, y = 0,1,2, . . . ,

where C∗−1
(p,γ) = 2

1−p
− 2γ

p

(1−p)2 +γ
2 p(1+p)

(1−p)3 , 0 < p < 1 and γ ∈ R. This distribution

is called weighted geometric distribution and is denoted by Y ∼WGD(p,γ).
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This can be used as a discrete lifetime distribution which contains geometric distri-

bution by setting γ = 0. The survival and failure rate functions of this random variable

are given by

RY (y; p,γ) = P(Y > y) =C∗(p,γ)
py+1

1− p
[2+2γ

yp− y−1

1− p

+γ2 y2 p2 +(−2y2 −2y+1)p+(y+1)2

(1− p)2
], y = 0,1, . . .

and

HY (y; p,γ) = (1− p)
1+(1−γy)2

2p+2pγ
yp−y−1

1−p
+γ2 p

y2 p2+(−2y2−2y+1)p+(y+1)2

(1−p)2

, y = 0,1, . . . ,

respectively. The behaviour of the failure rate function of X ∼WGD(p,γ) is described in

Figure 3. As we can see the failure rate function of WGD distribution can be increasing

or U-shaped. Further, we note that if γ = 0, WGD distribution will reduce to the

geometric distribution with constant failure rate function which depends only on p.

Another important structural property of a distribution, both in theory and applica-

tion, is its infinite divisibility. We refer, for example, to the monograph of Steutel and

Van Harn (2004) for a good and complete introduction of the subject. Since most of the

well-known distributions possess this property, one has to be concerned with the infi-

nite divisibility or non-infinite divisibility property of any distribution newly introduced.

Here, we note that WGD(p,γ) distribution is not infinitely divisible. To see this, we first

recall the following interesting result from the above-mentioned monograph (page 56).

Lemma 1 If pk , k ∈ Z+ is infinitely divisible, then we have pk ≤ 1/e, for all k ∈ N.

Now, we can show that pY (y; p,γ) > 1/e for some values of y ∈ N, p and γ. For

instance, take y = 1, p = 0.1 and γ = 10. Then, we see that pY (1;0.1,10) ≃ 0.5525 >

1/e ≃ 0.3679. Thus, a WGD(p,γ) distribution is not infinitely divisible in general. In

the case γ= 0, however, we have the geometric distribution, with probability of success

p, which is obviously infinitely divisible.

It is also worth noting that, we can describe the distribution of the random variable

Z = |X | as a new distribution on the set of non-negative integers as follows:

p∗(z; p,γ) = P(|X |= z) = 2C(p,γ)

{
1, z = 0

{2+γ2z2}pz, z = 1,2, . . . .

where p and γ are given as before. This distribution is called a generalized geometric dis-

tribution and denoted by Z ∼ GGD(p,γ). It is worth mentioning that if Z ∼ GGD(p,γ),
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Figure 3: Illustrations of the failure rate function of X ∼WGD(p,γ) for some selected values of p and γ.

then we have

1. If γ = 0, Z ∼
1−p

1+p

{
1, z = 0

2pz, z = 1,2, . . .
, whose truncation at zero is a geometric

distribution with parameter p and support on {1,2, . . .}.

2. GGD(p,γ)∼= GGD(p,−γ).

3. If γ−→∓∞, then p∗(z; p,γ)−→ (1−p)3

p(1+p)z
2 pz, z = 1,2, . . . .

7. Application and comparison

In this section, we attempt to examine application and advantage of DASL(p,γ) and

WGD(p,γ) distributions comparing to several rival models using some real data sets.

Example. The following data set is obtained1 based on a recent local research carried

out on the extent of success of Iranian universities in transferring technology to industry

and their effective factors. Out of 500 questionaries distributed, 111 were returned. The

data below show the difference between the desired and the existing state values on

each sample; a positive number shows the extent of positive improvement and a negative

number shows the extent of negative improvement.

1. The data is part of an unpublished research by A. Rafiei, an MSc student.
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−1, 1, 3, 3, 1, 1, −20, −14, −15, −14, −5, −6, 0, 7, 4, 1, 9, 13, 5, 4, 1, 1, 1, 14, 5, −2,

4, 5, 3, 3, 12, 3, 4, 4, 5, −1, 5, 3, 4, 3, 4, 6, 6, 7, 0, 0, 0, 13, 0, 10, 15, 2, 2, 5, 11, 2, 2,

−16, 2, 8, −7, −7, 2, −2, 9, 6, 11, −5, −5, 13, 13, 1, 14, 0, 8, −5, −2, 10, 2, 10, 8, −3,

10, 12, 14, 12, 11, 11, 8, 0, −2, 4, 6, 0, 0, 7, 8, 1, 9, −1, 9, 6, 11, 0, 7, 7, 10, 4, 7, 9, 28.

Thus, it is logical to compare our distribution with some similar distributions such

as SkewDL and ADSLaplace distributions. SkewDL distribution was introduced by

Kozubowski and Inusah (2006) and has the following pmf

p(x; p,q) =
(1− p)(1−q)

1− pq

{
q−x, x = . . . ,−2,−1

px, x = 0,1, . . . .

ADSLaplace distribution of Barbiero (2014) has pmf

p(x; p,q) =
1

log(pq)

{
log(p)[q−(x+1)(1−q)], x = . . . ,−2,−1

log(q)[px(1− p)], x = 0,1, . . . .

Furthermore, we shall also consider the Skellam (Skellam, 1946) with pmf

p(x;µ1,µ2) = e−µ1−µ2(µ1/µ2)Ix(2
√
µ1µ2), x ∈ Z .

where Ix(2
√
µ1µ2) is modified Bessel function of the first kind, and discrete normal

(Roy, 2003) distribution with pmf:

p(x;µ,σ) = Φ(x+1,µ,σ)−Φ(x,µ,σ), x ∈ Z .

where Φ(.,µ,σ) is the cdf of normal distribution with mean µ and variance σ2,

respectively.

The results of comparison are illustrated in Table 2. We have also obtained maximum

likelihood estimates and their estimation of standard errors for the parameters involved.

We note that under regularity conditions, the standard error of the parameter estimators

can be asymptotically computed by root square of the diagonal elements of the inverted

Fisher’s matrix. The Kolomogrov-Smirnov (K-S) statistic and Akaike information cri-

terion as AIC=−2logL+ 2k, where k, the number of parameters in the model, n, the

sample size, and L, the maximized value of the likelihood function for the estimated

model, are used to compare the estimated models.

Since DASL(p,γ) distribution is an extension of DL distribution, in our iterative

algorithm of Newton-Raphson, we have used γ = 0 and the MLE of parameters of

DL distribution as initial values to find the MLEs of the parameters. As one can see

from Table 2, our model is preferable comparing to other models. Also, Figure 4 shows

distribution plots of the data and the models in question.
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Table 2: Comparing criterions for the rival distributions.

Model Parameter estimaties k K −S logL AIC

DL p̂ = 0.8496, S.E( p̂) = 0.0108 1 0.3605 −389.054 780.107

ADSLaplace p̂ = 0.8787, S.E( p̂) = 0.0085 2 0.2162 −379.864 763.728

q̂ = 0.7530, S.E(q̂) = 0.0394

SkewDL p̂ = 0.8732, S.E( p̂) = 0.0092 2 0.1973 −377.098 758.196

q̂ = 0.7605, S.E(q̂) = 0.0368

dnormal µ̂= 4.2048, S.E(µ̂) = 0.2271 2 0.1423 −373.189 750.378

σ̂ = 6.9769, S.E(σ̂) = 0.1607

DASL p̂ = 0.7258, S.E( p̂) = 0.0225 2 0.1193 −366.131 736.262

γ̂=−0.3120, S.E(γ̂) = 0.0785

Skellam µ̂1 = 26.0389, S.E(µ̂1) = 0.3599 2 0.1421 −373.102 750.204

µ̂2 = 22.3355, S.E(µ̂2) = 0.3087
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Figure 4: Plots of empirical distribution functions for the data set and the fitted distributions.
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In addition, we can use the likelihood ratio (LR) test statistic to confirm our claim.

To do this, we consider the following test of hypotheses

H0 : γ= 0(DL(p)) v.s H1 : γ 6= 0(DASL(p,γ)).

Observed value of the likelihood ratio (LR) test statistic is 43.845 while its tabulated

value equals χ2
1 = 3.84. Thus the null hypothesis is rejected.

On the other hand, Figure 4 shows our different fitted distribution functions and the

empirical distribution of the data set. From these plots, we can see that our distribution

function better fits the data set.
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