
Statistics & Operations Research Transactions

SORT 38 (2) July-December 2014, 107-138

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Stochastic cash flows modelled by homogeneous

and non-homogeneous discrete time backward

semi-Markov reward processes

Fulvio Gismondi1, Jacques Janssen2, Raimondo Manca3

and Ernesto Volpe di Prignano3

Abstract

The main aim of this paper is to give a systematization on the stochastic cash flows evolution.

The tools that are used for this purpose are discrete time semi-Markov reward processes. The

paper is directed not only to semi-Markov researchers but also to a wider public, presenting a

full treatment of these tools both in homogeneous and non-homogeneous environment. The main

result given in the paper is the natural correspondence of the stochastic cash flows with the semi-

Markov reward processes. Indeed, the semi-Markov environment gives the possibility to follow

a multi-state random system in which the randomness is not only in the transition to the next

state but also in the time of transition. Furthermore, rewards permit the introduction of a financial

environment into the model. Considering all these properties, any stochastic cash flow can be

naturally modelled by means of semi-Markov reward processes. The backward case offers the

possibility of considering in a complete way the duration inside a state of the studied system and

this fact can be very useful in the evaluation of insurance contracts.
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1. Introduction

By stochastic cash flow (SCF) we mean a financial operation (Janssen et al., 2009) in

which the flow amount is stochastic. Furthermore, it is possible that the time of payments

can be stochastic.
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More precisely, the discrete flow value in both cases can fluctuate within a time

interval that we suppose being a subset of N. Indeed in real life problems, the money

amount is a discrete variable and the time of payments is a discrete variable. Under these

assumptions, a SCF can be seen as an example of a bivariate discrete time stochastic

process where the first variable is the time and the second the money amount.

The study of SCF has been particularly developed in a financial environment and in

various aspects of insurance. Many papers were written on the evaluation of annuities

with stochastic interest rates and/or on stochastic cash flow evaluation. In this environ-

ment, we recall the following papers: Artikis and Malliaris (1990), Artikis and Voudori

(2000), Beekman and Fuelling (1991), Browne (1995), De Schepper and Goovaerts

(1992), De Schepper et al. (1994), Donati-Martin et al. (2000), Duffie et al. (2000),

Dufresne (2001), Halliwell (2003), Harrison (1977), Milevsky (1997), Milevsky and

Posner (1998), Parker (1994), Perry and Stadje (2000, 2001), Pliska (1986), Sato and

Yor (1998), Vanneste et al. (1994, 1997) and the books of Wolthuis (2003) and Yor

(2001). All these papers and books face the problem of using the stochastic calculus

tools under Markovian hypotheses with continuous states and continuous times. These

hypotheses implies that the waiting time distribution functions (WTDF) are exponen-

tial, and furthermore that the duration inside the state cannot be considered in a Markov

environment. In real life these hypotheses in the most cases are not verified.

Another way to evaluate a SCF was given by Wilkie (1986) and subsequently

improved in Wilkie (1995). This model uses traditional time series tools. In this case,

the model pointed to the study of future asset returns of an insurance company. This

model cannot be considered a general model for the study of evolution of SCF and also

in this case the duration inside the states cannot be considered.

As is well known, (see Janssen et al., 2009), financial operation is a set of financial

supply (Tk,Sk) where Sk represents an amount and Tk the time of the payment of Sk. We

can suppose that:

1. Sk depends on the state of a system and, usually, also on the time of the payment;

2. the change of state happens at a random time.

The introduction of this second random variable, as specified in Estes et al. (1989)

complicates the calculation of the cash flow value at a given date.

If we suppose that, in a discrete time environment, the bivariate stochastic process

future depends only on the present and not on the past history and that the WTDF

between two transitions can be of any type, then we are in a semi-Markov process (SMP)

environment (see Janssen and Manca, 2006 and 2007 and their references).

It is already known that the applications of the SMP to finance and insurance

problems assume great relevance and in the literature these applications were given,

for example, in Janssen (1966), Hoem (1972), CMIR (1991), Carravetta et al. (1981),

Balcer and Sahin (1979, 1986), Swishchuck (1995), De Medici et al. (1995), Janssen and

Manca (1997, 1998), Janssen et al. (2004) and in the book Janssen and Manca (2007).
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In the study of cash flow evolution and the related evaluation, the present value and

the “accumulated value” assume great relevance. The association of an amount of money

to a state of the system and/or to a state transition can be done by attaching a reward

structure to the process. This structure can be thought of as a random variable associated

with the state occupancies and/or the transitions, see Howard (1971) in which is given a

nice presentation of Homogeneous Semi-Markov ReWard Processes (HSMPRWP).

Non-homogeneous semi-Markov reward processes (NHSMRWP) were defined in

De Dominicis and Manca (1986), and we recall more recent papers (Papadopoulou et

al., 2012 and Papadopoulou, 2013) that applied this tool in other fields.

The rewards can be of different kinds but, in a financial environment, it makes sense

to consider only amounts of money as rewards. These amounts can be positive for the

system if they can be seen as a benefit and negative if they can be considered as a cost.

SMRWP is a very important tool for applications, and most relevant when it is

necessary to consider the random evolution of a multi-state system in which amounts

of money are involved in this evolution. Despite these considerations, these kinds of

processes, as far as the authors know, have not yet been fully dealt with in the financial

and actuarial literature.

The main aim of this paper is showing how natural is modelling SCF by means of

SMRWP. For these reasons, the paper is directed not only to semi-Markov experts but,

in general, to financial practitioners and in particular to actuaries. Furthermore in the

paper, new evolution equations are presented that give more application possibilities to

this powerful tool.

A good description of HSMRWP appeared in Howard (1971), although not all the

relevant aspects that could have been dealt with were outlined.

A complete description of the homogeneous and non-homogeneous SMRWP and a

general presentation of SMP in homogeneous and non-homogeneous cases can be found

in Janssen and Manca (2006, 2007).

In the semi-Markov environment, a backward time represents the time spent in a state

before the valuation point of the system. In the first book on semi-Markov (Silvestrov,

1980) the SMP evolution equations were presented only taking into account backward

times. In this case, the transition probabilities are also conditioned by the time of

entrance into a given state. Instead in a semi-Markov process, when backward times

are not considered then we are in the hypothesis that the entrance time was just at the

valuation point. Backwards times give the possibility to take into account in a complete

way the duration inside a state. In a Markov environment, backward time cannot be

considered and also in Wilkie’s models this aspect was not considered.

A detailed description of homogeneous backward semi-Markov processes is reported

in Limnios and Oprişan (2001). The discrete time non-homogeneous semi-Markov

reward processes with backward recurrence time were described in Stenberg et al.

(2007).

In the second section of the paper, the reward notations will be introduced. In Sec-

tions 3 and 4 the Discrete Time Homogeneous and Non-Homogeneous semi-Markov
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processes (DTHSMRP, DTNHSMRP) will be introduced before in the simplest way and

after with the initial backward recurrence time. After, the Discrete Time Homogeneous

and Non-Homogeneous Semi-Markov ReWard Process (DTHSMRWP, DTNHSMRWP)

relations will be given. In addition, the related backward semi-Markov Reward Process

will be presented. Section 5 will give matrix notations for the DTHSMRWP, DTNHSM-

RWP and the second moments of these processes as defined in Stenberg et al. (2006,

2007). Section 6 will present how it is possible to follow and to evaluate, in a natural

way, the evolution of SCFs by means of the presented stochastic processes. Furthermore,

in this section generalizations of the models given in Stenberg et al. (2006, 2007) will

also be presented. Section 7 presents a real data application of these processes that de-

scribes the construction of an insurance disability model. The last section will highlight

the main results presented in the paper and the addresses of future works.

2. Rewards notation

The association of a sum of money to a state of the system and to a state transition

assumes great relevance in the study of financial phenomena. This can be done by

attaching a reward structure to a stochastic process. This structure can be thought as

a random variable associated with state occupancies and transitions (Howard, 1971).

In the homogeneous case, the time evolution of the system is function of the duration

that the system is in a state after a transition.

In the non-homogeneous environment the time evolution of the system is a function

of two times: the arriving time in a state and the time of the subsequent transition. For

these reasons, the rewards can be a function of the duration time in the homogeneous

case, whereas, in the non-homogeneous envirnment they can also be function of both

the starting time and the ending time. In the two different environments, the same

differences can also hold for the financial variables.

There are two kinds of rewards; one that is paid or received because of remaining in

a state (permanence rewards), the other that is paid or received because of a transition

(transition rewards). In the literature, permanence reward and transition reward are also

called respectively rate reward and impulse reward (see Qureshi and Sanders, 1994).

In the non-homogeneous process, it is possible to take into account the fact that the

interest rates can change as a function of the starting time of the financial operation.

For this reason, the variable interest rate could change as a function of the duration of

the financial operation (homogeneous variable interest rate) and/or because of the start

and the end times of the financial operation (non-homogeneous variable interest rate). It

may also be possible to consider a stochastic interest rate (see Janssen Manca, 2002).

In NHSMRWP, non-homogeneity makes it possible to take into account the rewards

that change because of both the times s and t.

ψi, j, ψi, j(t), ψi, j(s, t)
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denote the reward that is given for the transition from the ith state:

• the first the cases in which the payment flow in the state i is constant in time,

changing only in function of the state,
• the second when the payment is a function of the state and of the time,
• the third when the rate rewards change because of starting and arriving times, in

this case we say that there is a non-homogenous payment (the cash flow is function

of the state, the time of entrance into the state and the time of payment).

For each state, usually, there is a different reward and ψ,ψ(t),ψ(s, t) represents

the vector of these rewards respectively in case of constant rewards, rewards that change

because of running time and non-homogeneous rewards. It should be mentioned that it

may also be possible to consider permanence rewards that change because of the next

transition (see Howard, 1971, Janssen and Manca, 2006, Papadopoulou and Tsaklidis,

2007), but in this paper we will not present the related evolution equations because, in a

financial environment, they would not make sense.

Let γi j, γi j(t), γi j(s, t) denote the reward that is given for the transition from the

ith state to to the jth one (impulse reward); the difference between the three symbols

is the same as in the previous cases. Ā is the matrix of the transition rewards. The

different kinds ofψ rewards represent a stochastic money discrete time flow that is paid

or received because of staying in a state. On the other hand, γ represents lump sums that

are paid at the instant of transition.

As far as the impulse reward γ concerned, in the case of discounting, it is only

necessary to compute the present value of the lump sum paid at the moment of the

related transition.

Reward structure can be considered a very general structure attached to the problem

being studied. This random variable evolves together with the stochastic process to

which it is linked. When the studied system, that evolves dynamically in a random way,

is in a state then a reward ofψ type can be paid; once there is a transition, a reward of γ

type could be paid.

This behaviour is particularly efficient in the construction of models which are useful

for following the dynamic evolution of insurance problems. Indeed, permanence in a

state involves the payment of a premium or the receipt of a claim. In addition, the

transition from one state to another can often bring about some cost or benefit.

3. DTSMP with a finite state set

In this section, DTHSMP and DTNHSMP will be described following the SMP notation

given in Janssen and Manca (2006) and (2007).

Given the complete filtered probability space (Ω, ℑ, ℑt , P) in which the following

two sequences of random variables (r.v.s) are
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1. Jn : Ω → I = {1,2, . . . ,m} , n ∈ N representing the state at the nth transition.

2. Tn : Ω → N representing the time of the nth transition.

We suppose that (Jn,Tn) is a homogeneous (non-homogeneous) Markov renewal

process of kernel Q = [Qi j(t)] (Q = [Qi j(s, t)]), where:

Qi j(t)≡ P [Jn+1 = j,Tn+1 −Tn ≤ t|σ (Ja,Ta) ,0 ≤ a < n,Jn = i]

= P [Jn+1 = j,Tn+1 −Tn ≤ t|Jn = i] .

(
Qi j(s, t)≡ P [Jn+1 = j,Tn+1 ≤ t|σ (Ja,Ta) ,0 ≤ a < n,Jn = i,Tn = s]

= P [Jn+1 = j,Tn+1 ≤ t|Jn = i,Tn = s] .

)

Furthermore we define

Xn = Tn −Tn−1.

Xn represents the so called inter-arrival time, i.e. the time spent between two subsequent

transitions.

We know also that:

pi j = P [Jn+1 = j|Jn = i] = lim
t→∞

Qi j (t) ; i, j ∈ I, t ∈ N

pi j(s) = P [Jn+1 = j|Jn = i,Tn = s] = lim
t→∞

Qi j (s, t) ; i, j ∈ I,s, t ∈ N

where P = [pi j] and P(s) = [pi j(s)] are the transition matrices of the embedded homoge-

neous and non-homogeneous Markov chain respectively. It is also necessary to introduce

the probability that the process will leave state i in a time t:

Hi(t)≡ P [Tn+1 −Tn ≤ t|Jn = i] ,

Hi(s, t)≡ P [Tn+1 ≤ t|Jn = i,Tn = s] .

Obviously, it results that:

Hi (t) =
m

∑
j=1

Qi j (t),

Hi (s, t) =
m

∑
j=1

Qi j (s, t),
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where Hi(t) and Hi(s, t) are distribution functions (d.f.); then:

lim
t→∞

Hi(t) = 1 , ∀i,

lim
t→∞

Hi(s, t) = 1 , ∀i.

Now the d.f. WTDF for each state i can be defined, given that the state successively

occupied is known:

Fi j(t) = P [Tn+1 −Tn ≤ t|Jn = i,Jn+1 = j] ,

Fi j(s, t) = P [Tn+1 ≤ t|Jn = i,Jn+1 = j,Tn = s] .

The difference between Markov and semi-Markov processes is mainly in these d.f.

Indeed, in the discrete time Markov case, these d.f. can only be geometric distribution

whereas in the semi-Markov case they could be of any type.

The related probabilities can be obtained by means of the following relations:

Fi j(t) =

{
Qi j(t)/pi j if pi j 6= 0

U1(t) if pi j = 0

Fi j(s, t) =

{
Qi j(s, t)/pi j(s) if pi j(s) 6= 0

U1(s, t) if pi j(s) = 0

where:

U1(t) =

{
0 if 0 > t

1 if 0 ≤ t.
and U1(s, t) =

{
0 if s > t

1 if s ≤ t.

In a discrete time environment, it is necessary to define the following probabilities:

bi j(t) = P [Jn+1 = j, Tn+1 −Tn = t|Jn = i] ,

bi j(s, t) = P [Jn+1 = j, Tn+1 = t|Jn = j, Tn = s] .

resulting in:

bi j(t) =

{
0 if t = 0

Qi j(t)−Qi j(t −1) if t > 0

bi j(s, t) =

{
0 if s = t

Qi j(s, t)−Qi j(s, t −1) if t > s
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Fixed:

N(t) = sup{n|Tn ≤ t} , ∀t ∈ N

the DTHSMP and DTNHSMP Z = (Zt , t ∈ N) can be defined. where Z(t) = JN(t)

represents, for each time t, the state occupied by the process. In the non-homogeneous

case, supposing that s is a transition time, the transition probabilities are defined in the

following way:

φi j(t) = P[Zt = j|Z0 = i]

φi j(s, t) = P[Zt = j|Zs = i]

They are obtained solving the following evolution equations:

φi j(t) = δi j(1−Hi(t))+
m

∑
β=1

t

∑
ϑ=1

biβ(ϑ)φβ j(t −ϑ), (1)

φi j(s, t) = δi j(1−Hi(s, t))+
m

∑
β=1

t

∑
ϑ=s+1

biβ(s,ϑ)φβ j(ϑ, t), (2)

where δi j represents the Kronecker symbol.

Both (1) and (2) can be obtained by means of a simple probabilistic argument using

the regenerative property of the Markov renewal process (see Janssen and Manca, 2006

and 2007).

With the aim of clarification the meaning of the parts of (2) is given:

δi j(1−Hi(s, t))

represents the probability of remaining in the state i without any transition from the time

s up to time t, and it only makes sense if i = j; this is the reason for the Kronecker delta.

t

∑
ϑ=s+1

biβ(s,ϑ)φβ j(ϑ, t)

represents the probabilities of all the possible trajectories that can be followed going

from state i at time s to state j at time t.

In Figure 1 a typical trajectory of a semi-Markov process is shown.
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Figure 1: Trajectory of a SMP.

Now the backward recurrence process will be introduced. To explain the meaning

of backward time, we present Figure 2 and Figure 3 in which homogeneous and non-

homogeneous cases are shown.

Figure 2: Trajectory of a HSMP with recurrence backward time.

We follow the system from time s up time t, but, this time, we consider in a non-

homogeneous environment that the system entered the state i at time s− u and that the

system does not move from i for a period of time u that is the recurrence backward time.
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Figure 3: Trajectory of a NHSMP with recurrence backward time.

In order to take into account the backward time, it is necessary to condition the

system to remain for a time u inside the state i.

Under the backward assumptions, the relations 1 and 2 become respectively:

bφi j(u; t) = δi j

(1−Hi(t +u))

(1−Hi(u))
+

m

∑
β=1

t

∑
ϑ=1

biβ(ϑ+u)

(1−Hi(u))
φβ j(0; t −ϑ),

bφi j(u,s; t) = δi j

(1−Hi(u, t))

(1−Hi(u,s))
+

m

∑
β=1

t

∑
ϑ=s+1

biβ(u,ϑ)

(1−Hi(u,s))
φβ j(0,ϑ; t),

where

bφi j(u, t) = P
[
Z(t) = j|Z(0) = i,TN(0) =−u

]

bφi j(u,s; t) = P
[
Z(t) = j|Z(s) = i,TN(s) = u

]

In the homogeneous case it is supposed that the system arrived a time u before 0 in the

state i and it does not move from the arriving time up to 0. In the non-homogeneous

case, it is supposed that the system arrived at time u in the state i and does not move

from this state up to the time s.

4. The semi-Markov reward process with backward time

In this part, the DTHSMRWP and DTNHSMRWP will be introduced.

As in the previous section, before presenting the backward relations the SMRWP

evolution equations will be given. This is to point out that the SMRWP are a class of

stochastic processes, in the sense that, depending on the problem to be faced, a different
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evolution equation will be obtained. A classification of DTSMRWP was given in Janssen

and Manca (2007).

In DT two general cases should be considered the DTSMRWP-immediate and

the DTSMRWP-due. In the following we give two different evolution equations, one

homogeneous and one non-homogeneous, the first for the due and the other for the

immediate. The first case has the time-variable permanence and impulse rewards and

variable rate of interest. The non-homogeneous case has non-homogeneous rate of

interest and rewards.

For each case we present in (3) and (5) the reward process and in (4) and (6) the

related semi-Markov reward evolution equations that are the mean of the process, as it

is proved in Stenberg et al. (2006, 2007) and more recently in a more general case in

D’Amico et al. (2013).

ξ̈i(t)≡ 1{TN(0)+1>t |JN(0)=i}

(
t

∑
τ=1

ψi(τ)ν(τ−1)

)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i}

(
TN(0)+1

∑
τ=1

ψi(τ)ν(τ−1)

)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i}ν
(
TN(0)+1

)
γiJN(0)+1

(
TN(0)+1

)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i}ξ̈JN(0)+1

(
t −TN(0)+1

)

(3)

V̈i(t) = (1−Hi(t))
t

∑
θ=1

ψi(θ )ν(θ −1)+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ)
ϑ

∑
θ=1

ψi(θ )ν(θ −1)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ)ν(ϑ)γik(ϑ)+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ)ν(ϑ)V̈k(t −ϑ),

(4)

ξi(s, t)≡ 1{TN(s)+1>t |JN(s)=i,TN(s)=s}

(
t

∑
τ=s+1

ψi(s,τ)ν(s,τ)

)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=s}

(
TN(s)+1

∑
τ=s+1

ψi(s,τ)ν(s,τ)

)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=s}ν
(
s,TN(s)+1

)
γiJN(s)+1

(
s,TN(s)+1

)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=s}ν
(
s,TN(s)+1

)
ξJN(s)+1

(
TN(s)+1; t

)

(5)
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Vi(s, t) = (1−Hi(s, t))
t

∑
θ=s+1

ψi(s,θ )ν(s,θ )+
m

∑
k=1

t

∑
ϑ=s+1

bik(s,ϑ)
ϑ

∑
θ=s+1

ψi(s,θ )ν(s,θ )

+
m

∑
k=1

t

∑
ϑ=s+1

bik(s,ϑ)ν(s,ϑ)γik(s,ϑ)+
m

∑
k=1

t

∑
ϑ=s+1

bik(s,ϑ)ν(s,ϑ)Vk(ϑ, t) (6)

where:

ν(t) =





1 if t = 0
t

∏
τ=1

(1+ r(τ))−1
if t > 0

;

ν(s, t) =





1 if t = s
t

∏
τ=s+1

(1+ r(s,τ))−1
if t > s

1{TN(0)+1>t |JN(0)=i} :=

{
1 i f TN(0)+1(ω)> t ω ∈ Ω(i,0)

0 otherwise,

Ω(i,0) =
{
ω ∈ Ω : JN(s)(ω) = i,TN(s)(ω) = 0

}
.

For a deeper understanding, the interested reader can refer to D’Amico et al. (2013)

• both permanence (or rate) and transition (or impulse) rewards are considered,
• the rewards in (3) and (4) are homogeneous in time and (5) and (6) non-homoge-

neous,
• the interest rates are in (3) fixed, in (4) and (6) variable in time and in (5) non-

homogeneous.

Remark 4.1. The introduction of stochastic interest rate does not present any difficul-

ties (see Janssen et al., 2002).

The interested reader can find other cases in the Janssen and Manca (2006, 2007)

books.

Now we present a homogenous and a non-homogenous case with backward times.

The homogeneous is in an immediate environment, the non-homogeneous in a due. As

before we present before the reward processes and after the related evolution equations.

The first time index gives the backward time. The hypotheses on interest rates and on

rewards are the same of the relations given in (3) and (5).

In the homogeneous case the backward time is negative because it is supposed to

begin following the system, after each transition, at time 0. The non-homogeneous

backward relations, in which the first index time gives the backward, the second the

starting horizon time and the third the ending time are the following:
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bξ̈i(u,s; t)≡ 1{TN(s)+1>t |JN(s)=i,TN(s)=u,TN(s)+1>s}

(
t

∑
τ=s+1

ψi(s,τ)ν(s,τ−1)

)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=u,TN(s)+1>s}

(
TN(s)+1

∑
τ=s+1

ψi(s,τ)ν(s,τ−1)

)
(7)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=u,TN(s)+1>s}
ν
(
s,TN(s)+1

)
γiJN(s)+1

(
s,TN(s)+1

)

+
m

∑
k=1

t

∑
ϑ=s+1

1{JN(s)+1=k,TN(s)+1=ϑ|JN(s)=i,TN(s)=u,TN(s)+1>s}
ν
(
s,TN(s)+1

)
ξ̈JN(s)+1

(
TN(s)+1,TN(s)+1; t

)

V̈i(u,s; t) =
(1−Hi(u, t))

(1−Hi(u,s))

t

∑
θ=s+1

ψi(s,θ )v(s,θ )

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))

ϑ

∑
θ=s+1

ψi(s,θ )v(s,θ )

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
γik(s,ϑ)v(s,ϑ)

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
V̈k(0,ϑ; t)v(s,ϑ).

(8)

bξi(−u; t)≡ 1{TN(0)+1>t |JN(0)=i,TN(0)=−u,TN(0)+1>0}

(
t

∑
τ=1

ψi(τ)ν(τ)

)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i,TN(0)=−u,TN(0)+1>0}

(
TN(s)+1

∑
τ=s+1

ψi(τ)ν(τ)

)
(9)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i,TN(0)=−u,TN(0)+1>0}
ν
(
TN(0)+1

)
γiJN(s)+1

(
TN(0)+1

)

+
m

∑
k=1

t

∑
ϑ=1

1{JN(0)+1=k,TN(0)+1=ϑ|JN(0)=i,TN(0)=−u,,TN(0)+1>0}
ν
(
TN(0)+1

)
ξJN(0)+1

(
0; t −TN(0)+1

)

Vi(u; t) =
(1−Hi(t +u))

(1−Hi(u))

t

∑
θ=1

ψi(θ )ν(θ )+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∑
θ=1

ψi(θ )ν(θ )

+∑
m

k = 1m
t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))
ν(ϑ)γik(ϑ)+

m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))
ν(θ )Vk(0; t −ϑ).

(10)

Now we explain the meaning of (8), the meaning of the other relations is similar and

can be easily understood. The first part of (8)
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(1−Hi(u, t))

(1−Hi(u,s))

t

∑
θ=s+1

ψi(s,θ )v(s,θ ) (11)

can be seen as a discrete time annuity with non-homogeneous variable instalments

ψi(s,θ ) discounted by means of a non-homogeneous interest rate that is calculated from

time s up to time t −1. (11) is conditioned in function of the arrival time in the state i at

time u.

The second part

m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))

ϑ

∑
θ=s+1

ψi(s,θ )v(s,θ )

represents the rewards that were paid up to the moment of the first transition, still with

the same conditioning.

The third and fourth parts

m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
V̈k(0,ϑ; t)v(s,ϑ)+

m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
γik(s,ϑ)v(s,ϑ)

explain what happened at the transition moments. Indeed, γik(s,ϑ) represents the

transition reward that is paid at the transition instant and V̈k(0,ϑ; t) the mean present

value of all the payments made from time ϑ up to time t. Both sums are evaluated at

time ϑ so it is necessary to discount them at time s, thus the presence of the discount

factor. In this case, the conditioning to arrive at time u in the state i is also considered.

The algorithm to solve the discrete time homogeneous and non-homogeneous back-

ward case are given in Stenberg et al. (2006, 2007) respectively.

Remark 4.2. The choice between the homogeneous and non-homogeneous cases de-

pends on the available data. Non-homogeneity is closer to real life problems in the case

of time that depends on age or seniority is certainly better to use it (insurance problems)

but, in order to apply it, a great quantity of data is necessary. If the database is not huge

it can be better to remain in a homogeneous environment.

Remark 4.3. The backward times are fundamental in the evaluation of many insurance

contracts (in our opinion any insurance contract is a SCF). For example, if we have to

consider the disability in an insurance contract the dead probability of a disabled person

is different from the dead probability of a healthy person. But this difference decreases

as a function of the time distance from the beginning of the disability time (see D’Amico

et al., 2009b).
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5. The risk estimation

The evolution equation of the reward processes gives the mean present value of the

stochastic financial operation. But in a stochastic environment it remains fundamental

also the evaluation of the risk, i.e. the estimation of the variability. In Stenberg et

al. (2006, 2007) the formulas for the higher moments of the reward processes were

presented. We will report only the second order moment formula, the calculation of

variance and of standard deviation.

The relation (6), in matrix form can be rewritten in the following way:

V(u; t)=D(u; t)·A(t)∗1m+
t

∑
ϑ=1

(
B(u; ϑ) · Ã(ϑ)

)
∗1m+

t

∑
ϑ=1

(B(u; ϑ)∗V(0; t −ϑ))ν(ϑ),

where:

∗ represents the row-column matrix product,

· represents the element by element (Hadamard) matrix product,

D(u; t) is a diagonal matrix whose elements in the main diagonal are
(1−Hi(u, t))

(1−Hi(u,s))

A(t) is a diagonal matrix whose elements in the main diagonal are
t

∑
θ=1

ψi(θ )ν(θ )

B(u; ϑ) =

[(
bik(ϑ+u)

(1−Hi(u))

)

ik

]
(12)

Ã(ϑ) =

[(
ϑ

∑
θ=1

ψi(θ )ν(θ )+ν(ϑ)γik(ϑ)

)

ik

]
(13)

1 is the sum vector.

Remark 5.1. The relations (12) and (13) denote the general element of the respective

matrices.

(8) can be rewritten in the following matrix form:

V̈(u, s; t) = D(u, s; t) · Ä(s, t)∗1m +
t

∑
ϑ=1

(
B(u, s; ϑ) ·

¨̃
A(s, ϑ)

)
∗1m+

+
t

∑
ϑ=1

(
B(u, s; ϑ)∗ V̈(0, ϑ; t)

)
ν(s, ϑ),

where:

D(u, s; t) is a diagonal matrix whose elements in the main diagonal are
(1−Hi(u, t))

(1−Hi(u,s))
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B(u, s; ϑ) =

[(
bik(u, ϑ)

(1−Hi(u, s))

)

ik

]

Ä(s, t) is a diagonal matrix whose elements in the main diagonal are
t−1

∑
θ=s

ψi(s,θ )ν(s,θ )

¨̃
A(s, ϑ) =

[(
ϑ

∑
θ=s+1

ψi(s, θ )
θ−1

∏
τ=s

(1+ r(s, τ))−1 +γik(s, ϑ)
ϑ

∏
τ=s+1

(1+ r(s, τ))−1

)

ik

]
.

Now we will present the matrix form of the evolution equations of the second order

moments of our two examples

1. Homogeneous immediate case:

V(2)(u; t) = D(u; t) ·A(2)(t)∗1m +
t

∑
ϑ=1

(
B(u; ϑ) · Ã

(2)
(ϑ)
)
∗1m (14)

+
t

∑
ϑ=1

(
B(u; ϑ) · Ã(ϑ)

)
2ν(s, ϑ)∗V(0; t −ϑ)+

t

∑
ϑ=1

(
B(u; ϑ)∗V(2)(0; t −ϑ)

)
ν(s, ϑ)2,

2. Non-homogeneous due case:

V̈
(2)
(u, s; t) = D(u, s; t) · Ä

(2)
(s, t)∗1m +

t

∑
ϑ=s+1

(
B(u, s; ϑ) ·

¨̃
A

(2)

(s, ϑ)

)
∗1m

+
t

∑
ϑ=s+1

(
B(u, s; ϑ) ·

¨̃
A(s, ϑ)

)
∗ V̈(0, ϑ; t)2

ϑ

∏
τ=s+1

(1+ r(s, τ))−1 (15)

+
t

∑
ϑ=s+1

(
B(u, s; ϑ)∗ V̈

(2)
(0, ϑ; t)

) ϑ

∏
τ=s+1

(1+ r(s, τ))−2,

where V(2)(u; t) and V̈
(2)
(u, s; t) are the second order moment of stochastic

processes (7) and (9) respectively.

The proof of relations similar to (14) and (15) can be found in Stenberg et al.

(2006, 2007) respectively.

Remark 5.2. The DTHSMRWP and DTNHSMRWP presented In Stenberg et al. (2006,

2007) did not consider the differences between immediate and due models. These

differences are fundamental in the model construction for applications.
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Remark 5.3. As already outlined the reward processes are a class of stochastic pro-

cesses. The consideration of backward times increases the number of the different kinds

of processes.

Once that the first and the second moments are known it is possible to calculate in

a very simple way the variance and the standard deviation (see Stenberg et al., 2006,

2007).

6. SCF and semi-Markov reward processes

A deterministic cash flow is a finite or countable vector

O = ((S1, T1), (S2, T2), . . .)

whose elements are couples (Si,Ti) where Si is a sum and Ti is the time in which Si is

paid (negative value) or cashed (positive value). A cash flow is fair at a given time t if

its value is equal 0.

A SCF is always a vector of couples but this time the first element of the couples is

always a random variables and the time in some cases but not always is random. The

vector could also have a finite or infinite order.

Remark 6.1. The time of transition rewards is always random. Permanence rewards

can be paid or cashed at each time period or randomly. For this reason the time

can sometimes be considered deterministic. It is also possible that in some state the

permanence rewards should not be computed. In this last case we can consider for

all the period of staying in the state without permanence rewards that are equal to 0.

Our hypotheses are:

1.a Jn ∈ I, I ⊂ R, |I| ∈ N or |I|= |N| where |A| represents the cardinality of A.

2.a Tn ∈ N

3.a P [Jn+1 = j, Tn+1 −Tn ≤ t −Tn+1 < Tn+2 −Tn+1|(Jn,Tn),(Jn−1,Tn−1), . . . ,(J0,T0)]

= P [Jn+1 = j, Tn+1 −Tn ≤ t −Tn+1 < Tn+2 −Tn+1|Jn] . (16)

in the homogeneous environment and

3.b P [Jn+1 = j, Tn+1 ≤ t < Tn+2|(Jn,Tn),(Jn−1,Tn−1), . . . ,(J0,T0)]

= P [Jn+1 = j, Tn+1 ≤ t < Tn+2|(Jn, Tn)] (17)

in non-homogeneous case.
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4. The horizon time is given by:

[0, T ] ,T ∈ N if the horizon is limited,

[0,+∞) if the horizon is infinite

Remark 6.2. (16) and (17) describe what happens to the SCF at each time of transition.

The state of the system at time t is j. If there are permanence rewards they will be paid

between two subsequent transitions. More precisely we know that Tn−Tn−1 = Xn and Xn

rate rewards, one for each period, will be paid or received in case of deterministic

permanence rewards. These rewards will be paid or cashed at the beginning of the

period in the due case and at the end in the immediate case. In case of existence of

transition rewards at the transition time an impulse reward will be paid or cashed.

Supposing that:

1. at time the system start in the state i,

2. at transition time the system arrive at state j,

3. there are both permanence and transition rewards,

4. the permanence and the transition rewards change because of running time.

This financial operation in the immediate case can be described in the following way:

O = ((ψi(1), 1), (ψi(2), 2), . . . , (ψi(X1), X1), (γik1
, T1), (ψk1

(T1 +1), T1 +1),

(ψk1
(T1 +2), T1 +2), . . . , (ψk1

(T1 +X2), T1 +X2), (γk1k2
, T2), (ψk2

(T2 +1), T2 +1),

. . . , (ψk2
(T2 +X3), T2 +X3), (γk2 k3

, T3), . . . , (γkn−1kn
, Tn), (ψkn(Tn +1), Tn +1), . . . ,

(ψkn(Tn +Xn), Tn +Xn), (γkn j, Tn+1), . . .) ,

Figure 4: Insurance contract as shown in Haberman and Pitacco (1999) [20].
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Under the 4 hypotheses it is evident that the stochastic evolution of this process can

be naturally followed by means of a SMP.

The main SCF problem is the evaluation of the mean present value. Another impor-

tant issue is the evaluation of the risk that, as is well-known, can be calculated knowing

the second order moment and consequently the variance or the sigma square.

Remark 6.3. Most of the insurance contracts can be modelled taking into account these

four hypotheses. Indeed an insurance contract, as specified for example in Haberman

and Pitacco (1999), is a stochastic cash flow. In some cases (see Janssen and Manca,

1997) it is necessary to introduce other time random variables generalizing the SMP

but, de facto, also these generalized SMRWP model a more complex SCF. Figure 4

represents the trajectory of a general insurance contract as shown in Haberman and

Pitacco (1999), and is the perfect reproduction of a trajectory of a SMRWP. Indeed,

p1(t) and b2(t) represent respectively a premium and a benefit they are paid or received

in function of the state in which the insured is. They represent permanence rewards in the

SMRWP environment. The first is an entrance and the second is a cost for the insurance

company c13(t3) and c34(t5) represent two transition rewards. d3(t4) is a reward that is

given in function of the staying of a time t4− t3 in the state 3. Clearly, the time t4− t3 is a

backward time. This fact implies that we have to define also the SMRWP with backward

permanence rewards.

Remark 6.4. In the discrete time SCF evaluation the instant of payments assumes great

relevance. The distinction between immediate and due DTSMRWP is fundamental.

6.1. The relations of SMRWP with backward time rewards

In this subsection the homogeneous and non-homogeneous SMRWP with rewards and

interest rates depending on the backward time will be presented. In this paper the

backward time given on the permanence rewards is pointed out. Indeed, the possibility

of considering the rewards and interest rates that changes as a function of backward

time is an important issue in insurance contracts. It is to outline, for example, that in a

disability insurance framework it is well known that the grade of disability can decrease

in function of the time spent from the disability event (see D’Amico et al., 2009b).

In this case the consideration of rewards that depend on backward time can really be

important in the calculation of the benefits and the premium of the insurance contract.

Furthermore, in the management of a SCF with a term structure of interest rate it can

happen that the interest rates of the SCF can change in function of the elapsed time

between the stipulation of contract and the beginning of the financial operation. The

consideration of interest rates that depends on backward time can take into consideration

this other aspect of financial contracts.
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We consider, in (15) and (16), at the same time both these aspects. It is clear that it

is possible the writing of relations that point out only one of the two problems.

Vi(u; t) =
(1−Hi(t +u))

(1−Hi(u))

t

∑
θ=1

ψi(u;θ )ν(u;θ )

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∑
θ=1

ψi(u;θ )ν(u;θ ) (15)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))
ν(u;ϑ)γik(u;ϑ)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))
ν(u;ϑ)Vk(0; t −ϑ).

V̈i(u, s; t) =
(1−Hi(u, t))

(1−Hi(u,s))

t

∑
θ=s+1

ψi(u,s;θ )ν(u,s;θ )

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))

ϑ

∑
θ=s+1

ψi(u,s;θ )ν(u,s;θ ) (16)

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
V̈k(0,ϑ; t)ν(u,s;ϑ)

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
γik(u,s;ϑ)ν(u,s;ϑ).

We would outline that it is the first time that are presented reward processes in which it is

possible taking into consideration the reward and interest rates depending on backward

times.

Remark 6.5. It is clear that it is possible to write the matrix relations as in the previous

case. A studious reader can try to write them.

6.2. A mixed due and immediate SMRWP with backward recurrence times

There are insurance contracts in which the premium are paid at beginning of the period

and the insured benefit at the end of the period. In these cases, it is necessary to define a

SMRWP that can take into account this mixed situation.

(17) and (18) give the homogeneous and non-homogeneous SMRWP evolution

equations in the case of rewards paid or cashed at the beginning or at the end of the

period.
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V̄i(u; t) =
(1−Hi(t +u))

(1−Hi(u))

t

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1
(17)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∏
τ=1

(1+ r(u;τ))−1
γik(ϑ)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∏
τ=1

(1+ r(u;τ))−1
V̄k(0; t −ϑ).

V̄i(u, s; t) =
(1−Hi(u, t))

(1−Hi(u,s))

t

∑
θ=s

ψi(u,s;θ )
θ+sw(i)−1

∏
τ=s+sw(i)

(1+ r(u,s;τ))−1

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))

ϑ

∑
θ=s

ψi(u,s;θ )
θ+sw(i)−1

∏
τ=s+sw(i)

(1+ r(u,s;τ))−1
(18)

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
γik(s,ϑ)

ϑ

∏
τ=s+1

(1+ r(u,s;τ))−1

+
m

∑
k=1

t

∑
ϑ=s+1

bik(u,ϑ)

(1−Hi(u,s))
Vk(0,ϑ; t)

ϑ

∏
τ=s+1

(1+ r(u,s;τ))−1.

Remark 6.6. The trick in the relations (17) and (18) consists in the usage of a vector

of binary variable sw of order m that will assume at the ith element value 1 if the

permanence reward is paid at the end of the period and 0 if it is paid at the beginning of

the period.

Remark 6.7. The two relations (17) and (18) are the most general that can be given

respectively in the homogeneous and non-homogeneous SMRWP for the calculation of

the mean present value of a SCF.

7. A quasi real data example

In this part we present results both for both homogeneous and non-homogeneous

environments. The raw data are the same as were used in Stenberg et al. (2006, 2007)

papers but the models are different. We speak of quasi real data because we truncated

the Waiting Time Distribution Function (WTDF) at 10. Indeed interest rates and benefits

that change because of backward recurrence times were used. Furthermore, in the model

the benefits of the first state are paid at beginning of the period, instead of the benefits

of the other states at the end of the period. It is the first time that a model of a SCF
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considers this possibility. Having data of only disabled people all the considered rewards

are paid by the INAIL (Istituto Nazionale Assistenza Infortuni sul Lavoro), which is a

public assistance institute and pays for the working accidents.

The historical data give the disability history of 840 people that had silicosis

problems and lived in Campania, an Italian region. Each individual with silicosis will

be examined by a doctor. The doctor will determine the degree of disability in the form

of a percentage for each patient, ranging from 0% to 100%. Depending on the degree of

disability the policy maker has determined five possible states, categorized in Table 1.

Table 1: Disability states.

1 [0 %, 10%)

2 [10 %, 30%)

3 [30 %, 50%)

4 [50 %, 70%)

5 [70 %, 100%)

This subdivision is the same as the ones used in Yntema (1962), Janssen (1966) that

were the first to apply respectively Markov and semi-Markov environment to disability

problems.

Transition between states occurs after a visit to the doctor that can be seen as the

check to decide in which state the disabled person is in. This leads naturally to an

example where virtual transitions are possible, i.e., the individual has become neither

sufficiently better nor worse to change state. In the table we have introduced 5 different

states, E = 1, 2, 3, 4, 5, one for each reward policy.

In Figure 5 the graph of the transitions is reported.

Figure 5: Graph of Markov transition matrix.

From the graph of Figure 5 it results:

• there is one absorbing state,
• the states 2, 3 and 4 are interconnected (they form a class of states),
• the state 5 is an absorbing state that forms the only absorbing class.

Under these conditions both homogeneous and non-homogeneous embedded Markov

chains are mono-unireducible, see D’Amico et al. (2009a). These matrices were con-

structed by the real data.
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Given the five states defined previously, we attached a reward policy to the disability

degree. The reward that is given to construct the example represents the money amount

that is paid for each time period to the disabled person with respect to the degree of

illness. We did not have these data so we did not use real data values. The same was

done for the evaluation of the interest rates. The data that we used were not sufficient

for the evaluation of waiting time cumulated distribution functions. We construct these

functions by means of random number extraction. Given that the applications have a

horizon time of 10 years we truncate the waiting time distribution function in the way

that the 10th value is included between 0.9 and 1.

Transition rewards are not provided. Resuming, the hypothesis of the models that we

apply are the following:

1. the evolution equations have only permanence rewards,

2. the rewards are all of the same sign (it is a disability insurance that is paid by social

assistance),

3. the first state is paid at the beginning of the period the others at the end (we put

this hypothesis to show the potential of our model).

Our hypothesis implies different evolution equations and we report them in (19) and

(20) in homogeneous and non-homogeneous case respectively.

V̄i(u; t) =
(1−Hi(t +u))

(1−Hi(u))

t

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1
(19)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∏
τ=1

(1+ r(u;τ))−1
V̄k(u; t −ϑ).

V̄i(u; t) =
(1−Hi(t +u))

(1−Hi(u))

t

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∑
θ=1

ψi(u;θ )
θ+sw(i)−1

∏
τ=sw(i)

(1+ r(u;τ))−1
(20)

+
m

∑
k=1

t

∑
ϑ=1

bik(ϑ+u)

(1−Hi(u))

ϑ

∏
τ=1

(1+ r(u;τ))−1
V̄k(u; t −ϑ).
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7.1. The results

7.1.1. Homogeneous case

In this real data example we cover an horizon time of 10 years. The inputs of the program

are the embedded Markov chain and the waiting time d.f.s

Figure 6: The Markov chain embedded in the homogeneous process.

In Figure 6 the matrix of the embedded Markov chain is reported. Each starting

state is represented by a rectangle of the histogram. The transition probabilities are

represented by different colors, for example the state 1 can go only in the state 2.

Figure 7 shows the waiting time d.f.’s. We would like to remember that a waiting

time d.f. is given for each possible transition.

In Figure 8 the mean present values of rewards with no backward time, 3 years and

5 years of backward are given. We observe that with different backward and similar

durations are obtained different results.

Finally Figure 9 shows the variance values. We would like to comment on the

calculation of variance gives the possibility to have a measure of the risk. It is to observe

that the variance has, by far, higher values of the reward values and this means a high

risk in the financial operation.

7.1.2. Non-homogeneous case

In this subsection the results of the non-homogeneous case are reported.

In Figure 10 the non-homogeneous embedded Markov chains at time 1, 3 and 5 are

shown. As it is possible to observe that at different times the embedded Markov chains

have different transition probabilities.
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Figure 7: The waiting time d.f.

Figure 8: Reward mean present value (backward time 0, 3, 5).
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Figure 9: Variance values (backward time 0, 3, 5).

Figure 10: Non-homogeneous embedded Markov chain at time 1, 3, 5.
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Figure 11: Non-homogenous reward mean present values (back time 0 start time 0,3, 3; back time 3 start time 3,5).

Figure 12: Non-homogenous variance values (back time 0 start time 0,3, 3; back time 3 start time 3,5).
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In Figure 11 the non-homogeneous reward present values are given. The first two

images report the values obtained without backward recurrence time with starting time

equal to 0 and 3. The other two images report the results with backward recurrence time

3 and with starting time 3 and 5. It is interesting to observe that both non-homogeneity

and backward time influence the result in substantial way.

Finally Figure 12 presents the variance values corresponding to the reward results

that were given previously. We should point out that they are bigger by far than the

mean values of our process. This means an over-dispersion of starting data and that our

financial operation has a high risk.

8. Conclusions

The paper presented how to apply DTSMRWP in both the homogeneous and non-

homogeneous case with backward recurrence time for calculation of the evolution and of

the evaluation of SCFs. The model gives the possibility to take into account permanence

rewards that are immediate, due and also a mixture of the two cases. Another important

result presented is given by the calculation of the second order moment and gives the

possibility to calculate the variance and consequently the sigma square, obtaining in this

way an evaluation of the risk of the studied SCF.

It is the first time that the evaluation of a SCF by means of a DTSMRWP is presented

and we retain that this new approach at this problem gives an important step in the study

in general of SCF and more specifically of the most part of insurance contracts.

In the paper, for the first time the possibility is presented to construct a model in

which some rewards are paid at the beginning of the period and others at the end of the

period. This simple new approach gives the possibility to evaluate in the right way many

insurance contracts, because frequently the premium of insurance contracts are paid at

the beginning of the periods and the benefits at the end. Furthermore, for the first time

SMRWP evolution equations with rewards and interest rates that depend on backward

times have been presented.

The authors believe that recurrence times processes attached to a semi-Markov

environment can be of great relevance in the study of finance and insurance problems.

It is well known that SCF are a fundamental tool for the evaluation of financial and

insurance contract and this paper proposes a model that solves the problem.

The presented relations are in discrete time and discrete state but in a future work we

will give also the continuous version of these models and the inter-correlations between

the discrete and the continuous cases.

The main aim of the paper was to show that a discrete time SCF can be studied

naturally by means of a semi-Markov reward process. Furthermore, by means of the

semi-Markov approach, it is possible to overcome all the difficulties regarding the study

of SCFs that are highlighted in the literature.
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