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Abstract 

 

Various protein labeling methods based on the specific interactions between genetically 

encoded tags and synthetic probes have been proposed to complement fluorescent protein-based 

labeling. In particular, labeling methods based on enzyme reactions have been intensively 

developed by taking advantage of the highly specific interactions between enzymes and their 

substrates. In this approach, the peptides or proteins are genetically attached to the target 

proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions 

with the substrates carrying those labels. On the other hand, we have been developing an 

enzyme-based protein labeling system distinct from the existing ones. In our system, the 

substrate protein is attached to the target proteins as a tag, and the labels are incorporated into 

the tag by post-translational modification with an enzyme carrying those labels followed by 

tight complexation between the enzyme and the substrate protein. In this review, I summarize 

the enzyme-based protein labeling systems with a focus on several typical methods and then 

describe our labeling system based on tight complexation between the enzyme and the substrate 

protein. 

 

  



3 
 

Introduction 

Fluorescence imaging of proteins in living cells is an indispensable approach for elucidating 

their functions, movement, and localization in the native environments. For imaging of proteins 

in living cells, the desired proteins must be labeled specifically, and various protein labeling 

methods have been developed for this purpose. Among them, methods with fluorescent proteins 

have been widely used for their simplicity and specificity, where fluorescent proteins are 

genetically attached to the target proteins by introducing the genes of the fusion proteins into 

the cells. The utilization of fluorescent proteins as labels has started from the studies with green 

fluorescent protein (GFP) from the Aequorea vitoria jellyfish [1]; after that, numerous variants 

of GFP and fluorescent proteins from different species have become available for labeling, 

which have superior fluorescent properties and cover a wide spectral range [2-4]. Therefore, 

the utility of fluorescent proteins as labels has been increasingly enhanced. 

However, labeling with fluorescent proteins cannot be applied to all protein analyses 

because of the great diversity of structures and functions of protein molecules. Thus, different 

types of labeling methods have also been developed to complement fluorescent protein-based 

labeling. Above all, the labeling methods have been intensively developed which combine 

genetically encoded tags with synthetic fluorescent probes, where the target proteins are fused 

to the peptide or protein tags to which fluorescent probes are attached by specific molecular 

interactions or enzymatic reactions [5-10]. The pioneering approach is based on the peptide tag 

containing a tetracysteine sequence (TC tag), which was reported by Tsien et al. in 1998 [11]. 

In this system, the target proteins are fused to the TC tag, which are specifically labeled by the 

reactions with biarsenical compounds such as FlAsH and ReAsH [12,13]. Similar approaches 

have also been developed by combining an oligo-histidine tag or oligo-aspartate tag with Ni2+- 

and Zn2+-fluorophore complexes [14-17]. Although these systems have the advantage of using 

short peptides as a tag, they have a limitation in terms of the specificity of labeling, due to the 
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nonspecific binding of probes to the cellular components. 

Thus, to improve the specificity of labeling, various methods have been developed by 

exploiting the enzymes with a high recognition ability for their substrates (Fig. 1) [5-10]. Here, 

the labels are attached to the genetically encoded tags through the enzymatic reactions with 

their substrates carrying those labels. Most of these enzyme-based labeling methods can be 

classified into two groups (Figs. 1a and 1b). In one group, the target proteins are fused to the 

peptide tags, and the labels are incorporated into the tags by the post-translational modification 

reactions with enzymes (Fig. 1a). In the other group, the enzymes are genetically attached to 

the target proteins as a tag, and the labels are incorporated into the tags by the self-modification 

reactions of the enzymes (Fig. 1b). These enzyme-based labeling methods enable highly 

specific labeling of the proteins and are applied to the labeling of proteins in living cells; some 

of these methods have already been made commercially available. However, in these methods, 

it is generally difficult to attach multiple copies of the labels to the target proteins. 

To expand the utility of the enzyme-based labeling system, we have been developing an 

original labeling system that does not fit into either of the two groups described above (Fig. 1c) 

[18-20]. Here, a substrate protein is genetically attached to the target proteins as a tag, and the 

labels are attached to the tag by the post-translational reaction of the enzyme carrying those 

labels followed by tight complexation between the enzyme and the substrate protein. By 

utilizing this labeling system, we succeeded in the fluorescent detection of the target proteins 

on a solid support [18,19] or in living cells [18,20]. In this method, multiple copies of labels 

can be attached to the target proteins by the reaction with the enzyme carrying those multiple 

labels. In addition, this system can be applied to the labeling of a cellular organelle by 

controlling the localization of the fluorescent protein in the cells [21]. In this review, I 

summarize the enzyme-based protein labeling systems focusing on several typical methods and 

then describe the development of our labeling system based on tight complexation between the 
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enzyme and the substrate protein. 

 

Protein labeling based on post-translational modification to the peptide-tags 

Among the labeling methods based on post-translational modification to the peptide-tags [5,6,9] 

(Fig. 1a), I focus on those exploiting sortase, phosphopantetheinyltransferase (PPTase), and 

lipoic acid ligase (LplA). Sortase is a transpeptidase found in many Gram-positive bacteria. In 

particular, Sortase A (SrtA) from Stapylococcus aureus is widely used for protein labeling, 

which specifically recognizes the short peptide sequence LPXTG (where X is any amino acid) 

[22]. SrtA cleaves the amide bond between threonine and glycine on the recognition site to 

produce a thioester bond between the carboxyl group of threonine and an enzyme-derived 

cysteine. This intermediate undergoes a nucleophilic attack by an amino group of an 

oligoglycine substrate to produce a new amino bond between the two substrates. In the typical 

protein labeling with SrtA, the LPXTG motif is genetically attached to the target proteins as a 

tag, and various labels are incorporated into the tag by the enzymatic reaction of SrtA with the 

oligoglycine substrates carrying the labels (Fig. 2a). 

The use of SrtA-mediated labeling in living cells was first reported in 2007 by Popp and 

co-workers [23]. They selected human CD40L, a type II membrane protein, as a target protein. 

CD40L fused to a C-terminal LPETG tag was expressed in mammalian cells and was labeled 

with oligoglycine substrates carrying biotin or tetramethylrhodamine (TMR) by SrtA added to 

the medium. Labeling of CD40L on the surface of the cells was clearly demonstrated by blotting 

and fluorescence imaging analysis. In the same manner, Tanaka and co-workers succeeded in 

labeling of osteoclast differentiation factor (ODF) fused to a C-terminal LPETG tag with 

oligoglycine substrates carrying probes on the cell surface [24]. They also succeeded in protein-

protein conjugation on the cell surface, where ODF fused to a C-terminal LPETG tag was 

ligated to GFP carrying a pentaglycine substrate on its N-terminus. Recently, SrtA-mediated 

labeling was exploited for identifying receptor-ligand interactions between immune cells [25], 
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and was also applied to in vivo protein labeling in Escherichia coli [26] and Caenorhabditis 

elegans [27] by employing Ca2+-independent SrtA. 

Labeling with an enzyme PPTase is also one of the typical methods based on the post-

translational modification to the peptide-tags [5,6,9]. PPTase catalyzes the transfer of a 

phosphopantetheinyl group derived from coenzyme A (CoA) to a serine residue of the peptidyl 

carrier protein (PCP) or acyl carrier protein (ACP) domains of several synthetases [28-30]. 

Surfactin phosphopantetheinyl transferase (Sfp) from Bacillus subtilis and acyl carrier protein 

synthase (AcpS) from Escherichia coli are widely exploited as PPTases in this labeling strategy 

owing to their promiscuity with respect to the CoA substrate; Sfp and AcpS recognize a wide 

range of CoA derivatives carrying various labels as substrates [28-30]. In the labeling, PCP or 

ACP domains are fused to the target proteins as a tag, and the labels are attached to the fusion 

proteins by Sfp- or AcpS-mediated reactions with CoA derivatives as substrates (Fig. 2b). Based 

on this strategy, membrane proteins fused to PCP or ACP were successfully labeled on the living 

cells with fluorescent dyes or biotin followed by Streptavidin-coated quantum dots [30,31]. 

The size of PCP and ACP comprising 75-80 amino acids is relatively large compared to 

the small peptide tags used in other labeling approaches. Thus, Walsh and coworkers identified 

an 11-residue peptide as a substrate for Sfp from a genome library of B. subtilis by phage 

display; that peptide had the sequence DSEFIASKLA and was denoted as ybbR [32]. They 

demonstrated that ybbR can be fused to either the N- or C-terminus of a target protein or inserted 

into a flexible loop region of a target protein as a tag. The same group further identified the 12-

residue peptides S6 (GDSLSWLLRLLN) and A1 (GDSLDMLEWSLM) from a phage-display 

peptide library as efficient substrates for Sfp and AcpS, respectively [33]. The specificity of the 

S6 tag to Sfp is orthogonal to that of the A1 tag to AspS, and by taking advantage of this property, 

multicolor imaging of two different proteins can be conducted in the living cells through Sfp- 

and AcpS-catalyzed modifications. In fact, the S6 and A1 tags were fused to epidermal growth 
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factor receptor (EGFR) and transferrin receptor 1 (TfR1), respectively, and the cells expressing 

those two fusion proteins were treated sequentially with AcpS in the presence of the Alexa 488-

modified CoA and then with Sfp in the presence of the Texas red-modified CoA; as a result, the 

distribution of the two labeled receptors was clearly visualized on the same cell by fluorescence 

microscopy [33]. 

The LplA is also one of the typical enzymes exploited in the labeling strategies based on 

the peptide-tags [5,6,9]. LplA catalyzes the covalent attachment of lipoic acid to a specific 

lysine residue of metabolic enzymes in an ATP-dependent manner [34]. Ting and co-workers 

designed an azidoalkanoic acid which can be used as a substrate for E. coli LplA in place of 

lipoic acid [35]. They also identified a 22-residue peptide substrate for E. coli LplA by rational 

design based on the natural protein substrates of LplA; the peptide was named LAP (LplA 

acceptor peptide) [35]. In their labeling strategy, LAP is genetically attached to a target protein 

as a tag, and an alkyl azide is incorporated into the LAP tag by the LplA-mediated reaction with 

an azidoalkanoic acid as a substrate (Fig. 2c). Subsequently, the alkyl azide moiety is 

derivatized with a cyclooctyne-fluorophore conjugate via strain-promoted alkyne-azide 

cycloaddition (SPAAC). Based on this strategy, they successfully labeled a low-density 

lipoprotein receptor on the surface of the living cells [35]. Then, they further minimized the 

LAP tag to a 13-residue peptide by in vitro selection with a yeast phage display [36], which has 

been used as a standard tag in an LplA-mediated labeling thereafter. 

In order to expand their system to protein labeling inside living cells, Ting's group then 

created a mutant of LplA recognizing a 7-hydroxycoumarin derivative as a substrate in place of 

lipoic acid through structure-guided mutagenesis [37]. The cells expressing the mutant of LplA 

and a target protein fused to the LAP tag were treated with the 7-hydroxycoumarin substrate, 

and following washout of the excess substrate, they successfully observed the proper 

distribution of each target protein in the cells by monitoring fluorescence from the substrate. 
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They also succeeded in labeling of cellular proteins by the two-step labeling procedures based 

on SPAAC [38] and Diels-Alder cycloaddition [39]. LplA-mediated labeling was also exploited 

for incorporation of the label into internal sites of a protein [40]. 

Overall, an advantage of these labeling systems based on the peptide-tags is the small size 

of the tags fused to the target proteins. In general, short peptides are desirable as a tag to 

minimize the adverse effects on the physiological roles of the proteins to be analyzed. However, 

the application of these systems in living cells is mainly limited to the cell surface labeling. In 

order to conduct the labeling inside living cells, enzymes and the substrates carrying labels need 

to be introduced into the cells, and it is also necessary to suppress background enzymatic 

reactions by endogenous components. As mentioned above, in the labeling system with LplA, 

the labeling inside mammalian living cells was achieved by an elaborate improvement of the 

systems. 

 

Protein labeling based on the enzyme-tags 

In the labeling systems using enzymes as a tag (Fig. 1b), those enabling the labeling inside 

living cells have been developed by sophisticated engineering of the enzymes and substrates 

[7,8,10]. Here, I focus on the labeling systems using O6-alkylguanine-DNA alkyltransferase 

(AGT) and haloalkane dehalogenase (HLD) as a tag. AGT is a human repair protein, which 

irreversibly transfers the alkyl group from O6-alkylguanine-DNA to a cysteine residue in its 

active site. As the substrate specificity of AGT is relatively low, AGT can react with O6-

benzylguanine (BG) derivatives modified at the para position of the benzyl group, leading to 

the transfer of the modified benzyl group to its reactive cysteine residue. Johnsson and co-

workers applied this enzyme reaction to protein labeling [41,42]; in their system, AGT is 

genetically attached to the target proteins as a tag, which is modified with BG derivatives 

carrying various labels through the self-modification reaction of AGT (Fig. 3a). They improved 
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AGT by mutagenesis based on the directed evolution and finally obtained a mutant of AGT (20 

kDa) with 52-fold higher activity toward the BG derivatives compared with the wild-type AGT 

[43]; its mutant also shows low affinity to DNA and is more resistant to oxidation. This mutant 

of AGT was named SNAP-tag, and has been applied to labeling of various proteins inside and 

on the surface of the living cells.  

They further developed another variant of AGT which recognizes benzyl-cytosine as the 

substrate and which they named CLIP-tag [44]. The SNAP-tag and the CLIP-tag exhibit 

substrate specificities orthogonal to each other, and thus these tags can be used to label the 

different target proteins simultaneously in living cells. The SNAP-tag labeling was also 

exploited for the introduction of labels in super-resolution imaging. For example, -tubulin 

fused to the SNAP-tag was labeled with a BG derivative carrying a photoswitchable probe in 

mammalian cells, and the filamentary structures of microtubules were observed with a 

resolution below the diffraction limit by stochastic optical reconstruction microscopy [45]; 

similarly, SNAP-tag labeling was successfully exploited in stimulated emission depletion 

microscopy [46]. The SNAP-tag labeling was also applied to imaging of subcellular structures 

in the zebrafish embryo [47] and in the tissues of mice [48]. 

The protein labeling with an enzyme reaction by HLD is another system based on the self-

modification reaction of the tag. The HLD removes halides from aliphatic hydrocarbons in a 

two-step reaction: first, the ester bond is formed between an aspartate residue in the active site 

and the hydrocarbon substrate via a nucleophilic displacement mechanism, and then the ester 

bond is hydrolyzed to yield the alcohol as the final product. A mutation to the conserved 

histidine residue responsible for the hydrolysis of the intermediate ester is known to lead to a 

trapped intermediate, where the aliphatic substrate remains to be attached to the aspartate in the 

enzyme [49]. By applying this mutation to the HLD from Rhodococcs rhodochrous, Los and 

co-workers developed a protein labeling system [50,51], where a target protein fused to the 
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mutated HLD is labeled with the aliphatic chloride carrying various labels through the partial 

reaction of the HLD (Fig. 3b). They designed and optimized the linker of the aliphatic chloride 

suitable for incorporation of labels based on the crystal structure of the HLD. They also 

conducted mutagenesis to the His-mutant to improve the reaction rate; they finally identified a 

variant of the HLD (33 kDa) having a kinetics superior to that of the original His-mutant by 

over 4 orders of magnitude: they named this variant HaloTag [50]. 

    To demonstrate the usefulness of the HaloTag system as a labeling method in living cells, 

they expressed a nuclear factor p65 fused to HaloTag in mammalian cells, and labeled the fusion 

protein with the aliphatic chloride carrying TMR [50]. As a result, they successfully observed 

the translocation of the p65 fusion protein from the cytosol to the nucleus upon stimulation of 

the cells with TNF-. They also succeeded in monitoring the TNF--dependent degradation of 

IB by labeling it with the HaloTag system [50]. By taking advantage of its specificity and 

flexibility, the HaloTag system was exploited for the protein labeling in the super-resolution 

imaging [52,53] and for staining the tumor nodules in mice [54]. The HaloTag system was also 

applied to the protein degradation system; in this application, the hydrophobic molecule was 

attached to the target proteins fused to HaloTag, which were then degraded by the proteasome 

through the cellular quality control mechanism [55]. 

As a whole, the advantage of the labeling systems based on enzyme-tags is that the various 

types of labels can be attached to the target proteins inside living cells by virtue of their high 

specificity of labeling. On the other hand, the large size of the tags is generally considered to 

be a disadvantage, because large tags could exert a more significant effect on the structures, 

functions, and localization of the target proteins. Nevertheless, these labeling systems have 

already been applied to various systems, including those dealing with tissues and animals as 

mentioned above. 

 



11 
 

A labeling system based on biotinylation from the archaeon Sulfolobus tokodaii 

We have been developing an enzyme-mediated labeling system which is not categorized into 

the two groups mentioned above (Fig. 1c and Fig. 4) [18-20]. In our labeling strategy, 

biotinylation from the archaeon Sulfolobus tokodaii is utilized as an enzyme reaction. In this 

biotinylation, biotin protein ligase (BPL) catalyzes the attachment of biotin to a specific lysine 

residue of its substrate protein, biotin carboxyl carrier protein (BCCP), in a two-step reaction:  

 

Biotin + ATP → Biotinyl-AMP + PPi                 (1) 

Biotinyl-AMP + apo-BCCP → holo-BCCP + AMP      (2) 

 

First, biotinyl-AMP is produced by the reaction of biotin with ATP, and then, biotin is 

transferred to the lysine residue of BCCP (apo-BCCP), resulting in production of the 

biotinylated BCCP (holo-BCCP). Although biotinylation is ubiquitous in nature, we focused on 

the biotinylation from S. tokodaii [56,57]. One of the notable features of S. tokodaii 

biotinylation is that the enzyme BPL forms an extremely stable complex with its product, holo-

BCCP [58]. We applied this unique enzyme reaction to protein labeling by genetically attaching 

BCCP to the target proteins as a tag [18-20]. The resulting fusion proteins were labeled by 

biotinylation with BPL carrying fluorophores (Figs. 4a and 4b). 

    To construct such a labeling system, we first prepared the truncated BCCP. From the 

previous studies on biotinylation from other organisms, it is known that BCCP is composed of 

N- and C-terminal domains, and that the N-terminal domain of BCCP is not responsible for 

biotinylation. Here, S. tokodaii BCCP is composed of 169 amino acid residues, and the region 

of the N-terminal 100 residues is deduced to be the N-terminal domain from a comparison of 

the primary sequence of S. tokodaii BCCP with those of other organisms. Therefore, we 

prepared a truncated BCCP which lacks the N-terminal 100 residues [58]. The truncated BCCP 
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(69 aa) was confirmed to retain the substrate activity for biotinylation. In addition, the binding 

affinity of holo-BCCP with BPL was found to be enhanced by deletion of the N-terminal 

domain; the dissociation constant for the complex of the holo form of the truncated BCCP with 

BPL was estimated to be 1.2 nM based on surface plasmon resonance measurement with a BPL-

modified sensor chip [58]. The reaction rate of biotinylation was also found to be high enough 

to be used for labeling; the rate constant for the reaction between the truncated BCCP and BPL 

was estimated to be 2.5±0.3×104 s-1 M-1 by blotting analysis of the products [18]. Furthermore, 

from the model structure of the complex of S. tokodaii BPL and BCCP, it was inferred that the 

N- and C- termini of the truncated BCCP are located on the opposite side of the lysine residue 

to be biotinylated (Fig. 4c), and thus it was considered that the target proteins can be fused to 

both termini of BCCP without interfering with the biotinylation reaction. Based on these facts, 

we utilized this truncated BCCP as a tag in the labeling system based on S. tokodaii biotinylation. 

Next, to construct a labeling system with BPL carrying synthetic fluorophores (Fig. 4a), 

we modified BPL on its cysteine residues with maleimide derivatives of fluorescent dyes. S. 

tokodaii BPL (233 aa) carries three cysteine residues (Cys3, Cys204, and Cys219), and from 

the model structure of the complex, it was deduced that these cysteine residues are not 

responsible for biotinylation, and thus are amenable to modification (Fig. 4c). To enhance the 

sensitivity of the labeling system, we constructed a mutated BPL with an additional cysteine 

residue [18]. Specifically, Arg152 located on the opposite side of the binding interface with 

BCCP was converted to a cysteine residue (Fig. 4c). This mutant of BPL was modified with 

maleimide derivatives of fluorescein or DyLight547; the extent of labeling was estimated to be 

3.6 dyes per BPL molecule on average. As expected, the modified BPLs were found to retain 

the enzymatic activity and high binding affinity to holo-BCCP [18], and thus these modified 

BPLs were used for labeling of the target proteins.  

 

Fluorescence labeling of proteins in living cells based on S. tokodaii biotinylation 
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To assess the feasibility of the S. tokodaii biotinylation-based labeling system in living cells, 

we first conducted labeling of a membrane protein on the cell surface by using BPL modified 

with synthetic fluorophores [18]. Specifically, bradykinin B2 receptor (B2R) was selected as a 

target membrane protein. BCCP was fused to the N-terminus of B2R, which is exposed to the 

outer side of the plasma membrane. The resulting fusion protein (BCCP-B2R) (Fig. 4d) was 

expressed in mammalian cells, and labeled with BPL carrying multiple copies of fluorescein or 

DyLight547. After washing, the cells were observed by confocal microscopy. As a result, 

fluorescence from each dye was clearly observed on the surface of the cells, showing the 

specific labeling of BCCP-B2R with BPL carrying fluorescent dyes. In addition, we succeeded 

in monitoring the internalization of the labeled BCCP-B2R upon addition of its agonist, 

bradykinin. 

Next, we applied S. tokodaii biotinylation to the labeling of proteins inside living cells. 

Here, BPL carrying GFP on its N-terminus (GFP-BPL) was used as a fluorescent probe, which 

was expressed in the cells by introducing its expression plasmid by DNA transfection (Fig. 4b). 

With GFP-BPL, B2R carrying BCCP on its C-terminus (B2R-BCCP) (Fig. 4d) was labeled on 

the inner side of the plasma membrane [18]. In the cells expressing both fusion proteins, 

fluorescence from GFP was clearly observed along the periphery of the cells by confocal 

microscopy. On the other hand, fluorescence was observed from the whole area of the cells, 

when B2R not carrying BCCP was coexpressed with GFP-BPL. From these results, it was found 

that the target protein can be labeled through association of BPL with BCCP inside the cells. 

To further assess the characteristics of labeling with BPL fused to fluorescent protein, the 

cytoskeletal proteins, -actin and -tubulin, were selected as target proteins and labeled in the 

living cells [20]. The -actin carrying BCCP on its N-terminus (BCCP-Actin) (Fig. 4d) was 

coexpressed with GFP-BPL, and the cells expressing both fusion proteins were observed by 

confocal microscopy. As expected, filamentary structures derived from the actin filaments were 
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clearly observed in the cells (Fig. 5). This result indicates that BCCP-Actin was labeled by 

GFP-BPL and the labeled BCCP-Actin molecules were successfully incorporated into the actin 

filaments. We also succeeded in observation of the actin filaments by labeling BCCP-Actin with 

BPL carrying a red fluorescent protein, DsRed, as a fluorescent probe, demonstrating that this 

labeling system allows for attaching different types of fluorescent proteins to a target protein 

without reconstructing the expression system for that protein. This is regarded as a practical 

advantage over the conventional labeling system with fluorescent proteins, in which fluorescent 

proteins are directly attached to the target proteins. 

We also attempted the labeling of -actin carrying BCCP on its C-terminus (Actin-BCCP) 

(Fig. 4d) with GFP-BPL. In this case, filamentary structures were not observed in the 

fluorescence image, but granular spots were observed in the cytosol [20]. Same behavior was 

observed in the cells expressing a -actin fusion protein in which GFP is directly attached to 

the C-terminus of -actin. These results indicate that attaching the protein to the C-terminus of 

-actin inhibits the formation of actin filaments. This behavior seems to be reasonable, 

considering the fact that the C-terminus of -actin is located on the binding interface between 

the -actin molecules in actin filaments [59]. 

We next attempted labeling of another cytoskeletal protein, -tubulin, with our labeling 

system [20]. Thus, -tubulin carrying BCCP on its N-terminus (BCCP-Tubulin) (Fig. 4d) was 

coexpressed with GFP-BPL, and the cells expressing both fusion proteins were observed by 

confocal microscopy. As a result, filamentary structures were only partially observed in the 

fluorescence image, indicating that BCCP-Tubulin complexed with GFP-BPL was not 

effectively integrated into the microtubules. We inferred that this is derived from the fact that 

the N-terminus of -tubulin is located on the inner face of a microtubule and thus the BCCP 

moiety of BCCP-Tubulin is displayed on the inner face when it is integrated into a microtubule. 

In this case, integration of BCCP-Tubulin complexed with GFP-BPL into a microtubule might 
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be impeded due to the steric hindrance. 

Thus, we attempted labeling of -tubulin carrying BCCP on its C-terminus (Tubulin-

BCCP) (Fig. 4d); the C-terminus of -tubulin is located on the outer surface of the microtubule. 

In the cells coexpressing Tubulin-BCCP and GFP-BPL, fine filamentary structures derived 

from the microtubules were clearly observed [20], showing that Tubulin-BCCP was labeled by 

GFP-BPL and that the labeled Tubulin-BCCP molecules were successfully incorporated into 

the microtubules. On the other hand, in the cells expressing -tubulin directly fused to GFP on 

its C-terminus, filamentary structures were scarcely observed [20]; the same result was 

observed in the previous study [60]. This demonstrates that our approach has an advantage over 

the conventional labeling method with fluorescent proteins. The origin of this advantage has 

not yet been clarified, but we speculate that the BCCP moiety functions as a rigid spacer 

between GFP-BPL and -tubulin to avoid the steric hindrance that accompanies the formation 

of microtubules. 

 

Fluorescence labeling of the nuclear envelope based on S. tokodaii biotinylation 

Protein labeling based on S. tokodaii was recently applied to labeling of the nuclear envelop 

(NE) in living cells [21]. Labeling of the NE is mostly conducted with the inner nuclear 

membrane (INM) proteins fused to fluorescent proteins as markers [61-63]. However, in these 

methods, the INM proteins interact with various components in the nucleus, and as a result, 

expression of the INM proteins-markers could perturb the functions of the nucleus. Thus, we 

developed a labeling method for the NE that does not rely on the INM proteins, by exploiting 

S. tokodaii biotinylation. Here, labeling of the NE is accomplished by trapping GFP on the INM 

based on the interaction between BPL and BCCP (Fig. 6). 

Specifically, BPL was fused to the C-terminus of a single transmembrane domain (TM) of 

the human platelet-derived growth factor receptor (Fig. 6a). The resulting fusion protein, TM-
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BPL, was expressed in mammalian cells, with the BPL moiety being exposed to the surface of 

the membrane facing the cytoplasm or nucleoplasm. On the other hand, BCCP was fused to the 

N-terminus of GFP carrying the nuclear localization signal (NLS) (Fig. 6a), and the resulting 

fusion protein, BCCP-GFP-NLS, was coexpressed with TM-BPL in mammalian cells. In the 

cells expressing both fusion proteins, BCCP-GFP-NLS is transferred into the nucleus and it is 

then trapped on the INM through the complexation between BPL and BCCP moieties via 

biotinylation, resulting in the selective labeling of the NE (Fig. 6b). With this method, we 

succeeded in observing the breakdown and reformation of the NE during mitosis [21]. In 

addition, the difference in timing of the formation of the NE and the nuclear lamina was clearly 

visualized by simultaneous labeling of both components. 

In the NE labeling based on S. tokodaii biotinylation, a characteristic of the molecular 

transport in the periphery of the nuclear pore complex (NPC) is utilized to enhance the 

selectivity of the labeling (Fig. 6c). While the soluble proteins move into the nucleus through 

the central pore of the NPC, the membrane proteins move through the narrow channel at the 

boundary between the NPC and the nuclear membrane. Here, there is a size constraint in the 

transport of the membrane proteins; if the size of domains in the cytoplasmic/nucleoplasmic 

side of the membrane proteins exceeds 60 kDa, they cannot pass through this channel [64,65]. 

In this sense, TM-BPL can pass through the channel because the molecular size of BPL is 27 

kDa. However, when TM-BPL is complexed with BCCP-GFP-NLS on the INM, its entire size 

in the nucleoplasmic side exceeds 60 kDa and thus the complex cannot pass through the channel, 

which results in the retention and concentration of the label on the INM. 

One mechanism remains to be clarified in this NE labeling system: the relocalization of 

the GFP signal on the newly formed NE during cell division. Time-lapse imaging of the cells 

during mitosis revealed that the complex of BCCP-GPF-NLS with TM-BPL formed on the INM 

of the original cells is relocalized to the INM of the daughter cells; this behavior cannot be 
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explained by the mechanism mentioned above. We envisage that this fact contains important 

knowledge regarding the mechanism of the NE reformation, and a further investigation is now 

underway. 

 

Conclusion 

In this review, I summarized the enzyme-based methods of protein-labeling, which have been 

developed to complement the labeling methods using fluorescent proteins. As described above, 

most of the enzyme-based labeling methods can be classified into two groups: the methods 

based on peptide-tags and those based on enzyme-tags. Both approaches allow for attachment 

of various synthetic labels to the target proteins by taking advantage of the highly specific 

interactions between the enzymes and their substrates. The advantage of the former methods is 

that the short peptides are used as a tag; however, the application to living cells is mostly limited 

to the cellular surface. On the other hand, the latter methods enable labeling of proteins inside 

the living cells. In spite of the disadvantage of the large size of the tags, at present, these are 

considered to be the most practical methods to complement the fluorescent protein-based 

techniques. 

I also summarized the labeling method based on S. tokodaii biotinylation. In this method, 

the substrate protein and the enzyme carrying fluorophores are utilized as the tag and 

fluorescent probes, respectively. Thus, this method is regarded as distinct from the other 

enzyme-based labeling methods. One of the characteristics of this method is that multiple copies 

of fluorophores can be attached to the target protein by using BPL modified with the synthetic 

fluorescent dyes, resulting in highly sensitive fluorescence detection; in most of the enzyme-

based labeling methods, only a single fluorophore is attached to the target protein. The method 

based on S. tokodaii biotinylation also enables the labeling of proteins inside living cells by 

using BPL fused to fluorescent proteins as a probe. In this approach, different types of 
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fluorescent proteins can be attached to the target proteins without reconstructing the expression 

systems for those target proteins. In addition, the timing of labeling could be controlled in 

principle because fluorescent proteins are not directly attached to the target proteins. By taking 

advantage of this property, we are now constructing a labeling system in which the timing of 

labeling can be controlled by adjusting the expression of the fluorescent probes in the cells. 

The S. tokodaii biotinylation can also be applied to labeling of a cellular organelle by using 

it to control the localization of the fluorescent protein, as exemplified in labeling of the NE. 

From this point of view, an approach which combines S. tokodaii biotinylation with fluorescent 

proteins would be considered a functional extension of the fluorescent protein-based labeling. 

In the future, we anticipate that such an approach will be used for the labeling of different 

cellular components and the exploration of various cellular mechanisms. 
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Figure legends 

 

Fig. 1. Protein labeling based on the enzymatic reactions. (a) A target protein is fused to a 

peptide, and a substrate carrying an appropriate label is attached to the peptide tag through the 

post-translational modification reaction with the enzyme. (b) A target protein is fused to an 

enzyme, and the substrate carrying an appropriate label is attached to the tag through the self-

modification reaction of the enzyme. (c) A target protein is fused to a substrate protein, and the 

enzyme carrying an appropriate label is attached to the protein tag through complexation 

between the enzyme and the substrate protein following the post-translational modification 

reaction. 

 

Fig. 2. Protein labeling based on post-translation modification to the peptide tags. (a) A target 

protein is fused to a pentapeptide LPXTG, which is labeled with a modified oligoglycine 

peptide by an enzyme reaction with SrtA. (b) A target protein is fused to PCP, ACP or a peptide 

tag, which is labeled with a coenzyme A derivative by an enzyme reaction with PPTase (Sfp or 

AcpS). (c) A target protein is fused to the LAP-tag, which is labeled with an alkylazide by an 

enzyme reaction with LplA, and the alkyl azide moiety is then derivatized with a cyclooctyne-

fluorophore conjugate. 

 

Fig. 3. Protein labeling based on the enzyme-tags. (a) A target protein is fused to the mutated 

AGT (SNAP-tag or CLIP-tag), which is labeled with a benzyl guanine (BG) or benzyl cytosine 

(BC) derivative via the self-modification reaction of the SNAP-tag or the CLIP-tag. (b) A target 

protein is fused to the mutated HLD (HaloTag), which is labeled with a modified aliphatic 

chloride via the self-modification reaction of the HaloTag. 
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Fig. 4. A labeling system based on S. tokodaii biotinylation. (a) A target protein fused to BCCP 

is labeled by BPL modified with synthetic fluorophores through biotinylation. (b) A target 

protein fused to BCCP is labeled by BPL fused to a fluorescent protein coexpressed in the cell 

through biotinylation. (c) A model structure of S. tokodaii BPL complexed with the truncated 

BCCP lacking the N-terminal 100 amino acid residues [18]. BPL and BCCP are shown in green 

and blue, respectively. Biotin, cysteine residues, Arg152 of BPL, and Lys135 of BCCP to be 

biotinylated are shown with space-filling models. N and C represent the N- and C-termini of 

the truncated BCCP, respectively. (d) Domain structures of the target proteins fused to BCCP. 

 

Fig. 5. A typical fluorescence image of cells coexpressing BCCP-Actin and GFP-BPL. HeLa 

cells were transfected with the expression plasmids for BCCP-Actin and GFP-BPL. Twenty-

four hours after transfection, the cells were imaged by confocal laser scanning microscopy. The 

left and right panels represent a fluorescence image derived from GFP and a differential 

interference contrast image of cells, respectively. Scale bars represent 10 m. 

 

Fig. 6. Fluorescence labeling of the NE based on S. tokodaii biotinylation. (a) Domain structures 

of TM-BPL and BCCP-GFP-NLS. (b) Schematic illustration of the cell coexpressing TM-BPL 

and BCCP-GFP-NLS. TM-BPL is distributed in the membrane network of the cell including 

the INM. BCCP-GFP-NLS is trapped on the INM through the complexation between BPL and 

BCCP moieties. ER and ONM represent the endoplasmic reticulum and the outer nuclear 

membrane, respectively. (c) Movement of the membrane protein in the periphery of the NPC. 

TM-BPL can travel between the INM and the ONM when it is not complexed with BCCP-GFP-

NLS; however, upon complexation with BCCP-GFP-NLS on the INM, it cannot move to the 

ONM because of the size constraint of the channel at the boundary between the nuclear 

membrane and the NPC.  
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Fig. 1. S. Sueda 
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Fig. 2. S. Sueda 
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Fig. 3. S. Sueda 
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Fig. 4. S. Sueda 
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Fig. 5. S. Sueda 
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Fig. 6. S. Sueda 

 

 

 

 


