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Abstract

Owing the epidemic of the novel coronavirus disease 2019 (COVID-19), chest X-ray com-

puted tomography imaging is being used for effectively screening COVID-19 patients. The

development of computer-aided systems based on deep neural networks (DNNs) has

become an advanced open source to rapidly and accurately detect COVID-19 cases

because the need for expert radiologists, who are limited in number, forms a bottleneck for

screening. However, thus far, the vulnerability of DNN-based systems has been poorly eval-

uated, although realistic and high-risk attacks using universal adversarial perturbation

(UAP), a single (input image agnostic) perturbation that can induce DNN failure in most clas-

sification tasks, are available. Thus, we focus on representative DNN models for detecting

COVID-19 cases from chest X-ray images and evaluate their vulnerability to UAPs. We con-

sider non-targeted UAPs, which cause a task failure, resulting in an input being assigned an

incorrect label, and targeted UAPs, which cause the DNN to classify an input into a specific

class. The results demonstrate that the models are vulnerable to non-targeted and targeted

UAPs, even in the case of small UAPs. In particular, the 2% norm of the UAPs to the aver-

age norm of an image in the image dataset achieves >85% and >90% success rates for the

non-targeted and targeted attacks, respectively. Owing to the non-targeted UAPs, the DNN

models judge most chest X-ray images as COVID-19 cases. The targeted UAPs allow the

DNN models to classify most chest X-ray images into a specified target class. The results

indicate that careful consideration is required in practical applications of DNNs to COVID-19

diagnosis; in particular, they emphasize the need for strategies to address security con-

cerns. As an example, we show that iterative fine-tuning of DNN models using UAPs

improves the robustness of DNN models against UAPs.

Introduction

Coronavirus disease 2019 (COVID-19) [1] is an infectious disease caused by the coronavirus,

called severe acute respiratory syndrome coronavirus 2. The COVID-19 epidemic started from

Wuhan, China [2], and has had a severe impact on public health and the economy globally [3].

To reduce the spread of this epidemic, effective screening of COVID-19 patients is required.
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Thus, positive real-time polymerase chain reaction (PCR) tests are mainly used [4]; however,

they are often time consuming and laborious and involve complicated manual processes.

Chest radiography, especially chest X-ray computed tomography (CT) imaging, becomes an

alternative screening method [5] because patients present abnormalities in chest radiography

images, which are a characteristic of those infected with COVID-19 [2, 6]. Moreover, there are

advantages to leveraging chest X-ray imaging for COVID-19 screening amid the pandemic in

terms of rapid triaging, portability, availability, and accessibility [7]. However, the visual differ-

ences in chest X-ray images among COVID-19-associated pneumonia, non-COVID-19 pneu-

monia, and no pneumonia are subtle; thus, the need for expert radiologists, who are limited in

number, forms a bottleneck for diagnoses based on radiography images. To overcome this lim-

itation, computer-aided systems that can aid radiologists in more rapidly and accurately inter-

preting radiography images to detect COVID-19 cases are highly required [7, 8]; in particular,

deep neural networks (DNNs) are often used for this purpose.

DNNs are widely used for image classification, a task in which an input image is assigned a

class from a fixed set of classes as well as medical science [9, 10], including diagnoses based on

radiography images. Specifically, DNN-based systems can detect subtle visual differences in

the images; in particular, a DNN can accurately distinguish bacterial and viral pneumonia in

chest X-ray images [11]. Inspired by these previous studies, many researchers have constructed

large-scale datasets of chest radiography images on COVID-19 [7, 8, 12, 13] and have proposed

DNN-based systems for screening COVID-19 cases from these images [8, 14–17]. However,

DNN-based systems in medical science have generally been closed source and unavailable to

the research community for deeper understanding and extension. Thus, Wang et al. [7] pro-

posed COVID-Net, a deep convolutional neural network design intended to detect COVID-19

cases from chest X-ray images. COVID-Net is one of the first open-source network designs for

COVID-19 detection. As the authors mentioned [7], this study will be leveraged and built

upon by both researchers and citizen data scientists to accelerate the development of highly

accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate the

treatment of the disease. The COVID-Net models are intended to be used as reference models;

in fact, several DNN-based systems [18–20] for detecting COVID-19 cases have already been

proposed, inspired by the COVID-Net study.

However, previous studies have poorly evaluated the vulnerabilities in DNNs, although

DNNs are known to be vulnerable to adversarial examples [21, 22], which are input images

that cause misclassifications by DNNs and are usually generated by adding specific, impercep-

tible perturbations to original input images that have been correctly classified using DNNs.

Adversaries can easily attack open-sourced software, such as COVID-Net because they can

access the model parameters and training data; thus, it is important to evaluate the reliability

and safety of DNNs against adversarial attacks.

These adversarial attacks may be less useful for adversaries because they are input image

dependent (i.e., an individual adversarial perturbation is used such that each input image is

misclassified). However, more realistic adversarial attacks have been proposed in recent years.

Notably, a single perturbation (called universal adversarial perturbation, UAP, as they are

image agnostic) [23] that can induce DNN failure in most image classification tasks also exists.

UAPs are difficult to detect because such perturbations are extremely small and, hence, do not

significantly affect data distributions. UAP-based adversarial attacks can be more straightfor-

ward to implement by adversaries in real-world environments. A previous study [23] consid-

ered only UAPs for non-targeted attacks, which cause misclassification (i.e., a task failure

resulting in an input image being assigned an incorrect class). However, we previously

extended the algorithm for generating UAPs to enable targeted attacks [24], causing the DNN

to classify an input image into a specific class. The existence of adversarial examples questions
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the generalization ability of DNNs, reduces model interpretability, and limits the applications

of deep learning in safety- and security-critical environments [25]. Specifically, vulnerability is

a severe problem in medical diagnosis [26]. Thus, it is important to evaluate the vulnerability

of the proposed DNN-based systems to adversarial attacks (attacks based on UAPs, in particu-

lar) in practical applications. In addition, defense strategies against adversarial attacks (i.e.,

adversarial defense [22]) are required.

In this study, we focus on the COVID-Net models, which are representative models for

detecting COVID-19 cases from chest X-ray images, and aim to evaluate the vulnerability of

DNNs to adversarial attacks. Specifically, the vulnerability to non-targeted and targeted

attacks, based on UAPs, is investigated. Moreover, adversarial defense is considered; in partic-

ular, we evaluate to what extent the robustness of COVID-Net models to non-targeted and tar-

geted UAPs increases using adversarial retraining [23, 27] (i.e., fine-tuning with adversarial

images).

Material and methods

COVID-Net models

We forked the COVID-Net repository (github.com/lindawangg/COVID-Net) on May 1, 2020,

and obtained two DNN models for detecting COVID-19 cases from chest X-ray images: COV-

IDNet-CXR Small and COVIDNet-CXR Large. Moreover, we downloaded the COVIDx data-

set, a collection of chest radiography images from several open-source chest radiography

datasets, on May 1, 2020, according to the description in the COVID-Net repository. The

chest X-ray images in the dataset were classified into three classes: normal (no pneumonia),

pneumonia (non-COVID-19 pneumonia; e.g., viral and bacterial pneumonia), and COVID-19
(COVID-19 viral pneumonia). The dataset comprised 13,569 training images (7,966 normal
images, 5,451 pneumonia images, and 152 COVID-19 images) and 231 test images (100 normal
images, 100 pneumonia images, and 31 COVID-19 images).

Universal adversarial perturbations

The UAPs for non-targeted and targeted attacks were generated using simple iterative algo-

rithms [23, 28], whose details are described in [23, 28]. We used the non-targeted UAP algo-

rithm available in the Adversarial Robustness 360 Toolbox (ART) [29] (version 1.0; github.

com/IBM/adversarial-robustness-toolbox). The targeted UAP algorithm was implemented by

modifying the non-targeted UAP algorithm in the ART in our previous study [24] (github.

com/hkthirano/targeted_UAP_CIFAR10).

The algorithms consider a classifier, C(x), which returns the class or label with the highest

confidence score for an input image, x. The algorithm starts with ρ = 0 (no perturbation) and

iteratively updates the UAP, ρ, under the constraint that the Lp norm of the perturbation is

equal to or less than a small ξ value (i.e., kρkp� ξ), by additively obtaining an adversarial per-

turbation for an input image, x, which is randomly selected from an input image set, X, with-

out replacement. These iterative updates continue until the number of iterations reaches a

maximum imax.

We used the fast gradient sign method (FGSM) [21] to obtain an adversarial perturbation

for the input image, instead of the original UAP algorithm [23], which uses the DeepFool

method [30]. This is because FGSM is used for both non-targeted and targeted attacks, and

DeepFool requires a higher computational cost than FGSM and only generates a non-targeted

adversarial example for the input image. FGSM generates the adversarial perturbation, ρ̂, for x
using gradientrxL(x, y) of the loss function at the specified image x and class y with respect to

the pixels [21]. For the L1 norm, a non-targeted perturbation that causes misclassification is
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computed as ρ̂ ¼ ϵ � signðrxLðx;CðxÞÞ), whereas a targeted perturbation that causes C classi-

fication of an image x into class y is obtained as ρ̂ ¼ � ϵ � signðrxLðx; yÞÞ, where ϵ (> 0) is the

attack strength. For the L1 and L2 norms, a non-targeted perturbation is computed as

ρ̂ ¼ ϵ � rxLðx;CðxÞÞ= k rxLðx;CðxÞÞp k, whereas a targeted perturbation is obtained as

ρ̂ ¼ � ϵ � rxLðx; yÞ=k rxLðx; yÞ kp.

In the algorithms, FGSM is performed based on the output C(x + ρ) of the classifier for the

perturbed image x + ρ, at each iteration step. For non-targeted (targeted) attacks, an adversar-

ial perturbation, ρ̂, for x + ρ is obtained using the FGSM if C(x + ρ) = C(x) � (C(x + ρ) 6¼ y).

After generating the adversarial example (i.e., xadv  xþ ρþ ρ̂) at this step, the perturbation

ρ is updated if C(xadv) 6¼ C(x) (C(xadv) = y) for non-targeted (targeted) attacks. When updating

ρ, a projection function project, (x, p, ξ), is used to satisfy the constraint that kρkp� ξ: ρ 
project(xadv − x, p, ξ), where project(x, p, ξ) = arg minx0kx − x0k2 subject to kρkp� ξ.

The non-targeted and targeted UAPs were generated using 13,569 training images in the

COVIDx dataset. Parameter ϵ was set to 0.001; the cases where p = 2 and1 were considered.

Meanwhile, parameter ξ was determined based on the ratio z of the Lp norm of the UAP to the

average Lp norm of an image in the COVIDx dataset. Cases in which z = 1% and 2% (i.e.,

almost imperceptible perpetuations) were considered. The average L1 and L2 norms were 237

and 32,589, respectively; imax was set to 15.

To compare the performance of the generated UAPs with that of random controls, we also

generated random vectors (random UAPs) sampled uniformly from the sphere of a specified

radius [23].

Vulnerability evaluation

To evaluate the vulnerability of the DNN models to UAPs, we used the fooling rate, Rf, and tar-

geted the attack success rate, Rs, of non-targeted and targeted attacks, respectively. The Rf of an

image set is defined as the proportion of images that were not classified into their associated

actual labels to all images in the set. The Rs of an image set is the proportion of adversarial images

classified into the target class to all images in the set. Additionally, we obtained the confusion

matrices to evaluate the change in prediction owing to the UAPs for each class (infection type).

Adversarial retraining

We performed adversarial retraining to increase the robustness of the COVID-Net models to

UAPs [23, 27]; in particular, the models were fine-tuned with adversarial images, and the pro-

cedure was described in a previous study [23]. A brief description is provided below. 1) Ten

UAPs against a DNN model were generated using the algorithm (for generating a non-tar-

geted or targeted UAP) (see Materials and methods section) with the (clean) training image

set. 2) A modified training image set was obtained by randomly selecting half of the training

images and combining them with the rest, where each image was perturbed by a UAP ran-

domly selected from 10 UAPs. 3) The model was fine-tuned by performing five extra epochs of

training on the modified training image set. 4) A new UAP (against the fine-tuned model) was

generated using the algorithm with the training image set. 5) Rf and Rs of the UAP for the test

images were then computed. Steps 1)–5) were repeated five times.

Results

Performance of COVID-Net models

The test accuracies of the COVIDNet-CXR Small and COVIDNet-CXR Large models were

92.6% and 94.4%, respectively, and their training accuracies were 95.8% and 94.1%,
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respectively. As shown in the COVID-Net study [7], we also confirmed that the COVID-Net

models achieved good accuracies.

Vulnerability to non-targeted universal adversarial perturbations

However, we found that both COVIDNet-CXR Small and COVIDNet-CXR Large models

were vulnerable to non-targeted UAPs (Table 1). Specifically, the fooling rate, Rf, of the UAPs

with z = 1% for the test image set was 81.0% at most. A higher z led to a higher Rf. We observed

that the Rf of the UAP with z = 2% for the test image set was between 85.7% and 87.4%. Fur-

thermore, the random UAPs with z = 2% misclassified the models; specifically, their Rf were

up to 22.1%. The change in Rf did not exhibit significant dependence on the norm types (p = 2

or1). The difference in Rf for the test image set between p = 2 and p =1 was up to 7%, the

model and the other parameters being equal. Rf of the UAP against the COVIDNet-CXR Small

model was lower than that of the COVIDNet-CXR Large model in the case of z = 1%, the

model and the other parameters being equal; however, no remarkable difference in Rf between

these models was observed in the case of z = 2%. The Rf of the training image set was higher

than that of the test image set because the UAPs were generated based on the training image

set.

Owing to non-targeted UAPs, the models classified most images into COVID-19. Fig 1

shows the confusion matrices for the COVID-Net models attacked using non-targeted UAPs

with p =1. For the UAPs with z = 1%, the COVIDNet-CXR Small model classified >70% of

the normal and pneumonia test images into COVID-19. Moreover, the COVIDNet-CXR Large

model classified approximately 90% of the normal and pneumonia images into COVID-19. For

a higher z, this tendency was more significant. In particular, the COVIDNet-CXR Small and

Large models evaluated almost all normal and pneumonia test images as COVID-19 cases

when z = 2%. Additionally, the tendency of adversarial images to be classified into COVID-19
was observed when considering UAPs with p = 2 and the training image set.

The non-targeted UAPs with z = 1% and z = 2% were almost imperceptible. Fig 2 shows the

non-targeted UAPs p =1 against the COVID-Net models and their adversarial images. The

models classified the original X-ray images (left panels in Fig 2) and correctly predicted their

actual classes; however, they evaluated all adversarial images as COVID-19 cases owing to the

non-targeted UAPs. Similarly, the non-targeted UAPs p = 2 were almost imperceptible.

Vulnerability to targeted universal adversarial perturbations

Furthermore, we found that both the COVIDNet-CXR Small model (Table 2) and COVID-

Net-CXR Large model (Table 3) were vulnerable to targeted UAPs. Subsequently, we consid-

ered the effect of the targeted attacks using UAPs in each class: normal, pneumonia, and

Table 1. Fooling rates Rf (%) of non-targeted UAPs against the COVID-Net models.

p z COVIDNet-CXR Small COVIDNet-CXR Large

Training Test Training Test

2 1% 61.4 (1.3) 58.0 (0.4) 90.0 (2.5) 81.0 (3.9)

2% 98.5 (12.6) 87.4 (16.0) 97.4 (17.9) 85.7 (22.1)

1 1% 70.8 (1.0) 64.9 (1.3) 84.8 (2.0) 77.1 (3.5)

2% 98.5 (9.4) 87.4 (13.4) 97.4 (14.3) 85.7 (19.9)

The Rf of the training and test images are presented. The values in the brackets indicate Rf random UAPs (random

controls).

https://doi.org/10.1371/journal.pone.0243963.t001
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COVID-19. When z = 1%, the targeted attack success rates Rs for the test images were between

approximately 60% and 85% and between approximately 55% and 95% for the COVIDNet-

CXR Small and Large models, respectively. Conversely, the Rs of the training images was

between approximately 65% and 90% and between approximately 55% and 90%. Meanwhile,

the Rs of the UAP with p = 2 was higher than that of the UAP with p =1, the model, and the

other parameters being equal. Moreover, no remarkable difference in the Rs was observed

between the target classes; however, the Rs of the target attacks to COVID-19 were relatively

high in the COVIDNet-CXR Large model. Thus, a higher z led to a higher Rs. When z = 2%,

the Rs values for both the training and test images were approximately 100%, regardless of the

Fig 1. Confusion matrices for the COVID-Net models attacked using the non-targeted UAPs on the test images. p =1. Left and right

panels represent the COVIDNet-CXR Small and COVIDNet-CXR Large models, respectively. The top and bottom panels indicate z = 1% and z

= 2%, respectively.

https://doi.org/10.1371/journal.pone.0243963.g001
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target classes. For the targeted attacks to normal and pneumonia, the Rs of random UAPs for

the test images were also relatively high; in particular, they were between approximately 35%

and 45% and between approximately 30% and 45% for the COVIDNet-CXR Small model and

COVIDNet-CXR Large model, respectively.

It was difficult to classify the COVID-19 images into another targeted class (normal or pneu-
monia) when the UAPs were relatively weak (i.e., z = 1%). Fig 3 shows the confusion matrices

for the COVIDNet-CXR Small model attacked using targeted UAPs with p =1. For both tar-

geted attacks to normal and pneumonia, the model correctly predicted almost all COVID-19
images as COVID-19 cases, despite the targeted attacks. Conversely, approximately 50% of

Fig 2. Non-targeted UAPs with p =1 against the COVID-Net models and their adversarial images. UAPs (top panels) with z = 1% and z = 2% are shown. The

models correctly classified the original images (left panels) into their actual labels. The predicted labels of all adversarial images are of COVID-19. Note that the UAPs are

emphatically displayed for clarity; in particular, each UAP is scaled by a maximum of 1 and a minimum of 0.

https://doi.org/10.1371/journal.pone.0243963.g002
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normal (pneumonia) images were classified as targeted class pneumonia (normal). However,

for a higher z (i.e., z = 2%), the targeted attacks of the COVID-19 images were successful; in

particular, almost all COVID-19 images were classified into the target class (normal or pneu-
monia) because of the UAP. The classification of the images into COVID-19 using targeted

UAPs was easier than that into the other classes. Owing to the UAP with z = 1%, the model

judged approximately 80% of normal and pneumonia images as COVID-19 cases, respectively.

Similar tendencies were observed in the COVIDNet-CXR Large model for targeted UAPs with

p = 2 and on the training image set.

The targeted UAPs were also almost imperceptible. Fig 4 shows the targeted UAPs with p =

1 and z = 2% against the COVIDNet-CXR Small model and their adversarial images. The

model classified the original images (left panels in Fig 4) and correctly predicted their actual

classes (source classes); however, it classified the adversarial images into each target class

because of the targeted UAPs. The UAPs with z = 1% were also imperceptible. Additionally,

imperceptibility was confirmed in the UAPs with p = 2 and those against the COVIDNet-CXR

Large model.

Effect of adversarial retraining

Adversarial retraining is often used to avoid adversarial attacks. In this study, we investigated

the extent to which adversarial retraining increases the robustness of the COVIDNet-CXR

Small model to non-targeted and targeted UAPs with p =1. Adversarial retraining did not

affect the test accuracy in either non-targeted or targeted cases; specifically, the accuracy on

the (clean) test images remained constant at approximately 90% (Fig 5A and 5B).

For non-targeted attacks using UAPs with z = 2%, Rf for the test images declined with the

iterations for adversarial retraining; in particular, it was 22.1% after five iterations (Fig 5A).

The confusion matrix (Fig 5C) for the fine-tuned model obtained after five iterations indicates

that the normal and COVID-19 images were almost correctly classified despite the non-tar-

geted UAPs. However, 45% of the pneumonia images were still misclassified.

Table 2. Targeted attack success rate Rs (%) of targeted UAPs against the COVIDNet-CXR Small model to each target class.

p z Normal Pneumonia COVID-19
Training Test Training Test Training Test

2 1% 88.1 (60.5) 78.4 (46.3) 76.7 (37.5) 71.4 (41.6) 68.1 (1.9) 74.0 (12.1)

2% 99.4 (54.4) 97.8 (39.0) 99.4 (33.0) 98.7 (35.9) 100 (12.6) 99.1 (25.1)

1 1% 79.5 (60.7) 64.9 (45.9) 66.5 (37.5) 61.9 (41.6) 78.8 (1.8) 84.0 (12.6)

2% 98.7 (56.3) 96.1 (39.4) 99.5 (34.1) 98.3 (37.7) 100 (9.5) 100 (22.9)

The Rs for the training and test images are shown in Table 2. The values in brackets are Rs random UAPs (random controls).

https://doi.org/10.1371/journal.pone.0243963.t002

Table 3. Targeted attack success rates Rs (%) of targeted UAPs against the COVIDNet-CXR Large model to each target class.

p z Normal Pneumonia COVID-19
Training Test Training Test Training Test

2 1% 85.2 (58.9) 71.4 (44.2) 72.6 (37.0) 66.2 (39.0) 92.4 (4.0) 95.2 (16.9)

2% 99.2 (50.7) 98.3 (34.6) 99.5 (30.6) 98.7 (32.9) 100 (18.7) 100 (32.5)

1 1% 71.0 (59.2) 56.7 (44.2) 55.4 (37.0) 53.2 (40.3) 88.4 (3.7) 92.2 (15.6)

2% 97.9 (52.7) 93.9 (35.9) 99.4 (32.3) 98.3 (33.8) 100 (14.9) 100 (30.3)

The Rs for the training and test images are shown in Table 3. The values in brackets are Rs random UAPs (random controls).

https://doi.org/10.1371/journal.pone.0243963.t003
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For targeted attacks to COVID-19 using UAPs with z = 1%, the Rs for the test images

decreased with the iterations for adversarial retraining (Fig 5B); specifically, it was 16.5% after

five iterations. The confusion matrix (Fig 5D) for the fine-tuned model obtained after five iter-

ations indicates that the normal and COVID-19 images were almost correctly classified despite

the targeted UAPs. However, 15% of the pneumonia images were still misclassified as COVID-
19.

Discussion

The COVID-Net models were vulnerable to small UAPs; moreover, they were slightly less

robust to random UAPs. The results indicated that the DNN-based systems were easy to mis-

lead. Adversaries can result in failing the DNN-based systems at lower costs (i.e., using a single

perturbation); specifically, they do not need to consider the distribution and diversity of input

images when attacking the DNNs using UAPs, as UPAs are image agnostic. Considering that

vulnerability to UAPs is observed in various DNN architectures [23, 24], they are expected to

exist universally in DNN-based systems for detecting COVID-19 cases.

For non-targeted attacks with UAPs, the COVID-Net models predicted most of the chest

X-ray images as COVID-19 cases because of the UAPs (Fig 1), although the UAPs were almost

Fig 3. Confusion matrices for the COVIDNet-CXR Small model attacked with the targeted UAPs with p =1 on the test images. The left, middle, and right panels

represent the targeted classes: normal, pneumonia, and COVID-19, respectively. The top and bottom panels indicate z = 1% and z = 2%, respectively.

https://doi.org/10.1371/journal.pone.0243963.g003
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imperceptible (Fig 2). This result is consistent with the tendency of DNN models to classify

most inputs into a few specific classes because of non-targeted UAPs (i.e., existence of domi-

nant labels in non-targeted attacks based on UAPs) [23]. Moreover, this indicates that the

models provide false positives in COVID-19 diagnosis, which may cause unwanted mental

Fig 4. Targeted UAPs (top panel) with z = 2% and p =1 against the COVIDNet-CXR Small model and their adversarial images. Note that UAPs are emphatically

displayed for clarity; in particular, each UAP is scaled by a maximum of 1 and a minimum of 0.

https://doi.org/10.1371/journal.pone.0243963.g004
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stress to patients and complicate the estimation of the number of COVID-19 cases. The domi-

nant label of COVID-19 observed in this study may be because the COVIDx dataset was

imbalanced. The images in COVID-19 were predominantly fewer than those in normal and

pneumonia cases. The algorithm considers maximizing the fooling rate; thus, a relatively large

fooling rate is achieved when all inputs are classified into COVID-19 because of UAPs. In addi-

tion, the observed dominant label may be because the losses were computed by weighting the

COVID-19 class to consider the imbalanced dataset. The decision for the COVID-19 class

might be more susceptible to changes in pixel values than that for the other classes.

The relatively easy targeted attacks on COVID-19 (Fig 3) may be because COVID-19 was

the dominant label. Moreover, targeted attacks to normal and pneumonia were possible,

despite almost imperceptible UAPs (Fig 4). The results imply that adversaries can control

DNN-based systems, which may lead to security concerns. The targeted attacks cause both

false positives and negatives, and thus, can be used to adjust the number of COVID-19 cases.

Fig 5. Effect of adversarial retraining on the robustness to UAPs with p =1 against the COVIDNet-CXR Small model. Scatter

plots of (A) the fooling rate, Rf (%), for non-targeted UAPs with z = 2% versus the number, Ni, of iterations for adversarial retraining

and (B) the targeted attack success rate, Rs (%), of targeted UAPs with z = 1% to COVID-19 versus Ni. Here, Rf and Rs are for the test

images. The accuracies (%) on the set of clean test images are also shown. The confusion matrices for the fine-tuned models were

obtained after five iterations of adversarial retraining using the (C) non-targeted UAPs and (D) targeted UAPs. Note that these

confusion matrices belong to the fine-tuned models attacked using non-targeted and targeted UAPs, respectively.

https://doi.org/10.1371/journal.pone.0243963.g005
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Moreover, they may affect individual and social awareness of COVID-19 (e.g., voluntary

restraint and social distancing). These may lead to problems in terms of public health (i.e.,

minimizing the spread of the pandemic) and the economy. More generally, complex classifiers,

including DNNs, are currently used for high-stake decision making in healthcare; however,

they can potentially cause catastrophic harm to the society because they are often difficult to

interpret [31].

The COVID-Net models, with tailored network architecture, seem to be more vulnerable to

adversarial attacks than representative DNN models (e.g., VGG [32] and ResNet [33] models)

for classifying ideal natural images (e.g., CIFAR-10 [34] and ImageNet datasets [35]). For these

representative DNNs, UAPs with z = 5% and higher are required to achieve>80% success rates

for non-targeted and targeted attacks [23, 28]. Conversely, for the COVID-Net models, UAPs

with z = 2% achieved>85% and>90% success rates for the non-targeted and targeted attacks,

respectively. This result implies several possible reasons that caused the vulnerability of COV-

ID-Net models. For example, the variance (visual difference) in chest X-ray images is much less

than that in natural images. In this case, data points may aggregate around decision boundaries,

indicating that the outputs of the DNN models are susceptible to changes in pixel values. As a

result, adversarial examples are easy to generate. In addition, the fact that adversarial vulnerabil-

ity of DNNs is known to increase with input dimension [36] may be one of the causes.

The UAPs used in this study are a type of white-box attack, which assumes that adversaries

can access the model parameters (the gradient of the loss function, in this case) and training

images; thus, they are security threats for open-source software projects, such as COVID-Net.

A simple solution to prevent these adversarial attacks is to make DNN-based systems closed-

source and publicly unavailable; however, this conflicts with the purpose of accelerating the

development of computer-based systems for detecting COVID-19 cases and COVID-19 treat-

ment. An alternative may be to consider black-box systems, such as closed application pro-

gramming interfaces (APIs) and closed-source software in which only queries on inputs are

allowed and outputs are accessible. Such closed APIs are better because they are at least pub-

licly available. However, it is possible that APIs are vulnerable to adversarial attacks. This is

because UAPs have generalizability [23] (i.e., UAPs for a DNN can mislead another DNN).

That is, adversarial attacks on black-box DNN-based systems may be possible using the UAPs

generated based on white-box DNNs. Moreover, several methods for adversarial attacks on

black-box DNN-based systems, which estimate adversarial perturbations using only model

outputs (e.g., confidence scores), have been proposed [37–39].

Therefore, defense strategies against adversarial attacks should be considered. A simple

defense strategy is to fine-tune DNN models using adversarial images [22, 23, 27]. In fact, we

demonstrated that iterative fine-tuning of a DNN model using UAPs improved the robustness

of the DNN model to non-targeted and targeted UAPs (Fig 5). However, the iterative fine-tun-

ing method required high computational costs, and it did not perfectly avoid vulnerability to

UAPs. In addition, several methods breaching defenses using adversarial retraining have

already been proposed [27]. Alternatively, dimensionality reduction (e.g., principle component

analysis), distributional detection (e.g., maximum mean discrepancy), and normalization

detection (e.g., dropout randomization) may be useful for adversarial defenses; however,

adversarial examples are not easily detected using these approaches [27]. Defending against

adversarial attacks is a cat-and-mouse game [26]; thus, it may be difficult to completely avoid

security concerns caused by adversarial attacks. However, the development of methods for

defending against adversarial attacks has advanced. For example, detecting adversarial attack-

based robustness to random noise [40], the use of a discontinuous activation function that pur-

posely invalidates the DNN’s gradient at densely distributed input data points [41], and DNNs

for purifying adversarial examples [42] may help reduce the concerns.
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In conclusion, we demonstrated the vulnerability of DNNs for detecting COVID-19 cases

to non-targeted and targeted attacks based on UAPs. However, many studies have developed

DNN-based systems for detecting COVID-19 while ignoring the vulnerability. Our findings

emphasize that careful consideration is required in developing DNN-based systems for detect-

ing COVID-19 cases and their practical applications. Facile applications of DNNs to COVID-

19 detection could lead to problems in terms of public health and the economy. Our study is

the first to show the vulnerability of DNNs for COVID-19 detection and to alert such facile

applications of DNNs. The code used in this study is available from our GitHub repository:

github.com/hkthirano/UAP-COVID-Net. The chest X-ray images used in this study are pub-

licly available online (see github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.

md for details).
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