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Abstract: Deep neural networks (DNNs) are vulnerable to adversarial attacks. In particular, a single
perturbation known as the universal adversarial perturbation (UAP) can foil most classification tasks
conducted by DNNs. Thus, different methods for generating UAPs are required to fully evaluate
the vulnerability of DNNs. A realistic evaluation would be with cases that consider targeted attacks;
wherein the generated UAP causes the DNN to classify an input into a specific class. However,
the development of UAPs for targeted attacks has largely fallen behind that of UAPs for non-targeted
attacks. Therefore, we propose a simple iterative method to generate UAPs for targeted attacks.
Our method combines the simple iterative method for generating non-targeted UAPs and the fast
gradient sign method for generating a targeted adversarial perturbation for an input. We applied the
proposed method to state-of-the-art DNN models for image classification and proved the existence of
almost imperceptible UAPs for targeted attacks; further, we demonstrated that such UAPs can be
easily generated.

Keywords: deep neural networks; adversarial attacks; image classification; security and privacy

1. Introduction

Deep neural networks (DNNs) are widely used for image classification, a task in which an input
image is assigned a class from a fixed set of classes. For example, DNN-based image classification has
applications in medical science (e.g., medical image-based diagnosis [1]) and self-driving technology
(e.g., detecting and classifying traffic signs [2]).

However, DNNs are known to be vulnerable to adversarial examples [3], which are input
images that cause misclassifications by DNNs and are generally generated by adding specific,
imperceptible perturbations to the original input images that have been correctly classified using
DNNs. Many methods for generating adversarial examples have been proposed [4,5]. For example,
the fast gradient sign method (FGSM) [3] generates adversarial examples with a linear approximation;
specifically, it performs a one step gradient update along the direction of the sign of the gradient
of the loss function at each pixel. The basic iterative method [6] is an iterative version of the FGSM;
in particular, it repeats the one step gradient update (i.e., FGSM) while the size of the adversarial
perturbation is limited by a specified upper bound. DeepFool [7] considers a linear approximation and
generates adversarial examples using the fact that the minimal perturbation of an affine classifier is
the distance to the separating affine hyperplane. Carlini and Wagner [8] proposed an optimization
algorithm for generating adversarial examples; specifically, they considered an optimization problem
for finding the smallest adversarial perturbation that can fool the DNNs and solved the problem
using gradient descent. The existence of adversarial examples questions the generalization ability
of DNNs, reduces model interpretability, and limits the applications of deep learning in safety- and
security-critical environments [9].
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However, these methods have only considered input-dependent adversarial attacks
(i.e., an individual adversarial perturbation is used such that each input image is misclassified).
Such adversarial attacks are difficult tasks because they require high computational costs. More realistic
adversarial attacks must be further considered. Notably, a single perturbation that can induce DNN
failure in most image classification tasks is also generatable as a universal adversarial perturbation
(UAP) [10,11]. UAP-based adversarial attacks can be more straightforward to implement by adversaries
in real-world environments. As UAPs are image agnostic, adversaries do not need to consider input
images when attacking DNNs; as a result, they can result in failed DNN-based image classification
at lower costs. The vulnerability in DNNs to adversarial attacks (UAPs, in particular) is a security
concern for practical applications of DNNs [10–12]. The development of methods for generating UAPs
is required to evaluate the reliability and safety of DNNs against adversarial attacks.

A simple iterative method [10], a representative method, for generating UAPs has been proposed.
To generate a UAP, this method iteratively updates a perturbation by additively obtaining individual
adversarial perturbation for an input image randomly selected from an input image set. Khrulkov
and Oseledets [13] proposed a method for generating UAPs based on computing the singular vectors
of the Jacobian matrices of the hidden layers of a DNN. Mopuri et al. [14] proposed a network for
adversary generation, a generative approach to model the distribution of UAPs, inspired by generative
adversarial networks (GANs) [15]. However, these methods are limited to non-targeted attacks that
cause misclassification (i.e., a task failure resulting in an input image being assigned an incorrect class).

More realistic cases need to consider targeted attacks, wherein generating a UAP would cause
the DNN to classify an input image into a specific class (e.g., into the “diseased” class in medical
diagnosis) [16]. The existence of targeted UAPs indicates that adversaries can control DNN-based image
classification and may result in more significant security concerns compared with non-targeted attacks.

Several methods for generating UAPs for targeted attacks have been proposed. Hayes and
Danezis [17] proposed a method based on a generative network model. Specifically, the method
uses the universal adversarial network, trained similarly to the generator network in a GAN [15].
However, the generative network model is difficult to apply to large images (e.g., the ImageNet image
dataset [18]) because it requires high computational costs. Brown et al. [19] proposed the targeted
adversarial patch approach for targeted universal adversarial attacks. This approach adds an image
patch to the input images to generate adversarial examples and seeks the location and transformations
(e.g., rotations and scaling) of the patch on the input images that maximize the average confidence
score for a target class of the adversarial examples. However, such adversarial patches are perceptible;
thus, defenders can easily detect adversarial attacks.

A simpler algorithm for generating almost imperceptible UAPs for targeted attacks is required for
practical applications. Thus, herein, we propose a simple iterative method to generate such targeted
UAPs by extending the iterative method for generating non-targeted UAPs [10] and show the validity
of the proposed method using representative DNN models for image classification.

2. Materials and Methods

2.1. Targeted Universal Adversarial Perturbations

Our algorithm (Algorithm 1) for generating UAPs for targeted attacks is an extension of the simple
iterative algorithm for generating UAPs for non-targeted attacks [10]. Similar to the non-targeted UAP
algorithm, our algorithm considers a classifier C(x) that returns the class or label (with the highest
confidence score) for an input image x. The algorithm starts with ρ = 0 (no perturbation) and iteratively
updates the UAP ρ under the constraint that the Lp norm of the perturbation is equal to or less than
a small value ξ (i.e., ‖ρ‖p ≤ ξ) by additively obtaining an adversarial perturbation for an input image x,
which is randomly selected from an input image set X without replacement. These iterative updates
continue up till the termination conditions have been satisfied. Unlike the non-targeted UAP algorithm,
our algorithm uses the fast gradient sign method for targeted attacks (tFGSM) to generate targeted
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UAPs, whereas the non-targeted UAP algorithm uses a method (e.g., DeepFool [7]) that generates
a non-targeted adversarial example for an input image.

tFGSM generates a targeted adversarial perturbation ψ(x, y) that causes an image x to be classified
into the target class y using the gradient ∇xL(x, y) of the loss function with respect to pixels [3,20].
The gradient can be computed efficiently using backpropagation (i.e., by computing the chain rule
backwards) [3]. Specifically, the forward pass computes values from the inputs (pixels) to the output.
The backward pass then performs backpropagation that starts at the end of the DNN with the loss
value based on the output and recursively applies the chain rule to compute the gradients all the way
to the inputs.

For the L∞ norm, the perturbation is calculated as:

ψ(x, y) = −ε · sign (∇xL(x, y)) , (1)

where ε (> 0) is the attack strength. For the L1 and L2 norms, the perturbation is obtained as:

ψ(x, y) = −ε
∇xL(x, y)
‖∇xL(x, y)‖p

. (2)

The adversarial example xadv is obtained as follows:

xadv = x + ψ(x, y). (3)

At each iteration step, our algorithm computes a targeted adversarial perturbation ψ(x + ρ, y),
if the perturbed image x + ρ is not classified into the target class y (i.e., C(x + ρ) 6= y); however,
the non-targeted UAP algorithm obtains a non-targeted adversarial perturbation that satisfies
C(x + ρ) 6= C(x) if C(x + ρ) = C(x). After generating the adversarial example at this step
(i.e., xadv ← x + ρ + ψ(x + ρ, y)), the perturbation ρ is updated if xadv is classified into the target
class y (i.e., C(xadv) = y), whereas the non-targeted UAP algorithm updates the perturbation ρ if
C(x + ρ) 6= C(x). Note that tFGSM does not ensure that adversarial examples are classified into a
target class. When updating ρ, a projection function project(x, p, ξ) is used to satisfy the constraint
that ‖ρ‖p ≤ ξ (i.e., ρ← project(xadv − x, p, ξ). This projection is defined as follows:

project(x, p, ξ) = arg min
x′
‖x− x′‖2 s.t. ‖x′‖p ≤ ξ (4)

This update procedure terminates when the targeted attack success rate rts for input images
(i.e., the proportion of input images classified into the target class; |X|−1 ∑x∈X I (C(x + ρ) = y)) equals
100% (i.e., all input images are classified into the target class due to the UAP ρ) or the number of
iterations reaches the maximum imax.

The pseudocode of our algorithm is shown in Algorithm 1. Our algorithm was implemented
using Keras (Version 2.2.4; keras.io) and the Adversarial Robustness 360 Toolbox [20] (Version 1.0;
github.com/IBM/adversarial-robustness-toolbox).

github.com/IBM/adversarial-robustness-toolbox
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Algorithm 1 Computation of a targeted UAP.

Input: Set X of input images, target class y, classifier C(·), cap ξ on the Lp norm of the perturbation,

norm type p (1, 2, or ∞), maximum number imax of iterations.
Output: Targeted UAP vector ρ.

1: ρ← 0, rst ← 0, i← 0
2: while rst < 1 and i < imax do

3: for x ∈ X in random order do

4: if C(x + ρ) 6= y then

5: xadv ← x + ρ + ψ(x + ρ, y)
6: if C(xadv) = y then

7: ρ← project(xadv − x, p, ξ)
8: end if
9: end if

10: end for
11: rst ← |X|−1 ∑x∈X I (C(x + ρ) = y)
12: i← i + 1
13: end while

2.2. Deep Neural Network Models and Image Datasets

To evaluate targeted UAPs, we used two DNN models that were trained to classify the CIFAR-10
image dataset (www.cs.toronto.edu/~kriz/cifar.html). The CIFAR-10 dataset includes 60,000 RGB
color images with the size of 32× 32 pixels classified into 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Six-thousand images are available in each class. The dataset
comprises 50,000 training images (5000 images per class) and 10,000 test images (1000 images per class).
In particular, we used the VGG-20 [21] and ResNet-20 models [22] for the CIFAR-10 dataset obtained
from a GitHub repository (github.com/GuanqiaoDing/CNN-CIFAR10); their test accuracies were
91.1% and 91.3%, respectively.

Moreover, we also considered three DNN models trained to classify the ImageNet image
dataset [18] (www.image-net.org). The ImageNet dataset is comprised of RGB color images with the
size of 224× 224 pixels classified into 1000 classes. In particular, we used the VGG-16 [21], VGG-19 [21],
and ResNet-50 models [22] for the ImageNet dataset available in Keras (Version 2.2.4; keras.io),
and their test accuracies were 71.6%, 71.5%, and 74.6%, respectively.

2.3. Generating Targeted Adversarial Perturbations and Evaluating Their Performance

Targeted UAPs were generated using an input image set obtained from the datasets.
The parameter p was set to two. We generated targeted UAPs with various magnitudes by adjusting
the parameters ε and ξ. The magnitude of a UAP was measured using a normalized L2 norm of the
perturbation; in particular, we used the ratio ζ of the L2 norm of the UAP to the average L2 norm of
an image in a dataset. The average L2 norms of an image were 7381 and 50,135 in the CIFAR-10 and
ImageNet datasets, respectively.

TO compare the performance of the targeted UAPs generated by our method with random
controls, we also generated random vectors (random UAPs) sampled uniformly from the sphere of
a given radius [20].

The performance of the UAPs was evaluated using the targeted attack success rate rts. In particular,
we considered the success rates rts for input images. In addition to this, we also computed the success
rates rts for test images to experimentally evaluate the performance of UAPs for unknown images.
A test image set was obtained from the dataset and did not overlap with the input image set.

www.cs.toronto.edu/~kriz/cifar.html
github.com/GuanqiaoDing/CNN-CIFAR10
www.image-net.org
keras.io
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3. Results and Discussion

3.1. Case of the CIFAR-10 Models

For the CIFAR-10 models, we used 10,000 input images to generate the targeted UAPs. The input
image set was obtained by randomly selecting 1000 images per class from the training images of the
CIFAR-10 dataset. All 10,000 test images of the dataset were used as test images for evaluating the
UAP performance. We considered the targeted attack for each class. The parameters ε and imax were
set to 0.006 and 10, respectively.

For the targeted attacks for each class, the targeted attack success rates rts for both the input
image set and the UAP test image set rapidly increased with the perturbation rate, despite a low ζ

(2–6%). In particular, the success rate was >80% for ζ = 5% (Figure 1); moreover, it reached ∼100% for
ζ > 10%. The success rates of the targeted UAP with the same ζ for both the input image set and the
UAP test image set were almost similar. This result indicates no overfitting of the generated UAPs to
the input images.
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Figure 1. Line plot of the target attack success rate rts versus the perturbation rate for targeted attacks
for each class of the CIFAR-10 dataset. The legend label indicates the DNN model and image set
used for computing rts. For example, “VGG-20 input” indicates the rts of targeted UAPs against the
VGG-20 model computed using the input image set. The additional argument “(random)” indicates
that random UAPs were used instead of targeted UAPs.
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The targeted UAPs with ζ = 5% were almost imperceptible (Figure 2). Moreover, the UAPs
seemed to represent the object shapes of each target class. The success rates of the targeted UAPs were
significantly higher than those of random UAPs. These tendencies were observed both in the VGG-20
model and in the ResNet-20 model. These results indicate that non-random patterns are required for
targeted attacks and that the proposed method applies to various DNN architectures.

Figure 2. Targeted UAPs (top panel) with ζ = 5% against the VGG-20 model for the CIFAR-10 dataset
and their adversarial attacks for an original (i.e., non-perturbed) image (left panel) randomly selected
from the images that, without perturbation, was correctly classified into each source class and, with the
perturbations, correctly classified into the target classes: airplane (0), automobile (1), bird (2), cat (3),
deer (4), dog (5), frog (6), horse (7), ship (8), and truck (9). Note that the UAPs are emphatically
displayed for clarity; in particular, each UAP was scaled with the maximum of one and the minimum
of zero.

3.2. Case of ImageNet Models

For the ImageNet models, we used the validation dataset used in the ImageNet Large Scale
Visual Recognition Challenge 2012 (ILSVRC2012; www.image-net.org/challenges/LSVRC/2012/)
to generate the targeted UAPs. The dataset is comprised of 50,000 images (50 images per class).
We used 40,000 images as the input images. The input image set was obtained by randomly selecting
40 images per class. The rest (10,000 images; 10 images per class) was used as test images for evaluating
the UAPs. The parameters ε and imax were set to 0.5 and five, respectively.

In this study, we considered targeted attacks for three classes (golf ball, broccoli, and stone wall)
that were randomly selected from 1000 classes in a previous study [17], to avoid redundancy.

We generated targeted UAPs with ζ = 6% (ξ = 3000) and ζ = 8% (ξ = 4000). The target attack
success rates rts were between ~30% and ~75% and between ~60% and ~90% when ζ = 6% and
ζ = 8%, respectively (Table 1). The success rates for the input images were almost similar to those for
the test images, indicating no overfitting of the generated UAPs to the input image set. The success

www.image-net.org/challenges/LSVRC/2012/
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rates of the targeted UAPs were significantly higher than those of random UAPs, which were less than
1% in all cases. This indicates that non-random patterns are required for targeted attacks

Table 1. Targeted attack success rates rts of targeted UAPs against the DNN models for each target
class. rts for input images and test images are shown.

Target Class Model ζ = 6% ζ = 8%
Input Test Input Test

Golf ball
VGG-16 58.0% 57.6% 81.6% 80.6%
VGG-19 55.3% 55.2% 81.3% 80.1%

ResNet-50 66.8% 66.5% 90.3% 89.8%

Broccoli
VGG-16 29.3% 29.0% 59.7% 59.5%
VGG-19 31.2% 30.5% 59.7% 59.4%

ResNet-50 46.4% 46.6% 74.6% 73.9%

Stone wall
VGG-16 47.1% 46.7% 75.0% 74.5%
VGG-19 48.4% 48.1% 73.9% 72.9%

ResNet-50 74.7% 74.4% 92.0% 91.3%

A higher perturbation magnitude ζ led to a higher targeted attack success rate rts. The success rates
rts depend on the image classes. For example, the targeted attacks for the class “golf ball” were more
easily achieved than those for the class “broccoli”. The success rates rts also depended on the DNN
architectures; in particular, the ResNet-50 model was more easy to fool than the VGG models. Overall,
however, we confirmed that the proposed method was applicable to various DNN architectures.

The targeted UAPs with ζ = 6% and ζ = 8% were almost imperceptible (Figure 3); however,
they were partly perceptible for whitish images (e.g., trimaran). Moreover, the UAPs seem to reflect
object shapes of each target class.

Figure 3. Targeted UAPs (top panel) against the ResNet-50 model for the ImageNet dataset and their
adversarial attacks for the original (i.e., non-perturbed) images (left panel) randomly selected from
the images that, without perturbation, were correctly classified into the source class and, with the
perturbation, correctly classified into each target class under the constraint that the source classes
are not overlapping each other and with the target classes. The source classes displayed here are
sleeping bag (A), sombrero (B), trimaran (C), steam locomotive (D), fireboat (E), and water ouzel,
dipper (F). The target classes are golf ball (0), broccoli (1), and stone wall (2). The UAPs with ζ = 6%
and ζ = 8% are shown. Note that the UAPs are emphatically displayed for clarity; in particular,
each UAP was scaled with the maximum of one and the minimum of zero.
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The targeted attack success rates in the ImageNet models were relatively lower than those in
the CIFAR-10 models. This is because the ImageNet dataset has a larger number of classes than the
CIFAR-10 dataset. In short, it is more difficult to exactly classify an input image into a specific target
class within a larger number of classes. Moreover, the observed lower success rate may be because the
validation dataset of ILSVRC2012 was used when generating targeted UAPs. Higher success rates
may be obtained when generating targeted UAPs using training images.

These results indicate that the proposed method has several advantages for generating UAPs.
As Chaubey et al. [11] mentioned, the previous methods for generating UAPs are limited to
non-targeted attacks, except for a generative model-based method [17]. The generative model-based
method requires high computational costs; thus, it does not apply to large image datasets such as the
ImageNet dataset. On the other hand, our simple iterative method can compute targeted UAPs for
large image datasets. Our method can help reliability assessments and increase safety [4,8] in practical
applications of DNNs (e.g., medical image-based diagnosis [1,23] and detecting and classifying traffic
signs [2,24]).

4. Conclusions

We propose a simple iterative method to generate targeted UAPs for image classification,
although the proposed algorithm is a straightforward extension of the non-targeted UAP algorithm [10].
Using the CIFAR-10 and ImageNet models, we demonstrated that a small (almost imperceptible) UAP
generated by our method made the models largely classify test images into a target class. Our results
indicated the existence of UAPs for targeted attacks and that such UAPs can be easily generated.
Our study enhances our understanding of the vulnerabilities of DNNs to adversarial attacks; moreover,
it may help accelerate practical applications of DNNs. The source code of our proposed method for
generating targeted UPAs is available from our GitHub repository: github.com/hkthirano/targeted_
UAP_CIFAR10. Our method is also available in the Adversarial Robustness Toolbox [20] (Version 1.4
and later; github.com/Trusted-AI/adversarial-robustness-toolbox), a Python library for machine
learning security.
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validation, H.H.; investigation, H.H.; resources, H.H.; writing, original draft preparation, K.T.; writing, review
and editing, H.H. and K.T.; visualization, H.H. and K.T.; supervision, K.T.; project administration, K.T. All authors
have read and agreed to the published version of the manuscript.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep neural network
FGSM Fast gradient signed method
GAN Generative adversarial network
ILSVRC2012 Large Scale Visual Recognition Challenge 2012
ResNet Residual network
UAP Universal adversarial perturbation
VGG Visual geometry group
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