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Abstract. The cross sections for inelastic photoproduction of J/1 and v’ mesons have been measured in
ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 38.0 pb~!. The events
were required to have 0.1 < z < 0.9 and 50 < W < 180 GeV, where z is the fraction of the incident
photon energy carried by the J/1 in the proton rest frame and W is the photon-proton centre-of-mass
energy. The v’ to J/v cross-section ratio was measured in the range 0.55 < z < 0.9. The J/+ data, for
various ranges of transverse momentum, are compared to theoretical models incorporating colour-singlet
and colour-octet matrix elements. Predictions of a next-to-leading-order colour-singlet model give a good
description of the data, although there is a large normalisation uncertainty. The J/v helicity distribution

for z > 0.4 is compared to leading-order QCD predictions.
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1 Introduction

In the HERA photoproduction regime, where the virtu-
ality of the exchanged photon is small, the production of
inelastic ¥ mesons, where ¢ can be either a J/¢ or a v/,
arises mostly from direct and resolved photon interactions.
In leading-order (LO) Quantum Chromodynamics (QCD),
the two processes can be distinguished: in direct photon
processes, the photon couples directly to a parton in the
proton; in resolved photon processes, the photon acts as
a source of partons, one of which participates in the hard
interaction. Diffractive production, vp — N, where N
is a proton-dissociative state, contributes significantly to
the inelastic production of 1 mesons by the direct photon
process.

Direct and resolved photon cross sections can be cal-
culated using perturbative QCD (pQCD) in the colour-
singlet (CS) and colour-octet (CO) frameworks [1-8]. In
the CS model, the colourless c¢ pair produced by the hard
subprocess is identified with the physical ¢ state. In the
CO model, the c¢ pair emerges from the hard process
with quantum numbers different from those of the ¢ and
evolves into the physical ¢ state by emitting one or more
soft gluons. At LO, only the photon-gluon-fusion diagram,
vg — g, contributes to the direct photon cross section,
as shown in Fig. la. Figure 1b shows the LO diagram for
the resolved photon process in the CS framework. A dia-

P supported by the Polish State Committee for Scien-
tific Research, grant no. 112/E-356/SPUB-M/DESY /P-03/DZ
301,/2000-2002, 2 P0O3B 13922
9 supported by the Polish State Committee for Scien-
tific Research, grant no. 115/E-343/SPUB-M/DESY /P-03/DZ
121/2001-2002, 2 P03B 07022
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Fig. 1. a The direct photon process at leading order in the CS framework; b the resolved photon process in the same framework;

c the direct photon process in the CO framework

gram for the direct photon process in the CO framework
is shown in Fig. lc. Although a full next-to-leading-order
(NLO) calculation of % photoproduction is not available
for all processes, the NLO corrections to the direct pho-
ton process, carried out in the framework of the CS model,
have been calculated [2].

The production of ¥ mesons has been measured in pp
collisions by the CDF collaboration [9,10]. Predictions of
the CS model, which for pp collisions exist only at LO in
QCD, underestimate the data by factors of between 10 and
80. However, after adjustment of the corresponding ma-
trix elements, this difference can be accounted for by the
CO contributions [4]. Currently, the matrix elements gov-
erning the strength of this process cannot be calculated,
but have to be determined from experiment. Since they
are expected to be universal, the comparison of the values
extracted from 1 cross-section measurements in different
environments constitutes a stringent test of this approach.

The J/4 helicity distributions predicted by the CS and
CO models have a different dependence on the pr of the
J /1. Furthermore, the dependence of the J/v polarisation
on its transverse momentum is sensitive to the virtuality of
the initial gluon in the photon [8]. Results from the CDF
collaboration [11] show some discrepancies between the
helicity measurements and predictions [7] using CO matrix
elements extracted from the CDF cross-section data.

The various 1 photoproduction processes can be dis-
tinguished using the inelasticity variable, z, defined as:

P'pw
= 1
i= L, (1)

where P, py and ¢ are the four-momenta of the incoming
proton, the 1 meson and the exchanged photon. In the
proton rest frame, z is the fraction of the photon energy
carried by the 1. Previous HERA data [12-14] have shown
that the diffractive process populates the high-z region,
z > 0.9. The direct and resolved photon processes are

expected to dominate in the regions 0.2 < z < 0.9 and
z < 0.2, respectively [3].

In this study, ¥ mesons were identified using the decay
mode 1 — ptp~ and were measured in the range 50 <
W < 180 GeV, where W is the vp centre-of-mass energy.
The differential cross sections are given for z > 0.1 and for
different regions of transverse momentum, pr, of the J/.
The J/v helicity distributions in the ranges 0.4 < z < 1
and 0.4 < z < 0.9 are presented and compared to model
predictions with or without CO contributions.

2 Theoretical models
2.1 Leading-order colour-singlet calculations

The LO matrix element for the photon-gluon-fusion pro-
cess, as computed in the CS framework, is singular for
z = 1 and pr = 0 [1]. Therefore, the comparisons with
these theoretical calculations are restricted to the region
pr > 1 GeV.

Calculations of direct processes at LO in the CS model
have been available for some time [1]. In this paper, the
data are compared to the LO prediction from Kramer et
al. [2,3] (KZSZ (LO, C8S)), including both direct and re-
solved processes. This calculation used the parton density
functions (PDFs) GRV94 LO [15] for the proton and GRV

LO [16] for the photon, the QCD scale parameter, /18()3]37
was set to 0.2 GeV and the factorisation and renormali-
sation scales were set to y = 2m,, where m,, the charm-
quark mass, was set to 1.5 GeV. Recently, the calcula-
tion has been extended to include predictions of the J/v
helicity-angle distributions [7] (BKV (LO, CS)).

In the CS framework, the distributions of the J/v
helicity angle have been calculated by Baranov [8] for
the direct photon process. This calculation uses the k-
unintegrated gluon densities satisfying the BFKL [17] evo-
lution equations. Compared to traditional (collinear) par-
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ton models, gluons have a transverse-momentum com-
ponent (or virtuality), that results in an increase in the
fraction of longitudinally polarised J/¢ mesons as pr in-
creases.

2.2 Next—to—leading—order colour singlet calculation

The NLO corrections to the direct photon process in the
CS framework have been calculated by Kramer et al. [2]
(KZSZ (NLO, CS)). This is the only NLO calculation cur-
rently available for any J/v¢ production process. The un-
certainties in the cross sections arise from uncertainties
in the non-perturbative QCD parameters. Upper bounds
were obtained by setting m, = 1.3GeV and the strong
coupling constant, as(Mz), to 0.121 in accordance with
the MRSTO1 (as 1) [18] set of proton PDFs. The lower
bounds were obtained by setting m. = 1.6GeV and
as(Mz) = 0.117, in accordance with the MRSTOL («s )
set of PDFs. The dominant uncertainty is due to the
variation of the charm-quark mass. For the calculation
of the cross-section do/dp%, the factorisation and renor-

malisation scales were set to the larger of m./ V2 and
(\/mg +p2T> /2. For the prediction of the cross-sections

do/dz, the factorisation and renormalisation scales were

set to me/v2 [2].

2.3 Non-relativistic quantum chromodynamics
calculations

The LO calculation from Kramer et al. has also been
extended to include the CO contributions, (KZSZ (LO,
CS+CO0)), from both direct and resolved photon processes
[3]. The CO matrix elements were extracted by fitting
the cross-section do /dp? for prompt J/1 production mea-
sured by CDF [10]. The matrix elements for the hard sub-
processes were computed at LO, while the CO matrix el-
ements were corrected for initial- and final-state gluon ra-
diation by a Monte Carlo (MC) technique [4]. The spread
in the predictions is due to theoretical uncertainties in the
extraction of the CO matrix elements obtained by compar-
ing the values extracted by different groups; this spread
is often larger than the error quoted by each individual
group. This calculation has also been extended to pre-
dict the J/4 helicity-angle distributions [7] (BKV (LO,
CS+CO0)).

A LO calculation by Beneke, Schuler and Wolf [5]
(BSW (LO, CS+CO0)) includes only the direct photon pro-
cess for the CS and CO contributions. Here, the CO matrix
elements were extracted from measurements by the CLEO
collaboration [19] on B meson decays to J/1 mesons. The
matrix elements extracted using the data from CLEO and
CDF are consistent [3]. This calculation models the so-
called shape functions that resum an infinite class of CO
contributions that are important at high z. These func-
tions are responsible for the decrease of the CO contribu-
tions towards z = 1, due to the lack of phase space for
gluon radiation. This treatment introduces an additional

The ZEUS Collaboration: Measurements of inelastic J/v and 1’ photoproduction at HERA

parameter into the model called the shape-function pa-
rameter, which was varied in the range 300 — 500 MeV,
based on an evaluation [5] of the CLEO data.

Kniehl and Kramer [6] (KK (LO, CS+CO0)), like
Kramer et al., have calculated CS and CO terms in LO
for both direct and resolved photon processes. The CO
matrix elements were similarly extracted by fitting the
do /dp?. differential cross section for prompt J/1 produc-
tion measured by CDF [10]. The spread in the predic-
tions is due to theoretical uncertainties in the extraction
of the CO matrix elements. The calculation approximately
takes into account dominant higher-order (HO) QCD ef-
fects and was performed in the MS renormalisation and
factorisation scheme, using CTEQ4LO [20] and GRV LO
as the proton and photon PDFs, respectively; the QCD
scale parameter AS()JD was set to 296 MeV; common fac-
torisation and renormalisation scales were used and were

set to pn = \/4m?2 + p3. with 2me =m /.

3 Experimental conditions

The data were collected during the 1996 and 1997 run-
ning periods, when HERA operated with protons of energy
E, = 820 GeV and positrons of energy E, = 27.5 GeV,
and correspond to an integrated luminosity of 38.0 +
0.6 pb~'. This represents more than a tenfold increase
with respect to the previous ZEUS analysis [12]. A de-
tailed description of the ZEUS detector can be found else-
where [21,22]. A brief outline of the components that are
most relevant for this analysis is given below.

Charged particles are tracked in the central tracking
detector (CTD) [23], which operates in a magnetic field
of 1.43T provided by a thin superconducting coil. The
CTD consists of 72 cylindrical drift chamber layers, or-
ganized in 9 superlayers covering the polar angle! region
15° < 0 < 164°. The transverse-momentum resolution for
full-length tracks is

o(pr)/pr = 0.0058p7 & 0.0065 & 0.0014/pr,

with pr in GeV

The high-resolution uranium-scintillator calorimeter
(CAL) [24] consists of three parts: the forward (FCAL),
the barrel (BCAL) and the rear (RCAL) calorimeters.
Each part is subdivided transversely into towers and longi-
tudinally into one electromagnetic section (EMC) and ei-
ther one (in RCAL) or two (in BCAL and FCAL) hadronic
sections (HAC). The smallest subdivision of the calorime-
ter is called a cell. The CAL energy resolutions, as mea-
sured under test beam conditions, are o(E)/E = 0.18/VE

for electrons and o(E)/E = 0.35/vE for hadrons (E in

! The ZEUS coordinate system is a right-handed Cartesian
system, with the Z axis pointing in the proton beam direction,
referred to as the “forward direction”, and the X axis pointing
left towards the centre of HERA. The coordinate origin is at
the nominal interaction point. The pseudorapidity is defined
asn=—In (tan g), where the polar angle, 6, is measured with
respect to the proton beam direction
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GeV). The timing resolution of the CAL is better than
1ns for energy deposits greater than 4.5 GeV.

The muon system consists of tracking detectors (for-
ward, barrel and rear muon chambers: FMUON [21],
B/RMUON [25]), which are placed inside and outside a
magnetized iron yoke surrounding the CAL and cover po-
lar angles from 10° to 171°. The barrel and rear inner
muon chambers cover polar angles from 34° to 135° and
from 135° to 171°, respectively.

The luminosity was determined from the rate of the
bremsstrahlung process etp — etp, where the photon
was measured by a lead-scintillator calorimeter [26] lo-
cated at Z = —107 m.

4 Event selection and 1 reconstruction

The ¥ — p*pu~ candidates were selected using a three-
level trigger system [21]. In the first-level trigger (FLT),
the barrel and rear inner muon chambers, BMUI and
RMUI, were used to tag the muons from 1 decays by
matching segments in the muon chambers with tracks in
the CTD, as well as with energy deposits in the CAL con-
sistent with the passage of a minimum ionising particle
(m.i.p.). Events satisfying this regional matching and hav-
ing tracks in the CTD pointing to the nominal interaction
vertex were selected.

In the second-level trigger (SLT), the total energy in
the calorimeter (F = X;F;) and the Z component of the
momentum (pz = X, E; cos0;) were calculated. The sums
run over all calorimeter cells ¢ with an energy, F;, and
polar angle, #;, measured with respect to the nominal ver-
tex. To remove proton-gas interactions, events with the
ratio pz/E greater than 0.96 were rejected. The cosmic-
ray background was partially rejected at the SLT by using
the time differences of energy deposits in the upper and
the lower halves of the BCAL.

In the third-level trigger (TLT), a muon candidate was
selected when a track found in the CTD matched both a
m.i.p. in the CAL and a track in the inner muon cham-
bers. An event containing a muon candidate in the rear
(barrel) region was accepted if the momentum (transverse
momentum) of the CTD track exceeded 1 GeV.

In the offline analysis, the TLT algorithm was again
applied to the results of the full event reconstruction. In
addition, the tracks corresponding to the two muons from
the ¥ decay had to satisfy several criteria. One track was
matched to both a m.i.p. cluster in the CAL and a track
in the inner muon chambers. This track was required to
have a momentum greater than 1.8 GeV if it was in the
rear region, or a transverse momentum greater than 1.4
GeV if in the barrel region. The other muon track was
matched to a m.i.p. cluster in the CAL and was required
to have a transverse momentum of greater than 0.9 GeV.
Both tracks were restricted to the pseudorapidity region
|n| < 1.75. To reject cosmic rays, events in which the an-
gle between the two muon tracks was larger than 174°
were removed. Events were also required to have an en-
ergy deposit greater than 1 GeV in a cone of 35° around
the forward direction (excluding calorimeter deposits due
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to the decay muons). Elastically produced 1) mesons were
thus excluded.

The kinematic region considered was defined by the
inelasticity variable z, given in (1), and by the photon-
proton centre-of-mass energy:

W2 = (P +q)%
W and z were computed from
W2 =2E,(E —pz)

and
_ (E=pz)y
E—-pz '

where E—pz = (E—pz)haa+(E—pz)y. The quantity (E—
D7 )had 1s the sum over the hadronic final state, calculated
using all CAL cells excluding those belonging to the decay-
muon clusters; (E—pz), was calculated using the ¢ decay
tracks measured by the CTD.

The events were required to have £ — py < 20 GeV,
which restricts W to be less than 180 GeV?, and Q? <
1 GeV?, with a median value of ~ 10™* GeV2. The elim-
ination of deep inelastic scattering events was indepen-
dently confirmed by searching for scattered positrons in
the CAL [27]; none was found. As the analysis uses only
the B/RMUON, the polar angle coverage of these detec-
tors restricts W to be greater than 50 GeV.

5 Monte Carlo models

The production of 1 mesons from direct interactions was
simulated using the HERWIG 5.8 [28] MC generator,
which generates events according to the LO diagrams of
the photon-gluon-fusion process, vg — ¥g, as computed in
the framework of the CS model. The hadronisation process
is simulated by the cluster model [29]. Events were gener-
ated in the range of Q? starting from the kinematic limit
(= 10719 GeV?) up to 10 GeVZ2. Events were generated
for z < 0.95 to avoid a singular phase-space region. The
GRV94 LO PDF for the proton was used. The HERWIG
MC sample was reweighted in pr and W to the data.

The production of ¥ mesons from resolved photon in-
teractions was simulated using the PYTHIA 6.146 [30]
MC generator (resolved photon interactions for 1 produc-
tion are not implemented in HERWIG). The GRV94 LO
and GRV LO PDFs were used for the proton and photon,
respectively. The matrix elements for the resolved photon
processes were computed at LO in the framework of the
CS model.

Diffractive production of ¥ mesons with proton disso-
ciation was simulated with the EPSOFT [31] MC gener-
ator, which has been tuned to describe such processes at
HERA [32]. Data in the region 0.9 < z < 1 were used
to determine the dependence of the cross section on the
invariant mass of the dissociative system, on the photon-
proton centre-of-mass energy and on the p2. of the J/v
meson.
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Fig. 2a—c. The invariant-mass spectrum measured in the re-
gion 50 < W < 180 GeV for a 0.1 < z < 0.55, b 0.55 < z <
0.9 and ¢ 0.9 < z < 1. The signal regions are shown as the
shaded bands and the background as the continuous line

6 Signal determination
and cross-section calculation

The invariant-mass spectra of the muon pairs measured
for 50 < W < 180 GeV and three z ranges are shown in
Fig. 2. The J/v is clearly seen in all z ranges. The higher
z ranges (Figs. 2b and 2¢) also show a ' peak.

To estimate the number of events in the signal regions
(the mass ranges 2.9 to 3.25 GeV and 3.6 to 3.8 GeV
for the J/¢ and v, respectively), an accurate description
of the combinatorial background was necessary. This was
estimated by fitting the invariant-mass distribution of the
data outside the corresponding windows of the ) mesons,
using a function which is the product of a second-order
polynomial and an exponential.

The data were corrected bin by bin for geometric ac-
ceptance, detector, trigger and reconstruction efficiencies,
as well as for detector resolution. The correction factor, as
a function of an observable O in a given bin i, is C;(O) =
NE(O)/NF(O). The variable NF"(0O) is the number
of generated events and N/*°(O) is the number of recon-
structed events passing the selection requirements detailed
in Sect.4. Both numbers were computed using the MC
generators described in Sect. 5. In this W range and the
three regions of 2z, 0.1 < z < 0.4, 0.4 < z < 0.9 and 0.9
< z <1, the acceptance (defined as 1/C;(0)) was typically
30% and always above 10%.

For 0.9 < z < 1, the events are largely diffractive.
Therefore, the analysis of inelastic production was re-
stricted to the region 0.1 < z < 0.9. The remaining con-
tamination from diffractive processes was estimated by
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Fig. 3a—d. Number of events reconstructed in the kinematic
region z > 0.4 and 50 < W < 180 GeV plotted against a J/¢
pr, b W c inelasticity, z and d J/1 polar angle, 6. The data
distributions are shown as the points with statistical errors
only. The simulated EPSOFT diffractive proton-dissociation
background is shown as the dotted lines. The solid lines show
the prediction of the sum of the HERWIG and EPSOFT gen-
erators. The combined MC has been area normalised to the
data. The HERWIG MC sample was reweighted in pr and W
to the data

fitting the relative fractions of HERWIG and EPSOFT
MC event samples to the data. A x? fit was performed to
the inelasticity distribution in the region 0.4 < z < 1 and
three pp ranges: 0 < pr < 1,1 < pr < 2 and pr > 2 GeV.
Figure 3 shows, for events in the region 50 <W <180 GeV
and 0.4 < z < 1, that the resulting mixture of 56% HER-
WIG and 44% EPSOFT gives a reasonable description
of the relevant J/1) event observables. For 0.4 < z < 0.9,
with no pr cut, the diffractive contribution, as estimated
with the EPSOFT MC, was 17%, concentrated at low pr.
The diffractive contribution was subtracted bin by bin for
all cross-section measurements.

Resolved photon processes are also present in the re-
gion of the cross-section measurement. In the region 0.1 <
z < 0.9, the resolved photon component was estimated by
fitting the relative fractions of direct and resolved pho-
ton events in the MC samples to the inelasticity distribu-
tion in the data. The fraction of resolved photon events is
5%, reaching up to 50% for 0.1 < z < 0.4, in good agree-
ment with theoretical expectations [3]. In this low z range,
the contribution from B decays can be as large as 25%;
it is negligible at higher z. The photoproduction cross
section was obtained from the measured electron-proton
cross section by dividing by the integrated effective photon
flux [12].
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7 Systematic uncertainties

A detailed study of possible sources of systematic uncer-
tainties was carried out for all measured differential cross
sections. The following sources were considered:

— muon-chamber efficiencies: the BMUI and RMUI
muon-chamber efficiencies were extracted from the
data using muon pairs coming from elastic J/v events
and from the process vy — putu~. For pr > 1.4 GeV,
the product of the geometrical and chamber efficiency
for the BMUI is greater than 30%, reaching 60% at
high transverse momentum. For p > 1.8 GeV, this
product for the RMUI is greater than 45%, reaching
70% at high momentum. The associated uncertainty of
about £7% is independent of the phase-space region;

— analysis cuts: this class comprises the systematic un-
certainties due to the uncertainties in the measurement
of momentum, transverse momentum and pseudora-
pidity of the muon decay tracks. Each cut was var-
ied within a range determined by the resolution in the
appropriate variable. The pseudorapidity contribution
gave an uncertainty below +1%, while variation of the
appropriate momentum or transverse momentum cut
gave a +1.5% contribution;

— CAL energy scale: CAL energy measurements were
used in the W and z reconstruction. This leads to
a systematic uncertainty in the measured cross sec-
tion due to the +3% uncertainty on the energy scale
of the CAL. This effect was investigated by varying
the quantity (F — pz)naa by £3% in the MC sample,
leading to a variation of the cross sections of +£6% for
0.1 < z < 0.4. Integrated over z, the effect is typically
below +2%;

— CAL energy resolution: the W and z resolutions are
dominated by the CAL energy resolution through the
quantity (E—pz)had. The (E—pz)naa resolution in the
MC was smeared event by event by +20%. This esti-
mated any possible mismatch between the (E —pz)nad
resolution in the data and MC simulation, giving an
uncertainty of £3%;

— diffractive subtraction: the fraction of HERWIG and
EPSOFT MC events, fixed by the fitting procedure
described in Sect. 6, is known to a precision limited by
the number of J/v events in the data and the process
modelling. All possible fractions giving a x? in the in-
terval [X2,:,,, X20in + 1] Were considered and the largest
change in the cross section was quoted as the system-
atic uncertainty. This gave an uncertainty which was
at most +2% at high z and low pr, where the diffrac-
tive contribution peaks;

— diffractive simulation: the EPSOFT MC simulation pa-
rameters were varied within ranges allowed by the com-
parison between the data and the EPSOFT MC sim-
ulation in the region 0.9 < z < 1. The fraction of
HERWIG and EPSOFT MC events was re-evaluated.
This gave an uncertainty which was at most £2.5% at
high z and low pr;

— pr and W spectra: the pr and W spectra of the J/
meson in the HERWIG MC simulation were varied
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within ranges allowed by the comparison between the
data and the simulation and the correction factors re-
evaluated. This gave an uncertainty of +2%;

— helicity parameterisation uncertainty: in the HERWIG
MC, the helicity parameter « is set to 0. As a sys-
tematic check, the helicity in the HERWIG MC was
reweighted according to the upper and lower limits of
error in the measured distribution and the correction
factors re-evaluated. This gave an uncertainty of +£5%,
independent of the phase-space region.

All of the above individual sources of systematic un-
certainty were added in quadrature. The following sources
resulted in an overall shift of the cross section and were
therefore treated separately:

— the integrated luminosity determination gave an un-
certainty of +1.6%;

— the branching ratio of J/1 — ptu~ gave an uncer-
tainty of £1.7% [33].

8 Results
8.1 Total cross-section measurement at high z

A cross-section measurement in the region z > 0.9 is
particularly interesting because the CO mechanism is ex-
pected to contribute significantly at high z [3], whereas
for z < 0.9 the sensitivity to this production mechanism
is reduced. In particular, at large z, the impact of the
soft-gluon emission on the hadronisation of CO cc pairs is
not well understood [3,5,34]. In the region 0.9 < z < 1,
the z resolution is comparable to the width of the z in-
terval and the diffractive process is dominant; hence the
separation of the direct and diffractive components is not
reliable. Therefore, only the visible cross section in the re-
gion 0.9 < z < 1, including the diffractive component, is
given. Furthermore, due to the requirement of an energy
deposit in the direction of the outgoing proton, necessary
to remove the elastic component, only diffractive events
with a high-enough invariant mass, My, of the final-state
hadronic system were included here. Monte Carlo studies
showed that the requirement of an energy deposit exceed-
ing 1 GeV in a 35° cone around the outgoing proton direc-
tion corresponds to a threshold in My of 4.4 GeV, above
which all correction factors were independent of My . The
following cross sections, corresponding to the phase—space
region defined by 50 < W < 180 GeV, 0.9 < z < 1, My >
4.4 GeV were obtained:

GTW O

o1/4(pr >1GeV) =245 £ 0.9 (stat.) Ty5 (syst.) nb;

o1/4(pr >0 GeV) =45.7 + 1.3 (stat.) +9¢ (syst.) nb;
e

01/5(pr > 2 GeV) = 6.5 £ 0.5 (stat.) T3 (syst.) nb.

The uncertainties on the value of the My threshold and

the CAL energy resolutions are of similar importance and

dominate the systematic uncertainty.
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8.2 Measurement of 1)’ production

The production of ¢’ with subsequent decay to J/v has
been measured using the rates of ¢’ — ptp~ and J/¢ —
p . The 9 to J /1 cross-section ratio was determined in
the region 0.55 < z < 0.9 with no pr cut on the 1) mesons.
The range 0.4 < z < 0.55 was not included, because it has
a large non-resonant background. The ¢’ to J/¢ cross-
section ratio was computed in bins of pp, W and z from

oi(y') N2 C? Br#
o;(J/) N} ClS Br#
N cE B
" NS CIS Br

-1
Br’) ,
where, for the considered bin i, N} (N29) is the number
of J/1 (1') events observed, C}* (C?9) is the correction
factor (see Sect.6) computed using HERWIG MC J/v
(1) events, Br# (Brt') is the J/v (¢') muonic branching
ratio and Br’ is the ¢/ — J/¢ X branching ratio. The
values used were Br# = (5.88 + 0.10)%, Br#' = (0.70 +
0.09)% and Br' = (55.7 +2.6)% [33].

With this technique, the cross-section ratio was cor-
rected for the ¢’ — J/v (— ptp~) X cascade decay. The
results are shown in Fig.4 and listed in Table 1; all cross-
section ratios are consistent with being independent of the
kinematic variable, as expected if the underlying produc-
tion mechanisms for the J/1 and ¢’ are the same. For the
range 0.55 < z < 0.9 and 50 < W < 180 GeV, the ¢’ to
J /v cross-section ratio is

=0.33 £ 0.10 (stat.)*90% (syst.), (5)
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Table 1. Cross-section ratios between 9’ and J/4 as function
of pr, W and z variables. These ratios are measured in the
kinematical region 50 < W < 180 GeV and 0.55 < z < 0.9.
The uncertainties are statistical only

pr pr)  o(@)/o(J/¥)
(GeV) (GeV)
0.0-1.0 0.5 0.174£0.12
1.0-1.75 1.38 0.35£0.17
1.75-5.0 3.38 0.26+0.15
w W) a()/a(J/)
(GeV) (GeV)
50.-85. 67.5 0.284+0.10
85.-110. 97.5 0.26+0.14
110.-180. 145. 0.32+0.20
z (z)  o(})/a(J/¥)
0.55-0.7 0.625 0.39+0.26
0.7-0.8 0.75 0.19+0.12
0.8-0.9 0.85 0.30£0.10

in agreement with the expectation of the LO CS model of
0.24 [2].

Even though the NLO corrections to the CS model for
J /1 production are known to be large, similar large NLO
corrections are expected to affect the rate of 1)’ production
[35]. Hence the ¢’ to J/v cross-section ratio at NLO is not
expected to differ significantly from that at LO. From the
cross-section ratio and the ¢’ — J/19X branching ratio
[33], it is estimated that the observed cross section for
J/v mesons is increased by (18.4+5.6 (stat.))% due to
J/1 mesons originating from ¢’ cascade decays. This is
consistent with the expected value of 15% [2], which has
been added to all predictions of the J/v differential cross
sections presented in this paper.

8.3 Measurement of inelastic J /1) cross sections

The differential cross-sections do/dz for three different re-
gions in pr and 0.1 < z < 0.9 are shown in Figs. 5, 8 and 9
and listed in Tables 2, 3 and 4. All data sets show a cross
section increasing with z. The differential cross-section
do /dp?., measured in the region 0.4 < z < 0.9, is shown
in Fig. 6 and listed in Table 5. The measurement extends
to p3 ~ 24 GeVZ where the cross section has fallen by
two orders of magnitude. The cross section as a function of
W, for pr > 1 GeV and 0.4 < z < 0.9, is given in Table 6
and shown in Fig. 7. The differential cross-section do/dy
in the region 0.4 < z < 0.9 and pyr > 1 GeV is shown in
Fig. 10 and listed in Table 7. The rapidity, y, of the J/¢
is given by

E+pz

In ,
E—pz

1
¥=35

where E and pz are the energy and Z component of the
momentum of the J/v, respectively.
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Table 2. Differential cross-section do/dz measured for 50 <
W < 180 GeV and no pr cut. In the quoted cross sections,
the first uncertainty is statistical and the second is system-
atic. Overall normalisation uncertatinties due to the luminosity
measurement (+£1.6%) and to the J/1 decay branching ratio
(£1.7%) are not included in the systematic error. The column
labelled bkg gives, in each bin, the percentage of diffractive
background subtracted from the data

P (2)  bkg do/dz
% (nb)
0.10-0.40 0.28 0.  26.6+4.2727
0.40-0.55 047 0. 453455750
0.55-0.70 0.62 3.  76.3+4.1753
0.70-0.80 0.75 9.  96.7+4.47.%°
0.80-0.90 0.85 34.  97.64+3.57137

The helicity distribution can be parameterised as

dN

mocl—&—acosQG*. (6)

The helicity-parameter o was determined by reweighting
the HERWIG MC dN/d cos 0* generator-level distribution
according to (6) for different values of . The x? for the
dN/d| cos 0*| distribution in data and MC was then calcu-
lated for each value of « in the MC and the minimum x?
gave the central value of a. The procedure was repeated
for each pr bin in the range 1 < pr < 5 GeV. The sys-
tematic uncertainties were negligible with respect to the
error obtained from the x? fit.

Figure 11 shows the measured parameter a plotted
as a function of the pr of the J/¢. In Fig.11a) and b),
the quantisation axis is chosen to be the opposite of the
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Table 3. Differential cross-section do/dz measured for 50 <
W < 180 GeV and pr > 1 GeV. In the quoted cross sections,
the first uncertainty is statistical and the second is system-
atic. Overall normalisation uncertatinties due to the luminosity
measurement (£1.6%) and to the J/1v decay branching ratio
(£1.7%) are not included in the systematic error. The column
labelled bkg gives, in each bin, the percentage of diffractive
background subtracted from the data

z ()  bkg do/dz
% (nb)
0.10-0.40 0.28 0. 16.3+3.47%5
0.40-0.55 0.47 0. 27.1+4.4739
0.55-0.70 0.62 2. 49.0+3.3%%9
0.70-0.80 0.75 8.  66.2+3.7755
0.80-0.90 0.85 28. 68.9+3.1753

Table 4. Differential cross-section do/dz measured for 50 <
W < 180 GeV and pr > 2 GeV. In the quoted cross sections,
the first uncertainty is statistical and the second is system-
atic. Overall normalisation uncertatinties due to the luminosity
measurement (£1.6%) and to the J/¢ decay branching ratio
(£1.7%) are not included in the systematic error. The column
labelled bkg gives, in each bin, the percentage of diffractive
background subtracted from the data

5 (z)  bkg do/dz

% (nb)
0.10-0.40 0.28 0.  8.0+2.2"7}9
0.40-0.55 0.48 0. 121425733
0.55-0.70 0.62 0. 20.4+22%2%
0.70-0.80 0.75 6. 23.0+2.1732
0.80-0.90 0.85 16. 31.3%2.272%

Table 5. Differential cross-section do/ dp% measured for 50 <
W < 180 GeV and 0.4 < z < 0.9. In the quoted cross sections,
the first uncertainty is statistical and the second is system-
atic. Overall normalisation uncertatinties due to the luminosity
measurement (+1.6%) and to the J/¢ decay branching ratio
(£1.7%) are not included in the systematic error. The column
labelled bkg gives, in each bin, the percentage of diffractive
background subtracted from the data

pr (v7)  bkg do /dp7
(GeV?)  (GeV?) % (nb/GeV?)
0.-1. 0.46 22. 12.340.5729
1.-2. 1.45 18. 7.540.4702
2.-3. 2.45 16. 4.840.375%
3.-4. 3.46 15. 2.740.3703
4.-5. 4.47 14. 2.340.3792
5.-6. 5.40 10. 1.7340.2371¢
6.-7. 6.45 3. 1.5640.2179-22
7-8. 7.55 0. 0.94+0.1679:98
9. 8.78 0. 0.7140.1273:%8
95-11.5  10.48 0. 0.5040.0873-9%
11.5-15.5  13.53 0. 0.2440.0479:0%
15.5-21. 18.02 0. 0.1540.0279:03
21.-30. 24.22 0.  0.043£0.00979-952
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diction is due to uncertainties on the charm-quark mass and
on the QCD scale parameter, Agcp. The dotted line repre-
sents the LO prediction KZSZ (LO, CS). A 15% contribution
has been added to the predictions to account for J/¢ mesons
originating from )’ cascade decays

Table 6. Cross section versus W measured for 0.4 < z < 0.9
and pr > 1 GeV. In the quoted cross sections, the first un-
certainty is statistical and the second is systematic. Overall
normalisation uncertatinties due to the luminosity measure-
ment (£1.6%) and to the J/v¢ decay branching ratio (£1.7%)
are not included in the systematic error. The column labelled
bkg gives, in each bin, the percentage of diffractive background
subtracted from the data

w (W)  bkg o
(GeV)  (GeV) (nb)
50-70 613  27. 22.0+1.5%3%
70-90  79.9 14, 24.141.4%37
90-110  100.1  10. 29.1+1.9%39
110-140  124.8 9.  28.942.0739
140-180  157.2 4. 29.6+3.21%7

incoming proton direction in the J/v¢ rest frame, 6*, is
the opening angle between the quantisation axis and the
p™T direction of flight in the J/t rest frame and « is the
helicity parameter. This frame is known as the “target
frame”. The parameter o was determined in bins of pr,
for pr > 1 GeV and 0.4 < z < 1 (Fig.11a). The param-
eter @ was also measured in the range 0.4 < z < 0.9
(Fig. 11b), where the diffractive contamination is reduced.
The values of the helicity-parameter o are summarized in
Table 8. The CDF helicity-angle definition was also used,
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Table 7. Differential cross-section do/dy measured for 50 <
W < 180 GeV, 0.4 < z < 0.9 and pr > 1 GeV. In the quoted
cross sections, the first uncertainty is statistical and the sec-
ond is systematic. Overall normalisation uncertatinties due to
the luminosity measurement (£1.6%) and to the J/v¢ decay
branching ratio (+£1.7%) are not included in the systematic er-
ror. The column labelled bkg gives, in each bin, the percentage
of diffractive background subtracted from the data

y (y)  Dbkg do/dy
% (nb)
-16--12 -132 7. 3.340579%
-1.2--08 —097 9.  7.9+0.7759
—08--04 —0.59 9. 11.14+0.87}2
—04- 0. —020 10. 10.5+0.77}3
0. — 04 018 14. 10.6+0.771}
04— 08 059 18  10.9+0.7+12
08— 12 092 17. 81409719

Table 8. J/1 helicity parameter « as a function of pr mea-
sured in the target frame for 50 < W < 180 GeV and
0.4 < z < 1(0.9). The uncertainties are due to the total ex-
perimental uncertainties

pr (pr) a(04<z<1l) «a(04<2<09)

(GeV) (GeV)

1.0-1.2  1.10 1.12+9-72 1.127998
1214 130 1.021072 0.82+0-93
1.4-1.6  1.50 0.761972 1447055
1.6-1.9 1.74 0.32+9:¢3 0.3079:82
1.9-24 213 -0.0979-35 -0.2179-53
2.4-34 281 -0.0519-44 -0.5719:38
3.4-5.0  4.06 -0.2479:99 -0.03+9-87

where the quantisation axis was defined as the J/4 direc-
tion of flight in the ZEUS coordinate system; this frame
is known as the “helicity basis” [11]. The parameter o
measured in this frame is shown in Fig.1lc and d and
listed in Table 9. The values ¢ = —1 and a« = +1 cor-
respond to fully longitudinal and transverse polarisation,
respectively. Within the large experimental uncertainties,
the data are consistent with a trend from transverse to
longitudinal polarisation with increasing pr.

These results are consistent with the previous ZEUS
measurements [12], but have an improved precision and
extend to higher p2. Recently, the H1 collaboration has
also published a measurement of inelastic J/ production
[14] showing similar features to those presented here.

8.3.1 Comparison with leading—order colour singlet
calculations

Figure 6 shows a comparison of the KZSZ (LO, CS) pre-
dictions with the data. For p2 ~ 1 GeV?, the prediction
underestimates the data by a factor of about two, although
this is within the range of the theoretical uncertainties.
For higher pr values, the calculation falls increasingly be-
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Fig. 7. Cross section as a function of W for pr > 1 GeV
and 0.4 < z < 0.9. The inner error bars show the statistical
uncertainty; the outer bars the statistical and systematic un-
certainties added in quadrature. The shaded band shows the
prediction KZSZ (NLO, CS). The spread in the prediction is
due to uncertainties on the charm-quark mass and on the QCD
scale parameter, Agcp. A 15% contribution has been added
to the prediction to account for J/v¢ mesons originating from
1)’ cascade decays

Table 9. J/v helicity parameter a as a function of pr mea-
sured in the helicity basis for 50 < W < 180 GeV and
0.4 < z < 1(0.9). The uncertainties are due to the total ex-
perimental uncertainties

pr (pT) a(04<z<1l) a(04<z<0.9)

(GeV) (GeV)

1.0-1.2 110 0.24 7533 0.3770%
1.2-14 130 0.07 103 -0.0570:32
1.4-1.6 150 -0.07 1933 0.5510:%2
16-1.9 1.74 -0.09 *0:39 -0.13705¢
1924 213 -0.28 032 -0.4970 58
2.4-34 281 -0.27 1333 -0.587935
3.4-5.0  4.06 0.39 1383 0.74715%

low the data. At p2 ~ 20 GeV?2, the LO CS prediction
undershoots the data by a factor of ~ 20.

The prediction of BKV (LO, CS) for the helicity-para-
meter « as a function of py in the target frame is shown in
Figs. 11a and b. The prediction lies somewhat below the
data at low pr and somewhat above at high pr, although
the data have large statistical uncertainties. This general
trend appears for both 0.4 < z < 1 and 0.4 < z < 0.9 re-
gions. The prediction from Baranov also lies below the
data at low pr, but gives a good description of the data
for pr > 1.6 GeV.

The LO CS prediction from Baranov is also shown in
Fig. 11c and d compared to the data for the helicity-base
frame. The GRV prediction was obtained by adding [36] a
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Fig. 8. Differential cross-section do/dz for 50 < W < 180 GeV
and pr > 1 GeV (points). The inner error bars show the statis-
tical uncertainty; the outer bars show the statistical and sys-
tematic uncertainties added in quadrature. The shaded band
shows the prediction KZSZ (NLO, CS), including only the di-
rect photon process. The spread in the prediction is due to
uncertainties on the charm-quark mass and on the QCD scale
parameter, Agcp. The solid lines show the prediction of the
KZSZ (LO, CS+CO) calculation performed including both di-
rect and resolved photon processes. The spread in the predic-
tions is due to theoretical uncertainties in the extraction of the
CO matrix elements. The KK (LO, CS+CO) prediction is also
shown as the dashed line. The spread in the predictions is due
to uncertainties in the extraction of the CO matrix elements. A
15% contribution has been added to the predictions to account
for J/v) mesons originating from 1)’ cascade decays

kr dependence to the GRV (collinear) gluon density. The
KMS prediction was obtained from the kp-unintegrated
gluon density [37]. The data are reasonably well described
by both predictions.

8.3.2 Comparison with the next—to—leading—order
colour—singlet calculation

The KZSZ (NLO, CS) prediction is compared to the data
for do/dp% in Fig.6. The prediction is not reliable in the
pr — 0 limit [2] and hence is only shown for pr > 1 GeV.
The predicted shape, controlled by QCD gluon radiation,
is in good agreement with the data. The normalisation of
the predicted cross sections is sensitive to the assumed
values of the non-perturbative QCD input parameters,
such as the mass of the charm quark and the value of
Aqcp. The uncertainty resulting from the variation of the
renormalisation and factorisation scales is small by com-
parison [35]. The overall normalisation of the data is well
described by the calculation, although the prediction suf-
fers from large uncertainties. The discrepancy between the
data and the LO CS prediction can therefore be explained
by large NLO corrections.
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Fig. 9. Differential cross-section do/dz for 50 < W < 180
GeV and pr > 2 GeV. The inner error bars show the statistical
uncertainty; the outer bars show the statistical and systematic
uncertainties added in quadrature. The shaded band shows the
prediction KZSZ (NLO, CS). The spread in the prediction is
due to uncertainties on the charm-quark mass and on the QCD
scale parameter, Agcp. The solid lines show the prediction of
BSW (LO, CS+CO), where the spread in the prediction is due
to the uncertainty on the value of the shape-function param-
eter. The dashed line shows the contribution of the CS terms
only. A 15% contribution has been added to the predictions to
account for J/1 mesons originating from 1)’ cascade decays

The prediction is also compared to the cross section
as a function of W in Fig.7. The prediction again suf-
fers from large theoretical uncertainties but describes the
shape and normalisation of the data. Similar conclusions
can be drawn from the comparison with the differential
cross-sections do/dz shown in Figs. 8-9.

8.3.3 Comparison with non—relativistic quantum
chromodynamics calculations

The inelasticity distributions in Figs.8-9 are compared
with different predictions including CO matrix elements
extracted by fitting independent data sets. In Fig. 8, do/dz
for pr > 1 GeV is compared with the KZSZ (LO, CS+CO)
and KK (LO, CS4+CO) calculations. The rise of the pre-
dicted cross section for z < 0.1 is due to resolved photon
processes. Within the large theoretical uncertainties, the
prediction KZSZ (LO, CS+CO) gives a good description
of the data. The KK (LO, CS4CO) result lies significantly
below the data, but describes the shape reasonably well.

In Fig. 9, the differential cross-section do/dz for pr >
2 GeV is compared with the BSW (LO, CS) and BSW
(LO, CS+CO) calculations [5]. The CS prediction clearly
lies below the data, whilst the inclusion of the CO terms
gives a better description. The spread in the prediction,
which is largest at high z, is due to the uncertainty on the
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Fig. 10. J /v differential cross-section do /dy for 50 < W < 180
GeV,0.4 < z < 0.9 and pr > 1 GeV. The inner error bars show
the statistical uncertainty; the outer bars show the statistical
and systematic uncertainties added in quadrature. The range of
the KK (LO, CS+CO) prediction is shown as the dashed lines.
The dotted lines show the same prediction scaled up by a factor
of three. The spread in the predictions is due to theoretical
uncertainties in the extraction of the CO matrix elements. A
15% contribution has been added to the predictions to account
for J/1) mesons originating from 1)’ cascade decays

value of the shape-function parameter. The overall shape
of the spectrum is weakly dependent on the CO matrix
elements, which primarily affect the global normalisation
of the spectrum.

The KK (LO, CS+CO) prediction is compared to the
cross-section do/dy in Fig.10 for the kinematic region
50 < W < 180 GeV, 04 < z < 0.9 and pr > 1 GeV.
The calculation includes both direct and resolved photon
processes, but the resolved photon contribution is negligi-
ble in the selected phase-space region (due to the lower z
cut). The predicted cross section falls well below the data,
although the shape is reasonably reproduced, as shown
when the prediction is multiplied by a factor of three.

In Figs. 11a and b, the BKV (LO, CS+CO) prediction
is compared to the data for the helicity-parameter distri-
bution as a function of pr. The spread in the prediction
is due to theoretical uncertainties on the values of the CO
matrix elements. In the currently accessible pp range, the
CS plus CO predictions are similar to those of the CS only,
although the prediction from the CS model rises with pp,
while the CS plus CO prediction decreases slightly.

9 Conclusions

Cross sections of inelastic J/1 photoproduction have been
measured and compared with LO and NLO QCD predic-
tions. The LO CS prediction does not describe the pZ
spectrum. A NLO QCD calculation in the framework of
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Fig. 11a—d. J/v helicity parameter, «, as a function of pr

for 50 < W < 180 GeV aand c 04 < z < 1; band d 04 <
z < 0.9. The error bars correspond to the total experimental
uncertainties. The results for the target frame are shown in
a and b and the results for the helicity basis frame are shown
in c and d. In a and b, the prediction of BKV (LO CS+CO) is
shown as the shaded band, while the prediction from the BKV
(LO, CS) model is shown as the dashed line. In a, ¢ and d, the
data are compared with the predictions of Baranov using the
GRV (dotted line) and KMS (solid line) unintegrated parton
densities

the CS model, including only the direct photon process,
gives a good description of the p% and z differential cross
sections and of the cross section as a function of W. How-
ever, given the large theoretical uncertainties affecting the
NLO calculation, it is currently not possible to constrain
the size of the CO contributions. Furthermore, LO cal-
culations including CO contributions, as determined from
pp data, describe the data, albeit with large theoretical
uncertainties. Although the helicity distribution at high
pr is sensitive to the underlying production mechanism,
the data are unable to distinguish between the two mech-
anisms. These results agree with the measurements re-
cently published by the H1 collaboration after taking into
account, by MC extrapolation, the small (< 10%) normal-
isation differences due to the different phase—space regions
probed by the two experiments.
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