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Efficacy of Brain–Computer Interface
and the Impact of Its Design Characteristics
on Poststroke Upper-limb Rehabilitation:
A Systematic Review and Meta-analysis
of Randomized Controlled Trials

Salem Mansour1 , Kai Keng Ang2,3, Krishnan P.S. Nair3 ,

Kok Soon Phua2, and Mahnaz Arvaneh1

Abstract

Background. A number of recent randomized controlled trials reported the efficacy of brain–computer interface (BCI) for upper-

limb stroke rehabilitation compared with other therapies. Despite the encouraging results reported, there is a significant var-

iance in the reported outcomes. This paper aims to investigate the effectiveness of different BCI designs on poststroke

upper-limb rehabilitation. Methods. The effect sizes of pooled and individual studies were assessed by computing Hedge’s g values

with a 95% confidence interval. Subgroup analyses were also performed to examine the impact of different BCI designs on the

treatment effect. Results. The study included 12 clinical trials involving 298 patients. The analysis showed that the BCI yielded

significant superior short-term and long-term efficacy in improving the upper-limb motor function compared to the control

therapies (Hedge’s g= 0.73 and 0.33, respectively). Based on our subgroup analyses, the BCI studies that used the intention

of movement had a higher effect size compared to those used motor imagery (Hedge’s g= 1.21 and 0.55, respectively). The

BCI studies using band power features had a significantly higher effect size than those using filter bank common spatial patterns

features (Hedge’s g= 1.25 and − 0.23, respectively). Finally, the studies that used functional electrical stimulation as the BCI feed-

back had the highest effect size compared to other devices (Hedge’s g= 1.2). Conclusion. This meta-analysis confirmed the effec-

tiveness of BCI for upper-limb rehabilitation. Our findings support the use of band power features, the intention of movement,

and the functional electrical stimulation in future BCI designs for poststroke upper-limb rehabilitation.
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Introduction

As a novel rehabilitation method, BCI has attracted a lot of

attention. A BCI records, analyzes, and decodes brain signals

and translates them into commands for communication and

control.1,2 The BCI system for stroke rehabilitation usually con-

sists of 6 stages, as shown in Figure 1:

1. Signal acquisition: A number of modalities for acquisition

of brain signals are suitable for the BCI in stroke rehabili-

tation, namely electroencephalography (EEG), functional

near-infrared spectroscopy (fNIRS), and magnetoencepha-

lography (MEG). Due to its lower cost, higher temporal

resolution, and portability, EEG is the most commonly

used modality in BCI-based stroke rehabilitation.3

2. Mental practice: In the motor imagery (MI)-based BCI

studies, the patients are instructed to imagine moving

the impaired hand without any physical movements,

whereas in the intention of the movement (IM)-based

BCI studies, the patients attempt to perform physical

movement of the impaired hand if possible. The MI or

IM produces brain waves, called movement-related cortical

potentials (MRCPs) and event-related desynchronization/

synchronization (ERD/ERS).4,5 MRCP and ERD/ERS
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are distinct movement-related brain patterns. MRCP is

characterized as slow changes of the brain signals in the

time domain. ERD and ERS are, respectively, described

as a suppression and an enhancement in the power of

the sensorimotor rhythms. For example, the power of

beta rhythm (13-30 Hz) recorded over the sensorimotor

regions has been shown to decrease before the motor

task, reaches its minimum during the movement execution

(ERD), and then recovers sharply after the end of the

motor task (ERS).6 In the application of upper-limb

stroke rehabilitation, the BCI is used to detect either

MRCP or ERD\ERS in brain signals when the patient per-

forms the relevant mental practice.

3. Preprocessing: The recorded brain signals can be con-

taminated with artifacts caused by blinking, muscle

activity, and other sources of noise. In the preprocessing

stage, different spectral, temporal, and spatial algorithms

are applied on the measured brain signals to reduce

these artifacts. Among different preprocessing algorithms,

the threshold-based artifact rejection, and 8 to 30 Hz

band-pass filtering have been widely used in many

BCI-based stroke rehabilitation studies.7

4. Feature extraction: In this step, to detect movement-related

brain patterns, a set of informative, nonredundant, and

distinctive characteristics, named features are extracted

from the preprocessed brain signals. The previous

BCI-based stroke rehabilitation studies have often used

one of the following 3 types of features, namely, common

spatial patterns (CSP) features,8 filter bank CSP (FBCSP)

features,9,10 and band power features.11–13 CSP is a

feature extraction algorithm that assigns different weights

to different EEG channels, such that the weighted sum

of the powers of brain signals is maximized for one

class and minimized for the other class.14,15 In MI- and

IM-based BCIs, the CSP features are the weighted sum

of the powers of 8 to 30 Hz band-pass filtered brain

signals, whereas FBCSP features are multiple CSP features

extracted from a bank of brain signals filtered using

different small band-pass filters.16

5. Classification: The extracted features are fed to a classi-

fier to detect whether or not the recorded brain signals

prominently represent the movement-related brain pat-

terns associated with the performed mental practice. If

the movement-related brain patterns are detected, a

control signal is sent to an external device to provide

the feedback.

6. Feedback: The patient is presented with feedback indicating

whether the classification algorithm accurately inter-

preted their motor intention/imagination. The commonly

used type of BCI feedback in stroke rehabilitation is

kinesthetic, whereby following the detection of the

movement-related brain patterns, the impaired hand

is moved along a predefined trajectory. For instance,

Ang et al9 and Biasiucci et al,17 respectively, used an

Massachusetts Institute of Technology (MIT)–Manus

robot and functional electrical stimulation (FES) in

order to facilitate the movement of the impaired hand

as the BCI feedback. The MIT-Manus robot is a wear-

able robot that has been extensively studied for provid-

ing individualized rehabilitation after stroke. During

the intervention, the patient is instructed to move the

affected arm towards a target. If needed, the robot facili-

tates the movement of the affected arm by providing

assistive forces based on the patient’s speed and the

direction of the movement. Although rehabilitation with

the MIT-Manus robot can be potentially effective,18,19

if the patient does not engage well in generating volun-

tary attempts, the movements of the affected arm turn

out to be completely passive. This leads to a great

decrease in the possible benefits of the therapy.

To enhance neuroplasticity in the poststroke upper-limb

rehabilitation, the BCI links the movement-related brain pat-

terns (generated during either MI or the IM of the affected

arm) with feedback such as robotic-based movements, neuro-

muscular stimulation, virtual reality, etc.20 In other words, the

BCI is coupled with the existing therapies to enhance their effi-

cacy by making the rehabilitation more active.21

Recently, a number of randomized controlled trials (RCTs)

have investigated the efficacy of the BCI for poststroke upper-

limb rehabilitation, and compared the outcomes with those

obtained from other existing therapies.11,13,17,22 Despite the

encouraging results in many of these RCTs, there is a signifi-

cant variance in their reported BCI outcomes.9,10,13,17 This

issue might be due to the heterogeneity among their BCI

study designs,23 including differences in the performed

mental practice, the extracted brain features, the type of feed-

back given to the patients, and the level of stroke chronicity

in the participants. A meta-analysis conducted by Cervera

et al24 reported positive effects of the BCI on upper-limb

stroke rehabilitation in a short term. Another meta-analysis

conducted by Bai et al25 considered the long-term efficacy of

Figure 1. Components of brain–computer interface commonly used
for upper-limb stroke rehabilitation.
Abbreviations: CSP, common spatial patterns; EEG,
electroencephalography; FBCSP, filter bank common spatial patterns;
fNIRS, functional near-infrared spectroscopy; IM, intention of
movement; MI, motor imagery; MEG, magnetoencephalography.
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the BCI on upper-limb stroke rehabilitation. However, given

the considerable heterogeneity in the motor function improve-

ment among the BCI RCTs, there is a need for an extensive

meta-analysis to assess the impact of different BCI designs

on the treatment efficacy.

This study conducts a systematic review and meta-analysis

of the short-term and long-term effects of BCI on upper-limb

rehabilitation after stroke. Importantly, we also study the

impact of different BCI design characteristics on the efficacy

of the poststroke upper-limb rehabilitation. The findings of

this meta-analysis aim to improve future clinical trials by pro-

viding evidence-based information about different designs of

the BCI used for rehabilitation.

Method

This study was conducted in accordance with the preferred report-

ing items for systematic reviews and meta-analyses (PRISMA)

checklist for systematic review and meta-analysis.26 PRISMA

aims to help researchers effectively report the findings of sys-

tematic reviews and meta-analyses.27 The PRISMA checklist

contains 27 items, which should be reported to ensure the

transparency and completeness of the report. The 27 items

are divided into 7 categories, including title, abstract, intro-

duction, methods, results, discussion, and funding.

We systematically searched PubMed, Physiotherapy

Evidence-Based Database (PEDro), and Cochrane Library for

the studies that published up until 25 April 2020. Supplemental

Appendix 1 provides the detailed electronic search strategy that

we used. The identified studies were included in this meta-

analysis only if they met the following inclusion criteria:

1. The study is written in English.

2. The study design is a randomized controlled trial of

upper-limb BCI rehabilitation, in which the 2 groups

(ie, the experimental group and the control) are all

stroke patients;

3. The study reported the results of the Fugl-Mayer assess-

ment for upper extremity (FMA-UE) before and after the

intervention.

We chose the FMA-UE, because it is the most commonly used

outcome measure in the upper-limb BCI rehabilitation studies.28

The FMA-UE is widely used to evaluate and measure the upper-

limb motor function impairment in patients after the stroke.29 The

FMA-UE score mainly ranges from a minimum of 0 (hemiplegia)

to a maximum of 66 (normal motor function). We excluded

studies without a control group, studies with healthy subjects,

studies with a feedback mechanism not combined with BCI, or

studies without FMA-UE. Two reviewers independently evalu-

ated the eligibility of the included articles, and disagreements

were resolved through consensus during a meeting.

We extracted the following details from each included

studies: surname of the first author, year of the publication,

aim of the study, brain imaging modality, number of

participants, phase of the stroke (ie, chronic or subacute),

length and frequency of the interventions, outcome measures,

type of performed mental practice during the BCI intervention

(ie, MI or IM), BCI feature extraction method, type of BCI

feedback, and length of follow-up assessments after the inter-

vention. The corresponding investigators were contacted if

the included studies lacked some details.

The PEDro scale is commonly used to measure the method-

ological quality of a clinical trial by considering 11 criteria (ie,

eligibility criteria specified, random allocation, concealed allo-

cation, baseline comparability, blinded subjects, blinded thera-

pist, blinded assessor, adequate follow-up, intention to treat

analysis, between-group statistical comparison for at least 1

key outcome, point and variability measures).30 The PEDro

score is a score ranging from 0 to 10, which represents the

total number of criteria, excluding the first one that has been sat-

isfied in the clinical trial. A clinical trial with a score from 6 to

10 is considered as high quality, 4 to 5 as fair quality, and ≤3 as

poor quality. In this study, 2 reviewers independently applied

the PEDro scale to assess the methodological quality of the

included studies. In the case of disagreement, a third reviewer

was consulted and an agreement was reached.

We conducted the meta-analysis using Comprehensive

Meta-Analysis (CMA) version 3.0 software.31 CMA is a tool

to perform meta-analysis, create forest plots, calculate effect

sizes, and much more. We calculated the effect sizes for the

pooled and individual studies using Hedge’s equation with cor-

rection for small studies.32 Due to considerable variations in

characteristics of the included studies, random-effects models

were used to estimate the pooled effect sizes and their 95% con-

fidence intervals (CIs).33 In addition, we performed subgroup

analyses to investigate the impact of different BCI design char-

acteristics (ie, performed mental practice, extracted BCI fea-

tures, type of the given BCI feedback, and the stroke phase)

on treatment efficacy.

We used the Higgins’ I2 statistic to assess heterogeneity

across the included studies.34Generally, I2 > 50% could be con-

sidered as substantial heterogeneity. Finally, the probability of

publication bias in our meta-analysis was assessed by plotting

the funnel plot and applying Egger’s regression test.35,36

Results

Literature Search and Characteristics of the

Selected Studies

Figure 2 shows the flowchart of the search strategy and the selec-

tion steps taken in this review.We initially identified 585 articles,

12 of which met the inclusion criteria. The study by Ang et al37

had 2 control groups, 1 control group used the standard arm

therapy and the second control group used the haptic knob.

Thus, we combined the 2 control groups into a single control

group as recommended by the Cochrane handbook for system-

atic reviews of interventions.38 Table 1 provides the main char-

acteristics of the included studies.

Mansour et al 3



Supplemental Table S1 presents the PEDro scores for the 12

included studies. It can be seen that according to the PEDro

scores, none of the selected studies are considered to have

low methodological quality.

Supplemental Table S2 presents the mean and standard

deviation of the changes in FMA-UE scores between the

pre and postintervention in the selected studies, while the

Supplemental Table S3 shows the mean and standard deviation

of the changes in FMA-UE scores between the preintervention

and the follow-up session.

Short-term and Long-term Efficacy of BCI

The pooled results showed that according to the short-term

assessments immediately after finishing the intervention, the

BCI is significantly more effective than the control interventions

in post-stroke upper-limb rehabilitation (Hedge’s g= 0.73;

P= .006) (Figure 3A). In 9 out of 12 studies, the BCI resulted

in higher improvements in FMA-UE, compared to the control

interventions (Ang et al,37 Biasiucci et al,17 Frolov et al,39

Kim et al,40 Li et al,8 Mihara et al,12 Pichiorri et al,41

Ramos-Murguialday et al,11 and Wu et al13). The highest BCI

intervention effect size was reported by Wu et al13 (Hedge’s

g= 3.48; P< .001). In 6 studies, namely Biasiucci et al,17 Kim

et al,40 Mihara et al,12 Pichiorri et al,41 Ramos-Murguialday

et al,11 and Wu et al,13 the effect size was significantly favoring

BCI. There was substantial heterogeneity among the included

studies (I2= 77.12%; Q= 48.077; df= 11; P= .000).

There is no evidence that the short-term effects of BCI are

subject to publication bias. As shown in Supplemental Figure 1,

the included studies have a relatively symmetric distribution

across the overall effect size in the funnel plot. Moreover,

the P value for Egger’s test is not significant (P= .3795).

The overall effect size, shown in Figure 3B, indicates the

effectiveness of the BCI intervention in long term (Hedge’s

g= 0.33; P= .041) with no heterogeneity among the included

studies (I2= 0.000%;Q= 5.839; df= 6; P= .442). Specifically, in

5 out of 7 studies, the FMA-UE changes between the follow-up

Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart illustrating the process for the selection of
the included studies in this meta-analysis.
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Table 1. Main Characteristics of the Included Studies.

Study EG/CG
BCI

modality
Experimental
intervention Control intervention Intervention period Feature

Stroke
phase

MI/
IM

Outcome
measures

Follow-up
(weeks)

Ang et al37 6/8 HK/
7SAT

EEG BCI-HK 1 h BCI+ 30 min
TAAM

HK:1 h HK+ 30 min
TAAM; SAT:1.5 h

TAAM

6 weeks, 18 sessions FBCSP Chronic MI FMA-UE 24

Ang et al 9 11/14 EEG BCI-MIT-Manus robot
1.5 h 136 repetitions

MIT-Manus robot
1.5 h 1040
repetitions

4 weeks, 12 sessions FBCSP Chronic MI FMA-UE 12

Ang et al.10 10/9 EEG 20 min tDCS+ 1 h BCI-
MIT-Manus robot

20 min sham tDCS+
1 h sham BCI

2 weeks, 10 sessions FBCSP Chronic MI FMA-UE 4

Biasiucci et al17 14/13 EEG BCI-FES 1 h Sham BCI-FES 1 h 5 weeks, 10 sessions Band
power

Chronic IM FMA-UE, ESS,
MRC, MAS

36

Cheng et al42 5/5 EEG BCI-assisted soft robotic
glove 90 min+ 30 min

SAT

Soft robotic glove 90
min+ 30 min SAT

6 weeks, 18 sessions FBCSP Chronic MI FMA-UE,
ARAT

24

Frolov et al39 36/11 EEG BCI-exoskeleton 30 min
+ SPT

Sham BCI 30 min 2 weeks, 10 sessions Band
power

Chronic MI FMA-UE,
ARAT

N/A

Kim et al40 15/15 EEG BCI-FES 30 min+ 30 min
AOT

AOT 30 min 4 weeks, 12 sessions
BCI. 20 sessions AOT

Band
power

Chronic IM FMA-UE,
MAL, MBI

N/A

Li et al8 7ne;7nc EEG BCI-FES 1–1.5 h+CON FES 20 min+CON 8 weeks, 24 sessions
BCI/FES and 40
sessions CON

CSP Subacute MI FMA-UE,
ARAT

N/A

Mihara et al12 10/10 fNIRS BCI-visual feedback
20 min+ 120 min NDT

Sham BCI 20 min+
120 min NDT

2 weeks, 6 sessions
BCI/Sham, 14 sessions

NDT

Band
power

Subacute MI FMA-UE,
ARAT, MAL

2

Pichiorri et al41 14/14 EEG BCI-virtual hand 1 h MI, 1 h 4 weeks, 12 sessions Band
power

Subacute MI FMA-UE N/A

Ramos-Murguialday
et al11

16/16 EEG BCI-orthosis 1 h+ 1 h
BPT

Sham BCI-orthosis
1 h+ 1 h BPT

4 weeks, 20 sessions Band
power

Chronic IM FMA-UE
GAS, MAL

26

Wu et al13 14/11 EEG BCI-exoskeleton 1 h+
1 h routine training

Routine training 2 h 4 weeks, 20 sessions Band
power

Subacute MI FMA-UE
ARAT,
WMFT

N/A

Abbreviations: AOT, action observational training; ARAT, action research arm test; BCI, brain–computer Interface; BPT, behavioral physical therapy; CG, control group; CON, conventional therapy; CSP,

common spatial pattern; EG, experimental group; EES, European stroke scale score; GAS, goal attainment scale; FBCSP, filter bank common spatial pattern; fNIRS, functional near-infrared spectroscopy; FES,

functional electrical stimulation; FMA-UE, Fugl-Meyer assessment upper extremity; IM, intention of movement; HK, haptic knob; MAL, motor activity long; MAS, modified Ashworth scale; MBI, modified Barthel

index; MI, motor imagery; MRC, medical research council; N/A, not available; NDT, neurodevelopmental treatment; SAT, standard activity therapy; SPT, standard physical therapy; TAAM, therapist-assisted

arm mobilization; tDCS, transcranial direct-current stimulation; WMFT, Wolf motor function test.
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session and the preintervention were in favor of the BCI

group. According to the funnel plot shown in Supplemental

Figure 2, and the Egger’s test (P= .541), there is no evidence

of publication bias in the outcome of analyzing the long-term

efficacy of the BCI.

Chronic Versus Subacute

Eight studies recruited stroke patients in the chronic phase

(>6 months from stroke onset)9–11,17,37,39,40,42 and the

remaining 4 studies recruited stroke patients in the subacute

phase (1-6 months from stroke onset).8,12,13,41 For both groups,

the pooled effect size on motor recovery was in favor of BCI

compared to the control interventions. However, the pooled

effect size was higher for the patients in the subacute phase

than those in the chronic group (Hedge’s g= 1.45; P= .008 vs

Hedge’s g= 0.41; P= .138) (Figure 4A). The observed effect

sizes tended to be significantly different between the 2 subgroups

(P= .09). Furthermore, still a substantial heterogeneity was

observed between the studies in the subacute phase (I2=80.17%;

Q= 15.128; df= 3; P= .002) as well as in the chronic phase

(I2= 71.634%; Q= 24.577; df= 7; P= .001).

MI Versus IM

In the included studies, the performed BCI mental practices were

different (Figure 4B). Nine studies instructed the BCI group to

imagine the movement of the affected hand,8–10,12,13,37,39,41,42

whereas 3 studies asked the BCI group to attempt moving the

affected hand.11,17,40 The effect size on motor function recovery

was higher for the studies using the IM (Hedge’s g= 1.21;

P< .001) compared with those using the MI (Hedge’s g= 0.55;

P= .089). However, the difference between the 2 subgroups

was not statistically significant (P= .135). The heterogeneity

among the studies using the IM was moderate (I2= 42.38%;

Q= 3.471; df= 2; P= .176), whereas there was a substantial

heterogeneity among the MI studies (I2= 78.348%; Q= 37.01;

df= 8; P= .000).

BCI Classification Features

The included studies were also different in BCI features that

they used. Seven studies used the band power features to

detect movement-related brain patterns in BCI.11–13,17,39–41

The CSP features were used only in 1 study 8 and the FBCSP

Figure 3. Evaluating effects of brain–computer interface, compared to control interventions, in improving upper-limb motor functions after
stroke: (A) assessed immediately after finishing the intervention and (B) assessed in the follow-up session a number of weeks after finishing the
intervention.
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features were used in 4 studies.9,10,37,42 The group of studies

that used band power features had the highest significant

effect size on motor function recovery in favor of the BCI

intervention (Hedge’s g= 1.25; P < .001) (Figure 5), with

substantial heterogeneity among the studies (I2= 75.208%;

Q= 24.201; df= 6; P= .000). Conversely, the effect size

on motor function recovery was in favor of the control

group in the studies using the FBCSP features in the BCI

(Hedge’s g=−0.23; P= .315) with no heterogeneity. The

difference between the studies with the band power features

and the studies with the FBCSP features was statistically sig-

nificant (P<.001).

Figure 4. (A) A subgroup meta-analysis comparing the efficacy of brain–computer interface in improving upper-limb motor functions,
between 2 different phases of stroke. (B) A subgroup meta-analysis comparing the efficacy of brain–computer interfaces with different mental
practices on poststroke upper-limb motor recovery; (ie, motor imagery vs intention of movement).

Mansour et al 7



Only 1 study used the CSP features in their BCI model,

yielding the effect size in favor of the BCI group (Hedge’s

g= 0.66; P= .2).

Type of BCI Feedback

The type of BCI feedback used to move the affected hand was

different across the studies. As can be seen in Figure 6, func-

tional electrical stimulation (FES) was used in 3 studies,8,17,40

a hand exoskeleton robot was used in 2 studies.13,39 The

MIT-Manus robot was used in 2 studies,9,10 and haptic

knob, an assisted soft robotic glove, and orthosis (hand and

arm) robot were used in 1 each.11,37,42 One study provided

only visual feedback to the patients.12 Finally, the study con-

ducted by Pichiorri et al41 used a virtual hand to provide the

BCI feedback to the patients.

Compared to the control interventions, the highest statisti-

cally significant effect size on upper extremity recovery was

obtained by the group of studies that used FES as the BCI

feedback (Hedge’s g= 1.2; P= .001), with moderate hetero-

geneity among the studies (I2= 47.369%; Q= 3.8; df= 2;

P= .15). However, the effect size of the group studies with

the FES-based feedback was not significantly higher than

the effect sizes of the other groups of studies with the other

types of BCI feedback.

Discussion

This study was conducted according to the recommendations

of the PRISMA checklist for meta-analyses and systematic

reviews.26 Our meta-analysis studied changes in the FMA-UE

scores between pre and postintervention, and showed that

BCI had a significantly higher effect size in improving

upper extremity functions following stroke, when compared

with control therapies. These findings are consistent with

the results of the previous meta-analysis,24 and support the

short-term efficacy of BCI. Importantly, our study analyzed

12 randomized controlled trials involving 298 stroke patients,

while the previous study24 covered 9 randomized controlled

trials with 235 stroke patients.

We also analyzed the results of 7 out of 12 included studies

that reported the FMA-UE scores of the patients in a follow-up

session held a number of weeks after the cession of the interven-

tion. Our results showed that the BCI effects in restoring upper

extremity functions are persistent over long term with a pooled

effect size significantly better than the control interventions. As

an example, the upper-limb improvements were almost main-

tained at 36 weeks after the intervention in the study conducted

by Biasiucci et al.17 However, the recent meta-analysis con-

ducted by Bai et al25 did not observe long-term efficacy of

BCI compared to conventional therapies. The reason might be

because they considered a smaller number of randomized clinical

Figure 5. A subgroup meta-analysis comparing the efficacy of brain–computer interface, grouped based on different classification features, on
poststroke upper-limb motor recovery.
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trials (5 studies). In addition, we combined the 2 control groups

in the study conducted by Ang et al37 to create a single control

group,38 whereas Bai et al25 selected the haptic knob group

and excluded the standard arm therapy group.

Interestingly, the most recent randomized controlled trial

conducted by Wu et al13 showed the highest effect size in

improving upper extremity functions in favor of BCI (ie,

Hedge’s g= 3.48).13 As can be seen in Figure 3A, the BCI

effect size of this study is much larger than the effect sizes

of the other included studies. In this study, unlike the other

studies, the MI instruction was given to the patients by dis-

playing a video of a hand using different tools. Then, the

patients were asked to repeat the presented hand movement

using mental imagery. The authors emphasized that the

given instruction played an important role in the observed

motor function recovery, possibly by linking the brain’s

visual and motor system.

Our subgroup meta-analysis showed that for both subacute

and chronic patients, BCI is more effective than conventional

therapies in improving upper-limb function (see Figure 4A).

Our results also showed that the BCI studies performing

intention/attempting of movement of the impaired hand,

often followed by real movement if available, achieved a higher

overall effect size than those that performed only MI (although

not statistically significant). As a possible reason, we would

argue that intending to move rather than just imaging the move-

ment may lead to higher activity in neural circuits and better

patient engagement and attention.43,44 Blokland et al45 showed

that for both groups of paralyzed and healthy participants, the

accuracy of the BCI system that focused on the IM was signifi-

cantly higher than that of MI. Moreover, among healthy partici-

pants, the IM and motor execution had more similar brain

spectral responses and BCI performance than the results of MI.

Considering the evidence provided here, future BCI-based

stroke rehabilitation studies are encouraged to focus on intending

rather than imagining of moving impaired hands. Further studies

are required to confirm this observation.

Our subgroup meta-analysis grouped the included studies

according to the BCI features that they used, further revealing

that the use of band power features yielded the highest effect

size in favor of the BCI compared to the control interventions.

Indeed, the BCI studies using the band power features achieved

a significantly greater upper-limb motor function recovery than

those using the FBCSP features (P< .001). Previous studies on

healthy and stroke participants suggested that FBCSP could lead

to a higher BCI accuracy than the band power features. In addi-

tion, some studies have reported that there is a correlation

between the BCI accuracy and motor function improvement

Figure 6. A subgroup meta-analysis comparing the efficacy of brain–computer interface, grouped based on different types of feedbacks, on
poststroke upper-limb recovery.
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after a BCI intervention.44,46 Thus, someone may initially

assume that using FBCSP should produce a higher BCI

effect size on motor recovery. However, the long-term effec-

tiveness of BCI for stroke rehabilitation greatly involves

human learning. The results of our meta-analysis suggest

that in long term the use of band power features potentially

helps patients better learn to self-regulate their brain pat-

terns, leading to more motor recovery as compared to more

complex features such as FBCSP. In FBCSP, the patients

may not easily find a connection between their mental prac-

tice and what they observe as the output BCI.

The randomized control trials that coupled the BCI with FES

had the largest significant effect size in restoring upper-limb func-

tion. This improvement may be due to the positive impact of FES

on cortical excitability as reported by several studies.47,48

In the study conducted by Ang et al,9 the effect size was in

favor of the control group. This may be due to the relatively

small number of training repetitions in the BCI group com-

pared to the control group (136 vs 1040 repetitions). In addi-

tion to the number of training repetitions, the use of MI and

FBCSP may have contributed to the negative results, as dis-

cussed in this study. Another study by the same research

group also showed an effect size in favor of the control

group.10 This finding might be because of the short period

of the rehabilitation intervention (2 weeks). Interestingly,

this study reported a slight improvement in the BCI outcomes

at the follow-up session held 4 weeks postintervention.

However, it would be difficult to distinguish if this observed

slight improvement was as a result of the BCI intervention or

the transcranial direct current stimulation (tDCS). Typically,

a longer intervention, such as 6 weeks of rehabilitation with 3

sessions per week is recommended.49

Limitations

In this meta-analysis, we observed large variations in the BCI

intervention effect sizes across the included clinical trials. As

discussed previously, these variations can be potentially due

to differences in the BCI design, including differences in the

BCI feedback, performed mental practices, extracted classifi-

cation features, and the phase of the stroke in the participants,

among others. This finding further confirms that there is a

need to optimize the BCI design for upper-limb stroke reha-

bilitation in order to maximize the potential motor function

improvement in patients.

Only 12 randomized clinical trials (298 patients) were

available to analyze in this study. Hence, more studies with

a larger number of patients are required to increase the reli-

ability and generalizability of the results. Moreover, in

order to have a reliable subgroup meta-analysis, it has been

recommended to have at least 5 clinical trials in each sub-

group.50 In some of our subgroup analyses, this condition

was not met. Moreover, we did not consider the variations

among the included clinical trials in terms of the intensity

of BCI intervention (see Table 1).

Conclusion

This study showed that BCI has significant immediate and

long-term effects in improving upper-limb motor functions

after stroke, compared to conventional therapies. Our results

support using “intention of movement of the impaired hand”

as the BCI mental practice, the band power features as the

BCI classification features, and the functional electrical

stimulation as the BCI feedback in future BCI-based stroke

rehabilitation studies.

Acknowledgments

We would like to thank Maria A. Cervera, Gangadhar Grappelli and

Joshua Giles for their help and advice in data collection and extraction

of clinical trial information.

Author Contributions

SM and MA contributed to the study concept and design, indepen-

dently searching and evaluating study eligibility, extracting the data

and drafting the manuscript. The statistical analysis was performed

by SM, and the research was supervised by MA. KKA, KPSN, and

KSP all contributed significantly to the interpretation of the findings

and the writing of the manuscript. The manuscript was revised by all

authors, and they all gave their approval to the final version.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the

research, authorship, and/or publication of this article: This work was

supported by the University of Sheffield.

ORCID iDs

Salem Mansour https://orcid.org/0000-0002-0942-5780

Krishnan P.S. Nair https://orcid.org/0000-0002-4004-2315

Supplemental material

Supplemental material for this article is available online.

References

1. Mak JN, Wolpaw JR. Clinical applications of brain-computer

interfaces: current state and future prospects. IEEE Rev Biomed

Eng. 2009;2:187–199. doi:10.1109/RBME.2009.2035356

2. Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain–

machine interfaces in neurorehabilitation of stroke. Neurobiol

Dis. 2015;83:172–179. doi:10.1016/j.nbd.2014.11.025

3. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a

review. Sensors. 2012;12(2):1211–1279. doi:10.3390/s120201211

4. Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M,

Niazi IK. A review of techniques for detection of movement inten-

tion using movement-related cortical potentials. Comput Math

Meth Med. 2015;2015:346217. doi:10.1155/2015/346217

10 Clinical EEG and Neuroscience 0(0)



5. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,

Vaughan TM. Brain–computer interfaces for communication and

control. Clin Neurophysiol. 2002;113(6):767–791. doi:10.1016/

S1388-2457(02)00057-3

6. Nakayashiki K, Saeki M, Takata Y, Hayashi Y, Kondo T.

Modulation of event-related desynchronization during kinematic

and kinetic hand movements. J Neuroeng Rehabil. 2014;11(1):90.

doi:10.1186/1743-0003-11-90

7. Renard Y, Lotte F, Gibert G, et al. Openvibe: an open-source soft-

ware platform to design, test, and use brain–computer interfaces in

real and virtual environments. Presence: Teleoperators and Virtual

Environments. 2010;19(1):35–53. doi:10.1162/pres.19.1.35

8. Li M, Liu Y, Wu Y, Liu S, Jia J, Zhang L. Neurophysiological

substrates of stroke patients with motor imagery-based brain-

computer interface training. Int J Neurosci. 2014;124(6):403–

415. doi:10.3109/00207454.2013.850082

9. Ang KK, Chua KSG, Phua KS, et al. A randomized controlled

trial of EEG-based motor imagery brain-computer interface

robotic rehabilitation for stroke. Clin EEG Neurosci. 2015;46(4):

310–320. doi:10.1177/1550059414522229

10. Ang KK, Guan C, Phua KS, et al. Facilitating effects of transcranial

direct current stimulation on motor imagery brain-computer interface

with robotic feedback for stroke rehabilitation. Arch Phys Med

Rehabil. 2015;96(3):S79–S87. doi:10.1016/j.apmr.2014.08.008

11. Ramos-Murguialday A, Broetz D, Rea M, et al. Brain–machine

interface in chronic stroke rehabilitation: a controlled study. Ann

Neurol. 2013;74(1):100–108. doi:10.1002/ana.23879

12. Mihara M, Hattori N, Hatakenaka M, et al. Near-infrared

spectroscopy-mediated neurofeedback enhances efficacy of motor

imagery-based training in poststroke victims: a pilot study. Stroke.

2013;44(4):1091–1098. doi:10.1161/STROKEAHA.111.674507

13. Wu Q, Yue Z, Ge Y, et al. Brain functional networks study of sub-

acute stroke patients with upper limb dysfunction after compre-

hensive rehabilitation including BCI training. Front Neurol.

2020;10:1419. doi:10.3389/fneur.2019.01419

14. Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial fil-

tering of single trial EEG during imagined hand movement. IEEE

Trans Rehabil Eng. 2000;8(4):441–446. doi:10.1109/86.895946

15. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller K-R.

Optimizing spatial filters for robust EEG single-trial analysis.

IEEE Signal Process Mag. 2007;25(1):41–56. doi:10.1109/

MSP.2008.4408441

16. Ang KK, Chin ZY,Wang C, Guan C, Zhang H. Filter bank common

spatial pattern algorithm on BCI competition IV datasets 2a and 2b.

Front Neurosci. 2012;6:39. doi:10.3389/fnins.2012.00039

17. Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional

electrical stimulation elicits lasting arm motor recovery after

stroke. Nat Commun. 2018;9(1):1–13. doi:10.1038/s41467-018-

04673-z

18. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted

therapy on upper limb recovery after stroke: a systematic

review. Neurorehabil Neural Repair. 2008;22(2):111–121.

doi:10.1177/1545968307305457

19. Veerbeek JM, Langbroek-Amersfoort AC, Van Wegen EE,

Meskers CG, Kwakkel G. Effects of robot-assisted therapy for

the upper limb after stroke: a systematic review and meta-analysis.

Neurorehabil Neural Repair. 2017;31(2):107–121. doi:10.1177/

1545968316666957

20. Sabathiel N, Irimia DC, Allison BZ, Guger C, Edlinger G. Paired

associative stimulation with brain-computer interfaces: a new

paradigm for stroke rehabilitation. Springer; 2016:261–272.

doi:10.1007/978-3-319-39955-3_25

21. Van Dokkum L, Ward T, Laffont I. Brain computer interfaces for

neurorehabilitation–its current status as a rehabilitation strategy

post-stroke. Ann Phys Rehabil Med. 2015;58(1):3–8. doi:10.1016/

j.rehab.2014.09.016

22. Buch E, Weber C, Cohen LG, et al. Think to move: a neuromagnetic

brain-computer interface (BCI) system for chronic stroke. Stroke.

2008;39(3):910–917. doi:10.1161/STROKEAHA.107.505313

23. Shu X, Chen S, Yao L, et al. Fast recognition of BCI-inefficient

users using physiological features from EEG signals: a screening

study of stroke patients. Front Neurosci. 2018;12:93. doi:10.3389/

fnins.2018.00093

24. Cervera MA, Soekadar SR, Ushiba J, et al. Brain-computer inter-

faces for post-stroke motor rehabilitation: a meta-analysis. Ann

Clin Transl Neurol. 2018;5(5):651–663. doi:10.1002/acn3.544

25. Bai Z, Fong KN, Zhang JJ, Chan J, Ting K. Immediate and long-

term effects of BCI-based rehabilitation of the upper extremity

after stroke: a systematic review and meta-analysis. J Neuroeng

Rehabil. 2020;17:1–20. doi:10.1186/s12984-020-00686-2

26. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Reprint—

preferred reporting items for systematic reviews and meta-

analyses: the PRISMA statement. Phys Ther. 2009;89(9):873–880.

doi:10.1093/ptj/89.9.873

27. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement

for reporting systematic reviews and meta-analyses of studies

that evaluate health care interventions: explanation and elabora-

tion. J Clin Epidemiol. 2009;62(10):e1–e34. doi:10.1016/j.jclinepi.

2009.06.006

28. Coscia M, Wessel MJ, Chaudary U, et al. Neurotechnology-aided

interventions for upper limb motor rehabilitation in severe chronic

stroke. Brain. 2019;142(8):2182–2197. doi:10.1093/brain/awz181

29. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment

of motor recovery after stroke: a critical review of its measurement

properties. Neurorehabil Neural Repair. 2002;16(3):232–240.

doi:10.1177/154596802401105171

30. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M.

Reliability of the PEDro scale for rating quality of randomized

controlled trials. Phys Ther. 2003;83(8):713–721. doi:10.1093/

ptj/83.8.713

31. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction

to meta-analysis. John Wiley & Sons; 2011.

32. Hedges LV. Distribution theory for glass’s estimator of effect size

and related estimators. J Educ Stat. 1981;6(2):107–128.

doi:10.3102/10769986006002107

33. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited.

Contemp Clin Trials. 2015;45:139–145. doi:10.1016/j.cct.2015.

09.002

34. Higgins JP, Thompson SG, Deeks JJ, AltmanDG.Measuring incon-

sistency in meta-analyses. Br Med J. 2003;327(7414):557–560.

doi:10.1136/bmj.327.7414.557

35. Haidich A-B. Meta-analysis in medical research. Hippokratia.

2010;14(Suppl 1):29.

36. Sterne JA, Egger M. Funnel plots for detecting bias in meta-

analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;

54(10):1046–1055. doi:10.1016/S0895-4356(01)00377-8

37. Ang KK, Guan C, Phua KS, et al. Brain-computer interface-based

robotic end effector system for wrist and hand rehabilitation:

results of a three-armed randomized controlled trial for chronic

stroke. Front Neuroeng. 2014;7:30. doi:10.3389/fneng.2014.00030

Mansour et al 11



38. Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for

systematic reviews of interventions. John Wiley & Sons; 2019.

39. Frolov AA, Mokienko O, Lyukmanov R, et al. Post-stroke reha-

bilitation training with a motor-imagery-based brain-computer

interface (BCI)-controlled hand exoskeleton: a randomized con-

trolled multicenter trial. Front Neurosci. 2017;11:400.

doi:10.3389/fnins.2017.00400

40. Kim T, Kim S, Lee B. Effects of action observational training plus

brain–computer interface-based functional electrical stimulation

on paretic arm motor recovery in patient with stroke: a random-

ized controlled trial. Occup Ther Int. 2016;23(1):39–47.

doi:10.1002/oti.1403

41. Pichiorri F, Morone G, Petti M, et al. Brain–computer interface

boosts motor imagery practice during stroke recovery. Ann

Neurol. 2015;77(5):851–865. doi:10.1002/ana.24390

42. Cheng N, Phua KS, Lai HS, et al. Brain-computer interface-based

soft robotic glove rehabilitation for stroke. IEEE Trans Biomed

Eng. 2020. 67(12):3339–3351. doi:10.1109/TBME.2020.2984003

43. ChaudharyU, Birbaumer N, Ramos-MurguialdayA. Brain–computer

interfaces for communication and rehabilitation. Nat Rev

Neurology. 2016;12(9):513. doi:10.1038/nrneurol.2016.113

44. Chowdhury A,Meena YK, Raza H, et al. Active physical practice fol-

lowed by mental practice using BCI-driven hand exoskeleton: a pilot

trial for clinical effectiveness and usability. IEEE J Biomed Health Inf.

2018;22(6):1786–1795. doi:10.1109/JBHI.2018.2863212

45. Blokland Y, Spyrou L, Bruhn J, Farquhar J. Why BCI researchers

should focus on attempted, not imagined movement. 2016:

46. Bundy DT, Wronkiewicz M, Sharma M, Moran DW, Corbetta M,

Leuthardt EC. Using ipsilateral motor signals in the unaffected

cerebral hemisphere as a signal platform for brain–computer

interfaces in hemiplegic stroke survivors. J Neural Eng. 2012;

9(3):036011. doi:10.1088/1741-2560/9/3/036011

47. RiddingMC,McKay DR, Thompson PD,Miles TS. Changes in cor-

ticomotor representations induced by prolonged peripheral nerve

stimulation in humans. Clin Neurophysiol. 2001;112(8):1461–

1469. doi:10.1016/S1388-2457(01)00592-2

48. Barsi GI, Popovic DB, Tarkka IM, Sinkjær T, Grey MJ. Cortical

excitability changes following grasping exercise augmented with

electrical stimulation. Exp Brain Res. 2008;191(1):57.

doi:10.1007/s00221-008-1495-5

49. Ang KK, Guan C. Brain–computer interface for neurorehabi-

litation of upper limb after stroke. Proc IEEE. 2015;103(6):

944–953. doi:10.1109/JPROC.2015.2415800

50. Richardson M, Garner P, Donegan S. Interpretation of subgroup

analyses in systematic reviews: a tutorial. Clin Epidemiol Glob

Health. 2019;7(2):192–198. doi:10.1016/j.cegh.2018.05.005

12 Clinical EEG and Neuroscience 0(0)


	 Introduction
	 Method
	 Results
	 Literature Search and Characteristics of the Selected Studies
	 Short-term and Long-term Efficacy of BCI
	 Chronic Versus Subacute
	 MI Versus IM
	 BCI Classification Features
	 Type of BCI Feedback

	 Discussion
	 Limitations
	 Conclusion
	 Acknowledgments
	 References

