
1.  Introduction
Land vegetation has been a significant sink of atmospheric CO2 over past decades, taking up roughly a 
quarter of emissions from fossil fuels and land-use change (Friedlingstein et al., 2019). Toward the end of 
the 20th century, the Arctic and boreal ecosystems took up between 0.3 and 0.6 PgC yr−1 – representing a sig-
nificant fraction of the global land sink of 1.0 PgC yr−1 during this period based on top-down and bottom-up 
carbon budget estimates (McGuire et al., 2009). Previous studies also indicate that this northern carbon sink 
has also accelerated in recent decades (Ciais et al., 2019; Wang et al., 2013). In a warming world, it is impor-
tant to understand how the relationship between climate and carbon uptake in the northern high-latitudes 
is evolving if we are to understand the future behavior of the land carbon sink.

A valuable metric for understanding the carbon cycle in the northern hemisphere is the atmospheric CO2 
seasonal cycle. This cycle exhibits a yearly maximum during the colder months when CO2 release processes 
(respiration) dominate, and a yearly minimum during the warmer months when photosynthesis dominates. 
Keeling et al.  (1996) noted that the amplitude of CO2 seasonal cycle (defined as the difference between 

Abstract  Vegetation growth in northern high-latitudes during springtime is strongly temperature 
limited, and thus anomalously warm springs are expected to result in an increased drawdown of carbon 
dioxide (CO2). However, a recent analysis of the relationship between spring temperature anomalies and 
atmospheric CO2 anomalies at Point Barrow, Alaska, suggests that the link between spring carbon uptake 
by northern ecosystems and temperature anomalies has been weakening over recent decades due to a 
diminishing control of temperature on plant productivity. Upon further analysis, covering the 1982–2015 
period, we found no significant change in the relationship between spring vegetation productivity derived 
from remote sensing data and air temperature. We showed that a reduction in spatial coherence of 
temperature anomalies, alongside a significant sensitivity to atmospheric transport, is likely responsible 
for the apparent weakening. Our results, therefore, suggest that spring temperature remains as an 
important control of northern high-latitude CO2 uptake.

Plain Language Summary  The timing of the vegetation growing season is strongly linked 
to the quantity of carbon dioxide (CO2) absorbed each year, however, it is unclear how this will evolve. 
The spring zero crossing (SZC) of atmospheric CO2 is an indicator of how early the growing season starts. 
This is because the growing season is characterized by a significant photosynthetic drawdown of CO2 
by vegetation. This quantity has historically been strongly controlled by temperature in northern high-
latitude ecosystems. A recent study analyzed surface CO2 data at a site in Alaska and suggested that this 
control has broken down. We show here, using satellite-based vegetation data, that there has been no 
change in the control of temperature on vegetation productivity across the high northern latitudes. We 
then demonstrate that the temperature anomalies became more spatially variable across the northern 
high latitudes in recent decades and that variations in atmospheric circulation lead to different regions of 
influence over the Alaskan CO2 site. These influences play a key role in the year-to-year variability of the 
SZC and its relationship with temperature. Our study demonstrates that the control of temperature on the 
year-to-year variations in the timing and magnitude of spring CO2 uptake has remained strong.
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annual maximum and minimum) has been increasing over time and that the fastest changes were occurring 
in northern high latitudes. They also showed that the increase in the CO2 seasonal amplitude was correlated 
with northern temperature anomalies and accompanied by a phase advance during the declining phase 
of the seasonal cycle of CO2 giving rise to the hypothesis that longer growing seasons are associated with 
warmer temperatures. A more recent analysis of global CO2 records confirms that this phenomenon is con-
tinuing, showing that the CO2 seasonal amplitude at the Barrow (Nuvuk) Observatory in Alaska (hereafter 
referred to as Barrow) increased by 0.60% per year from 1961 to 2011 (Graven et al., 2013).

Respiration and photosynthesis are both strongly affected by temperature, and the competition between 
them is expected to lead to different responses of net carbon uptake to temperature throughout the year. Ob-
servational and model evidence suggest that warming during spring leads to increased carbon uptake while 
warming during autumn leads to decreased carbon uptake during each respective period (Piao et al., 2008; 
Randerson et al., 1999). This is explained by the stronger response of photosynthesis (relative to respiratory 
processes) to warming during springtime, whereas in fall the respiration sensitivity to warming exceeds that 
of photosynthesis (Piao et al., 2008).

Recently, Piao et al.  (2017) (hereafter P2017) showed that the springtime relationship between northern 
high-latitude temperature and concurrent CO2 uptake (inferred from atmospheric CO2 data measured at 
Barrow) has substantially weakened since the mid-1990s. In their study, this phenomenon was attributed to 
a weakening of the temperature control on plant productivity based on factorial simulations with biospheric 
and atmospheric transport models (P2017). These results, therefore, challenge the “warmer spring – larger 
carbon sink mechanism,” and may be indicative of approaching a new regime in which other climatic con-
straints, such as “reduced chilling during dormancy,” and “an emerging light limitation,” play a more domi-
nant role in determining spring carbon uptake across northern land (P2017).

While these results are intriguing, influences of atmospheric circulation pattern on findings that are based 
on single CO2 monitoring stations cannot be ruled out. The Arctic Oscillation (AO), an atmospheric circu-
lation regime which has a powerful influence over wind patterns and near-surface climate patterns in the 
high northern latitudes (Thompson & Wallace, 1998), could play an important role here. In this regard, it is 
notable that the change in correlation between spring vegetation activity and temperature between the two 
focal periods 1982–1996 and 1997–2012 (which we refer to as the early/late period), as shown in Figure 3j 
of P2017, has a spatial pattern that strongly resembles an AO pattern (Figure S1). This led us to investigate 
further if the apparent weakening temperature control on spring carbon uptake (P2017) was influenced by 
large-scale atmospheric circulation patterns.

P2017 investigated the effect of holding land fluxes constant while atmospheric transport varies. They ana-
lyzed the spring zero crossing (SZC), an indicator of the timing and magnitude of spring carbon uptake by 
land vegetation. P2017 found that the correlation between the SZC and temperature reduces significantly 
during the early period (when compared with the control), although there is still a clear difference in cor-
relation between the two time periods. However, there is no simulation in P2017 in which transport is held 
constant, so it is not possible to determine the strength of the interaction effect between land fluxes and 
transport.

We therefore aim to explore the role of atmospheric transport in the apparent weakening of the link be-
tween spring time northern temperatures and carbon uptake in more detail. Unlike P2017, we used inter-
annually varying footprints of Barrow during spring calculated with the HYSPLIT4 atmospheric trajectory 
model (Stein et al., 2015) to better understand corresponding influences. To gain additional information on 
the drivers of spring carbon uptake across northern land, we then performed factorial forward simulations 
combining modeled land-atmosphere carbon flux exchanges (based on the Carnegie-Ames-Stanford Ap-
proach (CASA) land-surface model (Potter et al., 1993; Randerson et al., 1996)) and the TOMCAT atmos-
pheric chemistry-transport model (Chipperfield, 2006).
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2.  Materials and Methods
2.1.  Atmospheric CO2 and Analysis of SZC

We analyzed the daily in-situ CO2 record at the Barrow Observatory, Alaska (71°N, 156°W) from the Na-
tional Oceanic and Atmospheric Administration (NOAA) Earth Research Laboratory/Global Monitoring 
Division program (Thoning et al., 2020). The raw CO2 data were smoothed using the Carbon Cycle Group 
CuRVe (CCGCRV) routine (Thoning et al., 1989), from which we obtained the detrended smoothed sea-
sonal cycle (see Text S2). The SZC is defined as the day of the year when the CO2 levels pass through zero 
in the detrended smoothed seasonal cycle. Similarly, an additional metric for spring carbon uptake known 
as spring carbon capture (SCC) is calculated from the difference between the first week of May and last 
week of June in the detrended smoothed seasonal cycle. Our definition of early and late period shifts to 
1979–1995 and 1996–2012, respectively, when analyzing SZC and SCC due to the availability of data during 
the 1979–1981 period.

2.2.  Climate and Vegetation Data

Satellite NDVI (or greenness) data were used as a proxy for vegetation productivity. Monthly data were ob-
tained from the Global Inventory Modeling and Mapping Studies (GIMMS) Version 3g Advanced Very-High 
Resolution Radar (AVHRR) data set (Pinzon & Tucker, 2014) over the 1982–2015 period, means-aggregated 
to a spatial resolution of 0.25° (from their native resolution of 8 km). An additional satellite product used 
as a proxy for productivity is the Fraction of Photosynthetically Active Radiation (FPAR) (Zhu et al. (2013). 
Monthly 0.5° resolution air temperature, precipitation and cloud cover data were taken from the Climatic 
Research Unit TS 4.01 data sets (https://crudata.uea.ac.uk/cru/data/hrg/; Harris et al., 2014), during the 
1979–2016 period, with spatial averages calculated over vegetated land, indicated by an NDVI value greater 
than 0.1. During years in which no NDVI data were available (1979–1981 and 2016), the NDVI > 0.1 mask 
was calculated from averages taken of the 3 chronologically closest years. For calculating the detrended 
spatial average of NDVI and climate data, we detrended the data at each pixel, then summed over the region 
of interest. The AO data set was obtained from December to March averages taken from the NOAA tele-
connections data set. More information is available from https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/daily_ao_index/ao.shtml.

2.3.  HYSPLIT4 Footprints

Back trajectories, calculated using National Centers for Environmental Prediction meteorological data, 
were used to track the source of the springtime CO2 signal. Trajectories starting at Barrow during the 
March–June period were computed every 6 h. Each back trajectory was extended 30 days backwards in time 
with locations sampled every hour. For footprint-weighting of temperature and NDVI, we multiplied the 
temperature and NDVI respectively by the monthly average footprint (units of hours), before averaging the 
March–June value for each year.

2.4.  Factorial Simulations

We used an observation-based modeling approach to simulate atmospheric CO2 at Barrow with the CASA 
land-surface model feeding Net Ecosystem Exchange (NEE) fluxes into the TOMCAT atmospheric chem-
istry model.

CASA uses a simple light-use efficiency approach to estimate Net Primary Productivity (NPP) as follows:

     _ _NPP FPAR SOLRAD LUEmax temp scalar moisture scalar SC� (1)

where FPAR is the fraction of photosynthetically active radiation, SOLRAD is ECMWF ERA-Interim 1D 
solar radiation (Dee et al., 2011), LUEmax is the maximum light use efficiency which is based on estimated 
values for each biome type, the temperature and moisture scalars reduce NPP proportional to their devia-
tion from optimal values, and solar conversion (SC) converts to solar units. NPP of herbaceous and woody 
vegetation is calculated separately with different moisture scalars. CASA uses a series of first-order, linear 

JOYCE ET AL.

10.1029/2020GL091601

3 of 10

https://crudata.uea.ac.uk/cru/data/hrg/
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml


Geophysical Research Letters

differential equations to calculate heterotrophic respiration and the flow of carbon between each of the soil 
and vegetation pools.

The NEE fluxes from CASA were applied as surface boundary conditions in TOMCAT, as well as fossil fuel 
emissions from the Carbon Dioxide Information Analysis Center (Andres et al., 2016) and monthly air-sea 
CO2 gas fluxes from an ice-ocean-biogeochemical coupled model of the NOAA Geophysical Fluid Dynamics 
Laboratory forced with COREv2 normal year atmospheric forcing and historical CO2 atmospheric concen-
trations (Claret et al., 2021). TOMCAT used ECMWF ERA-Interim meteorology (Dee et al., 2011), running 
on a 2.8° horizontal grid with 60 vertical levels up to 0.1 hPa to simulate transport and mixing of atmospher-
ic CO2. Simulated CO2 concentrations were then sampled at the locations of the measurement sites every 
6 h, after which, daily averages were taken, and the simulated daily CO2 time series treated identically to the 
observed CO2 data outlined in Section 2.1.

We conducted several experiments where we changed components of the CASA model. Specifically, we 
performed simulations in which we kept the following CASA driver variables at their climatological mean 
values (with their referenced names in parentheses): Temperature scalar (TMP), temperature and moisture 
scalars (TMO), solar radiation (SLR), the fraction of absorbed photosynthetically active radiation (a satellite 
product indicative of assimilation of CO2 by vegetation - see Section 2.2) (FPAR), all of those previously 
mentioned (ALL). We then repeated these experiments with atmospheric transport repeating itself every 
year (using 2006 meteorology). The runs using annually repeating transport fields are referred to with the 
“AT,” prefix. For example, AT,TMP is the run with annually repeating transport and temperature. It should 
be noted that the temperature variable in CASA only influences NPP through temperature stress (the temp_
scalar term from Equation 1), with the positive effects of temperature on productivity being modulated 
through FPAR. Similarly, the moisture scalars only relate to moisture stress in NPP.

3.  Results and Discussion
3.1.  Temperature Sensitivity of SZC and NDVI

In a first step, we reproduced and extended the analysis of P2017 by 4 years up to 2016 and compared the 
timing of the detrended CO2 spring zero crossing (SZC) of the seasonal cycle of atmospheric CO2 at Barrow 
with the spatially averaged (all vegetated land north of 50°N) detrended spring temperature. Our results are 
consistent with those from P2017 and show for the 1979–1995 time period the strong correlation between 
detrended SZC at Barrow and spring March–June temperature (Figure 1a). However, and as pointed out by 
P2017, after 1996 this relationship weakens substantially (Figures 1a and 1b). P2017 repeated their analyses 
with SCC and obtained the same result. We also repeated this analysis with SCC (Text S1), confirming their 
conclusion.

We next analyzed a similar relationship between springtime temperature and NDVI, a satellite-based proxy 
of photosynthetic activity (Pinzon & Tucker, 2014). In contrast to the SZC-temperature relationship, we 
found that the correlation between the 50°N spatial average of springtime NDVI and temperature does not 
weaken significantly over time (Figures 1c and 1d). The relationship between spring vegetation productivity 
and satellite-based NDVI (or greenness) is not straightforward with actual onset of photosynthesis poten-
tially lagging spring green up (estimated from NDVI) depending on land cover type (Walther et al., 2016). 
However, these results do not support the hypothesized weakening of the temperature control of high lati-
tude plant productivity during springtime put forward by P2017, opening the door for alternative explana-
tions for the breakdown of the SZC-temperature relationship.

One possible explanation is that interannually varying atmospheric transport contributes to the decoupling 
of detrended SZC and spring temperature. This is because the CO2 signal recorded at Barrow has a spa-
tial footprint representative of a limited region of influence, whereas the relationship between detrended 
NDVI anomalies and detrended temperature anomalies is based on the entire region above 50°N. In the 
P2017 analysis, the temperature record used is a zonal average across vegetated lands north of 50°N, which 
assumes that the atmospheric footprint of Barrow is influenced uniformly and exclusively by land in this 
zonal band for all years in the study period. This is despite their footprint analysis of Barrow demonstrating 
significantly larger contributions from fluxes in Alaska and Eastern Eurasia to the Barrow record than other 
high-northern latitude regions (P2017).
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3.2.  Footprint of Barrow

In a next step, we analyzed the influence of variations in atmospheric transport on CO2 concentrations at 
Barrow using the HYSPLIT4 trajectory model (hereafter referred to as “Hysplit”). Hysplit footprints re-
vealed strong spatial variation in the origin of the air arriving at Barrow (Figure S2). We found dispropor-
tionately large contributions from Alaska and up to 10% of the signal coming from vegetated land south 
of 50°N. This suggests potential pitfalls with relating CO2 data at Barrow to temperature data averaged 
uniformly over land north of 50°N.

We also observed significant interannual variability in the regions influencing Barrow (Figure S3), with 
contributions from Eurasia ranging from 30% to 65% of the total land footprint. These results suggest that 
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Figure 1.  Time series of the anomaly (°C) in detrended spring (March to June) temperature (ST) averaged across 
vegetated land north of 50°N along with (a) detrended SZC (days) at Barrow and (c) detrended spring NDVI (March to 
June) averaged over vegetated land north of 50°N. Panels (b) and (d) show corresponding moving window (15 years) 
partial correlations (accounting for precipitation and radiation). Shaded regions depict 5%, 1%, and 0.1% significance 
levels (n = 15).
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atmospheric transport may have a strong influence on the variability of CO2 sampled at Barrow. These find-
ings are also in line with previous studies highlighting the necessity to account for changing circulation pat-
terns when inferring carbon dynamics from single-site analyses (Buermann et al., 2007; Wang et al., 2020).

Nonetheless, when we weighted the temperature, precipitation, and cloud cover (a proxy for solar radiation) 
data using interannually varying Barrow footprints (see Section 2.3), we found that the strong decoupling 
of the springtime temperature-SZC relationship after 1995 is retained (Figure S4a). Furthermore, we found 
that the springtime temperature sensitivity of vegetation productivity has weakened slightly more inside 
the footprint of Barrow than across the high latitudes as a whole (Figure S4c and Figure 1b) although this 
weakened relationship inside the Barrow footprint occurs only from 2003 onwards and is also statistically 
not very robust (Figure S4b).

3.3.  Spatial Variability of Temperature

An ensuing analysis of the influence of atmospheric transport on the temperature-SZC relationship showed 
that the method for averaging temperature (Barrow footprint-weighted vs. all vegetated land above 50°N) is 
unimportant in the early period 1979–1995 (corresponding temperature time series correlate strongly), but 
during the later period, these temperature time series diverge (Figure S5). This result points toward greater 
spatial variability in the temperature signal and thus an increase in the importance of atmospheric transport 
in the later period.

To understand the reason for this behavior, we looked at the spatial distribution of spring temperature 
anomalies. To do so, we compared the anomalies in the detrended large-scale mean spatial average temper-
ature (across all vegetated regions above 50°N) with the detrended spring temperatures at each pixel. Tem-
perature anomalies for the period 1979–1995 generally agreed well with the spatial mean (mean correlation 

averaged over all pixels, r  = 0.37), but there was a shift in the second period toward less coherent tempera-
ture correlation pattern (r  = 0.27) (Figure S5). If the correlations are weighted by the time-varying Barrow 
footprint, the correlation is even stronger in the early period (r  = 0.42) and breaks down more significantly 
in the later period (r  = 0.21).

These results suggest that during the later period, the high latitude temperature anomalies are less coherent 
across large spatial scales and the footprint as seen by Barrow is less representative of the entirety of the 
high northern latitudes (Figures S6 and S5). The strong coherence in large-scale temperature anomalies 
in the early period (before the mid-1990s) may be due to the strong activity of the AO. During 1979–1995, 
the AO index maintained prolonged periods in its negative and positive phase, which promoted large-scale 
temperature coherence especially in footprint regions of Barrow (Figures S1 and S2). In contrast, during the 
later period, such extended periods of persistent AO phases were absent. Another indication for a strong 
AO influence during the early period is that the spatial pattern of correlations between local and large-scale 
springtime temperature signals in the early period (Figure S5) is to a large extent reminiscent of the corre-
lation pattern between spring temperature and the AO index (Figure S1b).

The strong spatial coherence of temperature in the early period minimizes the influence of transport on CO2 
sampled at Barrow. In contrast, during the later period, transport will have been more important provided 
the CO2 signal (as a result of land NEE) was more spatially variable as indicated by greater spatial variability 
in spring temperature (Figure S5).

The springtime temperature sensitivity of vegetation green-up exhibits significant nonlinear behavior 
across the high latitudes (Park et al., 2015). Across the same region, there is also significant variability in the 
temperature sensitivity of spring productivity, as indicated by a regression between spring NDVI and tem-
perature (Figure S7). The sensitivity of NDVI to temperature during springtime is more spatially variable 
in the later period (standard deviation of the sensitivity, σ = 95.5°C−1) than the early period (σ = 78.1°C−1) 
(Figure S6), hence exacerbating the effects of the reduced spatial coherence in temperature (Figure S5). As 
a result, in the later period when temperature coherence is reduced, the correlation between temperature 
averaged over Barrow footprints and SZC at Barrow would decrease, independently from a decrease in tem-
perature sensitivity of vegetation productivity.
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3.4.  Factorial Simulations

To further examine the relative influence of vegetation productivity (NPP) and atmospheric transport on 
the link between detrended SZC and spring temperatures, we conducted factorial forward simulations with 
land-based carbon NEE fluxes (based on the CASA model) feeding into the TOMCAT atmospheric chemis-
try-transport model (see Methods). Results based on a control run (hereafter referred to as CTR) in which 
all model drivers (e.g., climate, vegetation state (FPAR), and atmospheric transport) vary, showed that the 
observed seasonal amplitude and trend in atmospheric CO2 are well reproduced with our CASA_TOMCAT 
framework, albeit with a bias in the trend in recent years (Figure S8). In terms of SZC, while the modeled 
trend and magnitude show some bias (Figure S9a), its interannual variability is reproduced with fairly high 
accuracy (r = 0.74, P<0.1%) (Figure S9b). The trend biases in recent years suggest limitations in our model 
framework, however, the interannual variability of simulated SZC is well reproduced, which is the focus 
of this work. Thus we can further investigate within our model framework what could cause a breakdown 
using factorial simulations where the respective model driver of interest was held constant.

The influence of each model driver was assessed by comparing the SZC obtained from that respective fac-
torial simulation (SZC from the SLR simulation is denoted SZCSLR) with the SZC from the CTR simulation 
(SZCCTR). The SZC obtained from factorial simulations with constant climate drivers (SZCTMP, SZCTMO, and 
SZCSLR) show nearly perfect correlations with SZCCTR, whereas keeping FPAR constant (SZCFPAR) leads to a 
significant reduction in correlation with SZCCTR, particularly in the later period (Table 1). SZCALL (climate 
and FPAR held constant) has very similar correlations with SZCCTR as SZCFPAR. These results show that 
NPP through FPAR is the most dominant CASA factor in controlling SZC variability, with an increase in 
influence in the later period.

In the case of constant transport simulations (denoted by prefix “AT,”) the correlations with SZCCTR under-
went a greater reduction during both periods than SZCFPAR (Table 1). This shows that atmospheric transport 
had the largest influence on SZC variability throughout the study period, with an increase in dominance 
in the later period. Simulations that combine interannually nonvarying transport with constant climate 
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Simulation

Correlation of simulated SZC 
with complete model, and 
model with variables held 

constant

Partial correlation of simulated 
SZC with footprint-averaged 
observed spring temperature

Partial correlation of 
simulated SZC with 

50˚N-averaged observed 
spring temperature

1982–1996 1997–2012 1982–1996 1997–2012 1982–1996 1997–2012

Control Run (CTRL) N/A N/A −0.83*** −0.47 −0.85*** −0.16

Variable(s) held constant

Temperature scalar (TMP) 0.95*** 0.92*** −0.74** −0.53* −0.69** −0.05

Temperature and Moisture scalars (TMO) 0.95*** 0.92*** −0.75* −0.51* −0.70** −0.12

Solar Radiation (SLR) 0.89*** 0.95*** −0.87*** −0.32 −0.82*** −0.12

FPAR 0.82*** 0.67** −0.54* −0.05 −0.54* −0.08

TMO, SLR and FPAR (ALL) 0.82*** 0.70** −0.74** −0.07 −0.63* 0.00

Transport (AT,CTRL) 0.74** 0.43 −0.55* −0.50 −0.50 −0.18

Transport and Temperature scalar (AT,TMP) 0.75** 0.33 −0.55* −0.61* −0.54* −0.27

Transport and Temperature and Moisture scalars (AT,TMO) 0.75** 0.44 −0.58* −0.62* −0.49 −0.29

Transport and Solar Radiation (AT,SLR) 0.67** 0.39 −0.73** −0.25 −0.73** −0.02

Transport and FPAR (AT,FPAR) 0.06 −0.07 0.03 −0.05 0.18 0.00

Transport, TMO, SLR and FPAR (AT,ALL) 0.22 −0.15 −0.24 0.07 −0.01 0.24

The notations *, ** and *** indicate significance at 5%, 1%, and 0.1% levels, respectively. Values over the 1997–2012 period are taken from the median correlation 
value after systematically removing each year from the chronology. Partial correlations take precipitation and cloud cover into account. The constant transport 
runs are referred to with the “AT” prefix. Detailed plots on each of the simulations in supplementary materials (Figures S10–S20).

Table 1 
Correlations Between Simulated SZC From Factorial Simulations With Observed SZC and Spring Temperature
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(SZCAT,TMP, SZCAT,TMO, and SZCAT,SLR) show no significant deviation from SZCAT,CTR regarding correlations 
with SZCCTR. SZCAT, FPAR and SZCAT,ALL demonstrate near full absence of the correlation with SZCCTR, further 
indicating that NPP (through FPAR) and atmospheric transport are the two most important factors con-
trolling interannual variability in SZC at Barrow (Table 1).

In regard to correlations between simulated SZC at Barrow and footprint-weighted spring temperature, we 
first confirm that simulated SZC shows a breakdown with temperature similar to the observed breakdown 
(Table 1). We then determine the influence of each variable in CASA, as well as atmospheric transport in 
TOMCAT, on the SZC temperature sensitivity by holding the respective variables constant (while main-
taining seasonal variations). If those simulations still show the breakdown, then we can conclude that this 
variable did not cause the breakdown between the two periods. According to this logic, we find for all CASA 
variables tested that the breakdown is still strong. We do not find a breakdown when only atmospheric 
transport is held constant (AT,CTRL). As we only observe a breakdown from the first to the second period 
with varying transport simulations, but no breakdown when transport is held constant, we can conclude 
that temperature sensitivity has remained constant throughout the study period, and that atmospheric 
transport is a driving force behind the breakdown in temperature sensitivity of SZC.

The correlations between simulated SZC and temperature averaged over 50°N differ to a large extent from 
correlations between footprint-weighted temperature and simulated SZC (Table 1) which further indicates 
the importance of accounting for interannually varying footprints.

Our model reproduced interannual variations in SCC slightly better than SZC (Figure S23), although there 
was a similar bias in the trend and magnitude (Figure S24). Analysis of SCC from our factorial simulations 
yielded similar results to those obtained from SZC analysis, albeit with even greater dominance of atmos-
pheric transport over temperature sensitivity, revealed by consistent correlation between SCCATCTR and foot-
print-weighted spring temperature (r = 0.68, P < 0.01) during both periods (Table S1).

Based on their process-based factorial simulation results, P2017 concluded that transport played no signifi-
cant role in interannual correlations between SZC and temperature, and that net ecosystem productivity in 
boreal regions is the dominating factor. Our analysis differs from that of P2017 in that we also compare sim-
ulated SZC with the control run (in which all variables vary), as well as simulated SZC with footprint-aver-
aged temperature. We found that atmospheric transport controls a significant proportion of SZC variability, 
particularly in the later period, which is consistent with our finding that the spatial coherence of temper-
ature anomalies decreased significantly in the late period (Figure S5). Furthermore, when holding atmos-
pheric transport constant (ATCTR), there was no breakdown in temperature sensitivity of SZC (Table 1), 
whereas when holding NEE constant (ALL), we did witness a breakdown. This illustrates that, contrary to 
the conclusions of P2017, atmospheric transport is the key driver behind the breakdown in temperature 
sensitivity of spring carbon uptake. We also compared the simulated SZC with 50°N averaged temperature 
and found differing results, which highlights the sensitivity of temperature to the footprint. Therefore, this 
suggests 50°N is not an accurate representation of the air masses seen by Point Barrow, as used by P2017.

4.  Conclusions
We are witnessing a phase of changing CO2 levels and climate to which land vegetation is exposed and is 
adapting. Over the past decades, atmospheric records and fossil fuel emission inventories indicate that the 
land carbon sink has been growing, taking up approximately 25% of CO2 entering the atmosphere as a result 
of fossil fuel burning and land-use change (Friedlingstein et al., 2019). Other indicators of changes in ter-
restrial carbon cycling include (amongst others) increasing trends in the seasonal amplitude of atmospheric 
CO2 exchanges in the northern high latitudes (Graven et al., 2013). In this regard, a weakening relation-
ship between atmospheric CO2 drawdown measured at Barrow and above 50°N land surface temperature 
during Boreal spring have been interpreted as a shift from spring temperature as the main control over 
plant productivity and consequently spring carbon uptake toward other controls, such as light limitation 
(P2017). This conclusion is based on the breakdown of the correlation between SZC anomalies and spring 
temperature anomalies averaged over vegetated land north of 50°N after 1995. Somewhat surprisingly, how-
ever, our analysis of NDVI (a proxy for plant productivity) does not indicate a similar breakdown of spring 
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temperature controls on NDVI after 1995. We, therefore, have attempted to understand why these analyses 
come to different conclusions.

One aspect which has not been studied in great detail so far is the role of site-specific regions of influence 
of atmospheric signals, as well as the interplay between the interannual variation of site-specific regions of 
influence and homogeneity of temperature anomalies. We find that regions of influence are quite localized 
and vary substantially at an interannual timescale. For the Barrow site, the influence of fluxes from Eura-
sia versus North America varies interannually, contributing between 30% and 65% of the total land signal 
(Figure S3). Simulations of the CO2 signals at high-latitude sites for interannually varying land-atmosphere 
carbon exchange flux simulated with a data-driven model reveal that anomalies of CO2 drawdown signals 
can be very well reproduced when using site-specific regions of influence but not when using above 50°N 
average surface temperature anomalies. This suggests a major role played by varying atmospheric transport 
when attempting to properly represent the influence of temperature on SZC anomalies. Furthermore, our 
factorial simulations reveal that atmospheric transport is strongly influential over SZC variability, particu-
larly in the later period, playing a dominant role in the breakdown of the correlations between SZC and 
temperature. Thus, the breakdown in correlation between SZC and temperature is not indicative of a break-
down in the temperature sensitivity of spring carbon uptake, and thus is in agreement with the consistent 
correlation between NDVI and temperature anomalies (Figure 1c).

We furthermore investigated the extent to which the homogeneity of temperature anomalies has changed 
over the study period. We find a significant shift toward greater spatial heterogeneity in anomalies (Fig-
ure  S5), likely driven by a sustained, strong Arctic Oscillation during the 1979–1995 period becoming 
comparatively inactive in the 1996–2012 period (Figure S1). The trend toward greater heterogeneity in the 
spring temperature anomalies across the northern latitudes in the later period (Figure S5) may explain the 
increased role of transport in the later period (Figure 1) and may also provide an alternative explanation 
for the breakdown in the correlations between SZC at Barrow and average northern high latitude spring 
temperatures as noted by P2017.

Together, these findings suggest that the temperature sensitivity of vegetation during springtime has not 
changed as significantly across the high latitudes as previously suggested (P2017) and that the increased 
importance of atmospheric transport due to a change in spatial coherence of the temperature signal is the 
main factor responsible for the breakdown in correlation between SZC and spring temperature. We found 
that after accounting for atmospheric transport, the weakening of the temperature sensitivity of spring 
carbon uptake in the high northern latitudes is substantially smaller than previously asserted. Based on the 
atmospheric CO2 data and satellite vegetation data we thus conclude that temperature remains an impor-
tant control of spring plant carbon uptake above 50°N. Improved understanding of the controls of carbon 
uptake and release of boreal and arctic ecosystems, primarily forests, helps to forecast how these ecosystems 
may evolve over coming decades.

Data Availability Statement
Data for this research is available at: https://doi.org/10.5281/zenodo.4297461.
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