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ABSTRACT
Molecular quantum electrodynamics describes the interaction of 

molecules with radiation. This theory in its multipolar form is 

applied to intermolecular interactions; coupling proceeds through the 

radiation field and is mediated by an exchange of photons. The basic 

theory is outlined in Chapter 1 and the conventional transformation 

from the minimal-coupling to the multipolar Hamiltonian is generalized 

to include non-neutral systems and translational motion. The

equivalence of the multipolar and minimal-coupling forms is

demonstrated by comparison of results obtained for two-photon 

absorption and scattering by chiral molecules.

Chapter 4 examines the dispersion interaction between neutral

molecules; all interactions occur via the field and are fully 

retarded. The standard result in terms of electric-dipole 

polarizabilities is supplemented by those obtained through interaction 

of higher-order molecular multipole moments with the field;

electric-quadrupole and magnetic-dipole interactions are included. The 

results are valid at all separations large enough to neglect electron 

exchange and apply to molecules with specific orientations. 

Rotationally-averaged expressions are presented also, as are results 

obtained in the near- and far-zones. Where appropriate results have 

been expressed in terms of pure electric and mixed electric-magnetic 

polarizability tensors.

The Hamiltonian developed in Chapter 2 is applied in Chapter 5 to 

the calculation of the dispersion interaction between a molecule and 

an ion at rest; supplementing the energy shifts calculated in



Chapter 4 are non-retarded terms arising from charge-multipole 

interactions. All terms up to a cut-off point of an R 6 dependence on 

separation are taken into account and the minimal-coupling treatment 

of this interaction is contrasted.

In the final chapter the theory is modified in order to determine 

the interaction of a free electron with a neutral molecule. A new 

transformation to the minimal-coupling Lagrangian is used where only 

the molecular terms are transformed; the dynamics of the free electron 

are described within the minimal-coupling formalism while the 

multipolar nature of the molecular interactions is preserved.
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CHAPTER 1

INTRODUCTION
Quantum electrodynamics (QED) has an established platform among 

the modern theories of physics. It is the theory which describes how 

matter interacts with the electromagnetic field. Its identifying 

feature and fundamental principle is its treatment of the radiation 

field in a fully quantized manner; the collection of particles and the 

radiation field compose the dynamical system. Both conceptually and 

in its predictive capacity QED has superseded semi-classical radiation 

theories; it accounts for effects for which the latter cannot and 

provides excellent agreement with experiment.

Although it is a modern theory its development may be traced back
[ 1Jto 1927, the famous paper by Dirac in which quantization of the 

field was discussed. The particles arising from the quantization are 

photons, the procedure itself known as second quantization. This 

framework is particularly suited to problems in theoretical chemistry 

and chemical physics since in this description of the radiation field 

the number of photons need not be conserved; processes such as 

absorption, emission and scattering are ideally accounted for in terms 

of interactions of photons with atoms or molecules. Fluctuations of 

the field, allowed for in this formalism, directly lead to the 

derivation, with excellent agreement with experiment, of the Einstein 

A coefficient in spontaneous emission, the Lamb shift and the magnetic 

moment of the electron, effects for which semi-classical theories have 

no account. Such cases were instrumental in the adoption of QED as the

theory for elucidating the interactions of light with matter.
[ 2 ]Schwinger’s compilation is a valuable source of early papers in
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QED.

Molecular quantum electrodynamics is the structured 

non-relativistic limit of QED and it is the form of the theory used 

here. The particles in interaction with the field are electrons and 

nuclei; the number of such particles is assumed to be fixed and they 

are assumed to be moving at low speeds (and hence with constant

masses) so that they may be grouped together to form atoms and 

molecules. Certain approximations are invoked where appropriate, such 

as the neglect of the motion of nuclei compared with that of the 

electrons and the neglect of recoil following absorption or emission 

of a photon. Other than those mentioned, the theory has also been

successfully applied to problems in optical activity (such as optical 

rotation and circular dichroism), intermolecular interactions and more 

recently non-linear optics (for instance second harmonic generation, 

Hyper-Raman scattering and CARS), an area which is becoming of 

increasing interest with the continuing improvement of laser sources.

Various aspects of the form of the theory and its applications 

may be found in accounts by Power 131, Loudon and Moss 151,

reviews by Woolley t61 and others 17 91, and in recent texts by

Healy [101 and Craig and Thirunamachandran

In the discussion of the interactions between molecules the 

coupling may be considered as identical to the electron-photon 

interactions discussed in other optical effects. That is, 

molecule-molecule interactions proceed via the field, which mediates 

photon exchange. In this thesis quantum electrodynamics is used to 

discuss such interactions. As a preliminary to these discussions it is 

useful to outline some of the relevant features of the theory.



1.1 Basic Theory

This section gives an outline of the formulation of the quantum 

electrodynamical Hamiltonian from its classical origins. For 

simplicity let us consider a system of particles with a total net 

charge of zero interacting with the electromagnetic field in the 

Coulomb gauge. If the charge and position of a particle « are given by 

e^ and q^ respectively then the total system is described classically 

by the Lagrangian function L given by

where j (r) is the transverse component of the current density, and 

where the positions of the moving charges are defined with the use of 

the Dirac delta function so that

a

V is the Coulombic potential energy summed over all pairs of charges.

The Lagrangian for the coupled system, given by (1.1.1), is a 

function of the particle coordinates and velocities and a functional

corresponding velocity. The vector potential is related to the 

electric and magnetic field vectors e(r) and b(r) by the relations

a
(1.1.1)

(1.1.2)

of the transverse vector potential a(r) of the field and its

b(r) = curJa(r) (1.1.3)

eX (r) = -a(r) (1.1.4)

The Lagrangian function is fundamental to classical mechanics. 

Its origin lies in the calculus of variation; Hamilton’s principle of
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variation, which minimises the action integral, leads to Lagrange’s 

equations, a solution of which is the Lagrangian.^ It is not a unique 

solution, however, and as we shall see there is some flexibility in 

the explicit choice of Lagrangian.

The first two terms of (1.1.1) are particle terms and they are 

followed by a field term and an interaction term. The standard texts 

develop the formalism through consideration of separate particle and 

field systems before considering interaction. In the absence of 

interaction the dynamical variables of one system do not affect the 

other; the two systems have equations of motion that are not coupled 

to one another and move independently. When the particles and field 

interact the equations of motion of both particle and field are 

coupled; the particles have their motions affected by the fields, of 

which they (as charges and currents) are taken to be the sources. 

Hence the Lorentz force (1.1.5) appears, representing the force of the 

field on the particles and in turn the equations of motion for the 

field are Maxwell’s equations with sources (1.1.6).

m q • = -oi  + e (e (q ) + [ q xb(q )]•)occ4xx da. Lza.Z-ux.

(1.1.5)

o

V.b = 0 (1.1.6)
-3b

c2 V x b

These steps have been referred to in order to ensure continuity in 
the formulation. For a fuller account the reader is referred to texts. 
See for example [12-16].
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The choice of the Coulomb gauge, and hence e'*’ = -da/3t, allows (1.1.5) 

to be written with the transverse electric field in the second term. 

The subscript may be any of the Cartesian components. Throughout the 

thesis the standard summation convention is used so that a repeated 

Latin suffix (in script font) always implies a sum.

The Lagrangian (1.1.1) may be shown to lead to these equations 

through the use of Lagrange’s equations.

An alternative representation to (1.1.1) was proposed by 

Hamilton, in which a new function was defined from the Lagrangian. In 

Hamilton’s formalism the function H, which is called the Hamiltonian, 

is defined by

H = 1 ?a*3a + " L (1-1-7)
a

where pa and n(r)  are the momenta canonically conjugate to q^ and a(r) 

respectively. Their definitions are given below.

dL n , x dZ m  ip = —  ; H(r) = —  , (1.1.8)
3qa - - 6a

where Z  is the density functional of the Lagrangian (1.1.1). It should 

be noted that the canonical and kinetic momenta are not necessarily 

identical: it is the canonical momentum which is required.

For a conservative system the Hamiltonian is the total energy of 

the system, the sum of the kinetic and potential terms ie H = T + V. 

In the canonical formalism the Hamiltonian should be written in terms 

of the ’canonical variables’. These are the coordinates and canonical 

momenta for field and particle. Hence the coordinate ’velocities’ for 

field and particle must be eliminated in their favour.

The Lagrangian function (1.1.1) is known as the minimal-coupling



Lagrangian, or L . . If the charges are grouped together to formm 1 n

electrically neutral assemblages, ie atoms and molecules denoted by 

the label C» then the resulting Hamiltonian from the use of (1.1.7) is 

consequently known as the minimal-coupling Hamiltonian, or H . ;m 1 n

with

H . = y H (C) + H + y H. . (C) + V.m i n  Lj mol rad int inter
e c

H (C) =mol I
a

+ V(C)a

(1.1.9)

(1.1.10)

rad

rrn (r) i
+ £0c2(Vxa (r))2id3r (1.1.11)

and

a a
a (Qa (C))

inter = ^  V(C.C')inter
C<C'

(1.1.12)

(1.1.13)

The Hamiltonian (1.1.9) is a classical function. Its quantum 

mechanical analogue is written down directly by interpreting the 

canonical variables as operators subject to the commutation

restrictions

[qt(a)(C)’̂ (/3)(C,)] - itl5t/a|3SCC' > (1.1.14)

and

[a^(r) ̂ ^(r')j = ihS^(r-r') . (1.1.15)

where 6.^(r-r') is the transverse delta function defined by



- - ik.(r-r' )
V r r ' >  = (1/270 J (5^ ' kik^)e * "  d *

(1.1.16)

The interaction terms are given in (1.1.12). The first-order terra 

shows the interaction of the particle momentum with the vector 

potential; the second-order term is quadratic in the vector potential. 

Note also that the potential term V appears explicitly and is 

partitioned into intra- and intermolecular parts.

For many applications of the quantum electrodynamical theory to 

problems in quantum optics and theoretical chemistry, however, it is 

more convenient to employ the multipolar Hamiltonian in which the 

interaction is described in terms of the electric displacement and

magnetic fields rather than the potentials and coupling of the field 

is with molecular multipoles rather than the canonical momentum.

If the chosen Lagrangian has been shown to lead to the correct 

equations of motion then a new and equivalent Lagrangian may be
[18“ 19 11]obtained ' by the transformation

L = L . - ^rfpJ'(r).a(r)d3r (1.1.17)mult min atJ ~ ~ ~

[20-23]where p(r), the electric polarization field , is a function of

the particle coordinates. L ,, must then also be a suitable choice.mu 11

The two action integrals arising from L and L . differ by amult min

quantity which gives zero on variation and so the form of the

equations of motion is unchanged. Thus the Lagrangian is defined only 

to within the addition of any function of the particle coordinates and 

time.

The resulting Lagrangian is given by
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Lmult = 1/2l  ma3a + 2_J\5(r ) " C  (!X? (^)) Jd 3

+f{VxM(r)}.a(r)d3r - fpi (r).a(r)d3r - V (1.1.18)J ^ <V J "v ^ ^ <v

where p(r) amd M(r), the magnetization field, are defined by

P(r) = ^ ea (qa-R)J 5 (r-R-X(qa-R))dX , 
a 0

(1.1.19)
and

W  = 1  ea{(3a'5)X3c(}j0X5(r 5 - X(3a‘5 ))d,L-
a

(1.1.20)

The use of polarization and magnetization fields allows the total 

charge density associated with each assemblage to be divided into 

’true* (ionic or free electronic) and polarization charge densities, 

and the total current density into true, polarization and 

magnetization current densities. The charge density is given by

P(r) = ^  V ^ I T S a *  (1.1.21)
a

= p true(r) - ?.p(r) (1.1.22)

with

p lrue(r) = J ea5(r-R) , (1.1.23)
a

and (1.1.2) may be rewritten as

= j iAnir^r  ̂ + p (r) + VxM(r ) (1.1.24)<v <« « i o m c  ^ «v <v ~ ~ -v

Clearly p true(r) and j. . (r) vanish if there are no net or freei o n i c

charges, as in this case. Of course, the partitioning of the total



charge and current densities into true and bound contributions

necessitates the introduction of the reference vector R, relative to 

which motion of the composite particles is to be defined. This vector 

may be chosen, for example, as the centre of mass, a local chromophore 

centre or an inversion centre.

L , 4 is known as the multipolar Lagrangian. The multipolarmu It

Hamiltonian is formed in the usual way and is given by

H i* = y H ,(C) + H . + y H ,<C) + H ir (1.1.25)mult mol rad int self
c c

with H ,(C) unchanged from (1.1.10),mo 1

H .. = Irad c

rdX2(r) 'j
— e  + Gnc2(Vxa(r))2>d3r (1.1.26)
 ̂ 0 J

H ..lf = 2F-J2iEX(C;!:>l2d3!: (1-1-27)
0 c

and the interaction terms now given by

H int(C) = - ^ 1Jp(^;![:)*d'L(r)d3r -Jm(C;r).b(r)d3r

+|J|°^(C;r )r/)b^(r)b^(r/Jd3^ 3!*7 . (1.1.28)

Note that the definitions of p(r) and M(r) have been modified; we 

write

p(r) = ^ p(C;r) ; M(r) = ^ M(C;r) (1.1.29)

where we have partitioned the contribution to each field from the 

individual molecules, which are labelled C* In (1.1.28) d(r) is the 

electric displacement field, m(r) the magnetization and 0-(r,r') the 

diamagnetizaton field. These new fields are defined below.
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The first term of (1.1.28) contains the interaction of the 

electric multipole series with the field. The electric displacement 

field is defined by

d(r) = _e0a(r) + p(r) (1.1.30)

and its transverse component appears in the interaction and radiation 

terms. The interaction of the magnetic multipole series with the

magnetic field b(r) is given by the second term of (1.1.28). The

magnetization is defined as

m(r) = ^ ®(C;r) (1.1.31)

with

= I I  s J ? a (C;!:)XSa(C) - (1.1.32)
«(C) “

In (1.1.32) the vector field n(C»r) for a molecule C is given by

- 1

= I  2«(C;r) = I  x5(r5 rx(SofV)dX •
<*(£) « (£ ) 0

(1.1.33)

where the label C of is implicit. The diamagnetization interaction 

(the final term of (1.1.28)) contains terms which are second-order in 

the magnetic field. Its field definition below includes the use of the 

auxiliary vector field defined above. We have

 ̂ = I  ̂ (1.1.34)
c

< y c ;r,r') = ;^n£(co(C:;:)Iw > (C:!:',
«(C) “

(1.1.35)



H ,, is composed of only the transverse electric polarizationself

field associated with each molecule and as such is a self-energy 

correction term which does not contribute to radiative processes (and 

so may usually be ignored). Note that it only contains one-centre 

terms; it will be shown in Chapter 2 that it is the cross terras of the 

transverse polarization product which exactly cancel the 

intermolecular potential term, a consequence of the highly localized 

nature of the total molecular polarization fields. Thus no such 

potential term appears explicitly in the Hamiltonian and all 

interactions proceed via coupling of the electric and magnetic moments 

with the transverse fields; they are then fully retarded, with 

propagation at the speed of light.

The quantization of the field supplements the quantized particle 

collection in the description of the total system. In this procedure 

the mode expansion for the classical radiation field confined to a box 

of volume V subject to periodic boundary conditions is equivalent to a 

sum of harmonic oscillators. Quantization of these oscillators allows 

the free field Hamiltonian to be written as

H rad = I ja+ W (k)a(X)(k) + 1/2 Ihck (1.1.36)
k,X

Photons are then the particles associated with the quanta of
t(X)energy, introduced by the quantization of the field and a (k) and 

a^^(k) are the creation and annihilation operators respectively for a 

photon of wavevector k and polarization e^^(k), similar to the ladder 

operators in harmonic oscillator theory. These operators are subject 

to the commutation relationships



The quantum analogues of the classical mode expansions are given by

Z ( 'I 1 /2 r • L-I (x),,, (X)/1X -(X)/1X +(X)/lX
2e jev (k)av (k)e + e v (k)a '(k)<

k,X^ 0

-ik. r}

(1.1.39)

d"L(r> ■ £
k, X

hck£.
2V

1/2

e<^(k)a(X >(k)ei' -' - i<X >(k)a+ <X >(kje'1''^

(1.1.40)

b(r) = i£kh)l
k,X<- 0 J L

b ^ W ^ k J e ^  - b<X >(k)a+<X)(k)e'i~,~1

(1.1.41)

with the magnetic polarization vector defined by

b (X)(k) = k x e(X)(k) ; (1.1.42)

it is these expansions which must be substituted into the terms in the 

minimal-coupling and multipolar Hamiltonians. In (1.1.39-41) an 

overbar denotes the complex conjugate and a dagger the adjoint.

The addition to the classical Lagrangian of the total time 

derivative of a function of the particle coordinates and the field 

allows a number of possible equivalent Lagrangian s to be written



down, which in turn suggests a number of possible Hamiltonians for the 

combined system. These Hamiltonians are similarly said to be 

equivalent and are related by canonical transformation. It is possible 

to write

where (1.1.43) is such a transformation. The multipolar form of the 

Hamiltonian is generated by the choice

The operators representing the canonical variables in the new form are 

related to those in the minimal-coupling form by a similar 

transformation. In fact the coordinate operators are invariant under 

such a change; only the momenta change, such that the field momentum 

is proportional to the transverse electric displacement field rather 

than the transverse electric field. We have

(1.1.44)

1.1.45)

p
mu 1 t (d£ ) 1.1.46)

1.1.47)

e0j(r) " P"^) 1.1.48)

- d ^ r )  . 1.1.49)

The new canonical variables are similarly Hermitian operators which 

satisfy the canonical commutation relations and since they are 

Schrodinger operators they are not functions of time. Note the
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relationship between the magnetization field M(r) and the 

magnetization m(r). The former is defined in terms of velocities and 

the latter is the quantum mechanical operator, defined in terms of the 

canonical momenta.

In the expression for m(r) the order in which the non-commuting 

operators occur is significant and is prescribed by the unitary 

transformation. This is a fundamental part of the canonical formalism 

and should be stressed. The minimal-coupling Hamiltonian (1.1.9) is 

written in Hermitian form, the order of the operators p^ and a(Qa ) 

immaterial since they commute, a consequence of the choice of the 

Coulomb gauge. Transformation of this Hamiltonian gives the multipolar 

Hamiltonian, which automatically appears in Hermitian form.

Symmetrization is a necessary requirement in the construction of 

Hermitian operators in quantum mechanics. For example, if we proceed 

by the earlier method of the addition of a total time derivative to 

the Lagrangian and the Lagrangian is not written in a symmetrized form 

beforehand, the resulting Hamiltonian will not in general be 

Hermitian. Promotion of the canonical variables to operators in a 

Hermitian form in the Hamiltonian, subject to the appropriate 

commutation relations, is called canonical quantization.

Let us now expand the multipolar interaction terms and write them

in their more familiar and usable form in terms of molecular

multipoles. This follows from the Taylor series expansion about (r-Rr )

of the delta functions appearing in p(C;r), m(C;r), n (C;r) and

0-.(C;r,r'). The multipole expansions give *4 ~ ~

P^(C;r) = <^<C) - + ...)<5(r-Rc ) (1.1.50)

m^(C;r) = (rn̂ (C) - + (1.1.51)
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and the first term of the diamagnetization interaction may be written 

for the molecule C as

(1.1.52)

In (1.1.50) P. (C) and Q - .-(C ) are the components of the electric dipole 

and electric quadrupole moments respectively of molecule C» given by

= I  e«(o(3«(c)'5c)- (1.1.53)
a

V c) = (1/2)2 ea(c)(a « ( c r 5 c h (3 « ( c r 5 c )i • (1-1*64)
a

The magnetic dipole and quadrupole moments appearing in (1.1.51) are 

given by

= I  y  (3«(c)-!c)xe i
a

(1.1.55)

V c) ‘ 1 6n„[{(9a(C)‘!c)X5a},(2a(C) V #
a

+ (Sa(C)-5c)4 (3«(C)-?C)x2«jj (1.1.56)

Using the multipole expansions (1.1.50) and (1.1.51) we may write down
3

the interaction Hamiltonian by integrating over the volume d r in the 

first two terms of (1.1.28), using the definitions (1.1.53-55) for the 

molecular multipole moments. This gives



The expression is given up to the electric quadrupole interaction for 

the polarization field and includes all terms of comparable magnitude. 

Hence the magnetic dipole interaction and the first term of the 

diamagnetic interaction appear in (1.1.57). Terms of higher order than 

these are not required for the present work although such interactions 

may readily be incorporated from the multipole expansions.

In (1.1.57) the first two interaction terms are linear in d(r) 

and the third in b(r). These terms have non-vanishing first-order 

matrix elements, corresponding to absorption or emission of a single 

photon with each interaction. The final term is second-order in the 

magnetic field; consequently its first-order matrix element

corresponds to creation or annihilation of two photons or 

creation/annihilation simultaneously.

In both the minimal-coupling (1.1.9) and multipolar (1.1.25) 

forms the Hamiltonian has been partitioned into two parts; we have

H = H + H (1.1.58)0 int

with

H 0 = H o ! < C > + “ r ad "  t1 *1 *5 8 )
c

H , = y H. . (C) + V. , , (1.1.60)int ^  int inter
c

except that the term V. A does not appear in (1.1.25), as noted. Ininter
general H is small compared with HQ and it is possible to employ 

perturbation theory to describe the interactions between the molecules
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and the radiation field. The base states for the calculations are the 

eigenstates of HQ which are the products of the eigenstates of the 

unperturbed molecular and radiation field Hamiltonians. The 

interactions between molecules are described by stationary 

perturbation theory; H.nt causes shifts of the eigenvalues of HQ given 

as a series expansion in H. . The shift in energy of a non-degenerateint.
state |i> of HQ is given by

In (1.1.61) the summations are over the intermediate states of 

the unperturbed system; the state j i> is excluded from the summation.

transitions between the unperturbed states. If the states of the

respectively then the rate of transition between these states is given 

by the Fermi golden rule

■I
I II I

(E -E )(E -E )(E -E )v III i II i i i '

Ill II I

(1.1.61)

In time-dependent perturbation theory, H. A gives rise toi n 1

system before and after the interaction are given by |i> and |f>

r = 2rc/h|Mf .|2p (1.1.62)

subject to the overall conservation of energy and that either |i> or 

| f> belongs to a continuum spectrum with density of states per unit 

energy interval p. The time-scale considered must be greater than the
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period of the molecular transition but short enough to ensure a

small transition probability. The matrix element of the transition is

then given by

Mfi

I II I

(E -E )(E -E )(E -E )v III i II i 7v I i 7
Ill II I

(1.1.63)

1.2 Applications

From its classical origins the previous section outlined the 

construction of the multipolar Hamiltonian, commonly used in 

non-relativistic molecular quantum electrodynamics. This Hamiltonian 

is used to solve problems in areas of spectroscopy, laser physics and 

intermolecular forces, and applies to systems which are comprised of 

atoms or neutral molecules which have no net velocity. In the 

following chapter the formulation leading to the multipolar 

Hamiltonian is given in more detail but for a more general case. The 

transformation from minimal-coupling Lagrangian includes a relaxation 

on the restriction of electrical neutrality and allows for 

translational motion of the molecules and ions by considering the 

motions of the centres of mass.

An application of quantum electrodynamics discussed in Chapter 3 

contrasts the use of the multipolar and minimal-coupling Hamiltonians 

in their accounts of phenomena such as two-photon absorption, Rayleigh
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and Raman scattering. Although the partitioning of the multipolar 

Hamiltonian into unperturbed and interaction parts differs from the 

corresponding partitioning of the minimal-coupling Hamiltonian and 

depends on the transformation chosen, the matrix elements for 

processes on the energy shell are the same in each case. The 

equivalence of their forms is not only demonstrated, but facilitated 

with the derivation of some new sum rules. These topics are useful in 

illustrating how the methods of QED are applied and serve to highlight 

some important points encountered.

In Chapter 4 the interaction between neutral molecules in their 

ground states, the so-called dispersion interaction, is discussed. 

Previous works are extended by the inclusion of higher-order 

interaction terms; the electric quadrupole, the magnetic dipole and 

the diamagnetic interactions; and by obtaining results for molecules 

at any separation outside electronic overlap and with an arbitrary 

relative orientation. Results are presented for the interactions of 

molecules with large or small separations in the fluid state.

Using the new form of the multipolar Hamiltonian derived in

Chapter 2 a discussion of the dispersion interaction between a 

molecule and an ion follows next. The discerning feature of this 

calculation is the presence of non-retarded potential terms which

supplement the molecular multipole interactions. The minimal-coupling 

form of this interaction is presented as a contrast.

The concluding chapter extends this work by calculating the 

interaction of a free electron with a neutral molecule. Since the 

interactions of a free electron are best described within the

minimal-coupling framework of QED, the transformation of Chapter 2 is 

deemed inappropriate. A modification of the theory to retain this form 

of interaction for the electron is necessary and a new type of

transformation is used so that the multipolar description of the



molecular interactions is preserved. The new Hamiltonian is then 

applied to the calculation of the energy shift between the electron 

and the molecule.



CHAPTER 2

THE MULTIPOLAR HAMILTONIAN FOR NON-NEUTRAL 
SYSTEMS ALLOWING FOR TRANSLATIONAL MOTION

2.1 Introduction

This chapter describes how a general multipolar Hamiltonian may 

be obtained from the minimal-coupling Lagrangian, the classical 

starting point. Unlike in previous studies, which were mostly confined 

to neutral systems at rest, no constraints are imposed here on the 

motion or electrical neutrality of the atoms, molecules or ions under 

study. As noted in the preceding chapter (and to be explained shortly 

in the text) the characteristic feature of the multipolar Hamiltonian 

for neutral systems is the absence of an explicit intermolecular 

potential term, which is a direct consequence of the highly localized 

nature of the polarization fields. In Chapter 1 the derivation was

outlined for the neutral case. Here the theory is developed more 

thoroughly but for the more general case, and outlines how Maxwell’s 

equations, through the introduction of the vector and scalar 

potentials, may lead to the minimal-coupling Lagrangian, from which 

the subsequent Hamiltonian is constructed. Of those described in 

Chapter 1 the method of transformation chosen is via the addition of a 

total time derivative of a function of the particle coordinates and 

field to the minimal-coupling Lagrangian.

Some new features arise from the theory when net charges and

translational motion are considered. A complete elimination of the
[ 24 ]intermolecular electrostatic terms is now not possible and the

simplification of the treatment in Section 1.1 is lost. In order to
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allow for translational motion we must consider motion of the 

molecular centre, about which the molecular multipole moments have 

been defined. The Rdntgen current appears as a contribution to the 

magnetization current and terms dependent on this motion then appear 

in the Hamiltonian. The Lagrangian must also include a term which 

represents motion of the net charges and it is the presence of this 

term which makes it impossible to completely eliminate the vector 

potential from the final multipolar Hamiltonian.

Translational motion of two-particle systems has been previously
[25] [22]considered by Lamb and Healy and the effect of allowing for

centres of mass motion on the Hamiltonian within a semi-classical 

framework has been examined by Yang et al t2S1. Lam t2?1 has presented 

a less comprehensive account of the complete multipolar Hamiltonian.

The new Hamiltonian is used in Chapter 5 to study the 

ion-molecule dispersion interaction, supplementing the neutral 

interaction determined in Chapter 4, and in Chapter 6 the theory is 

modified to account for the interaction of free electrons with atoms.

2.2 The Coulomb Gauge Lagrangian

The equations of motion for the coupled system of the 

electromagnetic field and charged particles are given in terms of the 

electric and magnetic field vectors by the Maxwell-Lorentz equations 

(1.1.5/6). We may write these equations in an alternative form by 

introducing the electromagnetic potentials 128 30]; this serves to 

facilitate the subsequent quantization of the electromagnetic field. 

Now since the magnetic field is divergence-free (1.1.6) we may define 

the vector potential a(r) by

b(r) = curla(r) (2.2.1)
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since any vector which is divergence-free may be expressed as the curl 

of a new vector. Combining the second and third equations of (1.1.6) 

leads to

= 0  (2.2.2)curl^e(r) + a(r) 

and we may define the scalar potential <t>(r) such that

e(r) + a(r) = -V<£(r) . (2.2.3)

This is possible since a vector whose curl is zero may be defined as 

the gradient of a new scalar function. The equations (2.2.1) and

(2.2.3) define the electromagnetic potentials. However, the 

electromagnetic fields e(r) and b(r) do not uniquely determine the 

vector and scalar potentials; there is a family of possible (a,<P) 

pairs as the equations are unaltered by the substitutions

a(r) =» a(r) + ^
3^ r i (2.2.4)

H r) =* Hr) -§£ J

as is evident from (2.2.3), where X is called the gauge function. The 

particular choice of X» ie the choice of gauge, may be such as to be 

convenient to the area of study. When QED is applied to problems in
[ 3 ]

chemical physics it is convenient to employ the known solutions of 

the particles-only Schrodinger equations as bases for a perturbation 

theory of the coupled system including the quantized field (the 

equations of which not being exactly solvable). This requires there to 

be an explicit Coulomb potential term in the Hamiltonian. The choice 

of X given by

V2x = -V.a(r) (2.2.5)



leads to the so-called Coulomb gauge which is defined by

V.a = 0 (2.2.6)

[3 22 ]The electric field e(r) given by (2.2.3) is split ' into its 

longitudinal and transverse parts. Thus

e‘L(r) = -a(r) ; eM(r) = -?<£(r) . (2.2.7)

The electrostatic field due to the charged particles is given by 

e” (r) and the radiation field e± (r) is described by the transverse 

vector potential. The photons involved in radiative processes which 

arise from quantization of the field are thus known as transverse 

photons. The new equations of motion in terms of the potentials are 

obtained from the remaining Maxwell equations and are given by

V2 _ 1 8
2 ~  2 C ot

a(r) = ---------------------------- (2.2.8)
V '  *

V2«> = -p/£(j (2.2.9)

If we now apply the variational principles of classical mechanics we 

obtain Lagrange’s equations. As discussed in Chapter 1 the solution of 

these equations is the Lagrangian function: its new requirement,

however, is that it must lead to the new equations of motion 

(2.2.8/9). A suitable choice of such a function in terms of the 

electromagnetic potentials is given by

L = 1/2^ maq^ +2~J‘|e2(r) -c2b2(r)|d3r +Jj‘L(r).a(r)d3r
a

(2.2.10)
which is known as the Coulomb gauge Lagrangian. In (2.2.10) the charge 

density is given by



-34-

p = 1 e« 6(r s a ) • (2.2.11)
a

The Lagrangian (2.2.10) gives a starting point from which we derive 

the quantum mechanical Hamiltonian.

By introducing the electrostatic potentials and choosing the 

Coulomb gauge, the Lagrangian leads to the equations of motion (2.2.8) 

and (2.2.9), rather than Maxwell’s equations, although the two are 

equivalent; the source-free Maxwell equations are of course implicit 

in the definition of the potentials. Note though that the scalar 

potential 4>(r) is a function of the particle coordinates and should 

not be treated as a dynamical variable; it is not described by a wave 

equation of the form of (2.2.8). Rather, the solution of (2.2.9) gives 

the scalar potential as

Hence in this case the scalar potential is simply the Coulomb 

potential of the system of charges. We may therefore choose to 

eliminate 4>(r) from the Lagrangian in favour of the electrostatic 

potential energy V, which is our first aim and which we can do because 

of its relationship with the longitudinal component of the electric 

field. That is, expanding the field term of (2.2.10) using (2.2.7) and 

integrating by parts gives

2.3 Elimination of the scalar potential

(2.3.1)

< V 2 >Jl!*<rH2d3r = (2.3.2)

which may be combined with the last term of (2.2.10) to give
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- = ~ V T o t a l  <2 -3 -3 >

with the potential energy terra V given by

V = (Snc )-iy S | a P | . (2.3.4)Total o * L L |qa-qDl
a (3

Strictly we should write the Lagrangian in terms of the vector

potential a(r) and its derivative rather than the field vectors. This

is straightforward but we note that the cross terra from the expansion 
2of e (r) vanishes in this gauge. That is

Ja(r) .V</>(r)d3r = 0 , (2.3.5)

since a(r) is entirely transverse and V<£(r) longitudinal. Thus the 

Lagrangian is given directly by

a

(2.3.6)

with j(r) given by (1.1.2). We have thus generated the 

minimal-coupling Lagrangian (1.1.1), starting from an arbitrary gauge, 

from which the minimal-coupling Hamiltonian will include an explicit 

electrostatic interaction term, as shown in Chapter 1. In contrast to 

the previous works outlined in Chapter 1, however, in the sections 

which follow we make no assumptions regarding the velocities or net 

charges of the molecules, and proceed instead with the development of 

the complete multipolar Hamiltonian.



2.4 An equivalent Lagrangian

The multipolar Lagrangian is obtained from (2.3.6) by performing 

a transformation of the kind described in Chapter 1. In order to do 

this the total charge and current densities must be partitioned in 

terms of true and bound contributions, which in turn requires the 

definition of a molecular centre, about which motion of the composite 

particles is defined. is suitably chosen as the position vector of 

the centre of mass t22 261, The charge density is given by (1.1.22) 

but the current density now contains additional terms compared with 

that used in Section 1.1; the complete current density is used for the 

first time here in the development of the multipolar Hamiltonian. The 

current density may be expressed as a sum of true, polarization,
[29 24 31-32]magnetization and Rontgen current densities ' ' . The ionic

convective current (which includes a free electronic contribution) is 

denoted by j . . . Now if the magnetic multipole moments are defined-v i on i c

relative to R^, then the total magnetization field will contain a term 

which depends explicitly on the motion of this centre. This term is 

called the Rontgen current [31'29-,) an(j ^  represents the 

magnetization of the moving assemblage relative to the inertial frame. 

The polarization and magnetization fields, on the other hand, are 

those relative to the molecular frame and are likewise additive over 

the assemblages, as defined by (1.1.29). and j. areR o n t g e n  X i o n i c

defined below. Hence it is possible to write

= + + VXM(r) + jpontoen<v v i o n i c  <v <v <v <v *v » K o n t g e n

(2.4.1)

with the definitions
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j. . (r) = ) Q-Br6(r-Br ) (2.4.2)i o n i c <v ^  L <vv «v <v v
c

and

j Rontflen = T Vxfp (C;r)xR (2.4.3)

The fields p(r) and M(r) are redefined shortly.

Let us write down a new Lagrangian given by (2.4.4), which we 

know must be equivalent to (2.3.6). This is the same transformation 

that was given by (1.1.17) for neutral systems. We have

L = L . 4rfpX (r).a(r)d3r . (2.4.4)new m l n dtJ ~ ~ -v a, ~

However, before we write down L in full we make a distinctionnew

between the labels associated with electrons and those with nuclei. In 

Section 1.1 a represented a general particle label; the coordinates qa 

were therefore regarded as generalised coordinates so that the 

Lagrangian function L = L(q<x,q(x,t) was sufficient to describe the 

state of the system. If we instead define the electron labels «(C) and 

the nuclear labels a(C), for an assemblage C> then the transverse 

polarization and magnetization fields are given by

P^tCir) = -ej ( S o r V j / V - ^ t - ^ S c r V ^ ’1
a

l

+eZ za(Sa-vJ 5V r«c-x(Sa-5c))dX0
(2.4.5)

and

= ~eZ i (3a_5c)X(3a'5c)U 0XS-id(r5c'X(3«'5c))dX-
a

*el Za{(2a‘5c)X(3a'?C)} j 0X5^ (r 5 c ' X(3a'5c))dX-
a

(2.4.6)



respectively, where is the atomic number of nucleus a. The

transverse part of the total polarization field is defined above since 

it is the transverse current density which appears in the 

minimal-coupling Lagrangian; VxM(r) is transverse in any case, as is 

. The new Lagrangian in terms of these variables is given byK o n t g e n

(2.4,7).

L = L + L . + L (2.4.7)pa ri rad int

Lpart = (me/2)n  3a(C) + (1/2)I I  ma(C)3a(C)
C « C a

(2.4.8)

Lrad = + M ? ( r )2- c2( ! xe ( ^ ) )2 } d3r

(2.4.9)

Lint = ■ + 1 ~ v
c

+ j{vxM(r)}.a(r)d3r + ^ |vx^p(£;r)xRjj.a(r)d3r

(2.4.10)

with V given by (2.3.4). (2.4.10) shows that the inclusion of 

j. . (r) and A in (2.4.1) has modified the Lagrangian.; i o n i c \  “ R o n t g e n

Comparing L. x with (1.1.18) we see that there are two new interactionint
terms; these will lead to additional terms in the final Hamiltonian.

The vector Rr , which is included in the definitions of the ionic 

current and the polarizations and which we have chosen to be the 

centre of mass of the molecule/ion C» is treated as a dynamical 

variable; R^ and its canonical momentum form a canonical pair. It 

is a good approximation to equate R- with the centre of mass of the 

nuclei, since the mass of the electron is small compared with the

masses of the nuclei ie m « m . Thus we may write6 8l
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^ ma(C) (2.4.11)
a(C)3

and

Rc * ]> (ma(C)qa(C)/Mc ) . (2.4.12)
a(C)

The terms of the Lagrangian (2.4.7), however, are written with sums

over the general nuclear coordinate a(C); by introducing a set of

orthogonal coordinates for each molecule, it is possible to write down

the multipolar Lagrangian in a form which separates the centres of

mass motion from the internal nuclear and electronic motions.

For each assemblage we define a set of mass-weighted orthogonal 
t 33 ]coordinates > given by the linear transformation

Qr(C) = 1  “a ir(C),^(a)q^(a) ’ r =l,2,...3N
a(C)

(2.4.13)

where N is the number of nuclei in assemblage C* In (2.4.13) the 

contribution of the coordinate q( , along the direction to the modea, {a.) -

Q is proportional to 1 •, v. 1 is then a real, unitary 3N * 3Nr(C) r(C),^(a)
matrix, with matrix elements 1 *. The transformation isr(C) »Ma)
orthogonal. That is, the inverse of the transformation may be written

as

?  *. . . .4t(a) " a L r(C),^(a) r(C) *
r(C)

(2.4.14)

and the sum of the squares of the nuclear coordinates is given by 

the sum of the squares of the modes,
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3N-3
1/2 ^ ma(C)q^ = 1/2 ^ Q*(c) + 1/2MC^

a(C)3 * r(C)
(2.4.15)

from which translational motion has been separated by defining for 

each molecule the matrix elements

1/2
^3N-2, x(a) "^3N-l,y(a) ^3N,z(a) (®a/M)

(2.4.16)

(2.4.16) ensures that the final three modes for each molecule describe 

translational motion along the Cartesian axes x, y and z ie

Q = M 1/2R ; Q = M 1/2R ; Q = M 1/2R .3 N-2 x 3N-2 y ’ 3N z

(2.4.17)

Using this transformation the Lagrangian may be written in its 

multipolar form, with translational motion separated from rotational 

and vibrational motion.

Introducing the vector fields n (C;r) and n (C;r) for molecule Ci«vvX

na(C;r) = -e(qa-R^)J ^6(r-R^-X(qa~R^))dX,

na<C; r) = eZa(qa"R-)J 9̂a*"5ĉ  ̂ *

(2.4.18)

(2.4.19)

the multipolar Lagrangian becomes

■u.t = l L  p . r t ^ )  + L r.d + I  ' v
c c

(2.4.20)
with
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3N-3
Lpart<C> = <-e/2)l £ (c) ♦ d / 2) I Q*(c) + (1/2 )MCB^

« r(C)
(2.4.21)

Lr,d = + r j { j (E)2_cY (E)}d3!:
(2.4.22)

L i«£) = - ^ Sa(c)-j!;0((C;r)xb(r)d3r

3N-3

:(C)
a

- V - J  l mlU Z l  r(C),i(a)Sr(C)\Iea (C;!:>XS (i:)d34 .
« r(C)

— Rr . ̂ ~s> I'p(C;r)xb(r)d3r - ^  J]}a (£»£)x!^r)d3r_

(2.4.23)

Written in this form (2.4.23) allows easy determination of the 

canonical momenta. The final term depends directly on translational 

motion of the molecule and in contrast to the Lagrangian for neutral 

systems (2.4.23) contains a term which is linear in the vector 

potential. The canonical momentum of the molecule will therefore be 

coupled to the vector potential.

The centre of mass and the normal modes associated with the 

nuclei for each assemblage, together with the electron coordinates, 

now form a complete set of linearly independent particle coordinates 

for the Lagrangian while the variables of the radiation field remain 

unaltered. Note that the electromagnetic field is described by a 

density functional since it varies continuously in space. Hence the 

terms which appear in (2.4.22) and (2.4.23) are of the form

(2.4.24)
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where £ is the Lagrangian density.

The canonical momenta are next obtained from (2.4.20) before 

finally constructing the multipolar Hamiltonian in Section 2.7.

2.5 The canonical momenta

Having written down the Lagrangian in its multipolar form, we now 

determine the momenta conjugate to the canonical coordinates in order 

to construct the multipolar Hamiltonian. The four pairs of canonical 

variables are now given by (qa ,Pa ) for the electrons, (^r(£),pr (£)) 

for the normal modes, (R^,P^) for molecular translational motion and 

(a(r),n(r)) for the electromagnetic field. The canonical momenta are 

defined, analogously to the momentum of the generalized coordinate « 

in (1.1.8), by the expressions below. We have

5(a) = aLmuii/S(a) * (2.5.1)

pr(C) = aLn.uit/^r(C) * (2.5.2)

P- = dL /R_ , (2.5.3)mult

and
n (r) = lt/a(r) • (2.5.4)<v<v mull « «

Hence, using (2.4.20), we may write down the momenta directly as

£ ( « ) = meS(oc) * jEa(c;E)x!?(E)d3E (2-5-5)

Pr(C) " r(C) Ar(C) (2.5.6)

- ||P(C;r)xb(r)d3r - J ^  J a ^ E ^ l ^ E ^ E  ”
a

(2.5.7)
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and

n(r) = £0^i) ~ (2.5.8)

where (2.5.6) is given by the sum

A = y m"1/2i r(C) L a
a(C)

r(C)»^(a) ~an (C;r)xb(r)d3r (2.5.9)

In (2.5.9) r may take the value r = l,2,..,3N-3.

The field and electron canonical momenta (2.5.8) and (2.5.5) are 

the same as those in the basic theory. New features here are the 

momenta associated with the mode r and with the molecule itself;

(2.5.7) arises directly from the new interaction terms.

Construction of the Hamiltonian using (2.5.5-8) is the final 

task. However, in anticipation of the form of this function, it is 

convenient to examine now, some of the terms of the Lagrangian 

individually. In particular we shall see how the Lagrangian (and 

hence the Hamiltonian) may be written down in a form which excludes 

the potential energy term V. xinter

2.6 The electrostatic potential

The multipolar Lagrangian (2.4.20) contains the electrostatic 

potential term V, given earlier by the expression (2.3.4) in terms of 

the general coordinates a and 0 representing all particles. It was 

shown earlier (Section 2.3) that this term is preserved in the 

formulation of the minimal-coupling Hamiltonian from the 

minimal-coupling Lagrangian (2.3.6). It is shown in this section how 

this term may be partitioned into inter- and intramolecular parts and 

how the multipolar formalism leads to the complete elimination of the 

intermolecular contribution for neutral systems, giving the results of
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Chapter 1. Further, the residue terras associated with charge-charge 

and/or charge-multipole interactions for systems containing net 

charges following incomplete cancellation of the intermolecular 

potential term are determined here.

Adopting the notation of Section 2.4 (but excluding the normal 

modes for simplicity), (2.3.4) may be rewritten with sums explicitly 

over electrons and nuclei. Summing over all molecules gives a 

potential energy total of

denote the nuclei. Nucleus a has a charge of eZ . This term is usually 

treated as part of the molecular Hamiltonian, once it is formed, and 

is common to both the minimal-coupling and multipolar forms.

The intermolecular term is similarly given by

V,To ta 1 V.intra + Vinter
(2.6.1)

where the intramolecular contribution to V,To tal is given by

V.intra (2.6.2)
C

where for molecule C we write

V(C) = (eZ/4Jreo )

(2.6.3)

In (2.6.3) oc. and 0 are electron labels implicit to C and a and b

V.i n te r (2.6.4)

with



Here the pairs (a,a) and (£,b) are associated with molecules C and C" 

respectively. (2.6.5) includes the electrostatic intermolecular 

interactions between all particle pairs in the system.

Let us consider the Lagrangian (2.4.20) further. When 

constructing the multipolar Hamiltonian from this expression it will 

be necessary to substitute for the coordinate ’velocities*, obtained 

by rearranging the equations (2.5.5-8), so that each term is written 

in terms of the canonical variables, the coordinates and momenta. Now 

when we substitute for a(r) in (2.4.23) using

the transverse polarization field summed for all molecules. Expanding 

the modulus square allows us to write this term as

where the transverse polarization product has now been decomposed into

a(r) (2.6.6)

we obtain the term

(2.6.7)

which is independent of the electromagnetic field. In (2.6.6) pX (r) is

( V 2 cq ) pX (C;r).p'L(C/ ;r)d3r

(2.6.8)



one- and two-centre parts. The one-centre term of (2.6.8) may be set 

aside for now and regained later as a self-energy term in the 

Hamiltonian. The two-centre term may be treated by considering the 

intermolecular polarization product

<ia0 > p(C;r).p(C';r)d3r . (2.6.9)
C<C'

The polarization fields in (2.6.9) are local; where the charge 

distributions of the molecules C and C* do not overlap this product 

vanishes and the above integral goes to zero. The transverse and 

longitudinal polarization products then become equal and opposite. 

That is

<l/e0 ) I  pJ'(C;r).pX (C' ;r)d3r = ~{\/en ) I  p"(C;r).p"(C' ;r)d3]
c<c................... ....c<c........................  °

(2.6.10)

since the cross terms are identically zero. The longitudinal 

polarization field given by

pI (C;E) = -eI  <3«'5c)J 5I#(r5c~x(V?c))dX
a

.1

za ( v y J 5 * (r ? c - x(Sa-?c))dX

(2.6.11)
o a

may be substituted into the right-hand side of (2.6.10) and for a 

system of neutral molecules this term cancels the intermolecular
[illpotential energy term . Since we are considering a collection of 

ions and molecules, however, such will not be the case and we are 

required to determine the new result. After a straightforward but 

lengthy manipulation of the resulting terms it is possible to write an 

identity of the form



where V. , is that sum given by (2.6.4) and is the intermolecularinter

potential energy, while W , is a collection of electrostatic termse 1 ec

which are dependent on the net charges of the molecules. A concise 

form of these terms is given below. denotes the net charge of

molecule C at position and is not to be confused with the mode

Qr ( c r

W i e 1 ec = d / 4 « 0 , n  -1T -°-^ R ■ + 1 , -cQs ' ^ > ,C<C'l a I9a(C)“5c'* a l3a(C)~5(C')*

_ QCQC' _ ^ eQC + J eQCZb(C') ]
c' * p lSp(c' )“5c* b l2b(c')'5(c)U

(2.6.13)

Note the minus sign in the definition of W , given by (2.6.12): thee 1 ec

potential energy term is best regarded as the sura of the terms which 

comprise ^elec an^ the longitudinal intermolecular polarization 

product. W , represents the electrostatic coupling of thee 1 ec

electrons and nuclei of one aggregate with the net charge of another 

positioned at its centre of mass. Clearly for neutral systems we have

W t = 0 , (2.6.14)e 1 ec

as before. Thus, as long as the molecules are well separated, the 

intermolecular Coulomb energies are effectively cancelled by the 

two-centre terms of the transverse polarization product. The resulting 

multipolar Hamiltonian, discussed in Chapter 1, then contains no 

explicit potential terms and all intermolecular interactions proceed,
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via coupling to the field, through exchange of transverse photons. 

Note that in the minimal-coupling Hamiltonian, where V. 4 remainsinter
even for neutral systems, the lowest-order electrostatic term given by 

the expansion of the left hand side of (2.6.12) is the familiar 

dipole-dipole coupling term

(2.6.15)

where R is the intermolecular separation vector.

The multipolar Hamiltonian for systems containing ions and

molecules includes electrostatic potential energy terms given in total 

by W , . However, the form of (2.6.13) is not such that thesee 1 ec

interactions may be readily determined. We wish to write W , in ae 1 ec

form in which it may easily be used in applications. It is possible to 

rewrite these terms by performing Taylor expansions about R with

R = R^/ - R^ (2.6.16)

such that

(^(o-^), (qa(c)-;c), (q^co-R )̂,■ (sb(c')-RC') « 5-
(2.6.17)

Keeping only terms up to the charge-quadrupole interaction this leads 

to the result

= (1/4H£0 ) 2 j n ^ . / R  + - QC^ ( C  )]R^/R:

- (ocQ^(C') + Qr % < C ) ) ( « i r 3 R ^ ) / R 3 + ... } .

(2.6.18)

This result may be verified by an independent route. The 

intermolecular potential term V. x given by (2.6.4) is defined byinter



the expression

V.inter (l/47££0 ) ^ JJp(C;r>p(C' ;r' j / l r - r '  
C<C'

(2.6.19)

where P(C;r) and p(C*;r') are the charge distributions of molecules C

and C* given by

P(C:£> = I e« ( o S(r a « ( c ) ) + I ea ( o 5(r 9 a ( o )

(2.6 .2 0)

p(c';£/} = I ê (C/)5(r,'2̂ (C/) 
0

+ 2 eb ( C ) 6(r ■2b(C')J *
b

(2.6.21)

Alternative definitions of the charge densities in terms of the 

polarization fields are given, following the definition of (1.1.22), 

by

in (2.6.19), and integrating by parts, again gives V.nter as the sum

former in its multipolar form.

We have determined the electrostatic interaction term between two 

ions and those between an ion and a neutral molecule, which remain in 

the new Hamiltonian. In the form (2.6.18) such interactions may be 

easily determined by application of the methods of QED and the results

(2.6.2 2)

(2.6.23)

written in this form since V.p"L(r) = 0. Substituting these expressions

of W and the longitudinal polarization product, but with thee 1 ec



will appear in terms of molecular properties such as permanent dipole

moments or polarizabilities. In contrast to the minimal-coupling

Hamiltonian, however, the electrostatic terms here are just 

charge-multipole series; all multipole-multipole terms have been 

eliminated. In the following sections W , is assumed and will not bee 1 ec

written out explicitly.

2.7 The multipolar Hamiltonian

The Hamiltonian may be formed directly from the Lagrangian

(2.4.20) and is given by

lull = I 1 £«-3a + I I Sr-Sr + 1 + i ^ E ^ ^ E ^ E  * L u
C <*(C) C r(C) C

(2.7.1)

where the third term is included to represent the canonical pair 

(R^,P^). The Hamiltonian is written in terms of the canonical 

variables by substituting for the coordinate velocities, obtained by 

rearranging the equations (2.5.5-8), into (2.7.1). In the previous 

Section this process was pre-emjted by a consideration of three of the 

terms such that the intermolecular potential energy term was partly 

eliminated, leaving only those interactions dependent on net charge. 

Here the remaining terms are considered and the Hamiltonian will be 

given shortly.

An alternative to (2.7.1) is to consider the Hamiltonian as the 

sum of two terms; the molecule and field energies E , and E whichmo 1 rad

are themselves the sum of kinetic and potential energies. Thus we may 

write

H = (T+V) + (T+V) . (2.7.2)mu 11 mo 1 rad

The two methods of formulation are not dissimilar, however, in



that each requires a knowledge of the velocities q (C)j a(r) etc in 

order to proceed. Where (2.7.2) may have the edge, though, is an 

assurance that the resulting Hamiltonian appears in Hermitian form, 

since we take the squares of these velocities. Additional assumptions 

concerning the symmetry of the variables prior to quantization are 

then unnecessary and their operator form follows naturally. Should we 

choose (2.7.1), on the other hand, then it is best to symmetrize each 

term, beforehand, in which the order of the variables might be 

important later on. The latter method is that chosen by Healy C22'101 

The Hamiltonian is given by

Hmuit = (s(«)+ J?a(C;r )x5 (r)d3r] + v(c)}
C «(C) J

+  ̂| ( l / 2 M ^ ) ^  + Jp(£i][)xM r ) d 3r - J  ̂ r)*b(r )d3r “ Q^a(R^)) j
C a

+ (1/2)\ [pr(c) + Ar ( a ] + V.nler 
r

{n(r)  + p“L(r ) }2/GQ + e0c2(Vxa (r))2 >d3r

(2.7.3)

There are no explicit interaction terms in (2.7.3); these appear 

following expansion of the various terms, the form of which 

effectively corresponds to the introduction of coupling between the 

particles and radiation field ie if there was no coupling then each 

canonical momentum would be identical to its kinetic form. In the 

first term of (2.7.3) the electron canonical momentum takes its 

multipolar form. The second term is interesting. The molecular 

canonical momentum, given by the sum of the momenta of the constituent 

particles, is minimally coupled to the vector potential at and to
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the magnetic field. The latter interaction will give rise to 

additional contributions to the magnetization. V. A is included ininter

the expression above but its partial cancellation is unaffected by 

this method and W , is included in the Hamiltonian given below.e 1 ec

A simplification of the Hamiltonian may be achieved by its 

partition into molecular, field and interaction terms; a new feature 

compared with the corresponding function for neutral systems is the 

presence of the intermolecular Coulomb potential term ^elec) which it 

has been shown depends on the net charge(s) of the interacting 

species. There are also additional interaction terms, both linear and 

quadratic in the field, which occur as a result of translation. The 

Hamiltonian is given by

H = y H ,(C) + H  ̂ + y H (\}(C) + y H (24}(C) + H + W ,mull Lt mol rad Lt int L> m l  self elec
c c c

(2.7.4)

with W , given by (2.6.17) andelec

3N-3
= 2H b« (C) + ?C/2MC + <1'2 > 2 P r(C> + V(C)

« r(C)
(2.7.5)

H = \r a d  L di2(r ,/eo+ £oc2(!x? (!:))2rd3!:

(2.7.6)

H ,eif = 2H  Y |p'L(C;r)|2d3r
0 c

(2.7.7)

H |^(C) = -G~lJp(C;r). d“*"( r )d3r -Jm(C;r) .b(r)d3r -(Q-/M-)P».a(R-)
c  c ~c

(2.7.8)

and
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3N-3

«(C) r(C)

a
(2.7.9)

Note that the molecular Hamiltonian Hm o  1 now includes the

intramolecular electrostatic term V(C)» as described in Section 2.6. 

The self-energy and radiation terms are unchanged from (1.1.26/27) but 

for convenience the interactions have been split into terms which are 

first- and second-order in the field.

The new first-order term gives the interaction between a charged 

aggregate and the field; the momentum of the aggregate interacts 

with the vector potential, which takes a constant value over the 

extent of the molecule. As noted the term is similar to the 

minimal-coupling first order interaction (1.1.12) and the inclusion of 

the vector potential is an important feature of this form of the 

multipolar Hamiltonian, namely that it cannot be written wholly in 

terms of the electric displacement vector and magnetic fields.

Although (2.7.8) has been written such that it includes a term 

representing the interaction of the magnetic field with the 

magnetization m(r), we note that the latter quantity differs from the 

definition given in Chapter 1. m(r) includes all terms of the 

appropriate dimension, including those which arise following the 

inclusion of the Rdntgen current in the current density, since this 

term is itself a magnetization, coupling the translational motion to 

the electric polarization field. The total magnetization m(r) is 

written as the sum of contributions from each molecule/ion,
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m(r) = ^  m(C;r) , 
C ~

where for each molecule we have the sum

(2.7.10)

m(C;r) = ra'(C;r) + m'/ (C;r) , (2.7.11)

Consider the definition (1.1.32) for m(r) given in Chapter 1. The 

quantity m'(C;r) in (2.7.11) is given by an analogous definition

which is similarly in symmetric form. The two forms differ by the

inclusion in (2.7.12) of the terms which rely on centre of mass

(translational) motion. The first terra above arises directly from the

coupling of molecular motion to the polarization field (the Rontgen

current) and vanishes if the molecules are at rest. The second term is

the equivalent of (1.1.32) and its source is the magnetization field

M(r) which was defined (2.4.6) relative to the moving frame.

The second term of (2.7.11) gives the contribution of relative

nuclear motion to the magnetization. Defining 1 as that vector«v r , a
whose components 1 : t \ give the contribution of nucleus a to ther»Ma;
mode (Section 2.4), allows the definition

If the molecules are treated as fixed bodies, however, as in many

(2.7.12)

3N-3

r(C)a(C)
(2.7.13)
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problems, this term may be ignored.

Returning to (2.7.9) we consider finally the quadratic

interaction terms. These are not of particular interest here but we

note their origin. The first term, only, arises in the neutral

Hamiltonian and gives rise to the diamagnetization field. The

remainder, for which we could write similar fields, depend on
(1 )translational motion. As we would expect, the p-.a(R-) term in H. x isint

accompanied here by the corresponding term quadratic in the vector 

potential, in analogy to the minimal-coupling interactions.

(2.7.4) is then the quantum mechanical Hamiltonian for the system 

and the canonical variables are operators subject to the usual 

commutation restrictions.

In Chapter 1 the interaction Hamiltonian (1.1.57) in terms of 

molecular multipole moments was written down with the aid of the 

multipole expansions (1.1.50/51). The Hamiltonian (2.7.4) may be 

similarly treated to facilitate its application. For example, the 

electric dipole and quadrupole moments are redefined below, noting 

that now each is made up of two terms since the electronic variables 

have been separated from the nuclear variables. Hence

^I ^  = " eI (2a(C)"?C^ + 6I Za (2a(C)"?C^
a a

(2.7.14)
and

2% ( f >  = + Za(Sa(C)"5c>-t-(3a(C)'?C)ij
a a

(2.7.15)

The magnetic-dipole moment appropriate for a particular problem may be 

written down from (2.7.11).

One final point of interest which arises from the formulation of 

the multipolar Lagrangian and Hamiltonian is the new form of the



equations which describe the microscopic field. The minimal-coupling 

and multipolar Lagrangians (2.3.6) and (2.4.20) differ by a total time 

derivative given by the transformation (2.4.4). Hence the equations of 

motion of the field are unaffected by this transformation. These 

equations, given by (2.2.8) and (2.2.9), are equivalent to (1.1.6) in 

the Coulomb gauge. However, from (2.4.20) we may derive Maxwell’s
[29 34]equations in the form of the atomic field equations 1 by 

defining the auxiliary fields d(r) and h(r). Following (1.1.30), we 

define the electric displacement field as

the transverse component of this field then appears in the 

radiation and interaction Hamiltonians. As noted in Chapter 1, d(r) is 

related to the field momentum n(r) by the relation

Now if we recall the division of the charge density into its free- 

charge and polarization contributions such that

d(r) = c e(r) + p(r) ;
^  ^  «v> A* (2.7.16)

n (r. m u  I t *(r) = -dX (r) . (2.7.17)

(2.7.18)

then the first Maxwell equation of (1.1.6), namely

V.e"(r) = P(r)/eQ , (2.7.19)

simply becomes

V.d"(r) (2.7.20)

So Gauss’ law now takes the above form, where the displacement field 

assumes the true charges as sole sources.



Now let us consider the final equation of (1.1.6), in which the

transverse current acts as the source of the electric and magnetic

fields ie

Vxb(r) = (l/c2)eA (r) + ( 1A q c 2> • (2.7.21)

If we combine the magnetization field M(r) with the magnetic

polarization associated with the Rontgen current and define a new 

vector -^(r), with

M( r )  = M(r) + J |p(C;r)xRJ . (2.7.22)
C

then substituting for the transverse current

j X( r )  = ; (r) + pX (r) + Vx̂ f.(r) (2.7.23)« « i o m c  ^ * * * * * *

in (2.7.21) and introducing the auxiliary field h(r), the magnetic

field given by

h(r) = e0c2b(r) - JIL(r) ,

gives

Vxh(r) = jt.„ir(r ) + dX (r) ;
* * * * * *  b i o n i c  ^ ~* *>*

the magnetic field is given by the true currents.

The pair (2.7.20) and (2.7.25), together with the source free 

equations from (1.1.6), which are satisfied because of the choice of 

gauge, give a form of the Maxwell-Lorentz equations in the fields d(r) 

and h(r) which is of the same form as the macroscopic
[28-30]relations . Thus in this form of the atomic field equations

both the electric and the magnetic displacements are related to true

(2.7.24)

(2.7.25)



sources. In (1.1.6) the fundamental fields e(r) and b(r) are made up 

of true and bound sources, as can be seen from the form of (2.7.16) 

and (2.7.24).

It has been shown in detail here how the multipolar Hamiltonian 

may be constructed from its parent Lagrangian function, itself 

obtained via the addition of a total time derivative to the 

minimal-coupling form. The alternative method of construction, namely 

the canonical transformation of the minimal-coupling Hamiltonian, has 

been discussed by various authors C35 30,211 an(j the relationship 

between the corresponding canonical variables in the two forms has 

been determined. Since the generating function S is a function of the 

particle and field coordinates, it follows that both q^ and a(r) are 

invariant to the transformation; only the conjugate momenta change. 

The precise origin of the multipolar terms and the cancellation of the 

minimal-coupling interactions has been described by Power and
[ 37 ]Thirunamachandran by detailing the effect of the transformation

upon each term of the old Hamiltonian.

In previous works the minimal-coupling Hamiltonian has been used 

where the system includes charged species. The Hamiltonian developed 

here now allows such interactions to be treated within the multipolar 

framework of QED and accounts for translational motion of all 

interacting species. The energy shift between an ion and a neutral 

molecule, for example, may be considered as the sum of electrostatic 

contributions and retarded contributions arising from conventional 

multipolar coupling.

In Chapter 5 the above multipolar Hamiltonian will be applied to 

determine the contributions to the dispersion interaction arising from 

ionic charge. These results will then supplement those of the neutral 

case, which will be determined in Chapter 4. The application of this 

new interaction Hamiltonian will also be compared with the



minimal-coupling treatment of the same problem. In the following 

chapter the equivalence of the multipolar and minimal-coupling 

Hamiltonians in the calculation of higher-order matrix elements is 

demonstrated.



CHAPTER 3

MULTIPOLAR AND MINIMAL-COUPLING EQUIVALENCE: 
HIGHER-ORDER INTERACTIONS

3.1 Introduction

In the preceding chapters it has been shown that in 

non-relativistic molecular quantum electrodynamics there is a class of 

equivalent Hamiltonians which describe a system of radiation and 

atoms, molecules or ions in interaction. The origins of these 

Hamiltonians through the Lagrangian function have been discussed and 

the dynamics of the equations of motion compared. The multipolar and 

minimal-coupling forms of the Hamiltonian were said to be equivalent, 

interchangeable by a canonical transformation of the form of (1.1.43). 

Thus, even though the partitioning of the two Hamiltonians into their 

molecular, radiation and interaction parts is different, the matrix 

elements for optical (energy conserving) processes involving real 

photons must be the same. This issue has been discussed in various 

publications (see [19,35,20,39] and references within). However, the 

majority of papers on this issue are mainly confined to discussions of 

the validity of the transformation and the consequential equivalence 

of the Hamiltonians; where equivalence has been explicitly 

demonstrated t37,401j ^  has been within the electric dipole

approximation. In Chapter 4 we shall consider the interaction between 

chiral molecules using the multipolar Hamiltonian. The equivalence of 

the two forms of Hamiltonian to the order required to account for such 

interactions has not been demonstrated explicitly and so it is useful 

to extend previous demonstrations by making a higher multipole



approximation; electric quadrupole and magnetic dipole interactions 

are included, as such interactions are allowed for chiral molecules in 

addition to electric dipole coupling.

The two Hamiltonians are analysed here in their accounts of two 

optical processes; two-photon absorption and scattering. In the former 

we consider absorption of a photon from each of two different modes. 

In the calculation of the scattering cross-section the inclusion of 

the higher-order interaction terms leads to differential effects if 

the incident photon is circularly polarized t113; in addition to the 

general case of differential Raman scattering the special case of 

differential Rayleigh scattering is also discussed briefly. The 

conversion of the minimal-coupling matrix elements into multipolar 

form is effected with the use of sum rules appropriate for each case.

The use of sum rules in the conversion of momentum (or 

dipole-velocity) matrix elements into the dipole length form of the 

multipolar formalism (usually written in terms of molecular multipole 

moments) was introduced by Geltman 1401 and is central to such 

demonstrations. He also showed that in order to make such a 

verification for two-photon absorption it was necessary to include the 

term in the minimal-coupling Hamiltonian which is second-order in the 

vector potential. This is a general conclusion for any two-photon 

process even though there is no corresponding quadratic term of the 

same order in the multipolar form. In the present work the derivation 

of the multipolar result from the minimal-coupling form is extended; 

new sum rules are derived which facilitate the demonstrations of 

equivalence. It should be noted, however, that in cases where the 

molecules occupy intermediate states which are to be summed 

equivalence does not apply to the individual stages of the interaction 

involving virtual processes and the sum rules may not always be 

appropriate. The results must agree, though, where the interactions



are on the energy shell.

The comparative use of the two forms of interaction will be 

discussed following the demonstration of their equivalence which 

begins with an account of two-photon absorption in section 3.3. It 

will be suggested that for applications of chemical interest the 

multipolar form is physically more suitable. We begin, however, with 

the derivation of a series of sum rules which aid this work and which 

will be useful in other problems of interest.

3.2 Sum rules for use in QED

The conversion of minimal-coupling matrix elements into their 

equivalent multipolar form is much simplified by the application of 

certain sum rules. These sum rules are similar to the
[41-43]Thomas-Kuhn-Reiche sum rule used to describe the oscillator

strengths of atomic or molecular transitions. The sum rules which are 

used in this work are derived for the specific cases in question but 

the results may nevertheless be applied to other processes of 

interest.

The first sum rule which shall be derived is given by (3.2.1).

mr ro '] = . (3.2.1)j +4 mo
r

Let us start by considering the double commutator [q.»[q;,H ,]];j 4* mo  1

inserting the commutation relations gives

[V [V Hn,oi]] = O V m J C q ^ p J  = -(li2/n)Sii . (3.2.2)

For the molecular transition jm> |o> we may therefore write



-63-

(3.2.3)

Alternatively we expand the commutator into its constituent 

terms,

Sum rule (3.2.1) follows from a comparison of equations (3.2.3) and

Next there are a family of identities which are useful when 

considering two-photon processes involving higher multipole 

interactions. (3.2.6), where Q is the quadrupole moment, is an example 

of such an identity but there are many,others which may be obtained in 

a similar manner.

This particular form is encountered in scattering problems. In Raman 

scattering, for example, we may write the conservation identity

(3.2.4)

With the aid of closure we get

<m| [Q;»[Q;jH ]|o> =j “t mo 1
r

(3.2.5)

(3.2.5).

r ro mr

(3.2.6)
r ro mr

E + E hck - ftck' . (3.2.7)mr ro

Thus
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(E + hck') = -(E - hck) . (3.2.8)

Now since = 0, we may write

_ » , mr„ro „mr ro -„ _ _ .0 - ) W i  Vi | (3.2.9)

from which

mr ro.

0 = 1 {<E-'hck) ~ ^ ~  ' (E»r- hck) J *  V} •v. E -hck E -hckJ
(3.2.10)

The result (3.2.6) follows using (3.2.8).

Another result is useful, where higher order multipoles have been 

used, in the conversion of minimal-coupling matrix elements into their 

multipolar equivalent form. In this case the vector potential is 

allowed to vary over the extent of the molecule; the factor exp[ik.q] 

of the mode expansion for a(r) then remains a function of the particle 

coordinate. A series expansion of this factor gives terms which 

include matrix elements such as (e/m)<r|p-q-|s>, which are clearly of
A, f

the same order as a magnetic dipole or electric quadrupole 

interaction. Thus it will be shown that

- ( e / m ) e ^ < r | p ^ | s >  = (kxe)^<r|m^|s> + i(e^/ft)Er8Q ^  .

(3.2.11)

Denoting the left hand side of the above expression by I we write

A A

I = -(e/2m)e^< r | p ^ - p ^ q j s >  -(e/2m)e^kXr|p^+p^qjs> .

(3.2.12)

The first term of (3.2.12) is clearly the same as the first term of
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(3.2,11). Using closure in the second term of (3.2.12) and converting
r t r t-* with

-(ih/m)p = [H ,q] (3.2.13)^ mol «

gives, since E  ̂ + E = E , the termsr t t s r s

1 = •eikA j £ <rM s> -(ie/2ti)e^Ers<r|q^|s> ,

(3.2.14)

from which we obtain

I = (kxe)©m!>8 +i(ek/h)E <r|Q-|s> (3.2.15) ̂ r 6 Ay%

Hence the result (3.2.11).

One final identity is left to be discussed. The minimal-coupling 
2 2interaction term (e /m)a (q), leads to matrix elements of the form 

e^k^Cml (q-R)^|o>. Such terms are used in the demonstration of the 

equivalence of matrix elements using the two Hamiltonians and it would 

be of some use to be able to write them directly in their multipolar 

form. An identity similar to (3.2.5) is

Ir r „ | V m r „ r o „ mr ro
' Z  ( ~  ro ,

r
(3.2.16)

The left hand side of this identity may be written as

^  ^ea^ /2)[qi,(a)q^(a)’[q^ O ) ,H]] = 11 * 
a 0

(3.2.17)

Evaluating the inner commutator gives
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11 = (e« V 2fflp )[(l4.(«)^(«)-p#(/3)]
a P

(3.2.18)

which becomes

II = (ih)2 J (e„/2i»c<)(qi(c<)« ^  + q^(oc)5^)
a

(3.2.19)

Thus, combining this result with (3.2.16) we find that

V  1„ mr ro „mr roI V  , 2> 2 . ( mo c mo 0 |2 [E»rfl# QU  ' EroQU IJi J - ■ 2 a / <1) [q-t(a) *£ + qt(a)5ij.)
a

(3.2.20)

Similarly we may determine

V  I ~ „mr ro _ mr.rol V  , 2> 2 v | mo c mo e |
2  (E.rQU ^  ' Er / i  Q-Uj = ' 2  a /2ma )[qi(a)5^  + ql ( a ) % ]

a
(3.2.21)

V  [_ mr ro _ mr rol V  , 2*2 2. mo2 iE»r^ %  - E,.V ̂  J = - 2 a /2m^ em ^Pt(a )
r a

(3.2.22)
and

V  |_ mr ro _ mr rol _ ,n _ _ _ x) E m,™ /J. - E /i- m_ = 0 (3.2.23)
Li ^ mr 'T/I ^ ro 4 /Wl J
r

A suitable combination of the last two expressions allows the energy 

factors to be eliminated from the sum so that

v V f mr r o m r r o )  V I 2 * 3  2) m oh ) u . m • - m /i- = ) e n /  2E m £ • • p , * .L (J -t 4 4 -t J Z, t a moaj A^n^'a(a)
r «

(3.2.24)

The equations (3.2.20/21) and (3.2.24) may now be added. First

consider the quantity [k'(oc-i6) + k(0-iy)], where we define the Greek
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quantities by

— , * ,  V  I ̂  „ m r  ro „ ror„ro|
e-Lej h  Z [E« ' * r / i  Qu j  = “

r

— / T Y  I,, m r „ r o _ „ m r  rol _
eie4k& 1 % &  " Er o V i  J " &

(3.2.25)

(3.2.26)

V  f mr ro mr ro
he^ 2  K ra* ■ mi = y

(3.2.27)
and

>:-/ V  [ mr ro mr rol 0hbce* Z K  *4 - *4 J = 6
(3.2.28)

With the use of the results (3.2.20/21) and (3.2.24) (and a similar 

expression for 6) we find

I ( e > 2/n,a ){k^e.k.q”°a) - k ' i ^ q ^ j .[k'(a-iS) + k(0-iy)] =
a

(3.2.29)

This is the required result, since the terms on the right hand side
2have the form of the matrix elements discussed for the a (q) 

interaction.

The two sum rules which together compose the above expression are 

given below. We have

1 (iea/m«)eik£<ml(V ? ,*|o>
ot

/ . #*2 * r Yl-r, m r r o .mr rol /-/*.%. V  I mr ro mr ro= (l/h Z [Er<A V  - E„ r J  + (1/t>)b# z K  *4 '- *4 >*1 J
r r

(3.2.30)
and
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1  ( ie ^ ma>i i kj H < S o f ! )* |o>
a

.>2. /  V  mr„ro _ mr ro] /-./*_*;"/ V  I mr ro mr ro= )k«ei z iEro^ Qa  - E. , j  + (1/h>bi z n  ,
r r

(3.2.31)

In the following sections the above results, together with

(3.2.1), (3.2.6) and (3.2.11) will be applied in the demonstration of 

the equivalence of the multipolar and minimal-coupling matrix elements 

for the two-photon processes of absorption, Raman and Rayleigh 

scattering.

3.3 Two-photon absorption

In this section the multipolar and minimal-coupling Hamiltonians 

are used to calculate the matrix element for two-photon absorption by 

a chiral molecule. This requires the electric quadrupole and magnetic 

dipole interactions to be included in the calculation. The two 

interaction Hamiltonians are given below and the calculations are 

aided with the use of time-ordered diagrams. The two results are shown 

to be identical with the use of sum rules.

The multipolar and minimal-coupling interaction Hamiltonians are

Hint(mult) = ■ £o V f L(5) ■ _

(3.3.1)

H i„t(min) = - I  (ea/ma)Pi(a)al.<3a) + \ 
a a

(3.3.2)

where Q-- is the component of the electric quadrupole tensor and m is 

the magnetic dipole moment operator.

Consider, the case of absorption by a molecule of one photon from



each of two monochromatic beams with modes (k,X) and (k', X') (the case 

of absorption of two photons from the same mode has been considered in
[40 4 4 37]other works ' ). This may be represented by the time-ordered

[45-11]graphs shown in Fig 3.1. In the initial state the molecule is

assumed to be in state |o> with energy Eq and the modes (k,X) and 

(k',X') occupy the number states jn> and |n'> respectively with

energies nhck and n'hck'. The final state has one less photon in each 

mode, with the molecule excited to state |m> with energy Em< The 

intermediate state contains the molecule in a typical state |r> and a 

photon has been annihilated from one of the modes.

Fig 3.1 shows the pure electric dipole contribution to two-photon 

absorption, the interactions at the vertices given by the first term 

of (3.3.1). Since each of the interactions is linear in the field the 

matrix element Mf . for this process is given by the second-order

perturbation result

V  <f|H. . |I X I | H .  I i>
Mf . = - L  ---- ~ --------— --- • (3.3.3)i <e«-v

where the initial, intermediate and final states are given by

J i> = |n(k,X),n'(k',X');o> (3.3.4)

|f> = |(n-l)(k,X),(n'-l)(k',X');m> (3.3.5)

| (n-1) (k,A.) ,n' (k' ,X' ) ;r>
I> = ~ ~ } . (3.3.6)

|n(k,X),(n'-l)(k',X');r>

Using the mode expansion (1.1.40) for dX (R), from (3.3.3) we directly 

obtain the result
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„ d )  f n h c k V  f n ' hck'l . . . . . .m» = M  n ^ J  e'ei^ — + — *
mr ro mr ro v . . _

1/2/̂ '*_,-M 1/2 c f ̂ Vj_ Vjj  ̂l(k+k ,̂R
^ ^ ^  Ie -hck E -hck"r ro ro

(3.3.7)

in which the (k,X) and (k' ,X' ) dependences are assumed in e.- and e'- 

respectively, and m T*"* Mj° etc are dipole transition moments.■t, f

Let us consider contributions from the remaining terms of

(3.3.1). Graphs of the form of Fig 3.1 may be drawn, as in 

Figs 3.2/3.3 on the following pages, with interactions via magnetic 

dipole and electric quadrupole coupling; the study is confined to 

cases where one of the interactions remains via electric dipole 

coupling. In this way we are considering terms up to an order where 

the diamagnetic coupling is neglected.

From Fig 3.2 we obtain the magnetic-dipole contribution

mr ro l*jrm rj° ’j i(k+k').R
+ i v. ~ ~ ~

( ^ ) (nn ' k k V ' 2e ;bj { ^ -

hck E -hck'.r ro ro

mr ro mr ro „ . ,, . , v _m ; Di; lij 1 i(k+k ).R 
ei_ + — L'

hck E -hck'Ir ro ro

(3.3.8)

Similarly from Fig 3.3 we obtain the electric quadrupole result as

H fi

, „mr ro mr„ro _ . , , . _
(3) . f he 1, ,u ,,./v  , v [ QU ^  ^  Qu l  l<k+k )•!

\7£~V\ (n" kk > klele-i / 1-----  +    fe*-̂ 0 ^ *■ *- * L \e -hck E -hck'Jr ro

in r . r o m r r o « /. * / v. • f he 1, .....1/2. . V >•»+ i — T/ (nn kk ) k/>e-e- > <--------- +-— 2------>el2£0Ej' -hck E -hck'J
r ro r o

(3.3.9)

The total matrix element is the sum of the terms (3.3.7-9) and is
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FIG 3. : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION: 
PURE ELECTRIC DIPOLE CONTRIBUTION
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FIG 3.2 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION: 
INCLUSION OF MAGNETIC DIPOLE INTERACTIONS
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FIG 3.3 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION: 
INCLUSION OF ELECTRIC QUADRUPOLE INTERACTIONS
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given by (3.3.10). The result is written in terms of the molecular 

polarizabilities which are defined in Table 3.3.1. a1? ?(<•), to' ) is the 

frequency-dependent transition dipole polarizability and g "*j («,<•)') and 

) are the mixed analogues involving magnetic dipole and 

electric quadrupole moments.

Thus the matrix element for two-photon absorption in the 

multipolar framework is given by

M f . (Total) = yj (nn'kk' ) e ~|cei ^  )

+ e{X')(k')bjX)( k ) G + b ^ ' N k ' J e ^ W G r ^ ' . u )

+ ick^e{X ^k')e^X)(k)A”°£(o,u') + i c % { X ) (k' )ejX) ( k j A ^ o '  ,u)j.

(3.3.10)

The corresponding rate for this process is obtained directly 

using the Fermi Rule.

If we choose the minimal-coupling Hamiltonian (3.3.2), on the 

other hand, then we need to consider the interactions represented by 

the graphs shown in Fig 3.4, where the sums are assumed. The 

major difference between this and the multipolar form is apparent; 

Fig 3.4 contains terms of all orders, since the mode expansion for the 

vector potential, (1.1.39), contains the factor exp[ik.q]. Truncation 

of the * terms generated, at an appropriate point, will therefore be 

necessary in order to compare the result with (3.3.10).

In previous studies where the electric dipole approximation has 

been invoked the contribution from Fig 3.4 (iii) is identically zero 

since the initial and final molecular states are different and the 

interaction is then simply a field term. Despite this fact it was 

helpful to the working to retain this term as an artefact. Here this



TABLE 3.3.1 DYNAMIC MOLECULAR POLARIZABILITY TENSORS: 
ELECTRIC DIPOLE-DIPOLE, DIPOLE-QUADRUPOLE AND 

ELECTRIC DIPOLE - MAGNETIC DIPOLE FORMS.

mo  t / v
mr ro mr ro ,^
-tick E +tick'.ro ro

„mo . , .G. .(u,-w )
mr ro mr ro

-tick E +tick'r ro r o

in o / / \G ^ ( - o  ,u)
m r r o  m r r o ^

^  x m-c 1*4 '
+tick' E -tic!r ro ro

a ni o / / v
m r „r o m r  ro .

^  { V  ^
-tick E +tick'r ro ro

. IliO y / vA ^ ( - < 0  ,(0)
m r ^ r o  mr ro,
Q g  + Qu  ^  1

+tick' E -tic]r ro ro



-76-

FIG 3. 1 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION IN THE 
MINIMAL-COUPLING FORMALISM

m

(ec / mo<)pi ( « ) a .i,(S a )

(i)

m

< V “p )p#(/s)a#(2p)
r
(eo / ma > P i ( o O a i < S a )

(ii)

(ea/2n,a )ai (g0<)ai (q0()

(iii)



term is non-zero and may be written, with the use of the new sum

rules, in a useful form for combination with those terms which arise

from the other two graphs.

Considering graphs (i) and (ii) firstly, the matrix element may

be written down to the correct order by keeping only the first two

terms of the expansion of exp[ik.q]. Assuming as implicit the particle

labels <x for p- and £ for p • we then obtain 
^ i

M fi(i+ii) = - 1 1  (e«ep/V p ) (S ^r) ( ^ k ) e^ e  '

x| ^ <m|p^(l+ik7. (Qa~R) + * •) IrXr|p^( 1+ik. (q^-R) + ..) |o>/(Ero-hck) 
r

+ J  <m|p^(l+ik.(<j£-R)+-•)|r><r|p^(l+ik/.(qa”R)+ ‘•)|o>/(Ero~hck/)|. 
r

(3.3.11)

This expression may be broken down into parts which are easier to 

consider separately. The pure dipole part is simply given by the first 

term of each expansion (ie which corresponds to exp[ik. (q—R )] - 1 in 

the electric dipole approximation) so that

_  , mr ro mr ro . . ,, , , v „

= 4  f f l W ”  !r ro

(3.3.12)

Now we may convert the momentum matrix elements of (3.3.12) into 

dipole transition moments using

p°l = (im/hjE^q'1 , (3.3.13)

noting that (3.3.13) is not applicable to diagonal terms. This does 

not present a problem, though, since an inspection of the appropriate 

terms of (3.3.12), following the use of (3.3.13), shows that they are



zero in any case and the resulting term may be written with the sum 

over all r. This is a common feature of such demonstrations. The sums 

over a and 0 are incorporated into the definitions of the molecular 

transition dipole moments to simplify the matrix element, which may be 

written as

(dip) _ rnhckl rV_hck/_)
= {2e q V) [ 2 € q V)l 2 £ n Fj V V

I V I  E E 1 f ^ 7 ^ 7  yll i(k+k').RxJa”>,<o') + \ j-1 + ■> ., t + — t— — >e
hckhck'J vE -hck E -hck7ro ro

(3.3.14)

Note that overall energy conservation, namely

E + E = hck + hck7 (3.3.15)mr ro

in this case, does not influence the energies of the virtual states 

and we cannot cancel the energy parts of (3.3.14).

The conservation law (3.3.15) may be used to show that the second 

term of this expression vanishes. Following the addition of the terms 

in each set of curly brackets a subsequent simplification gives

(dip) _ (nhckl 1/2fn'hck7]
Mfi = {2€q V) { 2 cq V)

( E |i"rfi7 -E i(k+k').RJ mo. / . \ mr -C 4 ro 4 -Cl „x̂ ot (u,u ) + ) ------- 2------- 2----Ve ,( hck tick' Jv r J

(3.3.16)

the second term of which vanishes with the use of the sum rule (3.2.1)

giving the multipolar result (3.3.7) up to electric dipole.

This equivalence to electric dipole merely agrees with those

previous studies cited. However, such studies are extended here by

n l / 2
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examining the terms of the next order, that is by including electric 

quadrupole and magnetic dipole coupling. These terms are easily 

treated by applying the sura rules derived in section 3.2. Returning to

(3.3.11), we pick up the remaining terms. Converting one of the 

moments gives, suppressing the a label from p. and p.,-L £

Mf i <i+ii) = 5 ( V m j  (gr)

x{k* 2 (r-̂ ',*r<p|p'(3a"!)*|o> +r ro ro

o
A,

+ + (7^ti7)^r<r|Pi(v5)4lo>} ■r ro ro

(3.3.17)

Using the sum rule (3.2.11) we obtain

f , \ 1/2 f i(k+k').R»;.<■*“ > = W  (sjrj* - - •
f v (Y ® ®  ̂ ✓ E E  ̂ 'J)/'•/*.\. / \ II mr r°l m r ^ r° I mr r° l^mr r°l2 l l r ^ W  v  * )r ro

«  f /• E E a r E E \ ^/ . \, / / \ II mr ro „mr ro I mr ro I mr^ro

r ro

r> fr E > r E a ^, /, \ I I mr I mr ro I ro I mr ro+kê i + ( r ^ Wr ro r o

r r o

(3.3.18)



Finally we have the matrix element corresponding to Fig 3.4(iii). 

Having expanded the exponential part of the mode expansion for a(r) 

the first non-zero term is given^ by

M f i (i n ) " ^ea/2ma^(2eockF) ^c^ck7 k)
a

i(k+k7).R
xe^eXm| (k+k7 ). (qa-R) |o>e

(3.3.19)

It is sufficient to take only this term from the expansion, as the 

next term is of too high an order. The products e'-e-k-q"J° and 

e7-e k7.qj° in this expression can be expanded into summations of the 

form of the terms in (3.3.18), using the sum rules (3.2.30) and

(3.2.31). This leads to

f y\i/2 /■ \ i(k+k7) .R- (r) (sjd* • • "

i I  - ■"»:•)
r r

/ • \ i / / V  mr _ ro _ .mr ro | ,/,/ V  I mr ro mr ro 1 I+ (i/h)k£e ^  2 [Erô  Q u  - KfiuPi J +k hlei L h  " "i “4 ]/•
r r

(3.3.20)

Adding (3.3.18) to (3.3.20) gives (3.3.21).

The expression contains a numerical factor of two since the 
interaction is quadratic in the field.
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r ( \ 1/2 / » -v i(k+k ).R
■ (S') f e y *  - - •

/ V fr ^ro ] nir.ro ( r  ̂ m r r olt ,a" i  { I r ^ H  )
F ro r o

♦ » « « « . ,  5 { f c ^ s r  • f e > r « s }
r ro ro

mr ro mr ro  ̂ „ mr ro mr ro „
.lk..;bJ  A i  . 4lk.b; , J  ( J t i  . i ! i _ \

vE -tick E -tick'J Ie -tick E -hck'JJp r o  ro p r o  ro

(3.3.21)

The magnetic dipole terms are in their final form but the quadrupole 

terms still contain unwanted energy factors. These terms may be easily 

rewritten using an identity, similar to (3.2.6) but derived for 

absorption cases, to give the final expression. So, after recovering 

the dipole polarizabilty term, the final matrix element is identical 

to the multipolar result (3.3.10).

It has been shown that the equivalent interaction Hamiltonians 

which occur in the multipolar and minimal-coupling formalisms predict 

identical rates for two-photon absorption. The predictions go further 

than a discussion in the electric dipole approximation and the sum 

rules used will be useful for comparative studies of other energy- 

conserving phenomena to such orders. From a chemical point of view, 

however, it is preferable to write the interactions in terms of the 

electromagnetic fields rather than the potentials and the matrix 

elements in terms of molecular properties such as polarizabilities. 

Thus the transformation to the multipolar form of the interaction must 

be seen to be fitting for such studies.

In the following sections the two forms of interaction are used 

to examine, in lesser detail, the process of scattering.



3.4 Differential Raman scattering

Raman scattering is an incoherent, two-photon optical process. 

A molecule will absorb a single photon from an incident beam and emit 

a photon of a different frequency such that the frequency difference 

is equal to the frequency of a rotational or vibrational molecular 

state. The molecule will usually return to its original electronic 

state after the virtual excitation. The Raman phenomenon 1461 

therefore gives rise to a valuable vibrational spectrum of transitions 

which are infra-red forbidden because of the difference in selection 

rules between the one- and two-photon processes.

If the molecule is chiral, however, the Raman scattering rate may

be different for the cases where the incident beam is left- or right-

circularly polarized 1111. The difference is small compared with the

total scattering rate and the effect is predicted only when the vector

potential is not approximated to a constant value over the extent of

the molecule. This dictates the inclusion of magnetic dipole and

electric quadrupole interactions (it is noted that the quadrupole

contribution to the differential effect does not vanish for freely

rotating molecules as it does for optical rotation and circular 
[li]dichroism ). It is therefore useful to consider these higher-order 

interactions using the two forms of interaction Hamiltonian.

The multipolar treatment follows as before; the graphs of 

Figs 3.1-3 for two-photon absorption have their counterparts for Raman 

scattering. Fig 3.5, for example, shows the dipole interaction. The 

polarization label L/R indicates the choice of left- and 

right-circularly polarized beams and the scattered photon occupies the 

mode (k',X'). The multipolar matrix element is again calculated 

directly using the second-order perturbation interaction. The matrix 

element for Raman scattering in the electric dipole approximation is



then given, from Fig 3.5, by (3.4.1).

(dip) 
f i -hck E +hck/Jr ro ro

(3.4.1)

This term is the leading contribution to the scattering amplitude; 

likewise the higher-order terms may be written down. The scattering

usually as a scattering cross section using the modulus square of this 

matrix element, in which case (3.4.1) leads to the multipolar form of 

the Kramers-Heisenberg dispersion formula t3 4,47 481.

In terms of the molecular polarizability tensors defined in 

Table 3.3.1, (3.4.1) and the magnetic dipole and electric quadrupole

rate may be expressed in terms of a radiant intensity di] or more

FIG 3.5 : TIME-ORDERED GRAPHS FOR RAMAN SCATTERING: 
ELECTRIC DIPOLE INTERACTION



contributions may be combined to give the total multipolar matrix 

element

M fi(L/R-»X) = -(nkk' )1/2 ,2c V,  ̂ o '

i(k-k').Rf
<cel '(k )e^ (k)a^(a),-w )

+ e] '(k )b- (k)G- .(w,-u ) + bj (k )e- (k)G..(-w ,o)

. , -(^•/ )/,/\ ( L / R ) m  , .bo , (L/R) /, v ,mo . , . I
+lck4ei (k )ei > 'lck4et (k )ei (k)A# a (‘“ >u)j

(3.4.2)

To compare this result with the minimal-coupling form we first 

extract the electric dipole interaction from graphs (i) and (ii) of 

Fig 3.6. This is the result which would be obtained if the vector 

potential was considered constant in the region of the molecule. Hence

mr ro mr rom i  i u  , /, , / vPj p;  ̂ i(k-k ).R 
e

r ro ro

(3.4.3)

Converting the momentum transition moments into their dipole forms and 

noting the conservation result

E + E = hck - hck' (3.4.4)mr ro

allows us to write this as

1/2 ^  l M  1/2 _ i(k-k').R
i

(3.4.5)

1/2..(dip) fnhckl fhck'1 *
Mfi = -{2^VJ {zTv} )e

where (3.2.1) has been employed to sum a term similar to the second 

term of (3.3.16).



FIG 3 6 : TIME-ORDERED GRAPHS FOR RAMAN SCATTERING 
MINIMAL COUPLING INTERACTIONS
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(3.4.5) agrees with the corresponding multipolar term (3.4.1), which 

confirms the earlier equivalence demonstrations in the electric dipole 

approximation. We may proceed to the higher-order terms.

Adding the contribution from Fig 3.6 (iii) to the remaining terms 

from graphs (i) and (ii) leads us to consider the quantity

M- • J J  { / irn r /2f h I-*M fi = -1 £ £  [ V p / V f r J [ k F j  i ^ T j W

I  |p”r<r|p^(q-R)^|o>/(Ero-t>ck) + <m|p^(q-R)^|r>p^<>/(Ero+tick')J 
r

“ kk I  r>p™/(ErQ-hck) + p"r<r|p^(q-R)^|o>/(Ero+hck/ )||
r
S ? ( n '\1/ZC h i(k-k').R

+ 2i 2 (ec*/^mot) (kkTj eiei<mI(H '1'(Sa’5 > I o>e

(3.4.6)

It has already been shown in Section 3.2 how best to deal with such 

terms. The multipolar equivalent of the total expression above is 

obtained following the use of the sum rules (3.2.11) and (3.2.30/31). 

After combining the resulting terms we obtain

(  ̂ i(k-k/).Rf
Mfi = -(kir) Ij t t J6 ~ ~  '{kk'iib^ <“ ’'“ ,) + kk'E^ I ( - u '-“ )

lE -hck"' ^E -hckJr ro mr

r mr ro

(3.4.7)

The G tensor terms appear in their final form but the

dipole-quadrupole terms must be adapted. The use of (3.2.6) enables



us to adopt the tensor form of the result by eliminating the energy 

factors in the numerator. The subsequent expression is then identical 

to that of (3.4.2).

The terms of (3.4.2) which include the higher-order coupling have
_ 3

a magnitude which is of the order of 10 times that of the dipole 

polarizability term but they are nevertheless required to explain the 

differential effects. These effects arise from the modulus square 

which is required for the scattering cross section; the cross terms 

include the products aT?(w,-(d')G^(<»>,-<i)'), oc™̂ ((i),-(i)' )^&£mL(u i~u ' ) etc, 

multiplied by the corresponding polarization vectors. Now since

(L/R), x (l / r ) x ,b (k) = Tie (k) (3.4.8)

the form of these vectors is such that the difference in the 

absorption rates (T — T^) is non-zero; the quadrupole term also 

remains even after rotational averaging. Thus chiral molecules, for 

which the selection rules allow each type of interaction, scatter the 

two forms of polarized light at different rates, giving rise to a 

potential spectroscopic technique.

The next section discusses the more specific case of Rayleigh 

scattering, which shows some subtle differences.

3.5 Differential Rayleigh scattering

Rayleigh (elastic) scattering is a specific form of the more 

general case detailed in the previous section; the final state of the 

molecule following the scattering of a photon is the same as its 

initial state. In order that energy conservation is obeyed the emitted 

photon must enter a mode in which it has the same energy as the 

absorbed photon. Thus we may write Jk| = Jk' | and denote the final 

molecular state as |o>; the polarizabilities must now only be
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functions of w = ck. The direction of the emitted photon may vary. For 

example, photons of optical frequencies are scattered in the forward

Hamiltonian has not been explicitly shown for this special case. 

Although the description follows closely from that of the Raman case, 

there are worthy differences; for example the term quadratic in the 

vector potential is non-zero, even in the electric dipole 

approximation, because the initial and final molecular states are 

identical. These new features are accounted here.

The calculation of the multipolar matrix element shows nothing 

new. The result is similar to that obtained for Raman scattering; the 

corresponding terms must take the same signs, differing only in the 

forms of the polarizabilities. The minimal-coupling derivation, 

however, does differ slightly from the Raman case. The pure dipole 

contribution may be shown to give

which differs from the corresponding Raman result (3.4.5) by the 

appearance of the second term, which now does not sum to zero using

(3.2.1) because of the choice of molecular states.

The remaining terms from the p.a(q) graphs are standard and are 

converted into their multipolar form using (3.2.11). The first term of 

the series of contributions from Fig 3.7(i), however, is now non-zero. 

That is,

direction by crystal lattices, in which case k = k' and the process is

coherent.
The equivalence of matrix elements generated by the two forms of

(3.5.1)



FIG 3.7: SEAGULL GRAPH FOR RAYLEIGH SCATTERING IN
THE MINIMAL COUPLING METHOD

(e /2m )a( q  )a(q ) v a' or 't'.jor -c'̂ or

(i)

Mf i(i > =
p 1 ? 7 fa 1 i ( k k ) . R

a
(3.5.2)

It is this term which is identical to the second term of (3.5.1) but 

of opposite sign. Using the sum rules (3.2.30/31) the second term of

(3.5.2) may be added to those from the other graphs, giving the total 

matrix element

I f  /  r  /r\ *1 \ 1/2 f hk 1  ̂*5/ -(X' ) . (L/R) x O O ,  .Mfi(L/R->X) = -n [2i^P)e \cei )e# (k)“^ ( u .-“ )



which agrees with the multipolar result.

It has been shown how the theory of QED is applied and

demonstrated how the multipolar and minimal-coupling Hamiltonians,

equivalent by canonical transformation, may give identical results for

interactions on the energy shell. Previous works on this subject have

been extended by the inclusion of electric quadrupole and magnetic
C 3 9  ]dipole interactions. The conditions of this equivalence , namely

that i) those matrix elements calculated must describe physical

processes in which energy is conserved and ii) that every possible

graph to the required order in the field must be included, deny any

claim to the contrary. A consideration of the terms arising from the

minimal-coupling seagull graph, for example, dismisses Fiutak’s

claim t201 that equivalence only applies to first order processes. The

electric dipole approximation, which is often adopted for calculations

irrespective of the form of Hamiltonian, is in most cases a valid
[49]choice ; the optical wavelengths of photons associated with

3electronic transitions may be typically 10 times the extent of the 

molecule. However, the higher-order interactions' discussed here may 

not be negligible. We have already seen the necessity to include such 

interactions when examining the responses of optically active 

molecules, whose low molecular symmetry leads to the interference of 

the relative contributions and so to such phemomena. Also, transitions 

which are electric-quadrupole or magnetic-dipole allowed often have a 

low probability of proceeding through electric dipole coupling and so 

their matrix elements may be significant.

From the calculations of the previous sections we have seen that 

the multipolar formalism lends itself better to the problems of
- 1 Xconsidering higher-order interactions. The -e p.d (R) interaction is

-1 X 3simply replaced by the integral -c q /p(r).d (r)d r, which contains the 

complete electric multipole expansion, and a corresponding magnetic
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term, from which the multipolar interaction terms are obtained. The 

required matrix elements then directly follow. In the minimal-coupling 

formalism all coupling is described by the two interaction terms. An 

expansion of these terms shows that for higher-order processes the 

number of terms generated quickly rises, with a loss of obvious 

physical significance. This compares with the more favourable 

multipolar results in terms of molecular polarizabilities and 

interactions in terms of the fields rather than the potentials. The 

multipolar interaction thus describes the dynamical, internal 

electromagnetic field e(r) with an interaction similar to the external 

field interaction -/J.E(r) used in semi-classical theories and allows 

straightforward calculation of radiative interactions in a useful 

form.



CHAPTER 4

HIGHER-ORDER CONTRIBUTIONS TO THE 
DISPERSION INTERACTION

4.1 Introduction

The physical properties of solids and fluids are determined by 

the interactions between the constituent atoms and molecules. It is 

now well-known that molecular interaction energies depend upon the 

extent of molecular separation and that at large separations 

retardation effects become dominant over electrostatic coupling.

In the initial studies of interactions between neutral molecules 

the quantum-mechanical Hamiltonian was written simply as a sum of 

molecular terms and an intermolecular potential; the dipole-dipole 

term. The second-order perturbation result in this term is the 

familiar London R 6 dispersion interaction 145,50 511. Retardation 

effects are unimportant and the result is valid at separations R « X 

(2rck ), where X is of the order of the wavelength of the lowest-lying 

molecular transitions. However, when R £ X the Coulomb potential 

energy is not sufficient to describe the interaction and we must 

consider the interactions of the molecules with the field, ie 

retardation; the Hamiltonian should be the coupled system. The result 

when molecular separation is much greater than these characteristic
_ 7

wavelengths is the Casimir-Polder R dependence (see for example 

[52-57]), which was calculated following the experimental observations
[50]of Overbeek et al . It is appropriate in these cases to express 

the result in terms of physical properties of the isolated molecules 

eg polarizabilities. The dependence on separation and the replacement



—  6 —  7of the London R result by an R term has been observed for example 
[ 59 1by Tabor et al , although these are of course the asymptotic 

values of a more complicated expression.

Quantum electrodynamics is ideal for studying such interactions 

since it allows for the finite propagation of light. Intermolecular 

forces are treated as radiation-molecule couplings, with the field 

mediating exchange of energy in the form of virtual photons between 

the molecules. The energy shifts are calculated by the use of 

perturbation theory, the results realised through the use of 

time-ordered diagrams; for two-photon exchange the fourth-order term 

of the perturbation expansion is required.

As noted in Chapter 1, for neutral molecules the electrostatic 

interactions are completely cancelled in the multipolar Hamiltonian, 

giving a purely retarded result. The dispersion interaction has been
[ 4 5  ]investigated using the multipolar Hamiltonian by Power and Craig

[ii]and Thirunaraachandran for the whole range of molecular separation

outside overlap. However, their results only contain terms up to a 

product of the polarizabilities of the two molecules. Magnetic dipole 

interactions have been considered [11,601 w ith application to effects 

arising from the chirality of the molecules but these results too are 

only valid for freely rotating molecules.

This chapter extends the discussion of the interaction between 

neutral molecules. Electric-quadrupole and magnetic-dipole 

interactions are considered, the results given firstly for oriented 

molecules. The diamagnetic interaction must also be determined, since 

it gives a result of similar order to the terms involving two 

magnetic-dipole interactions. Rotationally-averaged expressions are 

presented as well, as are results for the near- and far-zones. Results 

are expressed where appropriate in terms of molecular polarizability
r oand susceptibility tensors; the rotatory strength R is used



elsewhere.

We start with an account of the electric-dipole interaction for 

an oriented pair. This is an important result as the method used in 

this section is largely followed in subsequent sections. Magnetic 

dipole and electric quadrupole terms are then discussed; these terms 

may be confined to one centre or split between the two molecules. 

These higher-order interactions are important for molecules which have 

small electric-dipole coupling with the field or low-lying states 

accessible from the ground state by non-zero electric quadrupole and 

magnetic dipole matrix elements. They are also important when 

considering molecules with large magnetic susceptibilities and when 

considering the interaction between optically active molecules. In 

such cases the dispersion force differs according to the relative 

chirality of the pair, an effect called chiral discrimination, and the 

magnetic-dipole interactions are required to account for this. The 

same graphs are used for the calculations except that at some of the 

interaction vertices we use these higher-order interaction terms. The 

corresponding contributions to the energy shift are determined; the 

diamagnetic interaction at one centre is obtained using third-order 

perturbation theory since it is second-order in the field.

These results are summarised in a later section and some useful 

identities are given in an appendix.

4.2 The electric-dipole contribution

We wish to calculate the pure electric-dipole contribution to the 

dispersion energy. The interaction Hamiltonian is given by

H int = ■£o V A)-!!A(? a ) ~ £o V ? )-2X(5 b )- (4.2.1)

The energy shift is calculated using the fourth-order perturbation



result;

AE = -
<o |h . Ii i i x i i i Ih . Ii i x i i Ih . Ii x i Ih . Io >1 i n t 1 1 int' 1 i n t 1 1 int'

(E -E )(E -E )(E -E )v III o/v II o i o’
III II I

(4.2.2)

There are twelve contributions to the fourth-order result, shown 

by the time-ordered graphs on Page 97. The virtual photons are

a polarization X; the molecules occupy intermediate electronic states, 

labelled r for molecule A and s for molecule B. These labels will be 

assumed as implicit in the working. Energy conservation applies only 

between the initial and final total states of the system. The 

intermediate states may lend energy to or borrow energy from the 

vacuum, subject to uncertainty restrictions. To evaluate the total 

contribution from a graph it is necessary to sum over the wavevectors 

and polarizations of the virtual photons as well as over the virtual 

molecular states.

The energy denominators for graphs (i-xii) are given in 

Table 4.3.1. Summing the contribution from each of these graphs gives 

a total energy shift 1113 of

a

The sum over a is a sum of the reciprocal of the energy denominator 

arising from each graph as given by (4.2.2). The value of this sum has

indicated by internal wavy lines and are denoted by a wavevector £ and

AE (Total) = AE (i-xii)

r,s pp'

i(p+p/).n X11
(4.2.3)



been determined 1111 and appears in Table 4.3.2 as S .

The expression (4.2.3) may be written in the symmetric form

r— i H P T. „ — I \ or ro os so , , ~ v

= u s n e? L  ^  ^  ^  ^  H  PP (W “a V )eo r,s

i(p+p').R

(k +k +p)r 8

(k +k )(k +p)(k +p)r s r p+p p-p
j3 ,3 , d pd p (4.2.4)

where

a.. = (6. -p.p.) ; a.'. = (5..-p'.p'.) v <4 ** i *4 *4 ^ i
(4.2.5)

It is convenient at this point to define also the quantities a., and 

/?•.•; these are useful shorthand expressions for terms which appear 

frequently in the study of intermolecular interactions. We define

an  = < V BA >  : = (V 3BA > -*4
(4.2.6)

Performing the angular integration in (4.2.4) gives the expression

(4.2.8), which for clarity has been written using the quantity

T ;;(pB)» which is defined below. Again this is a widely used shorthand 44

form, found regularly in the literature. See for example [45], We have

t. .(PR) = oc. SinER + 0
*4 4*1 pR 4,4

cospR _ sinpR
2 2  

P R
3 3  p R

(4.2.7)

The total energy shift is now given by

00 00

AE =
_____ A A

8n £ he0 r , s 0 o

p3p'3(kr+ks+p)

(k +k )(k +p)(k +p)r s. r s p+p p-p
dpdp' (4.2.8)
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FIG 4.1 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION 
IN THE ELECTRIC-DIPOLE APPROXIMATION
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Integrating over p' gives (4.2.10), with <*>..(pR) defined by
*4

<^(pR> = «. .coseR _ p
H pR

sinpR cospR
2_ 2 P R

3 3  p R
(4.2.9)

Hence

AE =
or ro os 60

^  ^  H  He
8it c he z—' (k +k )0 r , S r s
00

(k +k +p)r s

(k +p)(k +p)
^T^(pR)G)^(pR)+T^(pR)G)^(pR)jp6dp (4.2.10)

Expanding (4.2.10) and collecting the terms gives a result which may 

be simplified using standard trigonometric identities to give

00

AE =
8n £QhcR

" i  ^  ^  H (k +k +p)r 8
(k +k ) (k +p)(k +p)

sin2pR + cos2pR Bl j U  _ Dlj&t
3 3

I PR P R  JJ
p4dp

(4.2.11)

with Ai i U  ■ E4 j U  given by <4 -2 -12>

kii&t ~ aU ait 
BijU. = a-UPft * 
ciiU = “a V  + PiAaji + 
DijU =
Ei j U  = P-M pjt

(4.2.12)

Writing (4.2.11) in terms of exponentials leads to the result



Defining the dynamic polarizability of a molecule by the expression

£ E +(hcu) r ro

or ro 
-  11. U .
2 (4.2.14)

with a frequency (icu) the above form may be written as

oo

AE = -he
32 h 3 e 2R 2J

A,. V B,. . 4 -2pR
icp i°p )p e Ai i U +- f ~ + 2„2 ' 3„3 1 4 4pR p R  p R  p R

dp

(4.2.15)

This result may be compared with that obtained by Craig and
[ n  ]Thirunamachandran by taking the rotational average; we regain

their result, which is shown below.

AE = -1
36xc3£^hcR2o r,s

k k dV 2pR

£  |/°| V ° l

/, 2 2 Wl 2 2 x (kr+p )(ks+p )
2 51 + + 2 2 pR p R 3 3p R 4 4p R J

dp (4.2.16)

The form of (4.2.16) in the limiting cases of large and small

molecular separation is given below. In the wave-zone limit the

separation is much greater than the wavelength of the lowest lying

molecular transitions X and X ; we may write k R, k R » 1. Ther s r s

near-zone, with separations much smaller than the molecular transition



wavelengths X^ and X^, is defined by krR, kgR « 1. The limiting 

results are obtained from (4.2.16) by making the approximations;

In (4.2.19) «(A) is the static polarizability for molecule A 

defined as

The electric-dipole result is important because the method is 

largely followed in subsequent sections. In the sum over the energy
_  idenominators, each term, denoted D , appears with the same sign anda

the terms are combined in a specific but convenient order such that 

the variables p and p' are separate and the respective integrals may 

be done. In following sections similar sums will need to be evaluated

2 2 2 Wave-zone: k , k » d  , and---------- r 6

Near-zone: e 2pR - 1 ; it is sufficient to retain only the term in
- 4(pR) as the major contribution. This gives the results below.

NEAR-ZONE LIMIT

(4.2.17)

which may be written in terms of dynamic polarizabilities as

00

AE -3 A , .  x B (   a (icu)oc (icu)du .
32Jt e2R .

(4.2.18)

FAR-ZONE LIMIT

AE = ~23hc «(A)«(B) (4.2.19)

(4.2.20)
r



and so we shall briefly look at this method and give some useful 

definitions of quantities which will be required.

4.3 Methods and definitions

The interaction Hamiltonian is given by

H = -e ~1/J(A).d"L(R ) -£ ",|i(B).<rL( Rj -m(A).b(R ) -m(B).b(R„)
1 n t U /v U ^ tj « <i>o

-£; V b> V i < ? b) I {(S«(b>'5b>x5(5b>}Z-

(4.3.1)

The graphs on page 97 are modified by including the appropriate 

number of new interactions at the vertices. This increases the number 

of graphs which make contributions; there may be twelve, twenty-four 

or forty-eight contributions to the fourth-order interaction. In each 

case we must sum over all the possible intermediate states for each 

graph. However, as we shall see, it is always possible for each set of 

results to write the total in a form similar to (4.2.3), where there 

is a factor common to each expression which contains all the vector 

and angular dependence. We are then left to evaluate a sum, similar to 

S , which is over the product of the energy differences in the 

denominators of the perturbation result. In the sum S , however, all 

of the terms appear with the coefficient of unity. In the cases which 

we shall consider the coefficients may be plus or minus unity,

following the factorization: we must evaluate new suras.

Table 4.3.1 shows all the relevant information pertaining to each

graph. The quantity xa refers to the signs, in the exponential part of

the field expansions, of the wavevectors p and p' of the virtual

photons which are created or annihilated at each vertex. By 

considering the symmetry of each expression with respect to the
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interchanges p =* -p and/or p'®* -p' we may write a total result, as in

(4.2.3), with exp[i(p+p').R] as a common factor. Where the expressions 

are antisymmetric to the required changes a coefficient of minus one 

results to that contribution. It is these coefficients which are given 

in Table (4.3.1) for the appropriate cases. Note that in the case of 

the electric-dipole interaction, each term is symmetric to these 

changes.

The sums of terms with the coefficients in Table 4.3.1 have been 

evaluated and appear in Table 4.3.2. These results will be referred to 

in the text. It was largely possible to deduce these results from the 

value of S ; the terms were combined in an identical manner, in order 

to write down the quantities

and

>3 3 n c
n n n nc. C. . . V. c . .1 111 I V  V l l

D~ + D.. . + D-  + D . .
1 1 1 1  IV  V l l

c1

>3 3n c
'c n . 1 1

n .n

D. D D
C". CVI Vll1

+ - —  +
V 1

c . cXI X 1 1

D + D ~  + D . .V  1 1 1 XI X l l

(4.3.2)

(4.3.3)

and hence obtain the total sum for n = 2-5.

In the previous section the trigonometric quantity T--(pR) was 

defined in order to simplify the expression (4.2.8). The explicit 

working will be elaborated upon in the appendix, (Section 4.8), but if 

we look at (4.3.6), in Table 4.3.4, we see the form of the angular 

integral. In an integral such as (4.3.6) the quantity on the left

hand side may arise from the sum over the polarizations of one of the 

virtual photons exchanged between the molecules (see the appendix to 

this chapter). However, if we are considering magnetic-dipole 

interactions the sura over photon polarization vectors is modified by 

the presence of the magnetic field vector and we will require an 

integral of the form (4.3.5). When considering' electric-quadrupole



TABLE 4.3.1 SUMMARY OF THE CONTRIBUTIONS FROM THE DISPERSION GRAPHS

Graph V 1 c1a c2a c3a c4a c5a (hc)"3D 1a

i (p+p7) + + + + + (p+p')(ks+p)(kr+p' )

ii (p+p7) + - - + - (p+p')(ks+p')(kr+p')

iii (p+p7) + + + + + (kr+ks)(kg+p)(kr+p' )

iv (P“P7 ) + + - - - (k +k ) (k +p)(k +p' )r 8 8 8

V "(p-p7) %
+ - + - - (k +k +p+p7)(k +p7)(k +p')r 8 8 r

vi -(P~P7) + - + - - (k +k +P+P7)(k +p')(k +p) r 8 8 8

vii “ (p+p7) + + + + - (p+p')(k8+p')(kr+p)

viii -(p+p7)«v
+ - - + + (p+p7)(k8+p)(kr+p)

ix -(p+p7) + + + + - (k +k )(k +p)(k +p')r 8 r 8

X -(p-p7) + + - - + (k +k )(k +p)(k +p')r e r r

xi -(p-p7) + - + - - (k +k +p+p')(k +p)(k +p)r 8 r 8

xii -(p-p7) + - + - - (kr+k8+p+p#)(kr+p)(kr+p')



TABLE 4.3.2 RESULTS OF SUMS REQUIRED TO DETERMINE THE DISPERSION 
INTERACTIONS

s n SUM VALUE x (hc )3

CO

xiiy c vL  a a  
a=i

4(k +k +p)r s

f  y 

1 1

(kr+ k s )(kr+ p ) ( k s+p) p+p' p-p'
< j

S 2

xiiy c v 1a a
a=i

4p
r y

l l

(k +k )(k + p ) ( k  +p)r s r s p + p ' p-p'

S 3

xiiy c 3d - ’a a
a=i

4p'
f y 

1 1

(kr+ k s )(kr+ p ' ) ( k s+ p y ) p+p' p-p'
w j

s .

xiiy c v 1
L >  a a 
a=i

4 ( k r+ k 8+ p 7 )
f y 

1 1

(kr+ k 8 )(kr+ p / ) (kg+ p ' ) p+p' p-p'
t j

Ss

xii
V  C V 1L  a a  
a=i

2k r

r  y 

1 1
f \ 

1 1

(k +k )r 6 (k +p)( k +p) (k + p ' ) ( k + p ' )r e r s

1
p+p' p-p'

k. /

TABLE 4.3.3 A SUM REQUIRED TO DETERMINE THE DIAMAGNETIC CONTRIBUTION 

TO THE DISPERSION INTERACTION

SUM VALUE x (he)2

- 1 - 1  -i
D. - D . . + D . .fi ii iii

2
f y 

1 1

(kr+P#) p+p' p-p'k. 4



interactions the sum over polarization is the same as the 

electric-dipole case but the gradient operation (from the interaction 

Hamiltonian) on the exponential part of the mode expansion for the 

electric displacement field (1.1.40) brings down an additional 

component of the photon unit wavevector. This requires the results of 

the integrals on the left hand sides of (4.3.7/8), which may be 

defined analogously using the quantities a,^&(pR) arK* P**)*

TABLE 4.3.4: RESULTS OF SOLID-ANGLE INTEGRALS FOR VIRTUAL PHOTONS 

OF WAVEVECTOR P

. f ip.R 
45 e ' ~d° =

sinpR
pR

(4.3.4)

-i r. ip.R
TZ P;e = 4n -t 

%
-ir?^(pR) (4.3.5)

i L  iQ'R-—  a . »e ~ ~dQ = 4 n aA ra (pR) (4.3.6)

j f - ip.R 
45 J % p£e ~dQ = iâ (PR) (4.3.7)

J f. * *  iP-R 
45 aiiHP-Ce dQ = (4.3.8)
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However, these integrals had not previously been evaluated and so 

these new results have been determined and are presented for the first 

time in Table 4.3.4 with a/j^(pR) and given by (4.3.9) and

(4.3.10) respectively. These results will be referred to in the 

working and are grouped together below for convenience.

In Table 4.3.4 T^(pR) is defined by (4.2.7),

a ^ (  PB) = KiRiR&
cospR _ pSinpR _ 1rcospR 1rsinpR

2 2 ~ 3 3 4 4k pR p R p R P R ,

+ (5U R# +
sinpR ^cospR _ ^sinpR
2 2 3 3 ” 4_ 4J? R p R p R ^

cospR _ nsinpR _ pCospR oSinpR
2 2  ~ 3 3 4 4 ̂pR p R p R P R ,

and is defined as
(4.3.9)

pR) =
sinpR 110CQSpR 45sinpR 1()5cospR |1Q5sinpR

2 _ 2 3 _ 3  4 _ 4 5 _5k pR p R  p R  p R  p R ,

sinpR »cospR _ ^sinpR
3 3 4 4 " 5 5I  R p R p R ;

-S. Sop cospR rsinpR _ »cospR oSinpR
2 2 ” 3_ 3 4 4 5 5jp R p R  p R  p R ,

+ (6u R/.e + su RiRi * + * 5& A . V

cospR _ pSinpR 1rcospR -rsinpR
2 2  3 3  *" 4 4 5 5[ p R  p R  p R  p R J

+ sinpR .cospR ~sinpR _ .. ,-cospR - ,-sinpR
2 2 ” 3 3 ” 4 4 5 5 ̂pR p R  p R  p R  p R ,

(4.3.10)



In (4.3.5) we also require the quantity tT^(pR) given below.

nJpR) = cospR _ sinpR 
h pR 2 2 p R

(4.3.11)

One last consideration using this method is the p7-integration. 

On page 98 the quantity w *(pR), which is very similar in form to 

T ;j(pR)> was introduced. The pair {r. .(p'R) ,u. .(pR)} are related by 

the integral

oor y p ' i o p
(p+p7)

, 3

dp7 (4.3.12)

-00

Similar expressions, outlined more fully in the appendix to this 

chapter, relate the pairs {nJp'R) ,P^(pR)}, R ) ’y^ ( P R ) J»

and {^^^^(p'R) ̂ ^ ^ ( p R ) }. For example P^(pR) is given by

p^pR) = -R^ sinpR cospR
2 2 p R

(4.3.13)

All of these quantities will be used in the following sections, with 

the explicit forms of ^^^(pR) and ^^&£( pR) given in the appendix to 

the chapter.

4.4 Magnetic-dipole contributions

In general the selection rules which apply to optical transitions 

in molecules will exclude magnetic-dipole interactions if 

electric-dipole coupling is allowed. This is a consequence of the 

symmetry of the two operators; the former is symmetric to inversion 

whilst the latter is antisymmetric and so coupling is not allowed by 

both to states of the same symmetry. However in optically active



(chiral) molecules, which possess no improper axis of rotation, these

selection rules are broken and both electric-dipole and

magnetic-dipole interactions are allowed. Certain optical properties 

unique to chiral molecules are observed as a consequence; optical 

rotation, circular dichroism and differential Rayleigh and Raman

scattering are examples t61 631 (such optical behaviour may also be 

induced in achiral molecules from interaction with adjacent chiral 

molecules eg benzophenone shows circular dichroism as a solute in the 

chiral solvent 2-octanol).

The dispersion interaction between two molecules is also

dependent on the chirality of the pair. If a molecule has enantiomers 

R and S then the interaction of molecule A(R) with B(R) differs from 

the interaction of A(R) with B(S). Similarly there is discrimination 

between the interactions A(R)-A(R) and A(R)-A(S). Although smaller by 

2-3 orders of magnitude than the electric-dipole coupling, the 

magnetic-dipole interaction must be taken into account to explain such 

phenomena: it is the interference of the electric-magnetic terms in 

the transition matrix elements which produces these effects.

To extend the near- and far-zone discriminatory results of Craig 
[li]et al , we have chosen to investigate the magnetic-dipole 

contributions to the dispersion interaction at all intermolecular 

separations outside overlap. This will be followed by an account of 

the interaction between two achiral molecules, one of which having a 

large magnetic susceptibility, which although does not show 

discrimination, is of the same order. Firstly though, there follows an 

account of the interaction between an achiral molecule and the 

enantiomeric pair of a different species.

Each of the derivations follows the method outlined in the 

previous Section. A comparison with the dipole-dipole case shows 

differences stemming from the nature of the mode expansions for the
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magnetic and electric displacement fields, such as the summations over 

polarization vectors, and of course the inclusion of the magnetic- 

dipole transition moments.

a) Interaction between an electric dipole polarizable molecule and 

a chiral molecule.

As given by (4.3.1) the interaction Hamiltonian now includes the 

term -m(B).b(R ) for molecule B. Hence the required time-ordered
<V> <V o

graphs may be deduced from Fig 4.1 (page 97); this interaction may
_ 1replace the electric-dipole interaction -£Q p(B).d(RQ ) at either 

vertex for B, giving a total of twenty-four graphs to consider. The 

resulting two sets of (twelve) graphs are dealt with separately at 

first until it is possible to combine them, giving a non-zero result 

for oriented molecules. Rotational averaging leads to a vanishing 

result.

It is instructive to initially consider the contribution from one 

of the pairs of twelve graphs. For the arbitrarily chosen pair (vi)a 

and (vi)b the interactions are shown in Fig 4.2, overleaf, and for 

clarity the electric-dipole interactions have been omitted.

Using Fig 4.2 for the graphs (vi,a-b) we obtain the combined 

fourth-order contribution

AE (vi,a-b)

-i(p-p').R

(4.4.1)

using the definition (4.2.5) for a



FIG 4.2 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION:
HIGHER ORDER INTERACTION WITH ONE MAGNETIC-DIPOLE VERTEX
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obtained from the remaining graphs by choosing the index •£ for the

magnetic-dipole interaction. The first term of (4.4.1) arises from

(vi)a. For example, since the (p,X) photon is created at the

-m^(B)b^(RB ) vertex, the sura resulting over the polarizations X = 1,2

gives ci^M p,ni as a factor. The next aim is to combine all twelve sets 

of terms.

The two terms of (4.4.1) may be combined by observing that

or ro os so , or ro os so , . . . _ 4
al  p<nai& " ui **1 pm “U  (4.4.2)

upon interchange of both the dummies and i and the labels p and p'. 

Of course p and p' must be interchanged everywhere, including in the 

exponent, as must the moduli p and p' in the denominator, which is 

unchanged. Now since the electric-dipole transition moments are real 

and the magnetic-dipole transition moments are imaginary, (4.4.1) 

becomes

AE (vi,a-b)

*2 t n cpp
. * 4 c V  ,r,s pp' v o y

or ro o. . 0 ' , '  /  ~ i (p-p' 1 ,
^  »e pm au \ e - e K i

(4.4.3)

The two terras of (4.4.3) reinforce following the changes p' =» -p' in 

the first term and p =* -p in the second noting that is invariant 

to this latter change. The numerical coefficient is then +1/2. Adding 

the remaining terms gives a total



AE (Total) =

-111r,s pp‘

♦v 4JL..gPP. - - i(p+p').R
^  8̂. m£ £i&mP'nixi&e

or ro os so (4.4.4)

with the corresponding coefficients given in Table 4.3.1 in the column
5

headed C and the resulting sum given by in Table 4.3.2. Fora 5

instance, with the (-) outside in (4.4.4) the entry for (vi), above,
5is a (-) in the column C .a

Before proceeding let us compare (4.4.4) with (4.2.3), the 

dipole-dipole interaction. The three major differences are the new sum 

(S5 replaces S1); the interchange of moments for B (Â £° * m£°); and 

the new form of the angular part resulting from the sum over the
A ^

product of the electric and magnetic polarization vectors ie 

replaces This final point illustrates the simplification

which the magnetic-dipole term brings to the working; the solid angle 

integrals are simpler functions of the wavevectors. In this case we 

will require the integral (4.3.5) instead of (4.3.6) for the integral 

over dQ'.

To continue, (4.4.4) is simplified by substituting for S_ andO
summing over the wavevectors; following this the next step is to 

perform the angular integration. The result is simplified by 

substituting for the quantities ^^(pR) and ^ ( p ' R )  from (4.2.7) and

(4.3.11). This gives

CO OD

AE =
4nAc*hc2 ■ (k +k )o r.s r s'

or ro os so
az

Tu (pR)' W p,R)p3p'3
O 0

f  '  

1 1
f  > 

1 1

(kr+p)(kg+p) (kr+p')(kfi+p')k >

+
p+p' p-p'

k 4

dp' dp (4.4.5)
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The standard integrals (4.3.12) and (4.8.10) are used to simplify

(4.4.5). The even integrands in both are firstly obtained by the 

combination of the two terms in the final bracket of the above 

expression, a process which yields the infinite limits. The quantities 

u^(pR) and Pm ( pR) in the resulting expression then take their 

definitions (4.2.9) and (4.3.13) from previous sections. Hence

AE = — e .. V  k
4it3€^hc2 * A  r (k +k )

or ro os so
vi mi

r, s

77, :[T^ (pR)pm (pR) + r)TO(PR )“a (pR)]p6dp • (4-4.6)1 I b- X.-v 1 L J(k +p)(k +p)

Expanding (4.4.6) and collecting the terms gives

oo

AE = . 3 2> 2 2 i - O m  m , /  r . .
An c he R ^  (k +k )I*.

or ro os so
MI V i ^

r, s (k +p)(k +p)

sin2pR P-u
3_ 3P R J

+ cos2pR
2)3

- a . o + aA
aA  2_ 2 P R J

p4dp (4.4.7)

which is the analogous form to (4.2.11), with and 0 ^  given by

(4.2.6). In subsequent derivations the equivalent expression will be 

omitted but this double angle form will be assumed. From here it 

follows easily that the final energy shift is given by

AE = -l_________ £ D
„ 3 2* 2 2 4-f/m. m.
An c he R 4o r . s

\  or ro OS so
V-&.

00
, 5 -2pRk p e

<x. o +

o
,. 2 2. . 2 2 .\ aA(kp+p )(kg+p )

2& u  &u)  + —
pR 2 2 3 3p R p R

dp (4.4.8)



which, in terms of the polarizability of molecule A and the mixed 

electric-magnetic analogue G^(B) for B, is given by

oo

AE = — — ---- £ . p R
16* V R2 *** •

A f. B /• \ 4 -2pRa^(icp)G^(icp)p e ait+Pit 2Pu  Pita . »+------- +— — — +2 2 3 3pR p R p R ,
dp.

(4.4.9)

In (4.4.9) G^(B) is given by

„oo, . V «.\ hcu 08 SO vG^(tcu) = i H  ”■£ • (4.4.10)
L~i E +(hCu) r so

It is difficult to compare the energy shift (4.4.9) with the 

dipole-dipole result (4.2.13). The magnitude of the shift depends on 

the geometrical coefficients, which are complicated. Note though that 

the polarizability G^(B) is small compared with a^(B).

The description of results is limited here to the fluid phase, in 

which the molecules are allowed to rotate freely. We may see that the 

energy shift (4.4.9) vanishes under rotational averaging by examining 

the first term. The rotational average will introduce a factor

SiiSttciimait ' citmait = 0 (4.4.11)

to the expression. Now because C^^/[JL is antisymmetric to interchange of 

i & & whereas is symmetric, the term vanishes. Therefore unless

the molecules have fixed orientation there is no discriminatory 

dispersion interaction between a chiral and an achiral molecule. The 

discriminatory contribution for oriented molecules may be obtained 

from (4.4.9) by rewriting the expression in terms of the rotatory 

strength for molecule B (see the following subsection (b) for its 

definition) a quantity which changes sign with enantiomer.



b) Interaction between two chiral molecules.

Progressing from this result we next determine the interaction 

between two chiral molecules. The intermediate states of both 

molecules may now couple to the molecular ground state through 

electric- or magnetic-dipole, due to the low molecular symmetry. The 

Hamiltonian now contains the additional term -m(A).b(RA ); we allow a 

magnetic-dipole interaction at each centre. Because there are two 

vertices at each centre there are four times as many graphs to 

consider as in the pure electric-dipole case; there are forty-eight in 

total. The graphs (vi,a-d) are shown in Fig 4.3 and their contribution 

is given below.

The resulting energy shift consists of two parts, one symmetric 

and one antisymmetric to interchange of p and p'. The two parts are 

treated separately at first, following the same procedure as above and 

are then combined to give the final result. The rotationally-averaged 

result is quoted and the near- and far-zone results are then 

determined.

Using Fig 4.3 for the graphs (vi,a-d) the fourth-order energy 

shift is given by

AE (vi,a-d)

-i(p-p').R

(4.4.12)

Examining this expression we see that it contains two types of 

terms; the second and third, corresponding to the graphs (vi)a and 

(vi)d respectively, are of the mixed electric-magnetic type,



FIG 4.3 TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION: 
GRAPHS LEADING TO DISCRIMINATORY EFFECTS
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resembling in part the form of the terms in case (a); graphs (vi)b and 

(vi)c lead to the first and fourth terms of (4.4.12) and take the form 

of dipole-dipole interactions. In the latter type one photon is 

created and annihilated by magnetic-dipole coupling with the field and 

the other by electric-dipole coupling. Now the sums over electric and 

magnetic dipole polarization vectors are identical; hence the form of

(4.4.12).

The terms inside the curly brackets in (4.4.12) are common to 

each set of combined results for the graphs a-d, provided we choose 

the indices i and £  for the magnetic-dipole interactions, and so the 

total energy shift may be written as one expression. The sum is then 

broken into two parts, one symmetric- and one anti-symmetric to the 

interchanges p -p and/or p' =* -p'. Making the appropriate changes to
a* ^ ^

each of the component terms such that the exponential part is common 

leads to a total energy shift which is given by

AE (Total) = AE +AE ,8 a (4.4.13)

with

AE - I Ir,s pp'

AE ■ • I I

J2IL

J2E.

r,s pp'x o

or ro os so i(p+p')«R
"a ai r u v + S2-

(4.4.14)

or ro os so
{ P m p«. + P*Pn}'

i(p+p').R
'S3*

(4.4.15)

where S2 and S3 are the sums corresponding to the coefficients and
3Ca of the appropriate terms and are given in Table 4.3.2 .

We follow the method used above; after substituting for the sums 

the angular integration is followed by performing the



p- or p'-integral. Straightforward manipulation gives the final 

result.

Considering the symmetric term firstly, it may be written as

or ro os soAE -. --j— y  ̂  m*
4Jt4e^hc3^  (k +k )o r , S r 8

00 00

0 o

iTa (pK ) T ^ ( p ' R )  + T a ( p ' B ) T ^ ( p B )

f \
p

/ > 
1 1

(kr+p)(kg+p) P+P' P-P'
3 'AP P dp dp (4.4.16)

which we see is very similar to the dipole-dipole equivalent form

(4.2.8), as noted above. The factor p replaces (kr+kg+p) as a result 

of the new sum, and of course the transition moments are different. 

Hence we may write down the energy shift directly as

AE =
or ro os so 

^
An e hcOLj (k +k ) o r,s r 8
00

 ------------------------ + ^ ( p R J ^ C p R j j p ^ P  • (4.4.17)
(k +p)(k +p)

by inference. Expansion of (4.4.17) and collection of the terms leads 

to the final result below.
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with

BO i l  = ■ (4.4.19)

CMil =

6 4The result is similar to (4.2.13); p replaces kpksP in the integrand 

but the two are dimensionally equivalent. Of course this is not the 

full result. We must add the remaining terms before making any 

comparisons.

Returning to the antisymmetric part we regain the cross terras

AE
r,s pp' v o J

or ro os so i(p+p').R

(4.4.20)

which should prove no difficulty since it was noted in (a) that such 

terms provide simpler working.

Substituting for S3 and integrating using (4.3.5) for both 

photons gives

oo oo

AE = -1
C . D C o . + c . o Co  ■3 4Jf4£2tlc3l< ^ ?JITL Ĵ /ri ^ m !

o

or ro os so
H  mi H  

(k +k ) Jr ,S r s

nm (pR )n/rL(p,R)p3p'3

o o
( > /p

/ \ 
1 1

(k +P ')(k +P ')
J

P+P' P-P'
t J

dpdp' (4.4.21)

after interchanging 4n. «  in the second term of (4.4.20) for 

simplicity. The two terms of (4.4.21) may be combined since the 

integrand is even in p and the use of (4.8.10) to evaluate the 

p-integral gives



Dropping the primes and simply substituting for p (pR) and ^ ( p R )  

gives the final result

AE = -1
a , 3 2* 3 2 G iZ/ni'&i/n!

4n eQhc R *

~ Z  \  or ro os
i A y . m

so
I

r,s
oor 6 -2pR P e f y

1 , 2 i 1,,2 2 w . 2 2 > (k +p )(k +p ) 2 2pR P R ,
dp (4.4.23)

Now defining

(4.4.24)

and combining this result with (4.4.18) gives the total result

AE =
a 3 2> j <47t £ he Ro r, s

os so
I ml

6 -2pR 
P e,, 2 2 W1 2 2 x (kr+p )(kg+p )

2ciiii ca.ii
l & j Z  + + 2 2 + 3 3 + 4 4

r ^  pR p R  p R p R J
dp.

(4.4.25)

The result may be given in a number of forms, for example in terms of 

moments, polarizabilities or rotatory strengths. Its form above is 

similar to (4.2.13), although the coefficients of the terms are 

different; we can see that the near-zone result (obtained from the



—  6final term) will similarly have an R dependence on intermolecular 

separation, although it will be orders of magnitude smaller due to the 

magnetic-dipole interactions. The near- and far-zone results will be 

given shortly.

In terms of the mixed electric-magnetic polarizability for each 

molecule given by (4.4.10) the oriented result is given by

oo

AE = n  A / • B / - \ 4 ~2pRG^(icp)G^(icp)p e_ „ 3 2 216rc £q c R J 
0

2cm t  ° u n  ^
2 2 3 _ 3  A  ApR p R p R p R ^

dp.

(4.4.26)

It is this term which accounts for the discriminatory dispersion 

interaction tlllJ since the polarizability G;j(icp) changes sign with 

enantioroer. A fuller description accompanies the summary in 

Section 4.7, which compares all of the results.

Let us apply this result to the fluid phase. Rotationally 

averaging (4.4.25) gives such an interaction of freely rotating 

molecules in terms of the transition moments. We obtain

oo

AE = — 1 \  , or ro> , os so. , —  . > (M .m )(M .m )18ii £̂ ftc R L. - -o r,s

f 4 -2pR P e 6 3
y , 2 2 v y- 2 2 iJ(k +p ) (k +p ) * 2 2 I PR P R Jdp.

(4.4.27)

In the limits of small and large intermolecular separation

(4.4.27) takes the forms shown overleaf.



NEAR-ZONE LIMIT

AE 1 V (4.4.28)N-Z

FAR-ZONE LIMIT

AE F-Z
h3c
3 2 9 (4.4.29)

Rr° and Rs° are the rotatory strengths for the two molecules defined

by

R to _ , o t to.Im(^ .m ) ; (4.4.30)

the rotatory strengths are thus real quantities, since the magnetic 

dipole transition moments are complex, and change sign with enantiomer 

since p is antisymmetric to inversion whereas m is symmetric. The sign 

of the dispersion interaction in (4.4.28/29) thus changes with 

enantiomer, although relative sign cannot be determined if the two 

molecules are chemically different. For like molecules we see that the 

R-R and S-S interactions are repulsive, whilst the different
_ 9

enantiomers attract. Note that the far-zone interaction now has R 

dependence on intermolecular separation.

c) Interaction between an electric dipole polarizable molecule and 

a magnetic dipole polarizable molecule.

The discriminatory result obtained above relied on the constraint 

that the two magnetic-dipole vertices were on different centres. Here 

we consider the remaining case where such interactions are confined to 

one centre; molecule B. This interaction is of the same order as that



in (b) and is important for molecules with large magnetic 

susceptibilities. The twelve required time-ordered graphs are deduced 

directly from Fig 4.1; graph (vi) for this case is given in Fig 4.4.

The contributions to the energy shift are determined and added in 

the usual way, with the result expressed in terms of the 

polarizability of of molecule A and the magnetic susceptibility X of 

molecule B, which will be defined when required. Again near- and 

far-zone results are given.

Using Fig 4.4 for graph (vi) we obtain

AE (vi) = £
r,s pp'

h2££_
4e yo

or ro os so ~  ̂* ?  -1
^  mA CAyt/nic^i/nPmPTie vi*

(4.4.31)

which, as we expect, is very similar to the cross terms of case (b) 

above, and so the derivation will largely follow that of AEa in that 

case. Similar terms arise from the eleven other graphs, all with a 

negative coefficient. Note that (4.4.31) changes sign when we 

substitute p =* -p. Combining the terms in the usual way gives

AE (Total)

E P  f *2 /  ̂  ̂ i(p+p ).R
Y  K  J ^ 2  ^   ̂ ~ ~S4 ’ (4.4.32)v 4eVr,s pp'v o

if we note also that

- eiem.eH n uT nl° ’ (4.4.33)

since this terra contains a product of magnetic-dipole transition 

moments. Again, S, is given in Table 4.3.2 . Substituting for S„ and4 4

proceeding;
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FIG 4.4 : TIME-ORDERED GRAPH FOR THE DISPERSION INTERACTION: 
MOLECULE WITH LARGE MAGNETIC SUSCEPTIBILITY
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00 00

AE =
or ro 06 so P; IJ; flljl m/

. 4 2* 3 i i m
An £ he * *

y  zll± 
L  .(k +k )o r.s r s'

rv l(p 'R)%7l(PR)p3p'3
O 0

(kr+k8+P')
(k +p')(k +p')

dpdp' , (4.4.34)
p+p P~P

which is directly comparable with (4.4.21). Hence, deducing the 

integrated form of (4.4.34) and dropping the primes, we get

oo

AE = -1
or ro os so fJj m£ ml

An £ hc 7 (k +k ) Jo r.s r s'

V  l A  j
lA_i /u

' (k +k +p)

(k +p)(k +p)r s
n/ri(pR)Pm (pR)p dp

(4.4.35)

The R-dependence of (4.4.35) is identical to that in (4.4.22); the 

final form of the integral is then

AE =  £ • o £_ 3 2* 3 2
8n £Qhc R

A A \ t_ _ \ or ro os
^  ^  “

80
I

r.s
oo

k k p V 2pR
,.2 2 w , 2 2 x(k +p )(k +P ) r s

i + - 2 + 12 2 pR p R
dp . (4.4.36)

which is the oriented result for the interaction between an electric- 

dipole polarizable molecule and a magnetic-dipole polarizable 

molecule. Observe that in the near-zone the interaction takes the 

inverse fourth power in the intermolecular separation, as will be 

shown below. Rotationally averaging this result gives
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oo

367T £ he Ro r.s

r k k PV 2pRr 8 1 i 2 « 1
, . 2  2 W l  2 2 t J(k+p )(k +p ) 2 2

I PR P R Jdp.
(4.4.37)

The oriented result in terms of the polarizability for A and the 

magnetic susceptibility X^(B) for B is given by

00

AE =

with

------------e . o £ . p R R3 2 2 4'On m  ai
32tc £ CR *

A  . . . B / . , 4  -2pRa^(icp)X^(icp)p e i +-12 2I PR p  R J
dp

o
(4.4.38)

x^(icp) = z Y  —  
z— ' E +

SO OS 80mo m<
r so (hcu) 2 (4.4.39)

Consider the values of (4.4.37) in the limits of small and large 

intermolecular separation; these are the fluid phase interactions. 

It is easily shown that (4.4.37) reduces to give the expressions 

below.

NEAR-ZONE LIMIT

E E
AE

i r— \ r. c. „1 \ ro so | roi2i s o i 2F T 7 / ---------  M ®  Ihe R (E + E ) ~N‘Z 72Jt2£^hcJR" L—1 (E + E )0 r ,S ro so

(4.4.40)

FAR-ZONE LIMIT

AE = , (4.4.41)
64n c£2 R

where the isotropic, static polarizability a(0) and susceptibility



X (0) are defined by (4.2.20) and (4.4.42), below, respectively.

Is o I 2 m |
X"(°) = § > ---------  . (4.4.42)

ES SO

_ 7
The far-zone result (4.4.41) shows an R dependence on intermolecular 

separation. It will be convenient to combine this result later with 

the diamagnetic contribution to the dispersion interaction, since the 

two results are of similar form and taken together describe the pure 

magnetic-dipole interactions of a molecule.

4.5 Electric-quadrupole contributions

A consistent study of the dispersion interaction up to the order 

of the magnetic-dipole interaction must also include electric- 

quadrupole contributions, since the two forms of coupling are of the 

same order, approximately a factor of a, the fine structure constant, 

times the magnitude of the electric-dipole interaction.

Analogously to the previous section the electric-quadrupole 

results have three contributions; there may be one or two quadrupole 

vertices, and these may be confined to one centre or shared by the two 

molecules. The derivations have similarities with both the pure 

dipole-dipole case and with the magnetic-dipole interactions discussed 

in Section 4.4; minor variations arise simply from the nature of the 

interaction terms.

a) Interaction between an electric dipole polarizable molecule and a

dipole-quadrupole polarizable molecule.

We start with the case of one electric-quadrupole vertex, at 

molecule B. As in Section 4.4 (a) we are required to evaluate the
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contribution from the twenty-four time-ordered graphs which account 

for this interaction. Since the electric quadrupole interacts with the 

electric displacement field much of the working follows the form of 

Section 4.2, with the electric-quadrupole moment replacing the 

electric-dipole moment in each expression. However, here the relative 

sign of the contribution from each graph depends on whether the 

quadrupole interaction creates or annihilates a photon; a creation 

gives a -i, whereas annihilation gives +i. Further, since the 

quadrupole interaction contains the gradient operator, the resulting 

expressions contain an additional wavevector component, brought down 

from the exponential part of the field expansion, which dimensionally 

counteracts the additional length which the quadrupole moment has 

compared with the dipole moment. Once evaluated, these terras must be 

written in a suitable form so that they may be combined; the working 

then follows as before.

A consequence of the higher power of p or p' is that additional 

integrals are required. These new standard integrals were presented in 

Section 4.3 .

From Fig 4.5 (vi) we get

AE (vi,a-b)

- 1 1
r»s PP'

(4.5.1)
where

Bii&tm = p'aU a^mpi  : = pa«aot#ip^ ' (4.5.2)

and cx.n and o c take the same definition as in Section 4.4. Let us ■oti ym.

examine (4.5.1) briefly. The (-) comes from the fourth-order 

perturbation result, whose sign is unaffected by exchange of two

hep"
2c V

1 -i
~  ~ ~Dvi

or ro o s „ s o



photons. That is, the four interactions with the electric displacement 

field give a numerical factor of +1. In (vi)b the quadrupole vertex 

annihilates the (p7,*-7) photon with ^ e x p [ i p 7.R] giving the ip£ in 

aPPears with a (-i) since in (vi)a the quadrupole 

vertex creates the (p,M photon. Each of the remaining pairs of terms 

include the quantities and » although the signs and the

exponential factors vary. Each pair must be manipulated such that the 

total sum may be written as one expression. Now since

i) is antisymmetric to the change p7 -p7, and

ii) is antisymmetric to the change p -p ,

we may combine all of the terms and write 

AE (Total) = AE (i-xii,a-b) 

ftcEl- “X X fer,s pp'
2 C V

or ro o s . t  o

}

i(p+p7).R'V
(4.5.3)

Note that each term now has the same sign; the sum is identical to 

that in the pure electric-dipole case. Substituting for St in (4.5.3) 

and performing the angular integration gives

AE = tel or ro 0 8 . 8  0
*1 ^  H

An £ he *-* (k +k ) o r,s r s 7

00 00

0 o

3 , 3 (k r+ k s+ P)

r

1

(k + p ) ( k  +p) p+p'r 8

) ^ ( p 'R>] , (4.5.4)

using the definitions (4.2.7) for T^(pR) and (4.3.9) for a^^(pR)» 

Integration over p 7 gives
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FIG 4. j : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION.
HIGHER ORDER CONTRIBUTION: ONE ELECTRIC-QUADRUPOLE VERTEX
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(k +k +p)r 8 [ r ^ ( p R ) ^ ( p R )  +  ^ ( P B ) ^ ( P R ) ] (4.5.5)x
J(k +p)(k +p)r s0

where v is a quantity which was used in Section 4.4 and is given in

full in the appendix. Comparing (4.5.5) with the pure dipole 

equivalent form, (4.2.10), we see that the quadrupole interaction
7 6complicates the expression slightly; p replaces p , and we require 

the quantities ^(pR) and cr(pR) in favour of <*>(pR) and 't(pR). Before we 

proceed from here we use the fact that the moments are real to 

interchange the indices 4, «  £ in (4.5.5) and write the second term as

eases their combination later.

Written out in full (4.5.5) contains a large number of terms, 

each with a complicated geometrical coefficient. However it is 

possible to write (4.5.5) in the usual double angle form, and hence 

proceed as before, by introducing a matrix form to deal with these 

terms. A considerable simplication is then achieved by combining these 

terms to give the result

The general form of (4.5.6) is important. The coefficients A ^ ^  - 

are required in order to extract the useful interaction energies in

the appropriate cases from this result but take up too much space to

be given here; they are derived and given on page 144 at the end of

this section. The above form may be written as

x
} k k p V 2pR rr s I
“ , 2 2 w , 2 2 v I 4,-471.(k +p )(k +p Hr s0

4,— 471 4,-471 •t—471 4,-471
4,-471



where A ^ ^  is the mixed dipole-quadrupole dynamic polarizability 

defined by

The discussion of results is limited here to the fluid phases. It 

would be of interest, although tedious, to determine the limiting 

values of (4.5.6) in the near- and far-zones and compare them with 

those of (4.2.13). Comparing (4.5.6) with (4.2.13), the dipole-dipole

interaction to fall off more quickly with intermolecular 

separation.

If we allow independent molecular rotation, to give the fluid 

phase interaction, then we must take the rotational average of 

(4.5.7). This result vanishes. This may be seen by examining the
A  Bresult more closely: the tensors a^(icp) and Ag^^icp) are second and 

third rank respectively. Considering the first terra of (4.5.7) as an 

example, rotational averaging will therefore give a factor of 

m ’ term of which is, upon expansion of using

(4.5.36) and (4.5.39), Since e£/̂ [n antisymmetric<T Q
a A

to interchange of £  and m  and is symmetric, the term goes out.

The remaining terms follow similarly.

(4.5.8)

result, it is evident that the term in (pR) -5 will cause this
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b) Interaction between two dipole-quadrupole polarizable molecules.

We next consider the case where two molecules interact through 

electric-dipole and electric-quadrupole coupling. Since the electric- 

quadrupole vertices occur at different molecular centres each 

equivalent graph from Fig 4.1 (page 97) must have four counterparts 

here, corresponding to the permutations of assigning the interactions. 

Hence there are forty-eight contributions to be evaluated, analogously 

to Section 4.4(b). The relative sign of each now depends on the exact 

nature of the quadrupole coupling: if the two interactions create and 

annihilate, respectively, either virtual photon then the term will 

have a numerical coefficient of (i)(-i) = 1; otherwise we get -1 ie

two creations/two annihilations leads to an overall minus.

The interaction terms may be chosen with the indices

The second and fourth terms of (4.5.9) are represented on the graphs 

overleaf as *Quad*. The contribution from these graphs is found to 

be

AE (vi,a-d)

H ini v a)va (v

m/n I (4.5.10)

vn. ij&tm/n. 'ijMm/n. ijMsm/n.

(4.5.11)
and

~ p pp^pm a= p'pp'p

(4.5.12)

i  “  p p p ^ p m a & n .a i Z  * n  ~  p p  p ^ p m a & € 0 4/n. *= PPP;P

(4.5.13)
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FIG 4.6: TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION: 
ELECTRIC DIPOLE-QUADRUPOLE CONTRIBUTION
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In (4.5.10) the (-) in K refers to the sign of the terms A and D. The 

term arises from the graph (vi)a etc; hence the (-) since the

(p/ »̂ -/ ) photon is created at A and the (p,M photon at B. Similar 

expressions occur from the other graphs; the pairs (A,D) and (B,C) 

also occur with the same sign in the remaining eleven sets. We wish to 

manipulate (4.5.10) in order to write it with K+ as a factor ie so 

that all four terms have the same sign. By the normal method we then 

obtain a total

r,s pp'

hep'
2e r

or„ ro o s„ s o „ + i(p+p').R
■i "*2$. ^ l ’

(4.5.14)

where we again see that the sum S^ is identical to the pure dipole 

case; this is a characteristic of electric raultipole interactions. 

Substituting for S a n d  integrating over the solid angle using the 

definition (4.3.10) for (page 106) gives

oo oo

AE =
or ro o s ^ s o

m/a

An £ he *-• (k +k ) o r , s r s

3 , 3

0 o

(k r+k s+P)
r

1

(k + p )(k +p)r s p+p'
<

p-p

x [p 'p ' ^ ( p R)5m m (p 'e ) -pp'<Ii/im( p R ) ^ ( p ' R )

•pp,<7^ (pB)CT« m (p,R) +pp?^ m (pR)TU (p'R)] (4.5.15)

The p'-integral in the first term of (4.5.15) introduces the new 

quantity ^ ^ ^ ( P ^ )  mentioned briefly in Section 4.3. ^ ^ ^ ( pR) takes 

its definition from (4.8.14). This yields



AE =
LAn e he z— ' (k +k )o r.s r s'

<kr+k.+P ) 8,-----------p dp
(k +p)(k +p)r 6i

(4.5.16)

The integrand, as expected, contains the factor p since there is an 

additional quadrupole interaction compared with the result in (b). The 

expansion of (4.5.16) is effected in a similar manner to that of 

(4.5.5), by writing the terms in matrix form. There it was possible to 

combine both terms. However, here the final form is written as the sum 

of two terms formed by combination of the first and last and second 

and third terms respectively of (4.5.16). This leads to the expected 

form

AE = 1 \ or ro 0 8.
i ~ s  L  ^  V  ^ Q'gn c hcRo r,s

f k t  p V 2pRr s

8 o
4R/n

2 2 w . 2 2, (k +p )(k_+p )

B. C- D. E- F- G-* 4,-41 4,-41 n 4,-41 4,-41 n 4,-4L 4,-41
V *  +2—  +2^ 3  +_4TT “ s i?  +~ 0pR p R p R p R

dp
p R p R ,

(4.5.17)

where again A ; „ - G; „ are given at the end of this section. We then4,-41 4,-41 °

obtain

oo

AE = -he
327i3e^R2JA4*(icp)O icp)pV2pR

0
B- C- D- E- F- G-. 4.-41 4,-41 _ 4,-41 4,-41 n 4,-41 4,-41

4,-41 + „ * 2„ 2 + 3 3 + 4„ 4 + 5 5 + 6 6pR p R p R p R p R p R
dp (4.5.18)

Again the general form of (4.5.18) is important. The term in (pR) 6 , 

which results from this higher-order interaction, will result in a



steeper fall-off of the interraolecular interaction than in (b) or 

compared with the dipole-dipole case.

Let us consider this result for freely-rotating molecules. As an 

example the first term of (4.5.18), after averaging, contains the
A A A. A

factor which is identically zero. Hence we find

that this result vanishes under rotational averaging, as we expect for 

a dipole-quadrupole coupling at one centre.

c) Interaction between an electric dipole polarizable molecule and 

an electric quadrupole polarizable molecule.

The final case of interest is one where both quadrupole 

interactions are confined to one centre. This is an important term for 

a quadrupole polarizable molecule since the interaction is not 

affected by molecular rotation ie the energy shift is non-zero even 

after rotational averaging and so may be detected in fluid mixtures. 

There are twelve graphs which contribute to this interaction, one of 

which is shown in Fig 4.7 cf Fig 4.4. Again the relative signs of the 

contributions from these graphs depends on whether the photons are 

created or annihilated at B.

For graph (vi) we obtain

r,s pp'v y v y

(4.5.19)

following the sum over polarizations. Since the two quadrupole 

interactions are at B then (4.5.19) (and each of the other eleven 

terms) contains one unit vector p with a prime and one without, 

corresponding to exchange of the two virtual photons. Let us 

rationalise the sign of (4.5.19). The (-) follows from the sign of the
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FIG 4.7 : TIME-ORDERED GRAPH FOR A HIGHER ORDER DISPERSION TERM: 

ONE-CENTRE ELECTRIC-QUADRUPOLE CONTRIBUTION.
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perturbation result only. In (vi) we see one photon absorbed and one

emitted at B; as discussed this gives a (+) factor.

We wish to write (4.5.19) with the prime on the -wi-wavevector and 

with exp[i(p+p')] as a factor in order to combine it with the other 

terms. By interchanging the indices 4. « m  a/nd L « *n and changing

p -p in (4.5.19) it is possible to write the total as

AE (i-xii) hc^

r,s pp'
2c V o

hep , 2 or ro. os s o  , ,
^  %n/n p£p<

i(p+p').R

(4.5.20)

since the quadrupole transition moments are real. Substituting for S1 

leads to (4.5.21)

AE = i f e l
or ro„ os so 

<̂7Ml

4n e he ' (k +k ) o r,s r s
00 00

p p
0 0

(kr+ke+p) 1

(kr+p)(ks+p) P+P'
a ^ p R j o ^ p ' R j d p ' d p  , (4.5.21)

which on p'-integration gives

00

AE =
or r o „  0 8 „ so

/J. /i • Q op Q*4. j T O
471 £ he *-• (k +k )0 r,s ' r s'

r (kr+ks+p) a
    R)tW pR)p d»-(k+p)(k+p) r

(4.5.22)

The integral in (4.5.22) is identical in form to one of the terms of

(4.5.16); the derivation from here onwards is identical, leading to

(4.5.23), below, which only differs from (4.5.17) in the pre-integral

factor ie the moments are different. The constants A; „ - G'- „ have-c-/n -L-/n

already been determined in the calculation of A- „ - G ; „ and are-t-'Tl -t-Ti
given later (page 144). Thus we obtain



In terms of polarizabilities, this result may be expressed as

AE (Total)
oo

-he A------  a . .A / . B » 6 -2pR
ai.i^c^ eU m a<lcP)P e32Jt

o

X •C—/TL

where is the quadrupole-quadrupole polarizability defined by

This is the general result for the interaction of a dipole 

polarizable molecule and a quadrupole polarizable molecule at any 

separation. Below we shall consider such an interaction for molecules 

in the fluid phase.

Let us consider the limiting values of (4.5.24). Firstly we take 

the rotational average. Assuming the notation of Andrews and 

Thirunamachandran t641 we write

(4.5.25)

(4.5.26)

Now since the quadrupole moment tensor is traceless, it can be shown
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that (4.5.26) reduces to

90 'Sl}(~2SM.5mn * 3S*mStn * 3Sin6̂  1 ^ ° ! X j l X j j '

(4.5.27)

It is then necessary to evaluate

etc in order to determine the far-zone result (which retains all of 

the terms). The near-zone result requires only the evaluation of the 

G; „ term. The resulting expressions are given below.4/-41

NEAR-ZONE LIMIT

I r o i 2 . o s „ s o
Z I % %

AE = I —^  (E +8jt2£^R8 ^  (E + E )o r, S ro so

(4.5.28)

—  8This is the short-range interaction which shows an R dependence on 

intermolecular separation. The far-zone limit (4.5.29) is appropriate 

for dilute gas mixtures.

FAR-ZONE LIMIT

Ae = -1593 _ J ^ _ « A(O)0X^ ( O )
1280 rc3e2R9

(4.5.29)

with defined by

0 8 8 0

w »  = ± L —
r.s so

(4.5.30)

The numerical factor in (4.5.29) differs from that obtained by 

Thirunamachandran t653 by a factor of sixteen. This factor arises from 

the change of unit (SI vs Gaussian).



CONSTANTS OBTAINED FOR THE ORIENTED QUADRUPOLE RESULTS

The results (4.5.7), (4.5.18) and (4.5.24) are incomplete in that 

the coefficients for each term have not been given. The general form 

of each result may be seen clearly: each is a function of the products 

of the electric-dipole, electric-quadrupole or mixed dipole-quadrupole 

polarizabilities for the molecules and a sum of terms with increasing 

negative power in (pR), which have coefficients N; ^  (N = A - F), N; „4/-m JL—/n

and N; ^ (N, N' = A - G) which have a numerical factor and a factor'C-'Tl '
which depends on the orientation of the intermolecular axis. It is of 

interest to give these coefficients and to outline how they were 

obtained since the complete expressions then contain all the 

information required to determine the quadrupolar, intermolecular 

interactions of molecules at any separation, whether oriented or 

allowed to freely rotate.

The determination of these coefficients relies on the evaluation 

of the expanded forms of the products Tt£(p®)y^m/£^p^  anc*

<W (pR)V (pB) in <4-5-5>- T.i£<pB)*4«v#m(pE>> < W pR>‘W pB>>

aU i (pR)LJ<Am.(pR) and 5JK^n(pR)“^ (pB) in (4<5-16) and cW pR)l> *  in
(4.5.22), where each of the Greek quantities takes its previous 

definition with the appropriate choices of index.

Such products may be determined by rewriting the latter 

quantities in a matrix form with the help of some new definitions. Let 

us define the column vectors U^, V  and W v*”
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%

a. .

I  ^

with

a. . = (6 . .-R.R.) 
H  ** i

V
hlilt

b-î S Vi i U  = c4jlLl

cijl . dii&t

(4.5.31)

3 R ^ )  , (4.5.32)

= R • R -Ri>4, # &

bifi. (sJ i  + , and

cii& =

aiilt =

A A A A

bl}lL = (6iASil * SjtSu')

cijM. = -8 . SnpI#

dl i U  = (su P i * t  * * si & & t + 5;ifli

= V A

(4.5.33)

(4.5.34)

We then have, for instance,

T^(pR) = sinpR cospR sinpR
pR 2 2  p R 3_ 3

P R

ri o'
0 1

J

0 -1
t. J

uu (4.5.35)

Similar expressions follow for pR)» etc, using the

vectors U^, and The required coefficients etc are

then obtained directly by collecting the coefficients of the 

trigonometric products resulting from T^(pR)^^/r7l̂ (pR) e^c 5 the latter 

are then written in double angle form (see for example (4.2.11)) and



the final result follows from the exponential form of the expressions. 

In this way the coefficients may be written in a matrix form, with a 

numerical factor. Thus we obtain

N-c-« = UI X ' 3V £  ’ N =A,B,..F (4.5.36)

= UI X ' S% * a  + VL X ' 3V̂  * N =A,B,..G (4.5.37)

Ni-„ = VL X ;3V i  > N' = A' ,B',. .G', (4.5.38)

r • swhere T denotes the transpose of the vector and M is an r*s matrix. 

These matrices are given overleaf.
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Table 4.5.1: MATRICES OF CONSTANTS OBTAINED FOR THE ORIENTED 

QUADRUPOLE RESULTS

M 2 - 3 ( : :  : ) ' < * • (  f i  O ' "
M 2 - 3

M 2-5

M 2-5

M 2-5

M 2 - 5

M2 - 5

M 2-5

M 2 -5

-2 0 0 0
0 0 0 0

-10
-1

- 9 0
-22

105
- 55

210
3 0 0

0
210

0
210

1 -1
0 0

-4 - 1 2  -
-2 -2 -

-3 - 1 5  - 
-3 -7 -

6 -6 - 3 0
8 -10 - 42

0 O 
-6 - 3 0

0 0 
-6 - 3 0

30
48

-30

2 - 3
C

f 15 *3 3 1 • M2-3 - f ° ° ° 1 . M 
[ 2 1 - 4  5 J * E “ [ 3 O - 6  6 J '

2 - 3
F

(- 1 5  3 -3 ^
-7 1 -3 J

( O 0 0 'I
1 5 - 3  3 J

(4.5.39)

0 ' 
:l) '
18̂J 
10J
,51 • 13J '

:) ■

“ J  *

0) *

M3-3

M3-3

M3-3

M3-3

M 3 - 3

M 3 - 3

M 3 - 3

M a '

Hc'

M e '

V

/
1 0

N
1 f 6 -1

\
23 w 3 - 3

S 0 0 0 • M / = 0 0 0
B1 0 1 6 -1 2X. J

f r \
66 -9 3 0 105 - 18 3 3

3 ,.3-3s -9 1 -5 • M / = - 1 8 3 -6
D30 -5 10 33 -6 9y

f f405 -78 3 3 2 25 -45 45
3 ..3-3s - 7 8 15 - 1 8 • M 1 = - 45 9 -9

F9 3 -18 21 45 -9 9
J

2 25 -45 A3
3 s -45 9 -9

45 -9 9

/
2 0

>
2

S 0 0 0
2 0 2

J

r
12 -1

>
8

S - 1 0 -1

<
8 -1 4/

f 132 18 -6o'
B 18 -2 10

<
- 60 10 - 2 0/

/
2 1 0 36

\
-66

- 36 -6 12
-66 12 GOr*1

8 1 0 - 1 5 6 186"
m - 156 30 -36

186 - 36 42,

f
450 - 9 0 90'

s -90 18 - 1 8
90 - 1 8 1 8 >

r_ 4 5 0 90 -90"
= 90 - 1 8 18

-90 18 - 1 8

(4.5.40)

(4.5.41)



4.6 The diamagnetic contribution

The interaction Hamiltonian (4.3.1) includes all terms of the 

required order for intermolecular coupling involving the exchange of 

two photons. Section 4.4 discussed interactions involving the 

magnetic-dipole moment; to complete a study of the magnetic field 

interactions we must consider the final term of (4.3.1), the 

diamagnetic term. This term is second order in the magnetic field and 

so the energy shift corresponding to two-photon exchange is obtained 

using overall third-order perturbation theory, a first order 

interaction in this term. Straightforward manipulation leads to a 

result which is similar in form to the final case of Section 4.4 

(where the magnetic-dipole interactions were confined to B); the two 

results are therefore combined.

The relevant time-ordered graphs are shown in Fig 4.8. Note that 

there are only three in this case, corresponding to the intermediate 

states where there may be one or two virtual photons present and 

molecule A may be excited or in its ground state; the two-photon 

interaction at B does not cause an excitation. Hence the molecule B in 

its ground state must have a non-zero expectation value for the second 

rank coordinate tensor.

The total energy shift is given by

JiixiiIh. IixiIh. Io >
AE = ) )  — ------- — --------— ---  , (4.6.1)

<Ei r Eo><Ei-Eo>
II I

with H given by (4.3.1). It was stated in Chapter 3 that each 

two-photon interaction carries an additional factor of two because of 

the possible permutations arising from the sums over wavevector in the



definitions of the fields. Including this factor we obtain for the 

first graph

AE (i)

2*2 _____ ^ ' ___ i(p+p/).R
n  i2 ^ ^  <qa-tqau,> ^ ^ ’pp ete -̂77î >ri16m£ . /. ,o of r p,p a

(4.6.2)

where ^  denotes the expectation value of
a

1 <4-6-3 *
a

for the ground state of molecule B. The other pair of terms are 

similar and combining the three in the usual fashion gives a total, 

after summing over the polarizations, of

AE (Total) = AE (i-iii)

2h2   „ P  a a i(p+pr).R
16m£2 ^ e& ^ C*AĴ C'i/nL£e X <q° * W  XPP P£P9~

0 a r pp'

x J d T 1 - D?1 + d T 1 .> (4.6.4)
1 1 1 1 i X 1 I

(4.6.4) includes a complicated product of four Levi-Civita tensors. 

This arises partly from the component form of the interaction term at 

B; two are generated by the sura over polarizations. This product of 

tensors may be written in a simpler form as a sum of terms involving 

Kronecker delta tensors by applying the usual contraction identities.

Taking the value of the sum over the energy denominators from 

Table 4.3.3, summing over the wavevectors and proceeding as before we 

obtain from (4.6.4)
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FIG 4.8 : TIME-ORDERED GRAPHS FOR THE DIAMAGNETIC CONTRIBUTION 
TO THE DISPERSION INTERACTION
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AE = -e :C;4 2 2 aAXaiI/2
32 n r ne co a r

1 1 “ r-r
CO CO

3 , 3n^(p'R)n^(pR)p p
0 0

1
f

1

(kr+p') P+P'
dpdp' ,

where

oo

AE = wa r

(4.6.5)

C- * p - 8 .p8 . 6p - 8.p5.pS - 6. 8 . 8PP + 8 ..8PP8 (4.6.6)

as outlined above. Upon integration this gives

1 T?^(p/R)Pp(p/R)p/6dp/,
( k + p ' ) 9  *

which may be simplified to

(4.6.7)

AE = -e
3 2 2 264rc meQc R % <q<x£q(xu>

a r
CD» , 4 -2pRk p er

/, 2 2\ (kr+p ) 2 2 I pR p R J
dp. (4.6.8)

This is now a familiar form. However, if we compare (4.6.8) with 

(4.4.37) we see that the major difference between the two expressions 

is the absence here of those parts which depend on the excited states 

s of B, a consequence of the nature of the interaction term. 

Rotationally averaging this result gives

co

AE = -e
. .. 3 2 2 2144rc m£ c Ro a r

\  \  | ro | 2 2 B

L ZJ? 1 ^
„ , 4 -2pR k p er

r >

1 I 2 t 1/, 2 2 * J (k +p ) 1 1  ’ 2 2 pR P R ,
dp,

(4.6.9)



which agrees with that obtained by Thirunamachandran 1651. The 

oriented result in terms of the polarizability for molecule A is

given by

00
2

AE = « 4 (icP ) < q ^ W Bp4e'2pR128n m£ cRo a pR p2R2J
dp

(4.6.10)

We find that in the near-zone (4.6.10) vanishes; this may be 

physically rationalised since the intermolecular coupling of a 

two-photon interaction at one centre with a polarizability at the 

other cannot be described in terms of non-retarded coupling, 

appropriate for the near-zone.

In the far-zone we obtain the result

AE 3tle - £  «A (0)<q^>B . (4.6.11)F -2 3 2128rc £ mcRo a

The diamagnetic contribution to the dispersion interaction in the 

far-zone therefore takes an inverse seventh power in the 

intermolecular separation. This result, in terms of the static 

polarizability of molecule A, is similar in form to the 

contribution from the magnetic susceptibility of molecule B (4.4.41). 

It is convenient to combine the two results to write

= c f 2 7 «A <0)^(0) (4.6.12)
64n  c q c R

where X'(0) is the diamagnetic susceptibility of B in its groundD

state, given by
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2e
6m I  <&•} •a

(4.6.13)

The magnetic susceptibility x(0) and the static polarizability a(0) of 
a molecule are both positive in magnitude but the sign of the 

diamagnetic susceptibility depends on the competition between the two 

terms on the right hand side of (4.6.13). If Xl(0) is negative theB
molecule is said to be diamagnetic.

The following Section summarises and discusses the results from 

this and the previous Sections to present an overall view of the 

dispersion interaction to this order.

4.7 Summary

In this Chapter quantum electrodynamics has been applied to the 

calculation of dispersion energies between molecules with different 

polarizability characteristics. In order to do so the electric-dipole 

approximation was lifted and electric-quadrupole, magnetic-dipole and 

diamagnetic interactions were considered. It was assumed that no 

incident fields were present on the molecules, as such fields can 

modify the intermolecular energies t65»661# jn each 0f the results the 

properties of the molecules are described entirely by one of the forms 

of polarizability defined in the text.

There follows a summary of these results, which apply to 

interactions between chiral as well as achiral molecules, beginning 

with the electric dipole-dipole interaction. Subsequent results, which 

similarly are valid for all intermolecular separations, will generally 

be smaller in magnitude than this interaction, and hence not the 

dominant terms usually, although when considering the interaction 

between chiral molecules the higher-order mixed electric-magnetic



terms are the lowest order terms which account for the discriminatory 

effect. Allowing for this, in the description of the results attention 

is then focused primarily on the dependence of the interaction on 

intermolecular separation.

The derivations and the main results given at the end of each 

Section apply to the interaction of oriented molecules at any 

separation. From these general results we may obtain more specific 

expressions by making certain assumptions, appropriate to the physical 

case in question. For instance, should we wish to know from these 

results the interaction between oriented molecules in the near-zone 

then we simply retain the final term of each expression following the 

assumption that the photon wavevectors are much greater than the 

wavevectors of the molecular transitions.

In this account the results discussion is confined to 

interactions between molecules in the gas and liquid phases. Our 

assumption is then to allow free rotation and the expressions are 

modified by taking the rotational average to account for this. In 

particular the far-zone results apply to mixtures of dilute gases. 

Table 4.7.1 shows the R-dependence of the various interactions in the 

two limiting cases, given in the two right-hand columns. The column 

headings Molecule A and Molecule B indicate, through the appropriate 

polarizability, which interactions couple the two molecules. For 

example, «A (0) for A and GB(0) for molecule B refers to a /i-/i type 

interaction for one molecule and /J-m coupling at the other, as 

described using the time-ordered graphs. The horizontal lines 

partition terms of different order.

To put this discussion into some physical perspective, an

approximate value should be attached to R in the two cases.
[59 1Experiments conducted by Tabor and Winterton investigating how

molecular interaction varies with intermolecular separation have



quoted results for separations of mica surfaces of between 5nm and 

30nm. They assume that the molecular case does not differ markedly 

from the condensed phase interaction, in which the complete transition
— 6 — 7from R to R behaviour takes place between 10-20nm; below lOnm and 

above 20nm we may assume the two limits.

The electric dipole-dipole interaction is a well-known result. In 

the near-zone we recognise the R 6 dispersion energy or van der Waals 

interaction. This force may be considered to arise from fluctuations 

in electron density and the R-dependence is obtained from second-order
[ 4 5  ]

coupling of the electrostatic dipolar interaction term . The 

deviation from perfect gas behaviour is due to this interaction. 

Similarly the other near-zone results may be obtained from 

electrostatic interactions using higher multipole terms. However, 

these interactions do not allow for retardation effects and the 

results are only valid at the molecular separations discussed above. 

Outside this range other effects, due to retardation, are observed and
-7the interaction falls off to an R dependence.

The result (4.2.15) extends previous works since it is both valid 

at all separations outside overlap and applies to the interaction 

between oriented molecules.

As noted, the interactions containing electric-quadrupole and 

magnetic-dipole coupling are 2-3 orders of magnitude smaller than the 

electric dipole-dipole result for each vertex which we replace and so 

are not the dominant terms. It is nevertheless useful the examine the 

various terms for their dependence on intermolecular separation.

At a glance Table 4.7.1 highlights a major physical dissimilarity 

between the electric-quadrupole and magnetic-dipole interactions. When 

the molecules are allowed to rotate there is no intermolecular force 

arising from dipole-quadrupole coupling at one centre, that is the 

mixed dipole-quadrupole polarizability A- » for a molecule vanishes



TABLE 4.7.1 SUMMARY OF THE CONTRIBUTIONS TO THE DISPERSION INTER­

ACTION IN THE NEAR- AND FAR-ZONES: ROTATIONALLY AVERAGED RESULTS

Molecule A Molecule B R-dependence/
near-zone

R-dependence/
far-zone

«(0) «(0) R"6 R'7

«(0) G(0) zero result zero result

«(0) A(0) zero result zero result

6(0) 6(0) r "6 r "9

A(0) A(0) zero result zero result

«(0) x(o) } -72 r zero result R
«(0) <q > J
«(0) 6(0) R'8 R"9



with averaging. The polarizability G-., on the other hand,
*4

representing electric-dipole/magnetic-dipole coupling of a molecule

remains and rotating molecules may be coupled in this way via the

electromagnetic field provided that the interaction at the other

centre is of the appropriate symmetry; the a. (A)-G. .(B) coupling
*4 *4

vanishes under rotation, whereas the G- (A)-G. .(B) interaction is
*4 *4

non-zero and shows discrimination.

As discussed in Section 4.4(b) the latter interaction may be 

written in terms of the rotatory strengths Rto of each molecule, 

giving (4.4.28) and (4.4.29) for the near- and far-zones respectively. 

In the near-zone we observe an interaction proportional to R 6 and 

predict an inverse ninth dependence on separation in the far-zone. It 

was noted in the text that the rotatory strengths take opposite signs 

for enantiomers and hence both results show discriminatory effects. 

Thus the A(R)-B(R) and A(R)-B(S) interactions differ in sign; for 

chemically identical molecules like species repel and for opposite 

isomers AE [A(R)-A(S)] ^ 0. Note though that the rotatory strengths 

may be positive or negative and so it is not possible to predict the 

absolute sign of an interaction if the molecules are different 

chemically.

The discriminatory results given in Table 4.7.1 for the near-zone 

and far-zone interactions have previously been determined lll»60]. ^he 

account here is an extension of those works, which assumed 

approximations appropriate to each case at the outset and hence did 

not determine the complete result. The far-zone dipole-dipole result, 

for example, may be determined from just four of the twelve 

time-ordered graphs shown in Fig 4.1, based on slightly different 

physical grounds; energy may be borrowed from the vacuum subject to 

the energy-time uncertainty relation AEAt ^ h and so the retarded 

result is obtained from those terms which contribute if the photon



frequencies are very small. When intermolecular separation is small 

the photon energies must be much larger to satisfy the same principle, 

since the time-scale is short. Hence a different set of four graphs 

should be considered. It is only when the complete range of 

separations is required that the full set is included.

The results given in this account could also be obtained by 

choosing the Heisenberg form of QED, where the field operators, 

instead of the states, show the time dependence. The dispersion 

interactions are then determined by calculating the response of one 

molecule to the Maxwell field of the other. Such calculations have 

been done by Thirunamachandran C651 for the interaction of an 

electric-dipole polarizable molecule with a magnetic-dipole 

polarizable molecule and an electric-quadrupole polarizable molecule, 

applicable at all separations and allowing the molecules to rotate.

The results given here agree with those obtained by 

Thirunamachandran for these cases and with the earlier work by 

Mavroyannis and Stephen 1601, who presented only the limiting results. 

In the latter paper an alternative form of Hamiltonian was used in the 

calculation (the authors chose the Lorentz gauge instead of the 

Coulomb gauge). We find that, having confined the magnetic field 

interactions to molecule B (ie combining the diamagnetic interaction 

with the magnetic-dipole interactions), molecules with large 

susceptibilities will interact with an electric-dipole polarizable
-7molecule with an R dependence on intermolecular separation in the

far-zone. The near-zone result vanishes. The near-zone result for the

a (0)-6(0) interaction, however, (with molecule B assumed to have a
—  8large quadrupole polarizability) remains and shows R behaviour. In

the far-zone the interaction is retarded by a factor which approaches
-1 -9R and so we predict a result proportional to R . Whilst confirming

the results in this form, this account presents, in addition, the



general, oriented expressions.

In the following Section any additional identities which were 

used in previous Sections without explicit justification are given as 

an appendix. Further explanation of some of the steps used in the 

method of Section 4.2 is given and the derivation of the angular 

integral results is outlined.

4.8 Appendix

In this section some of the detail of the general method used 

throughout the previous sections is accounted, and the remaining 

definitions are given.

If we study the expression (4.2.3) we see that it results from 

summations over photon polarization vectors in expressions of the form

X

In the consideration of magnetic-dipole interactions, Section 4.4 also 

uses the results (4.8.3) and (4.8.4), overleaf, as discussed on

AE (i)

(4.8.1)

The appropriate sum is given by

A  A
(4.8.2)



The sums over p and p' in (4.2.3) are replaced by integrals in the ^

limit V * ® of the volume of the quantization box for the 

electromagnetic field;

Hence (4.2.4).

The expression (4.2.8) is written down by separating the 

wavevector integrals in (4.2.4) into their radial and angular parts 

using the relation

and then performing the angular integrals. The latter are done using 

a combination of the identities (4.3.4) and (4.8.7), below.

Similarly, repeated use of (4.8.7) allows the integrals (4.3.7) and

(4.3.8) to be evaluated and (4.3.5) is given directly. The quantities 

on the right hand side of these expressions have been defined in the 

text.

Finally this leaves a discussion of the evaluation of the 

p'-integral in (4.2.8), and the definitions of the quantities

(4.8.5)
p F-*»

(4.8.6)

(4.8.7)
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and pR)» resulting from similar integrals, which were used in

the text. The relationship between the pair {t. .(p'R) ,0 . .(pR)} is 

given by (4.3.12), as stated. It is easily shown that this result may
[67]be obtained by using the standard integrals

oo
= rccos(ap) (4.8.8)

-00

and

oo

JC(xlpy)dx = 7rsin(a^) (4.8.9)
-oo

and their derivatives with respect to a. Similarly using (4.8.8/9) we 

obtain the analogous expressions (4.8.10-12)

oo
' n^(p7R)p 

(p +p ')

/ 3

dp7 -P ^ ( p R )  » (4.8.10)

-00

00
' <7;jjf(p,R)P / 4

(p+p')
dp' p  7 C ^ ( p R ) (4.8.11)

-oo
and

oo
' ^ ( p ,R)p

/ 5

(P+P')
dp' = P K ^ ^ ( p R ) (4.8.12)

-00



The quantities p^^(pR) and are 8iyen below.

^ ( p R )  = \ Ri H
sinpR _ pCOspR 1 ,-sinpR 1 ,-cospR

2 2 3 3 4 4k pR p R p R p R ,

+ <6a B# + V i >
cospR _ „sinpR _ »cospR
22 33 _ 4 4Lp R p R p R J

- V *
sinpR _ pCOspR »sinpR «cospR

22 33 44pR p R  p R  p R j

(4.8.13)

<* V £ (pR) = ■RiR^R4R^
■cospRcospR 1QsinpR 45cospR ,105sinpR

22 33 44 55k pR p R  p R  p R  p R ^

cospR gSinpR ^cospR
3_3Lp R 4 4p R

-5. .5 cp sinpR _ pCOspR „sinpR ^cospR
2 2 ” 3_3 4 4 5 5k p R  p R  p R  p R ;

+ + S4£RiRl  + Si&Ri,nl * SitRl H  + SU RiRi)

sinpR _ pCOspR 1 rsinpR 1 FcospR2 2 ~ 3 3 4 4 5 5, p R p R  p R  p R ,

+ cospR _ .sinpR _ ~cospR 1 rsinpR 1 ,-cospR
~ 2 2 ~ 3 3 4 4 55L p R  p R  p R  p R  p R j

(4.8.14)

In the text results were quoted in terms of the dynamic 

polarizability or magnetic susceptibility of the molecule and mixed 

electric-dipole/magnetic-dipole and dipole/quadrupole analogues. 

In Table 4.8.1 these quantities are defined together for reference.



Table 4.8.1: DEFINITIONS OF DYNAMIC AND MIXED DYNAMIC POLARIZABILITIES

Dynamic polarizability:
Evv / . k \ 1*0 o r r oot;.(-tcu) = 2> — ------ - fij

* t— 1 E +(t)cu) 4 *r ro

Electric/magnetic polarizability:

_oo .. x «.\ ncu or roc, ,(<,Cu) = / — 5------ j Kt
^  L-‘ e 2+(t>cu)2 *• *r ro

Dipole/quadrupole polarizability:
E
►

(hcu)

r— i E. oo - . . _\ ro or_roA ^ « - c u >  =
r ro

Magnetic susceptibility:

Z E ro or ro

— i------ i miE +(hcu) * *r ro

Quadrupole polarizability:
r—» En 00 / • \ n\ r° „or„ro<w <'cu) = 2l r w  ^

(4.8.15)

(4.8.16)

(4.8.17)

(4.8.18)

(4.8.19)



CHAPTER 5

ION-MOLECULE INTERACTIONS
5.1 Introduction

The multipolar Hamiltonian has been used in Chapter 4 to give a 

comprehensive account of dispersion interactions between neutral 

molecules in their ground states. Such interactions are fully 

retarded; the coupling proceeds entirely via exchange of transverse 

photons since all electrostatic interactions between the molecules 

were eliminated in the construction of the Hamiltonian. It is now of 

interest to relax this restriction on molecular neutrality and 

consider similar interactions where molecules carry a net charge. The 

Hamiltonian theory appropriate for such cases was developed in 

Chapter 2 and shall be applied here in the discussion of such 

ion-molecule interactions. This multipolar theory, however, is not 

suited to a discussion of the interactions of free electrons. A theory 

will be presented in the following chapter which deals specifically 

with this special case.

For the calculations here it is assumed that both ion and 

molecule are held fixed. The required interaction terms are recovered 

from the final form of the Hamiltonian given in Chapter 2, with the 

note that this condition eliminates those interaction terras which were 

dependent on the vector potential. The non-retarded results which are 

then determined here include all terms up to electric quadrupole. 

These terms may be added to the results of the previous chapter and 

the charge-octupole interaction is determined so that all terms up to 

a cut-off point of an R dependence on separation have been taken
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into account. The minimal-coupling treatment of this interaction is 

also outlined as a contrast.

The molecular ion is also assumed to have a permanent dipole 

moment; this is a necessary assumption since there can be no 

intermediate state sum for the ion where the interaction is

electrostatic. Consequently, the energy shift will depend on a 

molecular property of the neutral molecule, such as a polarizability, 

but simply on the charge and dipole moment of the ion.

We begin by considering charge-dipole electrostatic coupling and 

this is followed by the consideration of higher charge-multipole 

terms. Included also are combinations of these interactions and all 

multipolar interactions to the same order. The interactions are again 

described using time-ordered graphs.

5.2 Non-retarded electric-dipole interactions

We aim here to present for the first time the complete multipolar 

expression for the dispersion interaction between an ion, A, and a 

neutral molecule B. This requires the determination of those terms

dependent on the ionic charge QA . The interaction Hamiltonian for 

the system is

Hi„t = - S V A)-^(5a> - £o V A)Y t (5A)

-

(5.2.1)

where W , is the electrostatic interaction term of the Hamiltoniane 1 ec

(2.7.4) and is made up of the complete charge-multipole series. The

first three terms of the multipolar expansion of W , are t68'693el ec



We.ec = * ( V 4n£0>fi<B > V R2 + V B> V R3 ' 3V (B)^ ' }

(5.2.2)
= Wt + W2 + W3 , (5.2.3)

in which the interactions are charge-dipole, charge-quadrupole and 

charge-octupole respectively. In (5.2.2) 0. . takes its definition from 

(4.2.6) and in Wg the component ^ ^ ( B )  of the third-rank octupole 

moment tensor for B is

Q ^ ( B )  = (1/3!) I •
1

(5.2.4)

with H to be summed over all electrons and nuclei, and the geometric 

factor is

Giit. = * su * i  * 5i&Ri ~ 5RiR/ ^  ■

(5.2.5)

In this expansion the intermolecular vector R is defined as

R = Rd - R a (5.2.6)

This section deals with those terms up to electric dipole which 

include the charge-dipole interaction. This includes the fully 

electrostatic interaction given by Fig 5.1, in which the horizontal 

dashed lines refer to interaction potentials, and interactions, given 

by the third-order perturbation result, which also proceed through an 

exchange of one transverse photon.

For dipoles favourably oriented with respect to R we expect the 

dominant contribution to the interaction to be the electrostatic 

charge-dipole term. From Fig 5.1 we obtain



AE, = -(l/2)(l/4«0)*Q*«~(B)Bjyi-4
(5.2.7)

-  4The R dependence is well-known; the result is given here in terms 

of the static polarizability of the neutral molecule.

Those interactions which are part Coulombic and part 

transverse-photon exchange are next considered. Fig 5.2 shows the 

graphs for such a case. For example, in graph (i) the various states 

are given by

Ii> = |E0(A); Eo(B); o(p,x)>

ll> = |E0 (A); Eo(B); l(p,X)>

II> = |Eo (A); Eg(B)» 0(p,X)>

lf> = |Eo (A); EjB); 0(p,X)>

(5.2.8)

There are six graphs in total, the three shown plus three for emission 

of the virtual photon by molecule B. The third-order perturbation 

result is straightforward. Summing over the wavevectors and 

polarizations of the virtual photon as is required and adding the 

various contributions using the simple result

    +     +   ------
(hcp)E® E® (E° +hCp) (hCp)(E® +hcp)

80 8 0 8 0  80

gives an energy shift

AE2 = (1/4^0 )2Q X ° ( A ) cx2 ^ ( B ) R ^ R " 5 , (5.2.10)

2

(hcp)EB8 O
(5.2.9)

which is of the form expected.



FIG 5.1 : ION-MOLECULE DISPERSION: THE COULOMB INTERACTION

The result makes use of the identity

. V  ~ . ip.R _3f - „ ip.R
-y L ( 6 ^ - p ^ ) e  * - = (2n) J ( ^ - P ^ ) e  ~ ~d p = - (4nR ) 0 ^

(5.2.11)

which is obtained through the transverse delta dyadic. The shift
-5contains an R dependence on separation and requires the ion A to 

have a permanent moment. It is because of the fact that A interacts 

through its permanent moment that this interaction, which proceeds

through the exchange of a virtual photon, leads to a non-retarded

energy shift. The London result (Section 4.2) is obtained from here by 

replacing the charge dipole interaction with the exchange of a second 

transverse photon through electric dipole interaction. Intermediate

states are required for A with the retarded interaction, giving a 

result dependent on its polarizability and which shows the R 

behaviour.

This accounts for the first set of interactions, those up to 

electric dipole only. We now go on to consider higher-order terms; we



FIG 5. I : ION-MOLECULE DISPERSION INTERACTION:
NON-RETARDED ELECTRIC-DIPOLE CONTRIBUTIONS
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include both the transverse field interaction with electric quadrupole

vertices and the electrostatic charge-quadrupole and charge-octupole
-6terms. The study gives all terms up to an R interaction.

5.3 Higher multipole interactions

First we consider the remaining electrostatic contributions. 

These are shown in Fig 5.3. In (i) and (ii) a charge-quadrupole or a 

charge-octupole interaction occurs along with charge-dipole coupling. 

In Fig 5.3(iii) the interaction is described entirely by the 

charge-quadrupole potential. The corresponding energy shifts are 

easily determined and added to give

A E 3 = - ( V 4,t£0 > ' 2

+ U / 2 > e £ u < B > V ^ R'6 ‘ 3E1 ^ (B)^ W ‘6}

(5.3.1)

In (5.3.1) > the quadrupole-quadrupole polarizability, is the

quadrupole analogue of the static polarizability and we have used the 

definition

08^80
= 2 I * (5.3.2)

GS 80

for the static dipole-octupole polarizability. These terms are of the 

same order as the London expression and may be significant, depending 

on the symmetry of molecule B. A?^(B) is the static form of the 

dipole-quadrupole polarizability.

There remain two further contributions to the intermolecular 

energy shift; (a) the electrostatic interaction potential is of the 

charge-quadrupole type and both of the virtual photon interaction



FIG 5.3 : ION-MOLECULE DISPERSION:
HIGHER-ORDER COULOMB INTERACTIONS
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vertices are of the electric dipole type; and (b) the electrostatic 

interaction potential is charge-dipole and the virtual photon 

interaction is via a dipole vertex at one molecule and a quadrupole 

vertex at the other. An example of the type (a) interaction is shown 

in Fig 5.4. There are six such graphs. With the use of (5.2.9) the 

energy shift arising from these graphs may be evaluated to give

a e 4 = ( i / 4 K £o> v r < A> c * < B> v ^ R" 6 • (5 - 3 - 3)

which we see falls off with the inverse sixth power of separation.

If we assume that selection rules allow the latter type of 

interaction, for example if the molecule or ion is optically active, 

then we must consider a further six graphs for the quadrupole 

interaction at each centre. Typical graphs are drawn in Fig 5.5.; the 

interactions should be of the same order as (5.3.3), above (coupling 

proceeds through charge, two electric dipoles and a quadrupole) and 

the form of the graphs again leads to the use of (5.2.9) in order to 

sum over the energy denominators in the third-order perturbation 

expression. In the final result the two sets of terms have been 

combined, giving

AES = -3QA(l/4Jt£0)2(^°(A)A°^(B) + q“ (A)«°°(B))r^ R - 6.

(5.3.4)

This accounts for all interactions up to and including a cut-off point 

at an R 6 dependence on separation.

It is briefly shown below how the result to electric dipole may 

be obtained through the use of the minimal-coupling interaction terms, 

with a comment on the calculation of higher-order interactions.
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FIG 5.5 : ION-MOLECULE DISPERSION:
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5.4 The minimal-coupling result

This alternative method is not given in detail here. Attention is

merely confined to those terms arising from the ionic charge: the

equivalence of the dispersion terms for the neutral case is assumed.

Even for results in the electric dipole approximation the inclusion of 
2the a (R) term is warranted and the twelve multipolar graphs of

Fig 4.1 are replaced by the well-known sum of twenty seven in the 

minimal-coupling method.

For the present problem the intermolecular potential energy VA B
in the minimal-coupling method is given by (5.4.1). The first term,

V , of (5.4.1) is of course common to both formalisms. V2 is then the 

familiar dipolar interaction.

V*B = - <1/4n£0){{W B> V R2 ' ^ < A> V B> V R3}

(5.4.1)

First note that since we are calculating an energy shift there 

will be no contribution from those interactions of the form of Fig 5.2 

but with the p.a(R) coupling for the virtual photon. This follows

since diagonal momentum matrix elements are zero. Next, of the

electrostatic interactions left to consider, the first has been dealt 

with and is given by (5.2.7). We are left to consider the interaction 

given in Fig 5.6, where the factor 2 accounts for the interchange of

V and V2* The combined energy shift gives

AE6 = (1 /4ne Q ) \ ^ °  ( A )«° ° (B ) ' 5 , (5.4.2)

which equals the contribution (5.2.10) from the six graphs of Fig 5.2. 

Hence the total energy shift up to electric dipole has now been



generated using the minimal-coupling interactions.

5.5 Summary

The multipolar Hamiltonian has been used to calculate the 

contributions towards the ion-molecule energy shift which depend on 

the net charge of the ion. All interactions up to R have been 

calculated and each of the results depends on one of the forms of 

static polarizability (dipole-dipole, dipole-quadrupole etc) defined 

for the neutral molecule. As well as its dependence on the ionic 

charge, where the interaction includes exchange of a virtual photon 

the energy shift also requires the ion to have a permanent dipole or 

quadrupole moment.

An important point to note is that all of the results are

non-retarded, even those for which the interaction included exchange

of a virtual photon. This follows since in such cases the ion 

interacts through a permanent moment. The energy difference between 

initial and intermediate or intermediate and final states is then 

independent of a term for the ion and the resulting sum (5.2.9) leads

to shifts which may be written in terms of the static molecular

polarizabilities. Each shift therefore applies at all intermolecular 

separations.

The dominant term is that given by (5.2.7), where the interaction
-  4is of the charge-dipole type. The shift has an R dependence on the 

intermolecular separation and, unless the molecule has a very small 

dipole-dipole static polarizability, this will always be the leading
-5term. Two interaction terms have a magnitude which falls off as R 

These are the electrostatic charge-dipole/charge-quadrupole interac­

tion and the charge-dipole interaction which is accompanied by 

exchange of a virtual photon through electric dipole coupling at both



-174-

molecule and ion. The remaining R terms, which require the 

higher-multipole static polarizabilities for B to be significant, are 

likely to be less important than the pure dipole term (4.2.15), 

although we note that their contribution will not fall off by a factor 

which is inversely proportional to R in the far-zone.

Note that we have excluded magnetic-dipole interactions. Just as 

there is no static interaction between a permanent electric dipole and 

a magnetic dipole, we find that there are no magnetic-dipole 

contributions to the energy shift arising from graphs of the types

considered here. For example, when we replace the electric quadrupole 

vertex of Fig 5.5(i) with a magnetic dipole vertex we obtain an energy 

shift of zero. We were also able to neglect the terms of (2.7.8) and

(2.7.9) in which the interaction is via the vector potential. This is 

a result of our constraint that the ion is held fixed; these 

interaction terms do not appear in the Hamiltonian if there is no

ionic contribution to the current density.

The equivalence to the order shown in Section 5.4 is rather

elementary and perhaps does not emphasize the advantages of the 

multipolar over the minimal-coupling treatment. As we consider the 

higher-order terms, however, the simplicity of the multipolar 

calculations becomes more apparent. In Chapter 3 the relative merits 

of the use of the two interaction Hamiltonians in the calculation of 

matrix elements was discussed. It was shown through the use of sum 

rules how the higher-order energy terms obtained in the 

minimal-coupling method from the expansion of the vector potential 

were equivalent to those written down directly from the expansions of 

the multipolar formalism; we concluded that the latter method was both 

easier to use and physically more suitable. The same conclusion should 

be reached here for the matrix elements which involve exchange of 

transverse photons.



However, the multipolar Hamiltonian has not previously been used, 

as it has here, to determine the interactions between charged species* 

We must therefore assess how much this treatment has benefited the 

calculations. The partial cancellation of the intermolecular potential 

energy term in the multipolar Hamiltonian has been discussed at 

length. The remaining electrostatic terms, given by W , in (5.2.1),e 1 ec

all depend on the net charge of the ion A and form a series of 

charge-roultipole interactions. We have cancelled all multipole- 

multipole interaction terms in the construction of the Hamiltonian so 

that there is no term of the form of V2 in (5.4.1). Besides those 

terms which interact through the vector potential, however, the 

minimal-coupling interaction Hamiltonian boasts an intact 

intermolecular potential energy term V. x Only two terms wereinter

required here for the interactions to electric dipole but for the 

consideration of higher-order interactions we require the full 

multipole-multipole account. Each molecule will interact with the 

dipole potential, quadrupole potential etc of the other giving a 

rapidly expanding number of terras with increasing order of the 

interaction. For example, in the case under consideration here, to R 6
- 4this would require the use of dipole-quadrupole (R ) interaction 

potentials.

The interaction Hamiltonian (5.2.1) is therefore of considerable 

use in the calculation of the interactions between ions and molecules. 

The non-retarded interactions are determined in a straightforward 

manner, improving considerably on the minimal-coupling method, and are 

obtained directly in terms of molecular properties; this then allows 

them to be compared with the retarded interactions determined by the 

conventional multipolar interactions.



CHAPTER 6

THE INTERACTION OF FREE ELECTRONS WITH MOLECULES
6.1 Introduction

The interaction of free electrons with atoms and molecules is of
[ 70-73]continuing interest both theoretically and experimentally ,

most notably in the investigation of elastic scattering. For example, 

Au f71>721 hag calculated electron-atom interactions using the 

minimal-coupling formalism for all parts of his calculations. Now in 

this work we have already seen the benefit of applying the 

transformation to the multipolar formalism even for systems carrying 

net charge; in Chapter 5 ion-molecule dispersion interactions were 

derived in terms of the static polarizability of the neutral molecule. 

In such an important area of interest a similar study of the 

interaction between a free electron and a neutral molecule would be 

highly desirable. However, the theory presented in Chapter 2 assumes 

that all interacting species may be allocated a centre of mass or 

charge about which a multipole expansion is appropriate. Clearly this 

assumption is invalid in this case. The dynamics of the free electron 

are best described within the minimal-coupling formalism, with a 

suitable choice of wavefunction describing an associated momentum 

state. It is therefore appropriate that such a theory should be 

detailed which addresses this problem whilst preserving the multipolar 

description of the molecular interactions.

The transformation to the multipolar Hamiltonian is adapted here 

by considering the free electronic and molecular terms separately. 

Only the latter terms are transformed such that the new Lagrangian



leads to a Hamiltonian in which the free electron interacts via the 

vector potential and the interactions of the bound electrons proceed 

through the electric displacement field. The electrostatic terms are 

unaffected by the transformation. The Hamiltonian is then used to 

determine the interaction of a free electron with a molecule. For 

convenience and without loss of generality the centre of mass of the 

latter is taken to be the origin. The interaction is found to be

composed of both non-retarded contributions, and retarded terms for 

which we present both general results and results in the far-zone. All 

of the results apply for a given separation and in each case the 

electron is assumed to have a small initial momentum.

It was shown in Chapter 1 that there is considerable freedom

regarding the exact function used in the transformation of the

minimal-coupling Lagrangian. As an alternative to the transformation

described above it is possible to add the time derivative of an

additional term, thus transforming the free electron parts as well.

Such a procedure is discussed briefly also and it is shown that the

free electronic charge may contribute to a new transverse field, with
2which it interacts, thus eliminating the p.a(q) and a (q) 

interactions. However, as in the general Hamiltonian for ion-molecule 

systems it is not possible to eliminate the vector potential 

completely and the transformation was found to be less useful than was 

anticipated.

We begin with the presentation of the modified theory for an

electron-molecule system, giving the two forms of transformation. The

resulting Hamiltonians are then applied to the calculation of
4ion-molecule interaction energies, correct to e .



6.2 A new Lagrangian

The dynamical system consists of a free electron, defined by its 

coordinate q and momentum p, a neutral molecule B and the quantized 

radiation field. The labels a and a are used for the electrons and 

nuclei, respectively, of the molecule, which may be considered at rest 

with the origin defined at its centre of mass.

Much of the development of the theory naturally follows that 

given earlier in the first two chapters. Hence it is sufficient to 

present here only the new features. Choosing the Coulomb gauge, the 

initial form of the Lagrangian is taken from (2.2.10), although its 

exact form is reliant on the choice of charge and current densities. 

The charge density is

The transformation to the multipolar Lagrangian previously followed 

the partitioning of the current density in terms of the polarization 

and magnetization fields. These fields are again introduced for B, 

since we wish to describe its interactions in terms of its multipole 

moments. The free electron contribution to the current density is 

unaltered. Hence the total current density may be partitioned such 

that

a a
(6.2.1)

j(r) = j(e ;r) + j(B;r) , (6.2.2)

with the composite terms taking the forms
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j(e ;r) = -eqS(r-q) (6.2.3)

and

j(B;r) = p(B;r) + VxM (B;r) . (6.2.4)^ ^ ^ ^ «V

The fields in (6.2.4) take their previous definitions, except that we 

have put R_ = 0, ieB

1 1
p(B;r) = -e]> S « J 6 ( r X3a)dX + e 2 ZaSa I S(r XSa)dX 

«(B) ° a(B) °
(6.2.5)

and
l l

M(B;r) = - e ^ ( q ^ q ^ J  XSfr-Xq^JdX + e ^ Za ^3ax3a^J X5^ ' XSa d̂X* 
a(B)'V ° a(B) °

(6.2.6)

The transformation of the Lagrangian, which follows next, is the 

important step in the formulation. The restrictions on the form of the 

function chosen for addition to the Lagrangian were given earlier. We 

may write

L w = L " 7ffpt(B 5r)ai(r)d3r (6.2.7)new in l n clLJ ^ ^

where the familiar transformation now includes only the polarization 

field for B. The interaction of the electron current (6.2.3) with the 

vector potential is thus left unaltered. Should we consider a system 

where the electron might interact with a number of molecules then the 

total molecular polarization field would be required in (6.2.7).

The new Lagrangian is again written as the sum of particle, field 

and interaction parts and the transformation follows the elimination 

of the scalar potential. The electrostatic terms formed by this are



included in (6.2.8) with a partitioning into an intermolecular term, 

given below, and an intramolecular term for the molecule. In the 

particle Lagrangian (6.2.9) the nuclear terms are written separately; 

these are retained for completeness but it is recognised that in many 

problems, such as the scattering of electrons by atoms, they may be 

discarded. Thus

L = L + L + L. . (6.2.8)n e w  p a r t  r ad int

with

Lp.rt = < V 2>32 + < V 2> 2 &  + I < V 2>3a + Vintra<B> *
a

(6.2.9)

Lr.d = <Eo/2)Jl3(E)2'c2(!x3(E ))2rd3E >

and
(6.2.1 0)

Lm t  = ' Jpi (B:E K (E)d3E + j{Yx?(B;E)}iai(E)d3E

' eJ V ^ )5̂ (r S )d3E ' Vinter
(6.2.11)

The intermolecular potential energy term is given by

i t  = T  ' (6-2 '12)l-4”V l  a 13'SJ a iS’Sa1 I

From these expressions the canonical momenta may be written down 

directly. Note that the integration over r in the third term of

(6.2.11) may be performed after first writing the integrand with the 

complete delta function, which is allowed since a(r) is transverse.



6.3 The canonical momenta

The canonical variables are given by (q,p) for the electron, 

(q . p  ) and (q ,p ) for B and the field variables are given by theCvX *,OC 3.
pair (a(r),Il(r)) as usual. The momenta, defined from the Lagrangian, 

are given by

■i(«) “e

and

p<-(a) = V t ( a >  " Ifca(B;E ,XB(E ))<d3E

nt (r > = eo \ {'TJ  • pi<B :E)

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

Note the forms of the particle canonical momenta. For the electron, p^ 

appears in its minimal-coupling form whereas an<  ̂ -̂c(a) are

written in their usual multipolar form in terms of the auxiliary 

fields n (B;r) and n (B;r), which are redefined as-vOc' ~

n0 (B ;r) = - e J ^  | X5(r-Xqa )dX (6.3.5)
«(B)~ °

and

na (B;r) = + e ^ ^aqa J ^(r-Xq^)dX . (6.3.6)
a(B) °

A rearrangement of these expressions in order to obtain the velocities 

will precede the formation of the Hamiltonian.



6.4 The Hamiltonian

The Hamiltonian constructed from (6.2.8) is given below. The 

standard partitioning gives

H = H ♦ + H + H*1* + H (2! + W , + H ,new part rad ini int elec self

(6.4.1)

where each term is written out explicitly below. The particle 

Hamiltonian is simply given by

H . = pZ/2m + T  pZ(B) + (1/2) ) pZ(B)/m + V (B),p3 r 1 © wID L  /a d> A i ntrse a a
(6.4.2)

the radiation Hamiltonian by

h = \ rad £, |di2(r)/£o+ £0cZ(^xa(r))2 >d3r (6.4.3)

and the interaction terms are given by

H !nt = ■ei1Js(B;r)-^(j)d3r
(6.4.4)

and

H!nl = (1/2me) I  (l2a(B;E)xB(E)d3E) + 1 (1/2ma)(l2a(B!E)x̂(E)d3E)
a(B) a(B)

+ (eZ/2m )a2(q)e a.

(6.4.5)

In contrast to the conventional transformation of the minimal-coupling 

to the multipolar Hamiltonian for neutral systems where all 

electrostatic terms are completely eliminated, V. A given byinter



(6.2.12) remains after the transformation and forms part of the 

interaction Hamiltonian. The first terms of the Taylor expansion of 

V. , about the origin are given byinter

w.i.c = -(4fr){'VB)qi/<l2 + V B)(V 3W q3} •
(6.4.6)

The remaining self-energy term is

H.eir = 2i;Jls'L(B:!:)lZd3j: •

(6.4.7)

In (6.4.4) the magnetization of the neutral molecule m(B;r) 

assumes the definition used in Chapter 4, modified only by the choice 

of origin.

Let us consider the distinctive features of this new Hamiltonian.

The field canonical momentum is the same as the electric displacement

vector field (apart from sign) and the coupling of the molecule with

the field is given by conventional multipolar interactions. The

interaction of the free electron with the field, however, is given by 
2the p.a(q) and a (q) terms. As mentioned earlier, one significant 

difference in contrast to the Hamiltonian of Chapter 2 is that now 

there is no corresponding intermolecular polarization product, a 

consequence of the transformation used. The partial cancellation of 

the intermolecular potential energy term in that case does not take 

place here and hence (6.2.12) is left intact.

These terms will be used shortly to consider the interaction of 

an electron with a neutral molecule. In addition to the electrostatic 

interaction between the pair there are terms arising from exchange of 

virtual photons. The constraint will be that both electron and 

molecule return from any intermediate state to their initial states.



First we extend the theory of the preceding sections by considering an 

alternative type of transformation.

6.5 An alternative transformation

In this alternative transformation the total time derivative 

which is added to L . now includes a term for the electron as well.mi n

The explicit form of the transformation is

L„.w = L»i„ - + ^ J v < f (~ )5(r s )d3E

(6.5.1)

The first total time derivative has been dealt with; the multipolar 

form of interaction for B will not be considered further. The second 

term transforms the electronic parts. The form of this term was chosen 

specifically to maintain the similarities between the molecular and 

electron parts.

In the resulting Lagrangian new terms appear in L' ;

L' = e[q-a.(r)S^.(r-q)d3r + efq.(V a (r))6(r-q)q-d3r - Vint. J ^ <vjv-«v <v <» <» inter

(6.5.2)

with the intermolecular potential energy term again given by (6.2.12). 

In writing the first term of the above expression it has been noted 

that the contribution from the longitudinal part of the total delta

function is zero. The second term results from the total time

derivative of the delta function and integration by parts. The new 

forms of the canonical momenta are then
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Pt = meQ-t + eJq^ Vta^l[!^5 ^ " 3 ^ d3£
(6.5.3)

and

= co \ <'V - pt (B:^  + eV ^ (r s ) •
(6.5.4)

The new field canonical momentum is a modified form of the 

displacement vector field. Its cross term with pX (B;r) following the
^  <v

square of a-(r) in the construction of the Hamiltonian will have the 

dimension of a polarization product and will thus partially cancel the 

electron-molecule potential energy V. xinter

Using these canonical momenta the Hamiltonian follows 

immediately. The new terms only are given below. Hence

H = H 4 + H . + H (\} + H (2* + W , + Hn e w  p a r t  rad ini int e l e c  self

(6.5.5)
with H unchanged and H J given byp& r t rad

l
H  ,4 ^ 9rad Z dX2(r)/eQ+ e0c2(^xa(r)) fd3r , (6.5.6)

where dX (r) is a new transverse field to be defined shortly,

H lni = < e / e 0 )2 - ^ (? ) ‘ (e / 2 m e ) (P 4 . V v j V 'i-a/ 5 )

- e’1Jp(B;r).dX (r)d3r , (6.5.7)

K V l s (e2/2me ) ( q ^ ( R ))(q^ ( R ) )  , (6.5.8)

and the remaining electrostatic and self-energy terms are given by
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We 1 ec - (e/£0 ) J q ^ ( B ; r ) ^ ( r - q ) d 3r + V.inter

(6.5.9)
and

H  = self

(6.5.10)

The molecular term has been included in (6.5.7) since it is written in 

terms of the new field. In the definition

an electronic as well as a molecular term contributes to this new 

field. This choice will then give

by analogy, although d(r) given by (6.5.11) should not be mistaken for 

the displacement field, which uses the same symbol. Let us compare 

this Hamiltonian with (6.4.1) derived earlier. A new interaction term 

has been derived which describes how a free electron may interact 

through the exchange of transverse photons. However, the vector 

potential has not been eliminated; this is only possible for neutral 

systems and charged systems at rest. In fact, the transformation has 

produced a first-order term with the dimension of a magnetic 

interaction and a second-order term of a diamagnetic equivalent, 

neither of which is straightforward to use. Further, unlike in 

molecular interactions, where the dipole approximation may be used, 

each of these terms would have to be considered in the study of 

electron-molecule interactions since there can be no question of order 

with regard to magnitude. Likewise the electrostatic terms are

d(r) = eQe(r) + p(B;r) - eqS(r-q) , (6.5.11)

(r) = -d"L(r) (6.5.12)

complicated. It was easy to consider just V inter in (6.4.1). The



- 1 8 7 -

corresponding terms here would result from a simplification of

(6.5.9). In Section 2.6, where the intermolecular polarization product 

contained integrals in closed form, W , was determined as a complete° e l e c

sum. In this case we could only determine these terms in the form of a 

series expansion. Of the two Hamiltonians (6.4.1) and (6.5.5), the 

former is the more suited for applications and is the one used in the 

following section.

6.6 Electron-molecule interactions

The Hamiltonian developed earlier in this chapter is used here to 

determine the interactions of a free electron with a neutral molecule. 

The use of perturbation theory gives the interactions in the form of 

energy shifts for a given separation. The interaction Hamiltonian for 

the system is

H. = (e/m )p.a(q) + (e2/2m )a2(q) - enV(B).dX (0)int e ^ ^ ^ e ^ ^ u ^

- (e/4Tteo )p^(B)qi/q3
(6.6.1)

where the molecular centre of mass is defined as the origin. The 

position vector relative to this centre and the momentum of the 

electron are denoted by q and p respectively: the electron is

described by the state |p> with an associated momentum p = hx. The 

electric dipole approximation is assumed for the interaction of the

molecule with the electromagnetic field.

Typical time-ordered graphs showing the interactions between an

electron and a molecule are drawn in Fig 6.1, where a vertical double

line represents the molecule. The graphs characterise the type of 

interaction. Graphs (a) and (b) determine the non-retarded interaction 

whilst (d), (e) and (f) will account for the fully retarded



contributions. In Fig 6.1(c) the interaction is partly Coulombic and 

partly due to transverse photon exchange. The graphs are used to
4calculate the interaction up to e and the total energy shift is the 

sura of these results.

The electron is assumed to have a small momentum so that its 

change of kinetic energy upon interaction with the field is small 

compared with the spacing of the intermediate states of the molecule. 

For this case the addition of the energy denominators is greatly 

simplified and some of the results of Chapter 4 are used here. 

Further, in some cases the separation q is sufficiently large (the 

far-zone limit) that the virtual photon energies are small. The 

molecule may also be assumed to be random oriented with respect to p.

We first consider those interactions which are purely 

electrostatic and thus clearly non-retarded.

i) Non-retarded interactions

If the neutral molecule B has a permanent moment then the lowest 

order interaction is given by Fig 6.1(a). The energy shift for this 

case may be written down directly as

AE(a) = (-e/47re0 )/i2°(B)q^q’2 (6.6.2)

which is a simple charge-dipole interaction dependent on the inverse 

square of the separation. The higher-order electrostatic term, given 

by Fig 6.1(b), involves a sum over the free electronic and molecular

intermediate states. Now the energy denominator for this case is given
2 2by [E -(p -p# )/2m], where the second term is the difference in8 O

kinetic energy of the electron in the two momentum states. It is a 

good approximation to assume that this quantity is small compared with 

E if the electron is slowly moving. This allows us to make theS O
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FIG 6.1: CONTRIBUTIONS TO ELECTRON-MOLECULE COUPLING IN QED
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(p2-p'2)/2m [(p2-p'2)/2m]2

E2 E2 [E. -(p2-p,2)/2m]80 80 80

(6.6.3)

and assume that the major contribution comes from the first two terms 

of (6.6.3). The contribution from the third term of (6.6.3) may be 

neglected so that the remaining terms give the shift

AE(b) * AE'(b) + AE"(b) . (6.6.4)

The contribution with the first term as the denominator is
_ istraightforward; E may be taken into the definition of the staticS O

electric dipole polarizability of molecule B. Effecting closure over 

p' gives the non-retarded result

AE'(b) = (-e2/2)(4Tt£0) ' V ° ( B ) q ^ q ' ‘' (6.6.5)

which is independent of the electron momentum p.

In order to evaluate AE''(b) we make use of the relationship

[(p2-p/2)/2m]<py |q^q“3 |p> = <p M  [ ^ q ’3 »Helec 11P>

(6.6.6)

where H , is the Hamiltonian for the unperturbed electron, and thee 1 ec

commutator

expansion

E -(p2-p/2)/2m E 
8 0 8 0

1
  +
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It is then possible to effect closure over p' and obtain

08 80

S 80

(6.6.9)

which is small compared with (6.6.5). Contributions from the third 

term of (6.6.3) are even smaller, with higher inverse powers of 

q-dependence, and are neglected.

Next we consider the interactions given by the six graphs of the 

type Fig 6.1(c), which include the exchange of a virtual photon in 

addition to the electrostatic interaction.

ii) Coulomb interaction plus transverse-photon exchange

An exact solution of the contribution from graphs of the type 

Fig 6.1(c) to the total energy shift is not possible. However, with 

the use of an expansion of the type (6.6.3) for each factor in the 

denominator we may consider the separate contributions individually. 

The first term after angular integration of the photon wavevector is

where p^ is the component of the electron momentum along the direction 

T;i(kQ) is defined by (4.2.7) and D'(k) refers to the sum

AE'(c) = i(2Tt)'3(4«£0 )"1(e2V 2 £ 0m)pi ^

x(4it)J[T^(kq) - t^(kq)]q^q 3D'(k)k2dk = 0
0

(6.6.10)

1 1 1
D'(k) + +

E (E +hck) hck(E +hck)80 80 SO E hck80
(6.6.11)



So we need to consider the next term in order to obtain a contribution 

from this set. Upon integration the leading term gives

00
AE''(c ) = i(2n) 3(e2b3/2e^m2)p^ ^ 1*%* J <7̂ ( k<l ) ^ ^ (1 3D''(k)k3dk

s o
(6.6.12)

with the now slightly more complicated sum over the energy factors 

given by

D"(k) =    +     +
(E +hck)s o

E2 (E +hck) (hck)2(E +hck) E2 (tick)2S O S O  s o  s o

(6.6.13)

and q) also assuming its earlier definition (4.3.9.). A useful

result may be obtained from this expression in the far-zone, where 

E » hck. The sum reduces tos o

D;;(k) = 2fEso(hck)2] (6.6.14)

which is then used in (6.6.12). To simplify the calculation we may 

choose one axis of the laboratory frame to be parallel to the electron 

momentum. For a freely rotating molecule we then obtain

AE'' (c) = i(3e2h/32rc2£2m2c2)oc(B)p(q-p)q

(6.6.15)

where oc(B) is the isotropic, static polarizability of B and p is a 

unit vector along the direction of the electron momentum. This term, 

in contrast to those of the previous sub-section, is dependent on the 

magnitude of the electron momentum.



iii) Fully retarded interactions

This final section considers all interactions which are fully 

retarded. Coupling may proceed via exchange of a single or two 

transverse photons and the interaction vertices are either linear or 

quadratic in the vector potential. To begin with, consider Fig 6.1(d). 

Two such graphs account for the exchange of a virtual photon. However, 

following angular integration we find that the two terms give equal 

and opposite contributions ie

oo
AE(d) = i(2Jie/eomc)p^/i°°(B)J[T^(kq) - x^(kq)]kdk

o
= 0 (6.6.16)

and so there are no contributions from this form of coupling.

The twelve graphs of Fig 6.1(e) may be used to determine the 

energy shift arising from an exchange of two virtual photons. The form 

of the graphs is familiar from the dispersion calculations of 

Chapter 4, except, of course, that here the electron interacts with 

the vector potential. The use of a(r) instead of d(r) at the electron 

vertices does not provide any difficulty, however, since we may make 

use of the results of Tables 4.3.1/2 to evaluate the sum over the 

energy denominators. The relevant sura is S, and an exact expression4

for AE(e) is

„ V V V ~ ~ ik.q ik'.q
AE(e) = (eh/meQ V) p ^  2  A  , CLU P L'il<1t\e ~ ^ IP# ><£ / Ie ~ "lg>

s S ~ £

E +hck'-(p2-p/2)/2m r 1 1
x--------------- — -------------------------------- 1------ -----
[E -(p2-p'2)/2m] [hck'-*(p2-p'2)/2m] [E +hck']^k+k' k-k'so so

(6.6.17)

in which is defined by (4.2.5). The evaluation of (6.6.17)

j(frc)-1



requires an approximation; we again assume that for a slowly moving
2 / 2electron the quantity (p -p )/2m is negligible in comparison with the 

other energies. This allows closure over p' so that a result may be 

quoted for a given q. Following angular integration the complete 

result reduces to

AE(e) = (e/2Jt2eQmc)2p^p. ^
t L E

S so
00 00

X

00 00

IJ Tu (k<j)T*£(k,q)(rr “ — )k2k'dkdk'-9 Mf4*lr If— V '4c+k k-k o o
(6.6.18)

Before proceeding note that the pre-integral factor is symmetric to 

the interchange of the indices t & i and/or £ « £. Integration over p' 

gives

AE(e) = rc(e/2n:2£omc)2q 3P*Pi ^
* “ ES so

00

XJT<t&(kq) [a^[(kq)2cos(kq)] + ^ [ 1  “ (kq)sin(kq) - cos(kq)]jdk. 
o

(6.6.19)

Using (4.2.7) for x^£(kq) we may write each term in a symmetric form 

so that a suitable change of variable gives for the integral of

(6.6.19)

oo

(2q)-,||2«a « ^ T 1(x) + + <WVt>T2(x) + 2Pa V I’3(x)}dX
(6.6.20)

where the trigonometric functions T (x) aren
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Tt(x) = (x/2)sin(2x) (6.6.21)

T2(x ) = cos(2x) - sin(2x)/x + sin(x)/x (6.6.22)

T3(x) = [sin(2x)-2xcos(2x)]/2x3 - sin(2x)/2x - [sin(x)-xcos(x)]/x3 ,

(6.6.23)
and

kq = x (6.6.24)

With the use of standard integrals [67] it is easily shown that the

integral (6.6.20) is zero, so that

AE(e) = 0 (6.6.25)

Thus there is no contribution to the electron-molecule interaction 

from two-photon exchange with graphs of the type Fig 6.1(e), within 

the approximations used.

However, there is another type of two-photon exchange which needs 

to be considered. It occurs through quadratic coupling with the vector 

potential as shown in Fig 6.1(f). There are three such gra.phs. Summing 

the three terms with the use of Table 4.3.3 gives after angular 

integration

-kqcos(kq)] + £^[sin(kq) - (kq)’1 + cos(kq)/(kq)]Jdk .

(6.6.27)

AE(f) = -(e2/16rc4£3mcZ )

(6.6.26)

Integrating over k and dropping the primes gives
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Now with limits 0 to ® a final evaluation of (6.6.27) cannot be done 

exactly. However, as for AE(c ), we may determine the contribution in 

the far-zone; (6.6.27) is modified by the use of kg » k and the final 

result is found to be dependent on the static polarizability of B. The 

use of standard integrals gives an energy shift

AE(f) = -(e2h/256rc3£2mc)a2°(B)(6^+7q^)q 5

(6.6.28)

which has the same q-dependence as the aforementioned term but does

not depend on the electron momentum. This concludes the calculation of
aall interaction energies up to e .

6.7 Summary

It has been calculated here that the interaction between a free

electron and a neutral molecule is made up of both electrostatic terms

and terras which arise from transverse photon exchange and that the

former are the more dominant, especially if the molecule is polar.

The results are summarised below.

For molecules with a permanent moment the lowest order

interaction is given by (6.6.2). This is the simple charge-dipole

interaction and the inverse square dependence will dominate

higher-order terms. Since there is no contribution from coupling

involving the exchange of one virtual photon (6.6.16), the complete 
2interaction to e is entirely electrostatic,

4The remaining interactions up to an order of e have also been 

determined. The calculation of the second-order electrostatic coupling 

was made following the binomial expansion of the energy denominator, a 

step which took the assumption that the electron is slowly moving. The 

resulting terms then form an inverse power series in the separation q,
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such that the first two terras only need be considered. The first,
- 4which behaves as q and depends on the static polarizability of the 

molecule, corresponds to the ion-molecule interaction (5.2.7) and is 

the dominant term for the interaction of a free electron with a 

non-polar molecule since it remains for all separations. This 

contrasts the dispersion interaction studied in Chapter 4, in which 

the London result falls off with increasing separation to give the 

Casimir-Polder interaction. The second term, which behaves as q 6 , is 

considered as a small correction term to the total electrostatic 

interaction.

We next considered the third-order interaction made up of the

excharjge of a virtual photon in addition to electrostatic coupling.

The leading term was determined for the far-zone case and it was found

that the energy shift was proportional to the electron momentum and
- 5the static, isotropic polarizability of the molecule, with a q

dependence on separation. A result with similar q-dependence was

obtained in the far-zone for the leading term from the third-order

interaction involving exchange of two photons (6.6.28). Unfortunately

it was not possible to obtain an exact, general result in these cases.

Where two-photon exchange proceeded through interactions linear in the

vector potential it was found that there were no terms significant to

the overall energy shift, although contributions from terms smaller in

magnitude have yet to be calculated.

The new Hamiltonian developed here to study the interaction of

free electrons with molecules is both ideal in its form (with

multipolar expansions describing the molecular interactions and a

momentum state representing the electron) and easy to apply. The
[ 71,72]results given may be compared with those of Au ' whose

calculations used the minimal-coupling Hamiltonian. As far as is 

comparable our results agree; lie has obtained terms with the same



q-dependence, although his work applied to the electron-atom rather 

than the electron-molecule interaction. The Hamiltonian itself was 

written down for a single electron and molecule, although a more 

general form for a collection of electrons and molecules follows 

naturally. The extension to a study of electron-ion interactions is 

also straightforward, since the multipolar Hamiltonian for the 

interactions involving ions has been developed here also.

The work presented in this chapter forms the basis for further 

studies on electron-molecule interactions. As well as the calculation 

of higher-order terms of the type dealt with here it would also be 

logical to relax some of the restrictions imposed on the nature of the 

interaction. The results given are in the form of an energy shift for 

a given separation q. If we were to consider more general cases, in 

which the momentum state for the electron may change, then perhaps we 

could consider scattering processes. For example, if we were to define 

initial and final momentum states fob the electron as |p> and |p'>
A* <V

with j p | = | p ' | then an integration over all space would allow the 

results to be interpreted as contributions towards the elastic 

scattering of an electron.
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