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ABSTRACT

Molecular quantum electrodynamics describes the interaction of
molecules with radiation. This theory in its multipolar form is
applied to intermolecular interactions; coupling proceeds through the
radiation field and is mediated by an exchange of photons. The basic
theory is outlined in Chapter 1 and the conventional transformation
from the minimal-coupling to the multipolar Hamiltonian is generalized
to include non-neutral systems and translational motion. The
equivalence of the multipolar and minimal-coupling forms is
demonstratedr-by comparison of results obtaihed for two-photon
absorption and scattering by chiral molecules.

Chapter 4 examines the dispersion interaction between neutral
molecules; all interactions occur via the field and are fully
retarded. The standard result in terms of electric-dipole
polarizabilities is supplemented by those obtained through interaction
of higher-order molecular multipole moments with the field;
electric-quadrupole and magnetic-dipole interactions are included. The
results are valid at all separations large enough to neglect electron
exchange and apply to molecules with specific orientations.
Rotationally-averaged expressions are presented also, as are results
obtained in the near- aﬁd far-zones. Where appropriate results have
been expressed in terms of pure electri¢ and mixed electric-magnetic
polarizability tensors.

The Hamiltonian developed in Chapter 2 is applied in Chapter 5 to
the calculation of the dispersion interaction between a molecule and

an ion at rest; supplementing the energy shifts calculated in



Chapter 4 are non-retarded terms arising from charge-multipole
interactions. All terms up to a cut-off point of an R-6 dependence on
separation are taken into account and the minimal-coupling treatment
of this interaction is contrasted.

In the final chapter the theory is modified in order to determine
the interaction of a free electron with a neutral molecule. A new
transformation to the minimal-coupling Lagrangian is used where only
the molecular terms are transformed; the dynamics of the free electron
are described within the minimal-coupling formalism while the

multipolar nature of the molecular interactions is preserved.
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CHAPTER 1

INTRODUCTION

Quantum electrodynamics (QED) has an established platform among
the modern theories of physics. It is the theory which describes how
matter interacts with the electromagnetic field. Its identifying
feature and fundamental principle is its treatment of the radiation
field in a fully quantized manner; the collection of particles and the
radiation field compose the dynamical system. Both conceptually and
in its predictive capacity QED has superseded semi-classical radiation
theories; it accounts for effects for which the latter cannot and
provides excellent agreement with experiment.

Although it is a modern theory its development may be traced back
to 1927, the famous paper by Dirac (1) in which quantization of the
field was discussed. The particles arising from the quantization are
photons, the procedure itself known as second quantization. This
framework is particularly suited to‘problems in theoretical chemistry
and chemical physics since in this description of the radiation field
the number of photons need not be conserved; processes such as
absorption, emission and scattering are ideally accounted for in terms
of interactions of photons with atoms or molecules. Fluctuations of
the field, allowed for in this formalism, directly lead to the
derivation, with excellent agreement with experiment, of the Einstein
A coefficient in spontaneous emission, the Lamb shift and the magnetic
moment of the electron, effects for which semi-classical theories have
no account. Such cases were instrumental in the adoption of QED as the
theory for elucidating the interactions of 1light with matter.

. . . 21 . .
Schwinger’s compilation is a valuable source of early papers in



QED.

Molecular quantum electrodynamics is the structured
non-relativistic limit of QED and it is the form of the theory used
here. The particles in interaction with the field are electrons and
nuclei; the number of such particles is assumed to be fixed and they
are assumed to be moving at low speeds (and hence with constant
masses) so that they may be grouped together to form atoms and
molecules. Certain approximations are invoked where appropriate, such
as the neglect of the motion of nuclei compared with that of the
electrons and the neglect of recoil following absorption or emission
of a photon. Other than those mentioned, the theory has also been
successfully applied to problems in optical activity (such as optical
rotation and circular dichroism), intermolecular interactions and more
recently non-linear optics (for instance second harmonic generation,
Hyper-Raman scattering and CARS), an area which is becoming of
increasing interest with the continuing improvement of laser sources.

Various aspects of the form of the theory and its applications

. {31 [41] [5]
may be found in accounts by Power , Loudon and Moss ,

) 6 7-9 .
reviews by Woolley tel and others : ], and in recent texts by

Healy t10] and Craig and Thirunamachandran L1l

In the discussion of the interactions between molecules the
coupling may be considered as identical to the electron-photon
interactions discussed in other optical effects. That is,
molecule-molecule interactions proceed via the field, which mediates
photon exchange. In this thesis quantum electrodynamics is used to

discuss such interactions. As a preliminary to these discussions it is

useful to outline some of the relevant features of the theory.
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1.1 Basic Theory

This section gives an outline of the formulation of the quantum
electrodynamical Hamiltonian from 1its <classical origins. For
simplicity let us consider a system of particles with a total net
charge of zero interacting with the electromagnetic field in the
Coulomb gauge. If the charge and position of a particle a are given by
e and . respectively then the total system is described classically

(64

by the Lagrangian function L given by

€
-2 off-, 2 2 2| .3 L 3
L o= 1/2) nal v+ z—j{g@) ~c*(Va(r)) }d o+ [0 .aln)d’
[0 4
(1.1.1)
where jL(r) is the transverse component of the current density, and

where the positions of the moving charges are defined with the use of

the Dirac delta function so that

j(r) = Eea qa 8(r-q,) . (1.1.2)

~ o~ ~ ~ o~

o

V is the Coulombic potential energy summed over all pairs of charges.
The Lagrangian for the coupled system, given by (1.1.1), is a

function of the particle coordinates and velocities and a functional

of the transverse vector potential g(z) of the field and its

corresponding velocity. The vector potential is related to the

electric and magnetic field vectors e(r) and b(r) by the relations

o
PN
a1
~
1]

curlg(f) (1.1.3)

[
—
~
-
1l

-é(f) (1.1.4)

The Lagrangian function is fundamental to classical mechanics.

Its origin lies in the calculus of variation; Hamilton’s principle of
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variation, which minimises the action integral, leads to Lagrange’s
equations, a solution of which is the Lagrangian.1 It is not a unique
solution, however, and as we shall see there is some flexibility in
the explicit choice of Lagrangian.

The first two terms of (1.1.1) are particle terms and they are
followed by a field term and an interaction term. The standard texts
develop the formalism through consideration of separate particle and
field systems before considering interaction. In the absence of
interaction the dynamical variables of one system do not affect the
other; the two systems have equations of motion that are not coupled
to one another and move independently. When the particles and field
interact the equations of motion of both particle and field are
coupled; the particles have their motions affected by the fields, of
which they (as charges and currents) are taken to be the sources.
Hence the Lorentz force (1.1.5) appears, representing the force of the
field on the particles and in turn the equations of motion for the

field are Maxwell’s equations with sources (1.1.6).

- _ 9V 4 .
B%ie = “Bg * Cal€il%y) * [92b(g,)])

~

(1.1.5)
_ P
vie = %
0
V.b = 0 (1.1.6)
-db
vxe = 3
de
2 - =~ LJ
c Y x 9 = 3t + = ~

1These steps have been referred to in order to ensure continuity in
the formulation. For a fuller account the reader is referred to texts.
See for example [12-16].
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The choice of the Coulomb gauge, and hence el = -ag/at, allows (1.1.5)
to be written with the transverse electric field in the second term.
The subscript 4 may be any of the Cartesian components. Throughout the
thesis the standard summation convention is used so that a repeated
Latin suffix (in script font) always implies a sum.

The Lagrangian (1.1.1) may be shown to lead to these equations
through the use of Lagrange’s equations.

An alternative representation to (1.1.1) was proposed by
Hamilton, in which a new function was defined from the Lagrangian. In
Hamilton’s formalism the function H, which is called the Hamiltonian,

is defined by

~

Ho= ) pgedy + JMa(r)d’r - & (1.1.7)
[¢ 4

where P, and I(r) are the momenta canonically conjugate to q, and a(r)

~

respectively. Their definitions are given below.

= 9L : ney = & (1.1.8)

= A, - e
where £ is the density functional of the Lagrangian (1.1.1). It should
be noted that the canonical and kinetic momenta are not necessarily
identical: it is the canonical momentum which is required.

For a conservative system the Hamiltonian is the total energy of
the system, the sum of the kinetic and potential terms ie H =T + V.
In the canonical formalism the Hamiltonian should be written in terms
of the ’canonical variables’. These are the coordinates and canonical
momenta for field and particle. Hence the coordinate ’'velocities’ for
field and particle must be eliminated in their favour.

The Lagrangian function (1.1.1) is known as the minimal-coupling



Lagrangian, or Lmin. If the charges are grouped together to form
electrically neutral assemblages, ie atoms and molecules denoted by
the label T, then the resulting Hamiltonian from the use of (1.1.7) is

consequently known as the minimal-coupling Hamiltonian, or Hmin;

Hmin = E Hmol(C) + Hrad + 2 Hint(c) + vinter’ (1.1.9)
< S
with
wor (@) = ) Spi@) + V(D) (1.1.10)
[0 4
¢4
°(r)
H | = %H}(; + EOCZ(YXE(E))Z}daf (1.1.11)
€ ez
@ = =) (e ata @)+ ] (),
[0 4 [0 4
(1.1.12)
and
inter = zv(c’cl) (1.1.13)

e’
The Hamiltonian (1.1.9) is a classical function. Its quantum
mechanical analogue is written down directly by interpreting the

canonical variables as operators subject to the commutation

restrictions
[qi(a)(g), ()] = 1M B (1.1.14)
and
. s b ,
[ai(f)’nj(f )- = 1h6ié(£—£ ) . (1.1.15)

where 8L;(r—r') is the transverse delta function (171 defined by



N 5 A~ dko(e-r)
55(xr') = (1/2m) J(Sq-k.kj)e Tt dk

(1.1.16)
The interaction terms are given in (1.1.12). The first-order term
shows the interaction of the particle momentum with the vector
potential; the second-order term is quadratic in the vector potential.
Note also that the potential term V appears explicitly and is
partitioned into intra- and intermolecular parts.

For many applications of the quantum electrodynamical theory to
problems in quantum optics and theoretical chemistry, however, it is
more convenient to employ the multipolar Hamiltonian in which the
interaction is described in terms of the electric displacement and
magnetic fields rather than the potentials and coupling of the field
is with molecular multipoles rather than the canonical momentum.

If the chosen Lagrangian has been shown to lead to the correct

equations of motion then a new and equivalent Lagrangian may be

[18-19,11)

obtained by the transformation
4 3
Lo = L. - rra by (E)'f(f)d r (1.1.17)
. . . . (20-231 .
where p(r), the electric polarization field , is a function of
the particle coordinates. Lmult must then also be a suitable choice.

The two action integrals arising from Lmu and Lmin differ by a

1t
quantity which gives zero on variation and so the form of the
equations of motion is unchanged. Thus the Lagrangian is defined only
to within the addition of any function of the particle coordinates and

time.

The resulting Lagrangian is given by
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€
Loure = 1/22 mg, + ggf{g(g)z—cz(YXg(g))z}dBE

+I{VXM(r)}.a(r)d3r —pr(r).é(r)d3r -V (1.1.18)
where p(r) amd M(r), the magnetization field, are defined by

1
p(r) =) o3 R)[ B(xRA (g RN
(o]
o

(1.1.19)
and

. 1
n) = ) ea{<sa-§>xga}f A(r-R-2g, R))dh.
o
[¢ 4
(1.1.20)

The use of polarization and magnetization fields allows the total
charge density associated with each assemblage to be divided into
'true’ (ionic or free electronic) and polarization charge densities,
and the total «current density into true, pclarization and

magnetization current densities. The charge density is given by

p(r) = 2 ed(r-a,) (1.1.21)
o
= """ (r) - Vop(r) (1.1.22)
with
' (r) = ) e B(rR) (1.1.23)
[0 4
and (1.1.2) may be rewritten as
Jr) =, . (r) + p(r) + VxM(r) (1.1.24)

Clearly ptrue(r) and j.

lonic(r) vanish if there are no net or free

charges, as 1in this case. 0Of course, the partitioning of the total
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charge and current densities into true and bound contributions
necessitates the introduction of the reference vector E, relative to
which motion of the composite particles is to be defined. This vector
may be chosen, for example, as the centre of mass, a local chromophore
centre or an inversion centre.

L is known as the multipolar Lagrangian. The multipolar

mult

Hamiltonian is formed in the usual way and is given by

Houre = Z H (O +H __+ z H () +H__ (1.1.25)
< ¢

with Hmol(C) unchanged from (1.1.10),

42

d " (r)
Heaa = %J{ e EOCZ(YXE(E))Z}d35 (1.1.26)
celf - ziof EIQL(C;E)IZd35 (1.1.27)
¢

and the interaction terms now given by

© = -e;'fo@in).d" (0 -[a(@ir).b(r)d’
*%Ifoig(c;f’fl)bL‘E)bg(E')dafdag’ : (1.1.28)

Note that the definitions of p(r) and M(r) have been modified; we

write
p(r) = E p(C;r) ; M(r) = E M(T;r) (1.1.29)
¢ ¢
where we have partitioned the contribution to each field from the
individual molecules, which are labelled . In (1.1.28) g(g) is the
electric displacement field, T(E) the magnetization and 0&4(5’51) the

diamagnetizaton field. These new fields are defined below.
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The first term of (1.1.28) contains the interaction of the
electric multipole series with the field. The electric displacement
field is defined by

d(r) = -ea(r) + p(r) (1.1.30)
and its transverse component appears in the interaction and radiation
terms. The interaction of the magnetic multipole series with the

magnetic field b(r) is given by the second term of (1.1.28). The

magnetization is defined as

n(r) = ) a(C;r) (1.1.31)
<
with
p) = L 1 . .
m(C;r) = EZ m‘{ga(c,g)xga(ll’) - ga(C)Xga(C,g)} (1.1.32)
«(g) * |

In (1.1.32) the vector field n({;r) for a molecule T is given by

1
n©r) = ) n(Sir) = ) ea<3a-§c>f0*5(£*§c-*<9a-8c)>dl '
«(T) o«(T)
(1.1.33)

where the label C of q, is implicit. The diamagnetization interaction
(the final term of (1.1.28)) contains terms which are second-order in
the magnetic field. Its field definition below includes the use of the

auxiliary vector field defined above. We have

0..(r,r') = 2 Oié(c;r,r') (1.1.34)

(1.1.35)
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Hself is composed of only the transverse electric polarization
field associated with each molecule and as such is a self-energy
correction term which does not contribute to radiative processes (and
so may usually be ignored). Note that it only contains one-centre
terms; it will be shown in Chapter 2 that it is the cross terms of the
transverse polarization product which exactly cancel the
intermolecular potential term, a consequence of the highly localized
nature of the total molecular polarization fields. Thus no such
potential term appears explicitly in the Hamiltonian and all
/interactions proceed via coupling of the electric and magnetic moments
with the transverse fields; they are then fully retarded, with
propagation at the speed of light.

The quantization of the field supplements the quantized particle
collection in the description of the total system. In this procedure
the mode expansion for the classical radiation field confined to a box
of volume V subject to periodic boundary conditions is equivalent to a

sum of harmonic oscillators. Quantization of these oscillators allows

the free field Hamiltonian to be written as

~

Ho = z {a'*(”uf)am(k) + 1/2}hck (1.1.36)
K,

Photons are then the particles associated with the quanta of
energy, introduced by the quantization of the field and ai(l)(g) and
a(x)(g) are the creation and annihilation operators respectively for a
photon of wavevector E and polarization g(x)(g), similar to the ladder
operators in harmonic oscillator theory. These operators are subject

to the commutation relationships
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(M@ a®an] = 0 = [ Ma,a 0]

(1.1.37)

(M) = a8,

(1.1.38)

The quantum analogues of the classical mode expansions are given by

172 ikor .
h (M) 1y, (M) =L -(x +(n), , "iker
(2£Ocka {f (k)a'""(k)e +e )(g)a (k)e }

1/72

ik.r -ik.

dt(r) = i [thEo} {e(“)(k)a‘*)(k)e ~ eyt ke - ~}
k’x

(1.1.40)

€
2 o°

1/2
ik.r -ik.r

(1.1.41)

with the magnetic polarization vector defined by
bM ) = kx M) ; (1.1.42)

it is these expansions which must be substituted into the terms in the
minimal-coupling and multipolar Hamiltonians. In (1.1.39-41) an
overbar denotes the complex conjugate and a dagger the adjoint.

The addition to the classical Lagrangian of the total time
derivative of a function of khe particle coordinates and the field

allows a number of possible equivalent Lagrangian s to be written



-22~

down, which in turn suggests a number of possible Hamiltonians for the
combined system. These Hamiltonians are similarly said to be
equivalent and are related by canonical transformation. It is possible

to write
H = e "H. e ", (1.1.43)

where (1.1.43) is such a transformation. The multipolar form of the

Hamiltonian is generated by the choice
s = 1/b[p"(r).alr)d’r - (1.1.44)

The operators representing the canonical variables in the new form are
related to those in the minimal-coupling form by a similar
transformation. In fact the coordinate operators are invariant under
such a change; only the momenta change, such that the field momentum
is proportional to the transverse electric displacement field rather

than the transverse electric field. We have

Prin() mody * €u2(ay) (1.1.45)
Prvie(@) = Pade  [hlCip)0(0a (1.1.46)
n,.(r) = ealr) = _eog*(g) (1.1.47)
wne (1) = €ea(r) - () (1.1.48)

= -d'(r) . (1.1.49)

The new canonical variables are similarly Hermitian operators which
satisfy the canonical commutation relations and since they are

Schrfdinger operators they are not functions of time. Note the
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relationship Dbetween the magnetization field y(f) and the
magnetization T(f)' The former is defined in terms of velocities and
the latter is the quantum mechanical operator, defined in terms of the
canonical momenta.

In the expression for T(f) the order in which the non-commuting
operators occur 1is significant and 1is prescribed by the unitary
transformation. This is a fundamental part of the canonical formalism
and should be stressed. The minimal-coupling Hamiltonian (1.1.9) is
written in Hermitian form, the order of the operators 18 and g(ga)
immaterial since they commute, a consequence of the choice of the
Coulomb gauge. Transformation of this Hamiltonian gives the multipolar
Hamiltonian, which automatically appears in Hermitian form.

Symmetrization is a necessary requirement in the construction of
Hermitian operators in quantum mechanics. For example, if we proceed
by the earlier method of the addition of a total time derivative to
the Lagrangian and the Lagrangian is not written in a symmetrized form
beforehand, the resulting Hamiltonian will not in general be
Hermitian. Promotion of the canonical variables to operators in a
Hermitian form 1in the Hamiltonian, subject to the appropriate
commutation relations, is called canonical quantization.

Let us now expand the multipolar interaction terms and write them
in their more familiar and usable form in terms of molecular
multipoles. This follows from the Taylor series expansion about (E—EC)

of the delta functions appearing in p(C;r), m(C;r), na(C;r) and

Oié(C;r,r'). The multipole expansions give

p(Tir) = (K (T) - Qu(T)V; + ...)8(r-Re) (1.1.50)

mL(C;S) = (mL(C) - m%(C)Vé + ~'-)6(£'I} ) (1.1.51)



and the first term of the diamagnetization interaction may be written

for the molecule C as

2 2

e(X
H, (€)= ) §E;{(9a'§c)x?(§c)} : (1.1.52)
[0

In (1.1.50) uL(C) and Qig(C) are the components of the electric dipole

and electric quadrupole moments respectively of molecule T, given by

(04
G0 = (1/2) ) euiey (o) Re)ilOu(o)Re); - (1.1.54)
e ¢

The magnetic dipole and quadrupole moments appearing in (1.1.51) are

given by
Cu
m,(T) = ZZT;{(E“(C)-I}C)XE“}L (1.1.55)

e
¢

n (0 = ) Sma[{(ga(g)"‘fc”‘lza}&‘ﬁa(m“i‘c):;

o

* (gd(C)-EC);}{(%(C)'EC)X%}J (1.1.56)

Using the multipole expansions (1.1.50) and (1.1.51) we may write down
the interaction Hamiltonian by integrating over the volume d3r in the
first two terms of (1.1.28), using the definitions (1.1.53-55) for the

molecular multipole moments. This gives



int

-1 n -1 1

2 2
e
+ 2 ﬁx{(ga_lz )xlz(gc)} . (1.1.57)
e ¢

The expression is given up to the electric quadrupole interaction for
the polarization field and includes all terms of comparable magnitude.
Hence the magnetic dipole interaction and the first term of the
diamagnetic interaction appear in (1.1.57). Terms of higher order than
these are not required for the present work although such interactions
may readily be incorporated from the multipole expansions.

In (1.1.57) the first two interaction terms are linear in 9(5)
and the third in 13(‘1:). These terms have non-vanishing first-order
matrix elements, corresponding to absorption or emission of a single
photon with each interaction. The final term is second-order in the
magnetic field; consequently its first-order matrix element
corresponds to creation or annihilation of two photons or
creation/annihilation simultaneously. |

In both the minimal-coupling (1.1.9) and multipolar (1.1.25)

forms the Hamiltonian has been partitioned into two parts; we have

H = H0 + Hint (1.1.58)
with
H, = 2 H () +H (1.1.59)
C
Hint = 2 Hint(C) Vinter' (1.1.60)
¢

except that the term V. does not appear in (1.1.25), as noted. In
in r

te

general Hint is small compared with Ho and it is possible to employ

perturbation theory to describe the interactions between the molecules



and the radiation field. The base states for the calculations are the
eigenstates of H0 which are the products of the eigenstates of the
unperturbed molecular and radiation field Hamiltonians. The
interactions between molecules are described by stationary
perturbation theory; Hint causes shifts of the eigenvalues of HO given
as a series expansion in Hint. The shift in energy of a non-degenerate

state |i> of HO is given by

AE, = <ifw, , |i>
EZQIHiMIIxIlHint ;{: zg:<1lu JID<arje,  Joeajs i
(E,-E;) E "B ) (E-E))
I
ZE: ZE: E{:<1|h JDarrfu,  |1o<ar|a,  JocafdE, i
+l.0
(Byy"E ) (B -E)(E-E,)
II1 II

(1.1.61)

In (1.1.61) the summations are over the intermediate states of
the unperturbed system; the state |i> is excluded from the summation.
In time-dependent perturbation theory, Hint gives rise to
transitions between the unperturbed states. If the states of the
system before and after the interaction are given by |i> and |f>

respectively then the rate of transition between these states is given

by the Fermi golden rule
r = 2n/h|Mri|2p (1.1.62)
subject to the overall conservation of energy and that either |i> or

|f> belongs to a continuum spectrum with density of states per unit

energy interval p. The time-scale considered must be greater than the
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period h/Efi of the molecular transition but short enough to ensure a
small transition probability. The matrix element of the transition is

then given by

Me., = <tfu _ |i>

-Z<f|Hjnt!I><I|Hintli> \ Z Z:<leint|II)<IIlHintII><IlHint|i>
(E,-E,) (B -B) (B -E,)
IT 1-

I

_Z{: ;g: zg:<f|ﬂint|111><lllIHint|II><II|Hint|1><I’Hintli> ,
(E "B (B ~E )(E-E))

IIT II I

t

(1.1.63)

1.2 Applications

From its classical origins the previous section outlined the
construction of the multipolar Hamiltonian, commonly wused in
non-relativistic molecular quantum electrodynamics. This Hamiltonian
is used to solve problems in areas of spectroscopy, laser physics and
intermolecular forces, and applies to systems which are comprised of
atoms or neutral molecules which have no net velocity. In the
following chapter the formulation leading to the multipolar
Hamiltonian is given in more detail but for a more general case. The
transformation from minimal-coupling Lagrangian includes a relaxation
on the restriction of electrical neutrality and allows for
translational motion of the molecules and ions by considering the
motions of the centres of mass.

An application of quantum electrodynamics discussed in Chapter 3
contrasts the use of the multipolar and minimal-coupling Hamiltonians

in their accounts of phenomena such as two-photon absorption, Rayleigh
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and Raman scattering. Although the partitioning of the multipolar
Hamiltonian into unperturbed and interaction parts differs from the
corresponding partitioning of the minimal-coupling Hamiltonian and
depends on the transformation chosen, the matrix elements for
processes on the energy shell are the same in each case. The
equivalence of their forms is not only demonstrated, but facilitated
with the derivation of some new sum rules. These topics are useful in
illustrating how the methods of QED are applied and serve to highlight
some important points encountered.

In Chapter 4 the interaction between neutral molecules in their
ground states, the so-called dispersion interaction, is discussed.
Previous works are extended by the inclusion of higher-order
interaction terms; the electric quadrupole, the magnetic dipole and
the diamagnetic interactions; and by obtaining results for molecules
at any separation outside electronic overlap and with an arbitrary
relative orientation. Results are presented for the interactions of
molecules with large or small separations in the fluid state.

Using the new form of the multipolar Hamiltonian derived in
Chapter 2 a discussion of the dispersion interaction between a
molecule and an ion follows next. The discerning feature of this
calculation is the presence of non-retarded potential terms which
supplement the molecular multipole interactions. The minimal-coupling
form of this interaction is presented as a contrast.

The concluding chapter extends this work by calculating the
interaction of a free electron with a neutral molecule. Since the
interactions of a free electron are best described within the
minimal-coupling framework of QED, the transformation of Chapter 2 is
deemed inappropriate. A modification of the theory to retain this form
of interaction for the electron is necessary and a new type of

transformation is used so that the multipolar description of the



molecular interactions is preserved. The new Hamiltonian is then
applied to the calculation of the energy shift between the electron

and the molecule.
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CHAPTER 2

THE MULTIPOLAR HAMILTONIAN FOR NON-NEUTRAL
SYSTEMS ALLOWING FOR TRANSLATIONAL MOTION

2.1 Introduction

This chapter describes how a general multipolar Hamiltonian may
be obtained from the minimal-coupling Lagrangian, the classical
starting point. Unlike in previous studies, which were mostly confined
to neutral systems at rest, no constraints are imposed here on the
motion or electrical neutrality of the atoms, molecules or ions under
study. As noted in the preceding chapter (and to be explained shortly
in the text) the characteristic feature of the multipolar Hamiltonian
for neutral systems is the absence of an explicit intermolecular
potential term, which is a direct consequence of the highly localized
nature of the polarization fields. In Chapter 1 the derivation was
outlined for the neutral case. Here the theory is developed more
thoroughly but for the more general case, and outlinés how Maxwell’'s
equations, through the introduction of +the vector and scalar
potentials, may lead to the minimal-coupling Lagrangian, from which
the subsequent Hamiltonian is constructed. Of those described in
Chapter 1 the method of transformation chosen is via the addition of a
total time derivative of a function of the particle coordinates and
field to the minimal-coupling Lagrangian.

Some new features arise from the theory when net charges and
translational motion are considered. A complete elimination of the
intermolecular electrostatic terms is now not possible (241 and the

simplification of the treatment in Section 1.1 is lost. In order to
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allow for translational motion we must consider motion of the
molecular centre, about which the molecular multipole moments have
been defined. The ROntgen current appears as a contribution to the
magnetization current and terms dependent on this motion then appear
in the Hamiltonian. The Lagrangian must also‘include a term which
represents motion of the net charges and it is the presence of this
term which makes it impossible to completely eliminate the vector
potential from the final multipolar Hamiltonian.

Translational mofion of two-particle systems has been previously
considered by Lamb (28] and Healy tz2] and the effect of allowing for
centres of mass motion on the Hamiltonian within a semi-classical
framework has been examined by Yang et al [26]. Lam t271 has presented
a less comprehensive account of the complete multipolar Hamiltonian.

The new Hamiltonian is wused in Chapter 5 to study the
ion-molecule dispersion interaction, supplementing the neutral

interaction determined in Chapter 4, and in Chapter 6 the theory is

modified to account for the interaction of free electrons with atoms.

2.2 The Coulomb Gauge Lagrangian

The equations of motion for the coupled system of the
electromagnetic field and charged particles are given in terms of the
electric and magnetic field vectors by the Maxwell-Lorentz equations
(1.1.5/6). We may write these equations in an alternative form by
introducing the electromagnetic potentials [28-30]; this serves to
facilitate the subsequent quantization of the electromagnetic field.

Now since the magnetic field is divergence-free (1.1.6) we may define

the vector potential a(r) by

P(E) = curlg(f) (2.2.1)



since any vector which is divergence-free may be expressed as the curl
of a new vector. Combining the second and third equations of (1.1.6)

leads to
curl(e(r) + é(r)] =0 (2.2.2)

and we may define the scalar potential ¢(r) such that

e(r) + a(r) = -o(r) . (2.2.3)

\
\

This is possible since a vector whose curl is zero may be defined as
the gradient of a new scalar function. The equations (2.2.1) and
(2.2.3) define the electromagnetic potentials. However, the
electromagnetic fields g(s) and P(E) do not uniquely determine the
vector and scalar potentials; there is a family of possible (§,¢)

pairs as the equations are unaltered by the substitutions

a(r) = a(r) + vy
~o- ~o ~ } , (2.2.4)

8(r) » o(r) X

as is evident from.(2.2.3), where X is called the gauge function. The
particular choice of X, ie the choice of gauge, may be such as to be
convenient to the area of study. When QED is applied to problems in
chemical physics it is convenient t31 to employ the known solutions of
the particles-only Schrddinger equations as bases for a perturbation
theory of the coupled system including the quantized field (the
equations of which not being exactly solvable). This requires there to
be an explicit Coulomb potential term in the Hamiltonian. The choice

of X given by

vV'x = -V.,a(r) (2.2.5)

~ A~ A



leads to the so-called Coulomb gauge which is defined by

rq

a=0 . (2.2.6)

[3,22]

The electric field e(r) given by (2.2.3) is split into its
longitudinal and transverse parts. Thus
e (r) = -a(r) ; e"(r) = -Vo(r) . (2.2.7)

The electrostatic field due to the charged particles is given by
s"(f) and the radiation field EL(E) is described by the transverse
vector potential. The photons involved in radiative processes which
arise from quantization of the field are thus known as transverse
photons. The new equations of motion in terms of the potentials are

obtained from the remaining Maxwell equations and are given by

2
[Vz- %ir}am = - =Lt (2.2.8)
Zlna 2. '~
c Ot €,C

vl = -p/e, (2.2.9)

If we now apply the variational principles of classical mechanics we
obtain Lagrange's equations. As discussed in Chapter 1 the solution of
these equations is the Lagrangian function: its new requirement,
however, is that it must lead to the new equations of motion
(2.2.8/9). A suitable choice of such a function in terms of the

electromagnetic potentials is given by

-2 EO 2 2 2 3 1 3 3
L= 1z mg +z—f{s (x) —ed <£>}d e 41020’ -[etrietna’s
o

(2.2.10)
which is known as the Coulomb gauge Lagrangian. In (2.2.10) the charge

density is given by
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p = 2 e, 6(f'ga) . (2.2.11)
o
The Lagrangian (2.2.10) gives a starting point from which we derive

the quantum mechanical Hamiltonian.

2.3 Elimination of the scalar potential

By introducing the electrostatic potentials and choosing the
Coulomb gauge, the Lagrangian leads to the equations of motion (2.2.8)
and (2.2.9), rather than Maxwell’s equations, although the two are
equivalent; the source-free Maxwell equations are of course implicit
in the definition of the potentials. Note though that the scalar
potential ¢(£) is a function of the particle coordinates and should
not be treated as a dynamical variable; it is not described by a wave
equation of the form of (2.2.8). Rather, the solution of (2.2.9) gives

the scalar potential as

-1

o(r) = (4me)) ZT‘F‘E—J ' (2.3.1)
Hence 1in this case the scalar potential is simply the Coulomb
potential of the system of charges. We mdy therefore choose to
eliminate ¢(£) from the Lagrangian in favour of the electrostatic
potential energy V, which is our first aim and which we can do because
of its relationship with the longitudinal component of the electric
field. That is, expanding the field term of (2.2.10) using (2.2.7) and

integrating by parts gives
(e/2)[198(x) %8’ = Yo(r)e(r)a’s (2.3.2)

which may be combined with the last term of (2.2.10) to give
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- 5lp(r)o(r)dr = -V (2.3.3)

2 ~ ~ ~ Total

with the potential energy term V given by

-~ ~

e e
Vo = (81{50)'12 2 ]ﬁy ) (2.3.4)
o B

Strictly we should write the Lagrangian in terms of the vector
potential a(r) and its derivative rather than the field vectors. This
is straightforward but we note that the cross term from the expansion

of ez(r) vanishes in this gauge. That is
[a(r).ve(x)a® = o0, (2.3.5)

since a(r) is entirely transverse and V¢(r) longitudinal. Thus the

Lagrangian is given directly by

£
. . . 3
L = 1/22 mag; + igj{f(f)z'cz(fxg(f))2}d3£ + IQL(E)'g(E)d r - V.
o

(2.3.6)

with 2(5) given by (1.1.2). We Thave thus generated the
minimal-coupling Lagrangian (1.1.1), starting from an arbitrary gauge,
from which the minimal-coupling Hamiltonian will include an explicit
electrostatic interaction term, as shown in Chapter 1. In contrast to
the previous works outlined in Chapter 1, however, in the sections
which follow we make no assumptions regarding the velocities or net

charges of the molecules, and proceed instead with the development of

the complete multipolar Hamiltonian.
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2.4 An equivalent Lagrangian

The multipolar Lagrangian is obtained from (2.3.6) by performing
a transformation of the kind described in Chapter 1. In order to do
this the total charge and current densities must be partitioned in
terms of true and bound contributions, which in turn requires the
definition of a molecular centre, about which motion of the composite
particles is defined. g is suitably chosen as the position vector of
the centre of mass 22 °°). The charge density is given by (1.1.22)
but the current density now contains additional terms compared with
that used in Section 1.1; the complete current density is used for the
first time here in the development of the multipolar Hamiltonian. The
current density may be expressed as a sum of true, polarization,

{29,24,31-32] ..
’ . The ionic

magnetization and ROntgen current densities
convective current (which includes a free electronic contribution) is
denoted by 2ionic' Now if the magnetic multipole moments are defined
relative to EC’ then the total magnetization field will contain a term
which depends explicitly on the motion of this centre. This term is
called the ROntgen current [31’29], and it represents the
magnetization of the moving assemblage relative to the inertial frame.
The polarization and magnetization fields, on the other hand, are
those relative to the molecular frame and are likewise additive over
the assemblages, as defined by (1.1.29). j and j are

Rontgen ~ionic

defined below. Hence it is possible to write

j(r) = (r) + é(f) + VM(r) + §

~ ~ Lionic . ~ Rontgen

(2.4.1)

with the definitions



Jiomia(®) = ) QcReB(r-Re) (2.4.2)
¢
and
QRontgen = E YX[E(C;E)XBC} . (2o4.3)
¢

The fields E(E) and @(E) are redefined shortly.

Let us write down a new Lagrangian given by (2.4.4), which we
know must be equivalent to (2.3.6). This is the same transformation
that was given by (1.1.17) for neutral systems. We have

Loew = Loio = Sfpt(r).a(n)d’s . (2.4.4)
However, before we write down Lnew in full we make a distinction
between the labels associated with electrons and those with nuclei. In
Section 1.1 a represented a general particle label; the coordinates 9,
were therefore regarded as generalised coordinates so that the
Lagranéian function L = L(ga’éa’t) was sufficient to describe the
state of the system. If we instead define the electron labels «(T) and

the nuclear labels a({), for an assemblage {, then the transverse

polarization and magnetization fields are given by

p;(Tir) = -}(qn quua “M(gy-Re))dr

+e) 7 (g R )4} 8£4(r ~Rp-M(q,~R,) JdA

(2.4.5)
and

M (Tr) = -e {(q ~Re)X(q, R )},j A8, (r-Re=A(g, Re) )dA,

+e

z {(q -Re)x(a,-R )}4f A8[,(r-Re-A(g,-Re))dX.

» N1 R DN

(2.4.6)



respectively, where Za is the atomic number of nucleus a. The
transverse part of the total polarization field is defined above since
it is the transverse current density which appears in the
minimal-coupling Lagrangian; ng(f) is transverse in any case, as is

J . The new Lagrangian in terms of these variables is given by

Rontgen
(2.4.7).

L = Lpart + Lrad + Lint (2.4.7)

.2 -2
Loare = (15/2)) ) @aey + (172)) ) (D& ¢
¢« Ca

(2.4.8)
EO - 2 2 2,3
Leaa = +z—f{e<£> wo (Tealn)) }ds
(2.4.9)
Lo = - oM@ ) abpat) -
<
* f{‘f"i“{)}'f(f)daf ®) J{Y"(?‘C;E)"‘fc]}f(f)dsf
¢
' (2.4.10)

with V given by (2.3.4). (2.4.10) shows that the inclusion of
éionic(f) and éRontgen in (2.4.1) has modified the Lagrangian.
Comparing Lint with (1.1.18) we see that there are two new interaction
terms; these will lead to additional terms in the final Hamiltonian.
The vector EC’ which is included in the definitions of the ionic
current and the polarizations and which we have chosen to be the
centre of mass of the molecule/ion {, is treated as a dynamical
variable; g and its canonical momentum E form a canonical pair. It
is a good approximation to equate g with the centre of mass of the

nuclei, since the mass of the electron is small compared with the

masses of the nuclei ie m, « m . Thus we may write



M Ema(C) (2.4.11)
a(q)

and

Re ) (m (D)a (€)/M) - (2.4.12)
a(%)

The terms of the Lagrangian (2.4.7), however, are written with sums
over the general nuclear coordinate a({); by introducing a set of
orthogonal coordinates for each molecule, it is possible to write down
the multipolar Lagrangian in a form which separates the centres of
mass motion from the internal nuclear and electronic motions.

For each assemblage we define a set of mass-weighted orthogonal

[33]

coordinates Qr(C) , given by the linear transformation
1/2
Qr(l:) - E"‘a lr(C),L(a)qi,(a) ) r=1,2,...3N
a(C)

(2.4.13)

where N is the number of nuclei in assemblage T. In (2.4.13) the
contribution of the coordinate q(a) along the direction 4 to the mode
Qr(C) is proportional to lr(C),L(a)' 1 is then a real, unitary 3N x 3N

matrix, with matrix elements lr(C) The transformation is

,4(a)’

orthogonal. That is, the inverse of the transformation may be written

as

-1/2
Ya) = ™ 5# 1r(2),i(a) (@)
r(C)
(2.4.14)

and the sum of the squares of the nuclear coordinates is given by

the sum of the squares of the modes,
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3N-3

.2 -2 -2

1/2 ) n (O3 = 1/2) @y + 1/2MRE
a(C) r(T)

(2.4.15)

from which translational motion has been separated by defining for

each molecule the matrix elements

1/2
lSN—Z,x(a) - 13N-1,y(a) - 13N,z<a) - (ma/M) *

(2.4.16)

(2.4.16) ensures that the final three modes for each molecule describe

translational motion along the Cartesian axes x, y and z ie

(2.4.17)

Using this transformation the Lagrangian may be written in its
multipolar form, with translational motion separated from rotational
and vibrational motion.

Introducing the vector fields Ea(q;f) and Ba(C;E) for molecule C,

1
\
ne(Cir) = -elgRe) | AS(r-Re-2(g,Re))dh,

o
(2.4.18)
1
ma(Gir) = el,(g,"Re)] AO(r-Re-Mg,Re))dh,
(2.4.19)
the multipolar Lagrangian becomes
Lmult. = E Lpart(g) + Lrad + 2 Lint(C) -V
¢ ¢
(2.4.20)

with
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3N-3
L. (C) = (& /2)} Qo) + (172) ) @ ey + (1/2)MRE
r(T)
(2.4.21)
EO . 2 2 2 3
L = ¢ IR (00
(2.4.22)
L = - @D ama - ) dye) @’y
a

3N-3

-1/2 . .
- E ;c)a lr(C)1t(a)Qr(C){‘I‘ga(C;E)X?(E)d E}L

{ p(T; r)xb(r 2 fn (T; r)xb(r)d r- Qca(R )}

(2.4.23)

Written in this form (2.4.23) allows easy determination of the
canonical momenta. The final term depends directly on translational
motion of the molecule and in contrast to the Lagrangian for neutral
systems (2.4.23) conﬁé&ﬁs a term which is linear in the vector
potential. The canonical momentum of the molecule will therefore be
coupled to the vector potential.

The centre of mass and the normal modes associated with the
nuclei for each assemblage, together with the electron coordinates,
now form a complete set of linearly independent particle coordinates
for the Lagrangian while the variables of the radiation field remain
unaltered. Note that the electromagnetic field is described by a
density functional since it varies continuously in space. Hence the

terms which appear in (2.4.22) and (2.4.23) are of the form

L = I2d3r (2.4.24)
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where £ is the Lagrangian density.
The canonical momenta are next obtained from (2.4.20) before

finally constructing the multipolar Hamiltonian in Section 2.7.

2.5 The canonical momenta

Having written down the Lagrangian in its multipolar form, we now
determine the momenta conjugate to the canonical coordinates in order
to construct the multipolar Hamiltonian. The four pairs of canonical
variables are now given by (ga,ga) for the electrons, (Qr(C)’pr(C))
for the normal modes, (EC’E ) for molecular translational motion and
(f(f)’g(f)) for the electromagnetic field. The canonical momenta are
defined, analogously to the momentum of the generalized coordinate «

in (1.1.8), by the expressions below. We have

g(a) = aLmult/é(a) ’ (2.5.1)
pr(C) = aLmult/Qr(C) ’ (2.5.2)
Pe = 9L, /B> (2.5.3)
and .
9(5) = azhult/e(s) : (2.5.4)

Hence, using (2.4.20), we may write down the momenta directly as

Pla) = meé(a) - Jgu(c;f)xg(f)daf (2.5.5)

Pre) T %) T M) (2.5.6)

P = Mcke - {I?‘C;£>"‘3<£>d3£ - [ ) naGimrtoia’s - Qca“&;’}
o

(2.5.7)
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and

M(r) = €sa(r) - p'(r) (2.5.8)

~ A

where AP(C) in (2.5.6) is given by the sum

fei) 7 L m;llzlr(C),L(a){JEa(c;f)xg(f)dgf}i (2.5.9)
a(%)
In (2.5.9) r may take the value r = 1,2,..,3N-3.

The field and electron canonical momenta (2.5.8) and (2.5.5) are
the same as those in the basic theory. New features here are the
momenta associated with the mode r and with the molecule itself;
(2.5.7) arises directly from the new interaction terms.

Construction of the Hamiltonian wusing (2.5.5-8) is the final
task. However, in anticipation of the form of this function, it is
convenient to examine now, some of the terms of the Lagrangian
individually. In particular we shall see how the Lagrangian (and
hence the Hamiltonian) may be written down in a form which excludes
the potential energy term V.

.
inter

2.6 The electrostatic potential

The multipolar Lagrangian (2.4.20) contains the electrostatic
potential term V, given earlier by the expression (2.3.4) in terms of
the general coordinates « and B representing all particles. It was
shown earlier (Section 2.3) that this term is preserved iﬁ the
formulation of the minimal-coupling Hamiltonian from the
minimal-coupling Lagrangian (2.3.6). It is shown in this section how
this term may be partitioned into inter- and intramolecular parts and
how the multipolar formalism leads to the complete elimination of the

intermolecular contribution for neutral systems, giving the results of
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Chapter 1. Further, the residue terms associated with charge-charge
and/or charge-multipole interactions for systems containing net
charges following incomplete cancellation of the intermolecular
potential term are determined here.

Adopting the notation of Section 2.4 (but excluding the normal
modes for simplicity), (2.3.4) may be rewritten with sums explicitly
over electrons and nuclei. Summing over all molecules gives a

potential energy total of

Total = intra + Vinter
(2.6.1)
where the intramolecular contribution to VTotal is given by
faera = P V), (2.6.2)

where for molecule T we write

1 Z
V(C) = (e®/ame ) z ET‘__T 1—r .
° ° { AR o,al 3o a<h'3a™Ip }
{(2.6.3)

In (2.6.3) « and B are electron labels implicit to T and a and b
denote the nuclei. Nucleus a has a charge of eZa. This term is usually
treated as part of the molecular Hamiltonian, once it is formed, and
is common to both the minimal-coupling and multipolar forms.

The intermolecular term is similarly given by

2 v(g,¢7) (2.6.4)
o<’

inter

with
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1 Z, (r
V(E,T) = (e/4me) E - 2 b(Z’)
' T { o899 )] ol %x(g) "I )!

a8l el s bl %) )]
(2.6.5)

@, Y Za@e) }_

Here the pairs («,a) and (B,b) are associated with molecules { and {’
respectively. (2.6.5) includes the electrostatic intermolecular
interactions between all particle pairs in the system.

Let wus consider the Lagrangian (2.4.20) further. When
constructing the multipolar Hamiltonian from this expression it will
be necessary to substitute for the coordinate ’velocities’, obtained
by rearranging the equations (2.5.5-8), so that each term is written
in terms of the canonical variables, the coordinates and momenta. Now

when we substitute for a(r) in (2.4.23) using
i = (/e () + ptio)] (2.6.6)
we obtain the term

(1/2¢ ) [Ip* (r)|%d’r (2.6.7)

which is independent of the electromagnetic field. In (2.6.6) pL(r) is
the transverse polarization field summed for all molecules. Expanding

the modulus square allows us to write this term as

2 'g¢(§;£)-gL(C';£)d3£

(1/ze0)J ) [p*(T50) | %a7r + (1/eo)J
¢ - - - c<t

(2.6.8)

where the transverse polarization product has now been decomposed into



one~ and two-centre parts. The one-centre term of (2.6.8) may be set
aside for now and regained later as a self-energy term in the
Hamiltonian. The two-centre term may be treated by considering the

intermolecular polarization product
(1/E0)J E 'g(C;E)-P(C';r)dar . (2.6.9)
¢<T ~ R

The polarization fields in (2.6.9) are local; where the charge
distribﬁtions of the molecules T and T’ do not overlap this product
vanishes and the above integral goes to zero. The transverse and
longitudinal polarization products then become equal and opposite.

That is

W%’J ) M) gt s - -(1/e0)J ) p"(Eie).p" (€ 30
et T Tt

(2.6.10)

since the <cross terms are identically zero. The longitudinal

polarization field given by

p;(Cir) = -ez (q R J 67 (r-Re- gy Rp))dd
[0 4

z (q, Rc),j 8] (r-Re-h(g,-Re) )dr
(2.6.11)

may be substituted into the right-hand side of (2.6.10) and for a
system of neutral molecules this term cancels the intermolecular
potential energy term [11]. Since we are considering a collection of
ions and molecules, however, such will not be the case and we are
required to determine the new result. After a straightforward but
lengthy manipulation of the resulting terms it is possible to write an

identity of the form



-4f-

(l/eo)j z p"(T;r).p"(Csr)dr =V - W , ,
¢

~ ~ ~ ~ inter elec
<’

(2.6.12)

where Vinter is that sum given by (2.6.4) and is the intermolecular

potential energy, while Welec is a collection of electrostatic terms
which are dependent on the net charges of the molecules. A concise
form of these terms 1is given below. QC denotes the net charge of

molecule T at position R. and is not to be confused with the mode

Qr(C)'

eQ..Z
W = (1/4ne ) E { z + z 9 _a(C)
elec cee 'Sa( oFe T o 190 B!

D SR Wl < (D) }

c ' g lagc ) Bl p lpc ) Bl
(2.6.13)

1R -R

Note the minus sign in the definition of W given by (2.6.12):

elec

potential energy term is best regarded as the sum of the terms which

comprise Welec and the longitudinal intermolecular polarization

product. welec represents the electrostatic coupling of the

electrons and nuclei of one aggregate with the net charge of another

positioned at its centre of mass. Clearly for neutral systems we have

I
(=]

elec

b} (206014)

as before. Thus, as long as the molecules are well separated, the
intermolecular Coulomb energies are effectively cancelled by the
two-centre terms of the transverse polarization product. The resulting
mﬁltipolar Hamiltonian, discussed in Chapter 1, then contains no

explicit potential terms and all intermolecular interactions proceed,



via coupling to the field, through exchange of transverse photons.
Note that in the minimal-coupling Hamiltonian, where Vinter remains
even for neutral systems, the lowest-order electrostatic term given by
the expansion of the left hand side of (2.6.12) is the familiar
dipole~dipole coupling term

_ -1 . Cam b 3

(2.6.15)

where R is the intermolecular separation vector.
The multipolar Hamiltonian for systems containing ions and
molecules includes electrostatic potential energy terms given in total
by W . However, the form of (2.6.13) is not such that these

elec

interactions may be readily determined. We wish to write Welec in a

form in which it may easily be used in applications. It is possible to

rewrite these terms by performing Taylor expansions about R with

g = %C, BC (2.6.16)
such that
(3 (E)Re)s (g, (DRe), (gg(C )Rer)s (g (€ )Rer) « R .
(2.6.17)

Keeping only terms up to the charge-quadrupole interaction this leads

to the result

elec

= (1/ame) ) {QCQC o+ Q@) - auy ()R

¢<q’
(00,6 + apay©)] (8, -aRR /A 4 } :
(2.6.18)
This result may be verified by an independent route. The

intermolecular potential term V. given by (2.6.4) is defined by

inter
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the expression

Viner = (/1) ) [fo(©rp(esr) lrr la'rd’s’
gL’
(2.6.19)

where p(C;r) and p(C’;r’) are the charge distributions of molecules T

and ' given by

p(Cr) = ) Ca(t)°T %)) * ) °a(2)®(T%a(x))

¢4 a

(2.6.20)
p(C75r7) = E eoc)® T 98y * ) e )®E Gy -
b .
(2.6.21)

Alternative definitions of the charge densities in terms of the
polarization fields are given, following the definition of (1.1.22),

by

p(Lir) = E 0[(c)ﬁ(r -R.) + z ea(c)é(g—g ) - Y-g"(C;g)

o4 a

(2.6.22)

P(c 1r ) = z B(C )6(r -~c ) + E b(c )6(r R ) - YI.EH(C';EI) y

a

(2.6.23)

written in this form since V.pL(r) = 0. Substituting these expressions
in (2.6.19), and integrating by parts, again gives Viiter 28 the sum

of Welec and the longitudinal polarization product, but with the
former in its multipolar form.

We have determined the electrostatic interaction term between two
ions and those between an ion and a neutral molecule, which remain in

the new Hamiltonian. In the form (2.6.18) such interactions may be

easily determined by application of the methods of QED and the results
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will appear in terms of molecular properties such as permanent dipole
moments or polarizabilities. In contrast to the minimal-coupling
Hamiltonian, however, the electrostatic terms here are just
charge-multipole series; all multipole-multipole terms have been
eliminated. In the following sections Welec is assumed and will not be

written out explicitly.

2.7 The multipolar Hamiltonian

The Hamiltonian may be formed directly from the Lagrangian

(2.4.20) and is given by

Hmult = E E Ba’éa + 2 z gr'ér * z EC'BC + JQ(E)'é(E)dgf - Lmult
€ «(T) ¢ r(T) <
(2.7.1)
where the third term is included to represent the canonical pair
(gc,gc). The Hamiltonian is written in terms of the canonical
variables by substituting for the coordinate velocities, obtained by
rearranging the equations (2.5.5-8), into (2.7.1). In the previous
Section this process was pre-e@fed by a consideration of three of the
terms such that the intermolecular potential energy term was partly
eliminated, leaving only those interactions dependent on net charge.
Here the remaining terms are considered and the Hamiltonian will be
given shortly.
An alternative to (2.7.1) is to consider the Hamiltonian as the

sum of two terms; the molecule and field energies Emo and Erad, which

1

are themselves the sum of kinetic and potential energies. Thus we may

write

H = (T+V)mo

mult

Lt (T+V)rad . (2.7.2)

The two methods of formulation are not dissimilar, however, in

[y



that each requires a knowledge of the velocities éa(C)’ é(E) etc in
order to proceed. Where (2.7.2) may have the edge, though, is an
assurance that the resulting Hamiltonian appears in Hermitian form,
since we take the squares of these velocities. Additional assumptions
Vconcerning the symmetry of the variables prior to quantization are
then unnecessary and their operator form follows naturally. Should we
choose (2.7.1), on the other hand, then it is best to symmetrize each
term,. beforehand, in which the order of the variables might be
{22, 101

important later on. The latter method is that chosen by Healy

The Hamiltonian is given by

B = ) {(I/Zme) ) (o * jga(c;g)xg(5>d35]2 + V(C)}
3 «(¢)

+ g {(1/2»@[3c + [p(@rpb(e)d’s - [ ) 0 (Cir)xb(r)d’r - ch<§c)]2}
a

+ (1/2)2 [pr(c) + Ar(c)]z +V L
r

+ %J{{E(g) +pi(r))°/e, + eOcZ(an<r))2}d3r

~ &~ o~ ~

(2.7.3)

There are no explicit interaction terms in (2.7.3); these appear
following expansion of the various terms, the form of which
effectively corresponds to the introduction of coupling between the
particles and radiation field ie if there was no coupling then each
canonical momentum would be identical to its kinetic form. In the
first term of (2.7.3) the electron canonical momentum takes its
multipolar form. The second term is interesting. The molecular
canonical momentum, given by the sum of the momenta of the constituent

particles, is minimally coupled to the vector potential at R. and to



the magnetic field. The latter interaction will give rise to
additional contributions to the magnetization. Vinter is included in
the expression above but its partial cancellation is unaffected by
this method and Welec is included in the Hamiltonian given below.

A simplification of the Hamiltonian may be achieved by its
partition into molecular, field and interaction terms; a new feature
compared with the corresponding function for neutral systems is the
presence of the intermolecular Coulomb potentlal term W elec’ which it
has been shown depends on the net charge(s) of the interacting
species. There are also additional interaction terms, both linear and
quadratic in the field, which occur as a result of translation. The
Hamiltonian is given by

Hmult = E Hmol(C) + Hrad + z H:;:(C) + 2 (2)(C) + Hself W

elec
C C T
(2.7.4)
with Wolee given by (2.6.17) and
3N-3
Hoor (€)= ga= ) BA(0) + BL/BMe + (1/2) ) 7€) + V(E)

« r(T)

(2.7.5)
Hrad = %j{glz(s)/80+ EOCZ(YXE(E))Z}d3r
(2.7.6)
self f E Ip (c r)|

(2.7.7)
(@) = e [p@n) ' (d’s fa€in)bir)d’s -(ap/M)Pe-a(®y)
(2.7.8)

and



3N-3
2
3 2
(€) = + (1/2m ) 2 UEa(C?E)"E’(E)d 5] + (172) E Ar(e)
«(C) r(T)

(2)
H

int

~ o~

2
+ /amg)([e@iomend’s - [ ) n @’ - qalr)]
o
(2.7.9)

Note that the molecular Hamiltonian Hmol now 1includes the
intramolecular electrostatic term V({), as described in Section 2.6.
The self-energy and radiation terms are unchanged from (1.1.26/27) but
for convenience the interactions have been split into terms which are
first- and second-order in the field.

The new first-order term gives the interaction between a charged
aggregate and the field; the momentum E of the aggregate interacts
with the vector potential, which takes a constant value over the
extent of the molecule. As noted the term is similar to the
minimal-coupling first order interaction (1.1.12) and the inclusion of
the vector potential is an important feature of this form of the
multipolar Hamiltonian, namely that it cannot be written wholly in
terms of the electric displacement vector and magnetic fields;

Although (2.7.8) has been written such that it includes a term
representing the interaction of the magnetic field with the
magnetization T(E)’ we note that the latter quantity differs from the
definition given in Chapter 1. T(E) includes all terms of the
appropriate dimension, including those which arise following the
inclusion of the ROntgen current in the current density, since this
term is itself a magnetization, coupling the translational motion to
the electric polarization field. The total magnetization T({) is

written as the sum of contributions from each molecule/ion,



m(r) = z m(T;r) , (2.7.10)
o

where for each molecule we have the sum
m(T;r) = o' (Gr) + w7 (Gr) (2.7.11)

Consider the definition (1.1.32) for m(r) given in Chapter 1. The

quantity m’ ({;r) in (2.7.11) is given by an analogous definition
m' (T;r) = + (1/2Mc){g(c;g)xljc - ECXQ(C;E)}

+ % {;?C){ga(c;f)x[ga/me - gC/MCJ - [Ba/me - EC/MC]XEa(C;f)}}
(2.7.12)

which is similarly in symmetric form. The two forms differ by the
inclusion in (2.7.12) of the terms which rely on centre of mass
(translational) motion. The first term above arises directly from the
coupling of molecular motion to the polarization field (the ROntgen
current) and vanishes if the molecules are at rest. The second term is
the equivalent of (1.1.32) and its source is the magnetization field
@(E) which was defined (2.4.6) relative to the moving frame.

The second term of (2.7.11) gives the contribution of relative
nuclear motion to the magnetization. Defining lr a 28 that vector

~L

whose components 1 ) give the contribution of nucleus a to the

r,i(a

mode Qr (Section 2.4), allows the definition

3N-3
Tll(c;f) = -(1/2) 2 2 m;ilz[zr,axga(c;f)pr(C) * pr(C)fr,aan(C;f)]
r(T)a(q)

(2.7.13)

If the molecules are treated as fixed bodies, however, as in many



problems, this term may be ignored.

Returning to (2.7.9) we ~consider finally the quadratic
interaction terms. These are not of particular interest here but we
note their origin. The first term, only, arises in the neutral
Hamiltonian and gives rise to the diamagnetization field. The
remainder, for which we could write similar fields, depend on
translational motion. As we would expect, the gC'E(B ) term in H::z is
accompanied here by the corresponding term quadratic in the vector
potential, in analogy to the minimal-coupling interactions.

(2.7.4) is then the quantum mechanical Hamiltonian for the system
and the canonical variables are operators subject to the wusual
commutation restrictions.

In Chapter 1 the interaction Hamiltonian (1.1.57) in terms of
molecular multipole moments was written down with the aid of the
multipole expansions (1.1.50/51). The Hamiltonian (2.7.4) may be
similarly treated to facilitate its application. For example, the
electric dipole and quadrupole moments are redefined below, noting
that now each is made up of two terms since.the electronic variables

have been separated from the nuclear variables. Hence

“L(C) = - e} (QQ(C)_BC)‘L + e Za(ga(C)_ISC)L
[0 4

a

(2.7.14)
and

20,,(6) = - ) (3a(e)F)ilda(r) Be)j * ) Zaldae) )il Ga(e) e

o a
(2.7.15)
The magnetic-dipole moment appropriate for a particular problem may be
written down from (2.7.11).
One final point of interest which arises from the formulation of

the multipolar Lagrangian and Hamiltonian is the new form of the



equations which describe the microscopic field. The minimal-coupling
and multipolar Lagrangians (2.3.6) and (2.4.20) differ by a total time
derivative given by the transformation (2.4.4). Hence the equations of
motion of the field are unaffected by this transformation. These
equations, given by (2.2.8) and (2.2.9), are equivalent to (1.1.6) in
the Coulomb gauge. However, from (2.4.20) we may derive Maxwell’s

[29, 34}
by

equations in the form of the atomic field equations
defining the auxiliary fields d(r) and h(r). Following (1.1.30), we
define the electric displacement field as

d(r) = € e(r) + p(r) ; (2.7.16)

~ [ DU ~ o~

the transverse component of this field then appears in the
radiation and interaction Hamiltonians. As noted in Chapter 1, d(r) is

related to the field momentum Il(r) by the relation

(r) = -g*(g) . (2.7.17)

~mult’ o

Now if we recall the division of the charge density into its free-

-

charge and polarization contributions such that
Plr) = Py, (r) - Vep"(r) (2.7.18)

then the first Maxwell equation of (1.1.6), namely

V.e"(r) = p(r)/eo , (2.7.19)
simply becomes
Y.g"(f) = ptrue(s) . (2.7.20)

So Gauss’' law now takes the above form, where the displacement field

assumes the true charges as sole sources.



Now let us consider the final equation of (1.1.6), in which the
transverse current acts as the source of the electric and magnetic

fields ie

wb(r) = (1/¢7)e(r) + (/e it (r) (2.7.21)

If we combine the magnetization field M(r) with the magnetic
polarization associated with the ROntgen current and define a new

vector A(r), with

M) = omr) v ) (G (2.7.22)
;

then substituting for the transverse current

. L - ,
ST = (D) (D) ¢ V() (2.7.23)

in (2.7.21) and introducing the auxiliary field h(r), the magnetic

field given by

h(r) = eyc'b(r) - A(r) , (2.7.24)
gives
Yxh(f) = g:-li_onic(f) * é-&(f) ; (2'7°25)

the magnetic field is given by the true currents.

The pair (2.7.20) and (2.7.25), together with the source free
equations from (1.1.6), which are satisfied because of the choice of
gauge, give a form of the Maxwell-Lorentz equations in the fields g(s)
and h(r) which is of the same form as the macroscopic

T [28-30]

relations . Thus in this form of the atomic field equations

both the electric and the magnetic displacements are related to true



sources. In (1.1.6) the fundamental fields s(f) and P(E) are made up
of true and bound sources, as can be seen from the form of (2.7.16)
and (2.7.24).

It has been shown in detail here how the multipolar Hamiltonian
may be constructed from its parent Lagrangian function, itself
obtained via the addition of a total time derivative to the
minimal-coupling form. The alternative method of construction, namely
the canonical transformation of the minimal-coupling Hamiltonian, has

. . [35-38,21]
been discussed by various authors

and the relationship
between the corresponding canonical variables in the two forms ﬁas
been determined. Since the generating function S is a function of the
particle and field coordinates, it follows that both Ay and f(f) are
invariant to the transformation; only the conjugate momenta change.
The precise origin of the multipolar terms and the cancellation of the
minimal-coupling interactions has been described by Power and

(371 by detailing the effect of the transformation

Thirunamachandran
upon each term of the old Hamiltonian.

In previous works the minimal-coupling Hamiltonian has been used
where the system includes charged species. The Hamiltonian developed
here now allows such interactions to be treated within the multipolar
framework of QED and accounts for translational motion of all
interacting species. The energy shift between an ion and a neutral
molecule, for example, may be considered as the sum of electrostatic
contributions and retarded contributions arising from conventional
multipolar coupling.

In Chapter 5 the above multipolar Hamiltonian will be applied to
determine the contributions to the dispersion interaction arising from
ionic charge. These results will then supplement those of the neutral

case, which will be determined in Chapter 4. The application of this

new interaction Hamiltonian will also be compared with the
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minimal-coupling treatment of the same problem. In the following
chapter the equivalence of the multipolar and minimal-coupling
Hamiltonians in the calculation of higher-order matrix elements is

demonstrated.



CHAPTER 3

MULTIPOLAR AND MINIMAL-COUPLING EQUIVALENCE:
HIGHER-ORDER INTERACTIONS

3.1 Introduction

In the preceding chapters it has been shown that in
non-relativistic molecular quantum electrodynamics there is a class of
equivalent Hamiltonians which describe a system of radiation and
atoms, molecules or ions in interaction. The origins of these
Hamiltonians through the Lagrangian function have been discussed and
the dynamics of the equations of motion compared. The multipolar and
minimal-coupling forms of the Hamiltonian were said to be equivalent,
interchangeable by a canonical transformation of the form of (1.1.43).
Thus, even though the partitioning of the two Hamiltonians into their
molecular, radiation and interaction parts is different, the matrix
elements for optical (energy conserving) processes involving real
photons must be the same. This issue has been discussed in various
publications (see [19,35,20,39] and references within). However, the
majority of papers on this issue are mainly confined to discussions of
the validity of the transformation and the consequential equivalence
of the Hamiltonians; where equivalence has been explicitly
demonstrated [37’401, it has been within the electric dipole
approximation. In Chapter 4 we shall consider the interaction between
chiral molecules using the multipolar Hamiltonian. The equivalence of
the two forms of Hamiltonian to the order required to account for such
interactions has not been demonstrated explicitly and so it is useful

to extend previous demonstrations by making a higher multipole
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approximation; electric quadrupole and magnetic dipole interactions
are included, as such interactions are allowed for chiral molecules in
addition to electric dipole coupling.

The two Hamiltonians are analysed here in their accounts of two
optical processes; two-photon absorption and scattering. In the former
we consider absorption of a photon from each of two different modes.
In the calculation of the scattering cross-section the inclusion of
the higher—ordér interaction terms leads to differential effects if
the incident photon is circularly polarized [11]; in addition to the
general case of differential Raman scattering the special case of
differential Rayleigh scattering is also discussed briefly. The
conversion of the minimal-coupling matrix elements into multipolar
form is effected with the use of sum rules appropriate for each case.

The use of sum rules in the conversion of momentum {or
dipole-velocity) matrix elements into the dipole length form of the
multipolar formalism (usually written in terms of molecular multipole
moments) was introduced by Geltman t40l and is central to such
demonstrations. He also showed that in order to make such a
verification for two-photon absorption it was necessary to include the
term in the minimal-coupling Hamiltonian which is second-order in the
vector potential. This is a general conclusion for any two-photon
process even though there is no corresponding quadratic term of the
same order in the multipolar form. In the present work the derivation
of the multipolar result from the minimal-coupling form is extended;
new sum rules are derived which facilitate the demonstrations of
equivalence. It should be noted, however, that in cases where the
molecules occupy intermediate states which are to be summed
equivalence does not apply to the individual stages of the interaction

involving virtual processes and the sum rules may not always be

appropriate. The results must agree, though, where the interactions



are on the energy shell.

The comparative use of the two forms of interaction will be
discussed following the demonstration of their equivalence which
begins with an account of two-photon absorption in section 3.3. It
will be suggested that for applications of chemical interest the
multipolar form is physiéally more suitable. We begin, however, with
the derivation of a series of sum rules which aid this work and which

will be useful in other problems of interest.

3.2 Sum rules for use in QED

The conversion. of minimal-coupling matrix elements into their
equivalent multipolar form is much simplified by the application of
certain sum rules. These sum rules are similar to the
Thomas-Kuhn-Reiche sum rule f41-431 used to describe the oscillator
strengths of atomic or molecular transitions. The sum rules which are
used in this work are derived for the specific cases in question but
the results may nevertheless be applied to other processes of
interest. |

The first sum rule which shall be derived is given by (3.2.1).

mr ro mr ro 2
2 [Em% y By q;v] = ~(h/m)d 8 - (3.2.1)

r

11;

Let us start by considering the double commutator [qé,[qL,Hmol

inserting the commutation relations gives
. 2
[qj'[qL’Hmol]] = (lh/m)[QJ:pil = =-(h /m)8i4 . (3.2.2)

For the molecular transition |m> ¢ |o> we may therefore write
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<m|[q}’[qL’Hmol]|O> = '(hz/m)aiésmo (3.2.3)

Alternatively we expand the commutator into its constituent

terms,
[q}’[qL’Hmol] = qquHmol - qumoqu - qumolq} + Hmolqiq} .

(3.2.4)

With the aid of closure we get
mr ro mr ro
<ml[qda[quHm°l]l°> = E {Emrqi qé - Eroq§ Q }'
r
(3.2.5)

Sum rule (3.2.1) follows from a comparison of equations (3.2.3) and
(3.2.5).

Next there are a family of identities which are useful when
considering two-photon processes involving higher multipole
interactions. (3.2.6), where @ is the quadrupole moment, is an example
of such an identity but there are ményhothers which may be obtained in

a similar manner.

E E
§ ro mr_ro mr mr ro
{E ~hek # E -hck #4

r ro mr

h h
= Z{_Lk_uzrg;_z - LRQ;;,,?} (3.2.6)
Ero-hck Emr-hck

This particular form is encountered in scattering problems. In Raman

scattering, for example, we may write the conservation identity

E + E ° = th - f]Ck’ . (3.2.7)

Thus



(Er°+ hek') = -(Emr- hek) . (3.2.8)

Now since [UL’Q}£] = 0, we may write

mr_ro mr ro
r
from which
umrQro er pl‘o
o= 3 {i, ho - - hcmﬂ_tk} .
Ero—hck Emr—hc
(3.2.10)

The result (3.2.6) follows using (3.2.8).

Another result is useful, where higher order multipoles have been
used, in the conversion of minimal-coupling matrix slements into their
multipolar equivalent form. In this case the vector potential is
allowed to vary over the extent of the molecule; the factor exp[iE.g]
of the mode expansion for f(f) then remains a function of the particle
coordinate. A series expansion of this factor gives terms which
include matrix elements such as (e/m)<r|p£q4|s>, which are clearly of
the same order as a magnetic dipole or electric quadrupole

interaction. Thus it will be shown that

-(e/m)eék4<r|piqé|s> = (EXE)£<rlm£|s> + i(eikj/h)Erstz .
(302011)

Denoting the left hand side of the above expression by I we write

I = -(e/Zm)eLk}<rlqu4~p4qL|s> -(e/Zm)eij<r|qu4+p4qL|s> .
(3.2.12)

The first term of (3.2.12) is clearly the same as the first term of
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(3.2.11). Using closure in the second term of (3.2.12) and converting

pit > qlt with
-(it/m)p = [H__, ,q] (3.2.13)
gives, since Ert + ELs = Ers, the terms

-~

I= —eikaci4£<r|m&|s> —(ie/Zh)eLkéErs<rIqu4|s> )
(302014)

from which we obtain
I = (kxe)gmg® +i(e4.’k4./h)Ers<r|Qq|s> (3.2.15)

Hence the result (3.2.11).

One final identity is left to be discussed. The minimal-coupling
interaction term (ez/m)gz(g), leads to matrix elements of the form
eL;£<ml(g-§)£|o>. Such terms are used in the demonstration of the
equivalence of matrix elements using the two Hamiltonians and it would
be of some use to be able to write them directly in their multipolar

form. An identity similar to (3.2.5) is

<m|(Qup, [, HIT 0> = 2 {Emu;rQ;Z - EroQ&u;]
r
(3.2.16)
The left hand side of this identity may be written as
[Qw:[l‘é',H]] = 22 (eaeB/Z)[q“»(a)q‘c(“)’[qé'(B)’H]] = 1II .
a B
(3.2.17)

Evaluating the inner commutator gives



I = ih ) ) (egep/2m) 10 o) St (a) P45

a B
(3.2.18)
which becomes
I1 = (ih)? E (e2/2m ) 5, + 8
= of P (Vi (x)8f T ()i
a
(3.2.19)
Thus, combining this result with (3.2.16) we find that
mr _ro mr ro 2,2 mo mo
) (Emr“' Qe = E Qe ) = - ) (e /zma)[qi,(a)ég'{ ¥ q&(u)‘sq]
r a
(3.2.20)
Similarly we may determine
mr ro mr,_ro 2,2 mo mo
E [EmrQLCu} - E My QL(J = - 2 (e D /zma)[qi(a)sjt * q&(a)égJ
r o
(3.2.21)
mr ro mr ro 2,2 2 mo
2 (Emruj Om Eromm.“{ ] = T 2 (e h /zma)emutpt(a)
r . «
(3.2.22)
and
mr ro mr ro
E {Emrqm “j - Ero“} mo ] = 0 (3.2.23)
r

A suitable combination of the last two expressions allows the energy

factors to be eliminated from the sum so that

mr ro mr ro 2,3 2 mo
h 2 [“L m; - m B ] = E (eah //ZEmomaJEL?an(a) .
r

[e 4

(3.2.24)

The equations (3.2.20/21) and (3.2.24) may now be added. First

consider the quantity [k’ (a~id) + k(B-iY)], where we define the Greek
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quantities by

mr ro mr_ro
) [E T - E Qb&] = «
(3.2.25)
4 4k£ E [Emrpl'. Q;}& ronﬁ 4 ] = B
r
(3.2.26)
r
(3.2.27)
and
’ mr ro mr ro
hbteég ("'41 i i t] 8
r
(3.2.28)

With the use of the results (3.2.20/21) and (3.2.24) (and a similar

expression for &) we find

[k’ (x-i8) + k(B-i¥)] = 2 (ezhz/ma){ketetkéqé(a) k' etetk;q:?a)}-
(3.2.29)

This is the required result, since the terms on the right hand side
have the form of the matrix elements discussed for the 22(9)
interaction.

The two sum rules which together compose the above expression are

given below. We have
E (1ea/m )etk£<m|(gd-g)£|o>

= (i/h ”‘&%}: ( . er;Z Q;\EPI‘O) + (l/h)b 2 [mr ro _ m;ruzo]
r

(3.2.30)
and



E (iez/ma)g;£é<m|(ga-g)£|o>

[e 4
. 2.0,-, mr_ro mr ro - mr ro mr ro
= (l/h )kﬁet E (Erol-l‘ Qb& - EmrQb&#é ] + (l/h)b‘b 2 (Ilé mL - m“" ”é )
r r
(3.2.31)

In the following sections the above results, together with
(3.2.1), (3.2.6) and (3.2.11) will be applied in the demonstration of
the equivalence of the multipolar and minimal-coupling matrix elements
for the two-photon processes of absorption, Raman and Rayleigh

scattering.

3.3 Two-photon absorption

In this section the multipolar and minimal-coupling Hamiltonians
are used to calculate the matrix element for two-photon absorption by
a chiral molecule. This requires the electric quadrupole and magnetic
dipole interactions to be included in the calculation. The two
interaction Hamiltonians are given below and the calculations are
aided with the use of time-ordered diagrams. The two results are shown
to be identical with the use of sum rules.

The multipolar and minimal-coupling interaction Hamiltonians are

Hig (mlt) = - €Td (R) - mb®) - €)Q T d;(R)
(3.3.1)
H, ,(min) = - E (ea/ma)pi(a)a;v(ga) + z (ei/Zma)aL(ga)aL(ga)
« «
(3.3.2)

where QL} is the component of the electric quadrupole tensor and m is
the magnetic dipole moment operator.

Consider, the case of absorption by a molecule of one photon from
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each of two monochromatic beams with modes (k,A) and (k’,\") (the case
of absorption of two photons from the same mode has been considered in

[40,44,37]

other works ). This may be represented by the time-ordered

graphs (45-111] shown in Fig 3.1. In the initial state the molecule is
assumed to be in state |o> with energy E_ and the modes (E,X) and
(5',1') occupy the number states |n> and |n’> respectively with
energies nhck and n"hck’. The final state has one less photon in each
mode, with the molecule excited tp state |m> with energy Em. The
intermediate state contains the molecule in a typical state |r> and a
photon has been annihilated from one of the modes.

Fig 3.1 shows the pure electric dipole contribution to two-photon
absorption, the interactions at the vertices given by the first term
of (3.3.1). Since each of the interactions is linear in the field the

matrix element Mfi for this process is given by the second-order

perturbation result

<lH, | |1><ax|n. | |i>
M - int int , (3.3.3)
(E,-E,)

where the initial, intermediate and final states are given by

[i>

[n(k,A),n’ (k' ,2");0> (3.3.4)

| £>

| (n-1) (k,2) 5 (0" -1) (K", 2" ) 5m> (3.3.5)

[(n-1)(k,2),n" (k’,A");r>
> = N ~ . (3.3.6)
In(k,2), (n"-1) (k" 1" )5r>

Using the mode expansion (1.1.40) for dL(R), from (3.3.3) we directly

obtain the result
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mr ro mr ro . ’
M(1) _ [nhck) ( ‘h k 172 E {E + “ Hi }el(§+¥ ).E
f£i 2e,V, 2€ V ‘v i -hck E_, -hck’

(3.3.7)

in which the (k,r) and (k',\’) dependences are assumed in e; and ei

¢

respectively, and pzr, u;o etc are dipole transition moments.

Let us consider contributions from the remaining terms of
(3 3.1). Graphs of the form of Fig 3.1 may be drawn, as in
Figs 3.2/3.3 on the following pages, with interactions via magnetic
dipole and electric quadrupole coupling; the study is confined to
cases where one of the interactions remains via electric dipole
coupling. In this way we are considering terms up to an order where

the diamagnetic coupling is neglected.

From Fig 3.2 we obtain the magnetic-dipole contribution

mr ro mr ro

m; U, T i(k+k’).R

M:,f) _ [22 V)(nn’kk’)uzb}’e.}:{ 14 2 1t }e ~
o ¢ E -hck E_-hck’

r ro ro

mr ro mr ro ,
H. m. m. U, i(k+k ).R
+(22 DJ(nn'kk')1/2elb. E {E Lt ¢ 2t }e -
0 4 -hck E -hck’
r ro ro

(3.3.8)

Similarly from Fig 3.3 we obtain the electric quadrupole result as

mr ro mr _ro

(3) .{ he 1/2 QL&” “ Qg 1(§+5 )'B
M . = 1 ( kk k& 2
£ 2e0V. % -hck E_ -hck’
ro
mr ro mr ro . P

+i he . Ajﬁu 1(§+§ )'E

oy (nn‘kk’ L 4 e .
o -hck E_, -hck’

(3.3.9)

The total matrix element is the sum of the terms (3.3.7-8) and is
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FIG 3.1 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION:
PURE ELECTRIC DIPOLE CONTRIBUTION
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FIG 3.2 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION:
INCLUSION OF MAGNETIC DIPOLE INTERACTIONS
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FIG 3.3 :

TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION:

INCLUSION OF ELECTRIC QUADRUPOLE INTERACTIONS
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given by (3.3.10). The result is written in terms of the molecular
polarizabilities which are defined in Table 3.3.1. dzg(w,w') is the
frequency-dependent transition dipole polarizability and GZ;(w,w') and
4’:M(&) ©') are the mixed analogues involving magnetic dipole and
electric quadrupole moments.

Thus the matrix element for two-photon absorption in the
multipolar framgwork is given by

i(k+k’).R

M, (Total) = {Zzoli](nn'kk')uz - - { M) e (“( K)af5(,0")

e e wM 10673 (0,01) + b (k)M (1065 (07 ,0)

+ ickﬁe( )(k )e()‘)(k)A

7o8(@0) + iokgel* V)M 0% (0" m)}

(3.3.10)

The corresponding rate for this preocess is obtained directly
using the Fermi Rule.

If we choose the minimal-coupling Hamiltonian (3.3.2), on the
other hand, then we need to cqnsider the interactions represented by
the graphs shown in Fig 3.4, where the sums are assumed. The
major difference between this and the multipolar form is apparent;
Fig 3.4 contains terms of all orders, since the mode expansion for the
vector potential, (1.1.39), contains the factor exp[ig.g]. Truncation
of the*terms generated, at an appropriate point, will therefore be
necessary in order to compare the result with (3.3.10).

In previous studies where the electric dipole approximation has
been invoked the contribution from Fig 3.4 (iii) is identically zero
since the initial and final molecular states are different and the
interaction is then simply a field term. Despite this fact it was

helpful to the working to retain this term as an artefact. Here this
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TABLE 3.3.1 DYNAMIC MOLECULAR POLARIZABILITY TENSORS:
ELECTRIC DIPOLE-DIPOLE, DIPOLE-QUADRUPOLE AND
ELECTRIC DIPOLE - MAGNETIC DIPOLE FORMS.

mr ro umr’lro
aL.(m,—w’) }; {E y— = }
4 -hck  E__+hek’

mr ro

iy
-hck Er°+hck'

n

G:; (w0, -0’ )

mr ro - mr ro

m, M.

g DL L
¢ Jthek”  E__-he

) lﬂl‘ ro Q u

ASgl0,~0") = Z {E 4‘5 3‘5 }

¢ —T\ck E +hck’
ro

umrQro er uro

A-zz(-w',w) = Z{E L + 82 3,(}
¢ +hck Ero-hc




-{b—-

FIG 3.4 : TIME-ORDERED GRAPHS FOR TWO-PHOTON ABSORPTION IN THE
MINIMAL-COUPLING FORMALISM
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term is non-zero and may be written, with the use of the new sum
rules, in a useful form for combination with those terms which arise
from the other two graphs.

Considering graphs (i) and (ii) firstly, the matrix element may
be written down to the correct order by keeping only the first two
terms of the expansion of exp[ik.g]. Assuming as implicit the particle

labels « for p, and B for p; we then obtain

172 (k+k’).R
Mfi(i+ii) = - Z g [eaeB/mamﬁ][Eﬁ,] (2€§c'Je 8481 K J.®

x{ 2 <m|pL(1+i§'f(ga—g)+..)Ir><r|p5(1+i§.(gﬁ-§)+..)lo)/(Ero—hck)
r

+ E <m|p;(1+i§.(gﬁ—§)+..)|r><r|pL(1+i§'.(ga-B)+..)]o)/(Ero-hck')}.
r
(3.3.11)
This expression may be broken down into parts which are easier to
consider separately. The pure dipole part is simply given by the first
term of each expansion (ie which corresponds to explik.{(q-R)] =~ 1 in

the electric dipole approximation) so that

mr ro

r
1/2 jP i(k+k’).R
e HU{] (zer 2{2 \ L}e” ;
< ;hek E__-hek’

(3.3.12)

Now we may convert the momentum matrix elements of (3.3.12) into

dipole transition moments using

t . t
p; = (in/ME_aq; , (3.3.13)
noting that (3.3.13) is not applicable to diagonal terms. This does
not present a problem, though, since an inspection of the appropriate

terms of (3.3.12), following the use of (3.3.13), shows that they are
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zero in any case and the resulting term may be written with the sum
over all r. This is a common feature of such demonstrations. The sums
over « and B are incorporated into the definitions of the molecular
transition dipole moments to simplify the matrix element, which may be

written as

(dip) _ [nﬁck)ilz(n'hck']ilz .

M_. e.e.
ri ZEOV ZEOV 174
mr ro mr ro . ’
mo, EncBro YKL Ky Ml i{k+k") R
x aié(m,w ) + -1 + + e .
hekhek’ -hck E_-hck’
r ro ro
(3.3.14)
Note that overall energy conservation, namely
E_+E_ = heck + hek’ (3.3.15)

in this case, does not influence the energies of the virtual states
and we cannot cancel the energy parts of (3.3.14).

The conservation law (3.3.15) may be used to show that the second
term of this expression vanishes. Following the addition of the terms

in each set of curly brackets a subsequent simplification gives

M(dip) - (nhck]llz[n'hck']llzei

fi ZEOV ZEOV

mr ro mr ro . s
mo . Emrui u} _Ero“' Hi 1(E+§ )'E
X &, (0,0 ) + 2 —re
¢ - hekhek’

(3.3.16)

the second term of which vanishes with the use of the sum rule (3.2.1)
giving the multipolar result (3.3.7) up to electric dipole.

This equivalence to electric dipole merely agrees with those

previous studies cited. However, such studies are extended here by



examining the terms of the next order, that is by including electric
quadrupole and magnetic dipole coupling. These terms are easily
treated by applying the sum rules derived in section 3.2. Returning to
(3.3.11), we pick up the remaining terms. Converting one of the

moments gives, suppressing the a label from p; and pé,

2 o 1/2 1 i(k+k’).R
Mri(1+11) = £ {ed/maj(kk'] (ZEOCIJeieJe
x{ y 2 (L\ l-lmr<r|p ( _R) |0> + [.L](mlp (q _R) Ir>uro
£ \E -hck’ 1 4 g‘x ~ R E -hck’ 3~ A £ 4
r ro . ro
+ k; E i—jizl—:<m|p (qu-R) Ir)yro + E——lz———)pmr(rlp (q_-R) Io)}
£ ¢ e -hek - £ B hew) ¢ LA

(3.3.17)

Using the sum rule (3.2.11) we obtain

o’ 1/2 1 i(k+k’).R
Mfi(1+11) = E&?J (————)e

(3.3.18)



Finally we have the matrix element corresponding to Fig 3.4(iii).
Having expanded the exponential part of the mode expansion for a(r)

the first non-zero term is given1 by

1/2 1/2
e e - nh n'h
M, (iii) = 212 (e /2n )[25 Ck’J (ZEoCk,[J

I
i(k+k").R

~

XeLeL<m|(k+k').(qa-R)|o>e ¥ .

(3.3.19)

It is sufficient to take only this term from the expansion, as the

next term 1is of too high an order. The products ebetké é and

etetkéqé in this expression can be expanded into summations of the

form of the terms in (3.3.18), using the sum rules (3.2.30) and

(3.2.31). This leads to

N1/2 i(k+k’).R
M (iii) = [’“‘ [ 1 }e -~
fi kk’ ZEDcV
mr I‘O mr ro] r} mr ro mr ro

. ’ ’ mr_ro mr ro mr l"O mr ro
+(1/h)k£eiej 2 ( oM QL& EmrQL&u ] +k’b’ eé z ( - m; “4 ]}.
r
(3.3.20)

Adding (3.3.18) to (3.3.20) gives (3.3.21).

1The expression contains a numerical factor of two since the
interaction is quadratic in the field.



N120 g i(ktk').R
M(i-iii) = B e ~ % °
f£i kk 2£0V

E r E
x{ (i/h)k kpe'e. {(___LE._)MTero + ———EL———]QTryT°}
{ UAPRS z Ero—hck i ‘& ‘Ero-hck' 874

+(l/h)kk e‘e. E{(___E__'-_.]erur:o + ’__E.:_'l__]umrQro}
EAVRS hek 87§ - 4 ik

E ‘E -hck’
mr ro mmr”ro mmrpro umrmro
+kkeb2{ PR . }+kk'b";e.z{ ¢ , 2t }}
# -hck E -hck’ ¥ \g ~-hck E -hck’
ro ro r ro ro
(3.3.21)

The magnetic dipole terms are in their final form but the quadrupole
terms still contain unwanted energy factors. These terms may be easily
rewritten using an identity, similar to (3.2.6) but derived for
absorption cases, to give the final expression. So, after recovering
the dipole polarizabilty term, the final matrix element is identical
to the multipolar result (3.3.10).

It has been shown that the equivalent interaction Hamiltonians
which occur in the multipolar and minimal-coupling formalisms predicf
identical rates for two-photon absorption. The predictions go further
than a discussion in the electric dipole approximation and the sum
rules used will be useful for comparative studies of other energy-
conserving phenomena to such orders. From a chemical point of view,
however, it is preferable to write the interactions in terms of the
electromagnetic fields rather than the potentials and the matrix
elements in terms of molecular properties such as pdlarizabilities.
Thus the transformation to the multipolar form of the interaction must
be seen to be fitting for such studies.

In the following sections the two forms of interaction are used

to examine, in lesser detail, the process of scattering.
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3.4 Differential Raman scattering

Raman scattering is an incoherent, two-photon optical process.
A molecule will absorb a single photon from an incident beam and emit
a photon of a different frequency such that the frequency difference
is equal to the frequency of a rotational or vibrational molecular
state. The molecule will usually return to its original electronic
state after the virtual excitation. The Raman phenomenon tael
therefore gives rise to a valuable vibrational spectrum of transitions
which are infra-red forbidden because of the difference in selection
rules between the one- and two-photon processes.

If the molecule is chiral, however, the Raman scattering rate may
be different for the cases where the incident beam is left- or right-
circularly polarized [11]. The difference is small compared with the
total scattering rate and the effect is predicted only when the vector
potential is not approximated to a constant value over the extent of
the molecule. This dictates the inclusion of magnetic dipole and
electric quadrupcle interactions (it is noted that the quadrupole
contribution to the differential effect does not vanish for freely
rotating molecules as it does for optical rotation and circular

11]). It is therefore useful to consider these higher-order

dichroism :
interactions using the two forms of interaction Hamiltonian.

The multipolar treatment follows as before; the graphs of
Figs 3.1-3 for two-photon absorption have their counterparts for Raman
scattering. Fig 3.5, for example, shows the dipole interaction. The
polarization label L/R indicates the choice of left- and
right-circularly polarized beams and the scattered photon occupies the
mode (B',X'). The multipolar matrix element is again calculated

directly using the second-order perturbation interaction. The matrix

element for Raman scattering in the electric dipole approximation is



then given, from Fig 3.5, by (3.4.1).

mr ro mr ro

caip) _ _(nmhek) % (hek’) 2=, mp My HpHy ) i(KO).R
0 0 ~hck E +hck’
r ro ro

(3.4.1)

This term is the leading contribution to the scattering amplitude;
likewise the higher-order terms may be written down. The scattering
rate may be expressed in terms of a radiant intensity (11l or more
usually as a scattering cross section using the modulus square of this
matrix element, in which case (3.4.1) leads to the multipolar form of
the Kramers-Heisenberg dispersion formula [3_4'47_481.

In terms of the molecular polarizability tensors defined in

Table 3.3.1, (3.4.1) and the magnetic dipole and electric quadrupole

FIG 3.5 : TIME-ORDERED GRAPHS FOR RAMAN SCATTERING:
ELECTRIC DIPOLE INTERACTION
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contributions may be combined to give the total multipolar matrix

element

i(k-k").
M, (L/RO)) = —(nkk')uz(zzov] - { s )e ;P e (w,-0")

(L/R) (L/R)

s g 10675 (0,07) + B (e (06T (-0 40)

(L/R) (L/R)

+ickge\ )(k dest '™ (AT g(0,-) ~ickjel™ )(k Je

g8 (k)Agié(-w',w)}

(3.4.2)

To compare this result with the minimal-coupling form we first
extract the electric dipole interaction from graphs (i) and (ii) of
Fig 3.6. This is the result which would be obtained if the vector

potential was considered constant in the region of the molecule. Hence

mr ro mr ro . z
o o 33 () E{E o LI
fi «p \m kk 2¢e CV i% -hck Ero+th'

(3.4.3)

Converting the momentum transition moments into their dipole forms and

noting the conservation result

E +E = hck - hek’ (3.4.4)

allows us to write this as

. 1/2 172 i(k-k").R
M(dxp) - _[nhck] (hck ) Efe amo(m ey’ ~ ~ ~

fi 2€0V ZEOV
(3.4.5)

where (3.2.1) has been employed to sum a term similar to the second

term of (3.3.16).



FIG 3.6 : TIME-ORDERED GRAPHS FOR RAMAN SCATTERING:
MINIMAL COUPLING INTERACTIONS
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(3.4.5) agrees with the corresponding multipolar term (3.4.1), which
confirms the earlier equivalence demonstrations in the electric dipole
approximation. We may proceed to the higher-order terms.

Adding the contribution from Fig 3.6 (i1ii) to the remaining terms

from graphs (i) and (ii) leads us to consider the quantity

1/2 i(k-k').
. n h ~ ~
-i Z g (eaes/mamﬁ} {w) (Zcoclf]ete;;e
x{ké E {pzra'lp#-(g'l})do)/( ,~hek) + <m|p (a-R)g|r>p}°/(E_ +hck’ )}
r

- k E {(mlp (q R)£|r>p /(E —hck) + p <r|p (q-R)£|o>/(E +hck’ )}}

r

i(k-k").R

. z 2 n 1/2 h ~ ’
+ 2i . (e, /2m,) Y ZEOCV'eLeL<mI(§-§ )-(ga‘g)|°>e

(3.4.6)

It has already been shown in Section 3.2 how best to deal with such
terms. The multipolar equivalent of the total expression above is
obtained following the use of the sum rules (3.2.11) and (3.2.30/31).

After combining the resulting terms we obtain
) n 1720 4 1(k k ). R
Mg; = _[EET) (EE;TJ kk'e tbégti(m o) + KK b¢ 3 #t( —o’,0)

E E
+ (i/h)k'kge e {(————3——JpWer° - [ mr ]quufo}
8,4,12 E hk""ﬁ E e M

-E E
+ (i/h)kk’éle {[—]le‘ ro [L_]umrqro}}
&4,42 E__+hck’ i E__+hck’ $ e
(3.4.7)

The G tensor terms appear in their final form but the

dipole-quadrupole terms must be adapted. The use of (3.2.6) enables
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us to adopt the tensor form of the result by eliminating the energy
factors in the numerator. The subsequent expression is then identical
to that of (3.4.2).

The terms of_(3.4.2) which include the higher-order coupling have
a magnitude which is of the order of 10-3 times that of the dipole
polarizability term but they are nevertheless required to explain the
differential effects. These effects arise from the modulus square
which is required for the ;cattering cross section; the cross terms
include the products a{?(m,-m')éE}(m,-m'), dzg(w,-w')zzzm(m,-w') etc,

multiplied by the corresponding polarization vectors. Now since

(L/R) . (L/R)
e

9 (E) = Fi (5) (3.4.8)

~

the form of these vectors is such that the difference irn the
absorption rates (TL - FR) is non-zero; the quadrupole term also
remains even after rotational averaging. Thus chiral molecules, for
which the selection rules allow each type of interaction, scatter the
two forms of polarized light at different rates, giving rise to a
potential spectroscopic technique.

The next section discusses the more specific case of Rayleigh

scattering, which shows some subtle differences.

3.5 Differential Rayleigh scattering

Rayleigh (elastic) scattering is a specific form of the more
general case detailed in the previous section; the final state of the
molecule following the scattering of a photon is the same as its
initial state. In order that energy conservation is obeyed the emitted
photon must enter a mode in which it has the same energy as the
absorbed photon. Thus we may write IEI = IEll and denote the final

molecular state as |o>; the polarizabilities must now only be
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functions of ® = ck. The direction of the emitted photon may vary. For
example, photons of optical frequencies are scattered in the forward
direction by crystal lattices, in which case k = k’ and the process is

coherent.

The equivalence of matrix elements generated by the two forms of
Hamiltonian has not been explicitly shown for this special case.
Although the description follows closely from that of the Raman case,
there are worthy differences; for example the term quadratic in the
vector potential is non-zero, even in the electric dipole
approximation, because the initial and final molecular states are
identical. These new features are accounted here.

The calculation of the multipolar matrix element shows nothing
new. The result is similar to that obtained for Raman scattering; the
corresponding terms must take the same signs, differing only in the
forms of the polarizabilities. The minimal-coupling derivation,
however, does differ slightly from the Raman case. The pure dipole

contribution may be shown to give

ydir) _ _ nhck) ' Z(hek )12, «®° (0, -0) i(g-g )'B
fi R VN 2€ V] &g\ e
o 0
& VoMo’ (26 ckV, 2€ ck¥, 7§ '

(3.5.1)

which differs from the corresponding Raman result (3.4.5) by the
appearance of the second term, which now does not sum to zero using
(3.2.1) because of the choice of molecular states.

The remaining terms from the g.g(g) graphs are standard and are
converted into their multipolar form using (3.2.11). The first term of
the series of contributions from Fig 3.7(i), however, is now non-zero.

That is,



FIG 3.7: SEAGULL GRAPH FOR RAYLEIGH SCATTERING IN
THE MINIMAL COUPLING METHOD

(k2
o
(ei/Zma)ai(ga)aL(gd)
o
(k,L/R)
(i)
Mfi(i) =
i(k-k’).R
2 z (e /2m )[ kEJe e, <o|1 + 1(k k ). (q -R)Io)e -,
o
(3.5.2)

It is this term which is identical to the second term of (3.5.1) but
of opposite sign. Using the sum rules (3.2.30/31) the second term of
(3.5.2) may be added to those from the other graphs, giving the total

matrix element

1(k k ).R
N (L) = _nuz[ztemky] { 20 (o) (1025 0,-0)

=(A") s\ (L/R) oo =(x),,,, (L/R) oo
+e4', (lf )bé (E)Gij—(w’-w) +b4; (1‘5 )eé (I‘E)Gsu’(-w’(‘))
+ick£e( )(k Je (“R)(k)A%&(w ~0) —1ck£e( )(k Je (L/R)(k)A#w(—w w)}

(3.5.3)
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which agrees with the multipolar result.

It has been shown how the theory of QED is applied and
demonstrated how the multipolar and minimal-coupling Hamiltonians,
equivalent by canonical transformation, may give identical results for
interactions on the energy shell. Previous works on this subject have
been extended by the inclusion of electric quadrupole and magnetic
dipole interactions. The conditions of this equivalence [39], namely
that i) those matrix elements calculated must describe physical
processes in which energy is conserved and ii) that every possible
graph to the required order in the field must be included, deny any
claim to the contrary. A consideration of the terms arising from the
minimal-coupling seagull graph, for example, dismisses Fiutak’s
claim (201 that equivalence only applies to first order processes. The
electric dipole approximation, which is often adopted for calculations
irrespective of the form of Hamiltonian, is in most cases a valid
choice [49]; the optical wavelengths of photons associated with
electronic transitions may be typically 103 times the extent of the
molecule. However, the higher-order interactions® discussed here may
not be negligible. We have already seen the necessity to include such
interactions when examining the responses of optically active
molecules, whose low molecular symmetry leads to the interference of
the relative contributions and so to such phemomena. Also, transitions
which are electric-quadrupole or magnetic-dipole allowed often have a
low probability of proceeding through electric dipole coupling and so
their matrix elements may be significant.

From the calculations of the previous sections we have seen that
the multipolar formalism lends itself better to the problems of
considering higher-order interactions. The —E;Ig.gL(g) interaction is
simply replaced by the integral -Eglfg(f).gL(S)gaf, which contains the

complete electric multipole expansion, and a corresponding magnetic
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term, from which the multipolar interaction terms are obtained. The
required matrix elements then directly follow. In the minimal-coupling
formalism all coupling is described by the two interaction terms. An
expansion of these terms shows that for higher-order processes the
number of terms generated quickly rises, with a loss of obvious
physical significance. This compares with the more favourable
multipolar results in terms of molecular polarizabilities and
interactions in terms of the fields rather than the potentials. The
multipolar interaction thus describes the dynamical, internal
electromagnetic field E(E) with an interaction similar to the external
field interaction _E'E(E) used in semi-classical theories and allows

straightforward calculation of radiative interactions in a useful

form.
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CHAPTER 4

HIGHER-ORDER CONTRIBUTIONS TO THE
DISPERSION INTERACTION

4.1 Introduction

The physical properties of solids and fluids are determined by
the interactions between the constituent atoms and molecules. It is
now well-known that molecular interaction energies depend upon the
extent of molecular separation and that at large separations
retardation effects become dominant over electrostatic coupling.

In the initial studies of interactions between neutral molecules
the quantum-mechanical Hamiltonian was written simply as a sum of
molecular terms and an intermolecular potential; the dipole-dipole
term. The second-order perturbation result in this term is the

45,50-51 .
(45, ]. Retardation

familiar London R ° dispersion interaction
effects are unimportant and the result is valid at separations R « A
(Zﬁk_i), where A is of the order of the wavelength of the lowest-lying
molecular transitions. However, when R 2 A the Coulomb potential
energy is not sufficient to describe. the interaction and we must
consider the interactions of the molecules with the field, ie
retardation; the Hamiltonian should be the coupled system. The result
when molecular separation is much greater than these characteristic
wavelengths is the Casimir-Polder R_7 dependence (see for example
[52-57]), which was calculated following the experimental observations
of Overbeek et al [SB]. It is appropriate in these cases to express

the result in terms of physical properties of the isolated molecules

eg polarizabilities. The dependence on separation and the replacement
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of the London R—6 result by an R_7 term has been observed for example
by Tabor et al [59], although these are of course the asymptotic
values of a more complicated expression.

Quantum electrodynamics is ideal for studying such interactions
since it allows for the finite propagation of light. Intermolecular
forces are treated as radiation-molecule couplings, with the field
mediating exchange of energy in the form of virtual photons between
the molecules. The energy shifts are calculated by the use of
perturbation theory, the results realised through the use of
time-ordered diagrams; for two-photon exchange the fourth-order term
of the perturbation expansion is required.

As noted in Chapter 1, for neutral molecules the electrostatic
interactions are completely cancelled in the multipolar Hamiltonian,
giving a purely retarded result. The dispersion interaction has been
investigated using the multipolar Hamiltonian by Power t4s) and Craig
and Thirunamachandran t1 for the whole range of molecular separation
outside overlap. However, their results only contain terms up to a
product of the polarizabilities of the two molecules. Magnetic dipole

(11,601 with application to effects

interactions have been considered
arising from the chirality of the molecules but these results too are
only valid for freely rotating molecules.

This chapter extends the discussion of the interaction between
neutral molecules. Electric-quadrupole and magnetic-dipole
interactions are considered, the results given firstly for oriented
molecules. The diamagnetic interaction must also be determined, since
it gives a result of similar order to the terms involving two
magnetic-dipole interactions. Rotationally-averaged expressions are
presented as well, as are results for the near- and far-zones. Results

are expressed where appropriate in terms of molecular polarizability

and susceptibility tensors; the rotatory strength R"® is used



elsewhere.

We start with an account of the electric-dipole interaction for
an oriented pair. This is an important result as the method used in
this section is largely followed in subsequent sections. Magnetic
dipole and electric quadrupole terms are then discussed; these terms
may be confined to one centre or split between the two molecules.
These higher-order interactions are important for molecules which have
small electric-dipole coupling with the field or low-lying states
accessible from the ground state by non-zero electric quadrupole and
magnetic dipole matrix elements. They are also important when
considering molecules with large magnetic suscepﬁibilities and when
considering the interaction between optically active molecules. In
such cases the dispersion force differs according to the relative
chirality of the pair, an effect calied chiral discrimination, and the
magnetic-dipole interactions are required to account for this. The
same graphs are used for the calculations except that at some of the
interaction vertices we use these higher-order interaction terms. The
corresponding contributions to the energy shift are dgtermined; the
diamagnetic interaction at one centre is obtained using third-order
perturbation theory since it is second-order in the field.

These results are summarised in a later section and some useful

identities are given in an appendix.

4,2 The electric-dipole contribution

We wish to calculate the pure electric-dipole contribution to the

dispersion energy. The interaction Hamiltonian is given by
int

-1 i -1 1
H, . = -6 B(A).d"(R,) -€ "u(B).d (R,). (4.2.1)

The energy shift is calculated using the fourth-order perturbation



result;

Z Z ZwlﬂintlnlxrnIHiMIIIxIIIHiMIIxIIHiM|0>
AE = - .
(Eyy 17 Eo) (B -EQ) (B -Ep)

IIT 11 1

(4.2.2)
There are twelve contributions to the fourth-order result, shown
by the time-ordered graphs on Page 97. The virtual photons are
indicated by internal wavy lines and are denoted by a wavevector g and
a polarization A; the molecules occupy intermediate electronic states,
labelled r for molecule A and s for molecule B. These labels will be
assumed as implicit in the working. Energy conservation applies only
between the initial and final total states of the system. The
intermediate states may lend energy to or borrow energy from the
vacuum, subject to uncertainty restrictions. To evaluate the total
contribution from a graph it is necessary to sum over the wavevectors
and polarizations of the virtual photons as well as over the virtual
molecular states.
The energy denominators for graphs (i-xii) are given in
Table 4.3.1. Summing the contribution from each of these graphs gives

a total energy shift (1 of

AE (Total) = AE (i-xii)

_ hep hep’ or ro os 8o
- -Z Z [ ZEOV][ ZeoV]‘uL HjHg He

£8 pp”

A A A A, i‘E*B')'E o 1 -1

The sum over a is a sum of the reciprocal of the energy denominator

arising from each graph as given by (4.2.2). The value of this sum has



been determined t11l and appears in Table 4.3.2 as Sl.

The expression (4.2.3) may be written in the symmetric form

T
1287°€ he 1T TRTE BHTiRG
)
(k_+k _+p) 1 1

x — - d°pd’p’ (4.2.4)

(k_+k_)(k_+p)(k_+p)| p+p p-p .
where

a“:d: = (544-'11“"1)#') ’ (14-4. = (Gq—pip:’i) (4.2.5)

!

It is convenient at this point to define also the quantities “Lj and
344; these are useful shorthand expressions for terms which appear

vfrequently in the study of intermolecular interactions. We define

Performing the angular integration in (4.2.4) gives the expression
(4.2.8), which for clarity has been written using the quantity
ti4(pR)’ which is defined below. Agéin this is a widely used shorthand

form, found regularly in the literature. See for example [45]. We have

inpR cospR sinpR
T, .(pR) = «, ST 4 g . - (4.2.7)
i i4 DR ij szz p3R3

The total energy shift is now given by

®
e g § e | avraor
(0] ¢ r,s 00
) ) dpdp” (4.2.8)

(k_+k_)(k_+p)(k_+p)}| p+p p-p



FIG 4.1 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION
IN THE ELECTRIC-DIPOLE APPROXIMATION
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Integrating over p’ gives (4.2.10), with 0&4(pR) defined by

R sinpR cospR
i4 iy DR i szz p3R3
Hence
“OF“I‘O ospso

8n EOhc s (kr+ks)

®

J (kr+ks+p) [ 6
x T, p(PR)W  p(PR)+T ;p(pR)w, (pR)]p dp (4.2.10)

(k_+p) (k +p) L W& 4L aLTA
o

Expanding (4.2.10) and collecting the terms gives a result which may

be simplified using standard trigonometric identities to give

®
AE _ —1 Z Ol" ;O ZBMEOJ_ (kr+ks+p)
gn c-hcR (k_+k.)  J(k_+p)(k_+p)
! Q
C.. E.. B. . D..
. &L 14848 ij88 ij8L|1 4
X|sin2pR|A; ;pp - s + + cosZpR[ - }]p dp
[ { ijRL szz p4R4 ] DR p3R3
(4.2.11)
with Ai}&& - Egee given by (4.2.12)
AW = (!4.’8’(!%
Biae = “ufie * Py
CW = “L&Bﬂ + BL&“;% + Bwﬂ% . (4.2.12)
D¢4&C = 28&&#}&

Writing (4.2.11) in terms of exponentials leads to the result
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_ -1 or ro os so
8E = ——— }: Mg “ Hg He

8n e hcR
o r,s
®
-2pR
XJ kkp'e s Bigge  Cijae  Dijse  Eijee dp
(K2+p°) (kZ+p”) PR p’R°  pR° 'R
0
(4.2.13)

Defining the dynamic polarizability of a molecule by the expression

E
«. .(icu) = ?‘Z — e (4.2.14)
# TRITE

with a frequency (icu) the above form may be written as

@

-hc £1££ @;&& Lé&t Lé&{

— -2DR
AE = [ *(icp)a (1cp)p e A.. + +
32n3€2R2 i4 £t A DR szz o°R° pR*

' (4.2.15)

This result may be compared with that obtained by Craig and

[111]

Thirunamachandran by taking the rotational average; we regain

their result, which is shown below.

AE'—' Z I ro 80|
36m°e h cR?
@®

ZpR
k k p e
XJ [1 + 2 + 5 + 6 + f

2 2.2 3,3
(k2+p° )(ks+p ) PR PR DpR DpR
[e]

dp (4.2.16)

The form of (4.2.16) in the limiting cases of large and small
molecular separation is given below. In the wave-zone 1limit the
separation is much greater than the wavelength of the lowest lying
molecular transitions Xr and Xs; we may write krR, ksR » 1. The

near-zone, with separations much smaller than the molecular transition
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wavelengths Xr and Xs, is defined by krR, ksR « 1., The limiting

results are obtained from (4.2.16) by making the approximations;

2 2 2
Wave-zone: kr, k8 » p, and

Near-zone: e-ZPR ~ 1 ; it is sufficient to retain only the term in

(pR)_4 as the major contribution. This gives the results below.

NEAR-ZONE LIMIT

IurOIZI”solZ
| -
AE = PN E: ( , (4.2.17)

241 e R E +E )
0 r,s ro 80

which may be written in terms of dynamic polarizabilities as

®
AE = — ;32 6 JaA(icu)aB(icu)du . (4.2.18)
32 € R
0
-0
FAR-ZONE LIMIT
AE = —23202 a(A;a(B) (4.2.19)
64n €, R h

In (4.2.19) o(A) is the static polarizability for molecule A
defined as

x(A) = (2/3) 2 |g’°|2/E (4.2.20)

ro
r

The electric-dipole result is important because‘the method is
largely followed in subsequent sections. In the sum over the energy
denominators, each term, denoted D;‘, appears with the same sign and
the terms are combined in a specific but convenient order such that
the variables p and p° are separate and the respective integrals may

be done. In following sections similar sums will need to be evaluated
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and so we shall briefly look at this method and give some useful

definitions of quantities which will be required.

4.3 Methods and definitions

The interaction Hamiltonian is given by

H = =€, #(A).d"(R,) -€,7"u(B).d"(R;) -n(4).b(R,) -n(B).b(R,)
-1 v XL -1 v L e2 2
%o Qié(A) {dL(BA) €0 Qge(B)Vedg(Ry) +go Z (95 (B)-Rp)xb(Ry)

(4.3.1)

The graphs on page 97 are modified by including the appropriate
number of new interactions at the vertices. This increases the number
of graphs which make contributions; there may be twelve, twenty-four
or forty-eight contributions to the fourth-order interaction. In each
case we must sum over all the possible intermediate states for each
graph. However, as we shall see, it is always possible for each set of
results to write the total in a form similar to (4.2.3), where there
is a factor common to each expression which contains all the vector
and angular dependence. We are then left to evaluate a sum, similar to
S1’ which is over the product of the energy differences in the
denominators of the perturbation result. In the sum Si, however, all
of the terms appear with the coefficient of unity. In the cases which
we shall consider the coefficients may be plus or ‘minus unity,
following the factorization: we must evaluate new sunms.

Table 4.3.1 shows all the relevant information pertaining to each
graph. The quantity X, refers to the signs, in the exponential part of
the field expansions, of the wavevectors P and E' of the virtual

photons which are created or annihilated at each vertex. By

considering the symmetry of each expression with respect to the
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interchanges P -p and/or g'% —g' we may write a total result, as in
(4.2.3), with exp[i(g+g').§] as a common factor. Where the expressions
are antisymmetric to the required changes a coefficient of minus one
results to that contribution. It is these coefficients thch are given
in Table (4.3.1) for the appropriate cases. Note that in the case of
the electric-dipole interaction, each term 1is symmetric to these
changes.

The sums of terms with the coefficients in Table 4.3.1 have been
evaluated and appear in Table 4.3.2. These results will be referred to
in the text. It was largely possible to deduce these results from the

value of Si; the terms were combined in an identical manner, in order

to write down the quantities

Cn n n n n Cn
3 3 i iii iv vii ix x
h D + + + D (4.3.2)
i iii iv vii ix X
and
h3 3 :1 + _(i + C:1 + :iii + C:i :ii (4 3 3)
) D ' D "D "D o
ii v vi viii xi xii

and hence obtain the total sum for n = 2-5.

In the previous section the trigonometric quantity 114(pR) was
defined in order to simplify the expression (4.2.8). The explicit
working will be elaborated upon in the appendix, (Section 4.8), but if
we look at (4.3.6), in Table 4.3.4, we see the form of the angular
integral. In an integral such as (4.3.6) the quantity ;Lﬁ on the left
hand side may arise from the sum over the polarizations of one of the
virtual photons exchanged between the molecules (see the appendix to
this chapter). However, if we are considering magnetic-dipole
interactions the sum over photon polarization vectors is modified by

the presence of the magnetic field vector and we will require an

integral of the form (4.3.5). When considering electric-quadrupole
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TABLE 4.3.1 SUMMARY OF THE CONTRIBUTIONS FROM THE DISPERSION GRAPHS

Graph x /i C: cjcyjcic (hc)-gD;1

i (prp) |+ + ]+ ]+ |+ (p+p")(k +p)(k +p")
il (p+p’) 4 -] -+ -] (etp")(k +p")(k +p")

iii (ptp") |+ |+ |+ + ]+ | (k+k )(k_+p)(k_+p")

iv (ep) |+ |+ |- |- |- (k) (k +p)(k +p")

v -p ) |+ -+ -] - | (ktk et ) (k 4" ) (k +p”)

vi | -(pp) |+ ] -+ -] | (ktk+ptp’)(k +p")(k_+p)
vii | =(ptp”) |+ |+ |+ ]+ ] - | (p+p")(k +p")(k +p)
viii | -(p+p") | + | - | - | + | + | (p+p")(k +p)(k _+p)

ix | -(ptp") [+ ]+ ]+ ]+ - | (kHk )k +p)(k +p")

x | =(ep) |+ )+ |- -+ (ktk)(k +p)(k +p")

i =(pp") J+|-1+]|-1]- (k_+k_+p+p" ) (k_+p)(k_+p)

xii f=(pp") |+ ] -1+]-1-| (ktk+ptp" ) (k_+p)(k_+p")
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TABLE 4.3.2 RESULTS OF SUMS REQUIRED TO DETERMINE THE DISPERSION
INTERACTIONS

S SUM VALUE x (hc)?
iy ” :
S 4 4(k_+k_+D) 1 1
s, E: c,D, -
aci (k +k ) (k +p)(k +p)| p+p DD’ |
xii ( )

4p 1 1
s E: ¢’’’ -
(k +k ) (k +p) (k +p)| p+p”  p-p

4p’ 1 1
s Z cp? -
(kr+ks)(kr+p')(ks+p')k p+p’ p-p’

a=i J

xii ssksp) [ 1 ;)
s, }: cip.’ — -

ani (k_+k_)(k_+p")(k_+p )L p+p PP

xii

6 1 2k_ 1 1 1 1

Ss CaDa ’ ’ 7 + ’

aci (k_+k_){(k _+p)(k_+p) (k _+p")(k_+p")|| p+p PP

TABLE 4.3.3 A SUM REQUIRED TO DETERMINE THE DIAMAGNETIC CONTRIBUTION

TO THE DISPERSION INTERACTION

SUM VALUE x (hc)?

2 1 1

+
i ii iii

’

(k +p")| p+tp°  p-p
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interactions the sum over polarization is the same as the
electric-dipole case but the gradient operation (from the interaction
Hamiltonian) on the exponential part of the mode expansion for the
electric displacement field (1.1.40) brings down an additional
component of the photon unit wavevector. This requires the results of
the integrals on the left hand sides of (4.3.7/8), which may be

defined analogously using the quantities Oié&(pR) and 6-.EE(pR).

TABLE 4.3.4: RESULTS OF SOLID-ANGLE INTEGRALS FOR VIRTUAL PHOTONS

OF WAVEVECTOR P

ip.R )
.4_.715. Je ~ ~dQ = E‘.EPB (4.3'4)
PR

1 [+ ip.R
In |Pie T T = -in, (pR) (4.3.5)

1 [. ip-R
In |%ge T T = T, g(DR) (4.3.6)

1 [. - ip.R
In |%iPge T 4@ = i0, ;¢ (PR) (4.3.7)

1. -~ ip.R
In |%iPgPee T T = £ 8 (PR) (4.3.8)
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However, these integrals had not previously been evaluated and so
these new results have been determined and are presented for the first
time in Table 4.3.4 with Oi4£(pR) and 6{4&£(pR) given by (4.3.9) and
(4.3.10) respectively. These results will be referred to in the
working and are grouped together below for convenience.

In Table 4.3.4 tLé(pR) is defined by (4.2.7),

2.2 3.3 4_4

Gw(pR) = {R;R Ry cospR _ csinpR _ ;.cospR , ,.sinpR
DR PR PR PR

3.3 4_4

- - inpR »COSPR sinpR
+(8.,R; + & ,R,)|3LEEE 4 3 - gSinpR
b4 4874 [szz 3R 'R

-5, ,ﬁé cospR _ ,sinpR _ gcospR , gsinpR
s PR p2R2 p3R3 p4R4

(4.3.9)

3\

£ gp(DR) = {—ﬁinéﬁé t[S”‘PR +10908RR _45SINPR _;5COSPR 4 5S10DR

5 5
PR pZRZ p3R3 p4R4 PR

7

3\

inpR cospR sinpR
+(5w5.£+5.£5u)[smp + 3 -3
3_3 4_4 5 5
4 4 PR PR PR )
5.8 cospR _ 2sinpR _ oCOSpR + »SinpR
L) 2 2 3 3 Y a_4 Y5 5
“ [pn p°R p'R pR°

f,(aiégénﬁ + SLCBjRﬁ + 6}£RLR£ + 54£RLR£ + 6££RLR})

3,3 4_4 5.5

< cospR _ 6singR _ 15cospR + 15sinpR
PZRZ PR PR PR

2.2 3.3 4 _4 5 6

+ 5--§£§£ sinpR | 4COSPR _ gsinpR _ ,.cospR | 158inpR
“ PR PR PR PR PR

(4.3.10)
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In (4.3.5) we also require the quantity nL(pR) given below.

n (pR) = R, [0SR _ sinpR) (4.3.11)
PR PR

One last consideration using this method is the p’'-integration.

On page 98 the quantity G&J(pR), which is very similar in form to

T..(pR), was introduced. The pair {ti4(p'R),ﬁu4(pR)} are related by

i
the integral

s 0]
T, (p'R)p"°
J_ié___dp' = p3m4.4.(pg) (4.3.12)
(p+p’)
-0

Similar expressions, outlined more fully in the appendix to this
chapter, relate the pairs {ni(p'R),pL(pR)}, {0i4£(le)’u24£(pR)}’

and {€i4&£(p'R),dh4&£(pR)}. For example pL(pR) is given by

4 2 2

p (pR) = -g, |8inpR °°sﬂ?R] (4.3.13)
PR PR

All of these quantities will be used in the following sections, with
the explicit forms of vi;&(pR) and ¢-.ﬁe(pR) given in the appendix to

the chapter.

4.4 Magnetic-dipole contributions

In general the selection rules which apply to optical transitions
in molecules will exclude magnetic-dipole interactions if
electric-dipole coupling is allowed. This 1is a consequence of the
symmetry of the two operators; the former is symmetric to inversion
whilst the latter is antisymmetric and so coupling is not allowed by

both to states of the same symmetry. However in optically active
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(chiral) molecules, which possess no improper axis of rotation, these
selection rules are broken and both electric-dipole and
magnetic-dipole interactions are allowed. Certain optical properties
unique to chiral molecules are observed as a consequence; optical
rotation, circular dichroism and differential Rayleigh and Raman

{61-631 . .
(such optical behaviour may also be

scattering are examples
induced in achiral molecules from interaction with adjacent chiral
molequles eg benzophenone shows circular dichroism as a solute in the
chiral solvent 2-octanol).

The dispersion interaction between two molecules is also
dependent on the chirality of the pair. If a molecule has enantiomers
R and S then the interaction of molecule A(R) with B(R) differg from
the interaction of A(R) with B(S). Similarly there is discrimination
between the interactions A(R)-A(R) and A(R)-A(S). Although smaller by
2-3 orders of magnitude than the electric-dipole coupling, the
magnetic-dipole interaction must be taken into account to explain such
phenomena: it is the interference of the electric-magnetic terms in
the transition matrix elements which produces these effects.

To extend the near- and far-zone discriminatory results of Craig
et al [111, we have chosen to investigate the magnetic-dipole
contributions to the dispersion interaction at all intermolecular
separations outside overlap. This will be followed by an account of
the interaction between two achiral molecules, one of which having a
large magnetic susceptibility, which although does not show
discrimination, is of the same order. Firstly though, there follows an
account of the interaétion between an achiral molecule and the
enantiomeric pair of a different species.

Each of the derivations follows the method outlined in the

previous Section. A comparison with the dipole-dipole case shows

differences stemming from the nature of the mode expansions for the
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magnetic and electric displacement fields, such as the summations over
polarization vectors, and of course the inclusion of the magnetic-

dipole transition moments.

a) Interaction between an electric dipole polarizable molecule and

a chiral molecule.

As given by (4.3.1) the interaction Hamiltonian now includes the
term -T(E).E(EB) for molecule B. Hence the required time-ordered
graphs may be deduced from Fig 4.1 (page 97); this interaction may
replace the electric-dipole interaction —Ealg(g).g(gB) at either
vertex for B, giving a total of twenty-four graphs to consider. The
resulting two sets of (twelve) graphs are dealt with separately at
first until it is possible to combine them, giving a non-zero result
for oriented molecules. Rotational averaging leads to a vanishing
result,

It is instructive to initially consider the contribution from one
of the pairs of twelve graphs. For the arbitrarily chosen pair (vi)a
and (vi)b the interactions are shown in Fig 4.2, overleaf, and for
clarity the electric-dipole interactions have been omitted.

Using Fig 4.2 for the graphs (vi,a-b) we obtain the combined

fourth-order contribution

AE (vi,a-b)

Z Z [452;/2] oy

r,s pp’

- o~ ~a o~ -i(p-p’).R
Ke., uo°m3’p o + €., moHIp . 06 % ~pTL
e {pfm,g'& 4Em"L 8 P> ig vi '’
(4.4.1)

~

using the definition (4.2.5) for déé and g Similar results are
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FIG 4.2 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION:
HIGHER ORDER INTERACTION WITH ONE MAGNETIC-DIPOLE VERTEX

(p,l)

(pl ,ll ) "mé(B)bt(gB)

(via)

(p,?) ‘mg(B)be(EB)

r 8
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obtained from the remaining graphs by choosing the index £ for the
magnetic-dipole interaction. The first term of (4.4.1) arises from
(vi)a. For example, since the (g,X) photon 1is created at the
—mt(g)bﬂ(ge) vertex, the sum resulting over the polarizations A = 1,2
gives Eiihnam as a factor. The next aim is to combine all twelve sets
of terms.

The two terms of (4.4.1) may be combined by observing that

-~

Ol‘ ro OS sO or ro os SO (442)

Ciembi Hj Mg Be Pqn & = SiemMi My Mg me Pm"‘w

upon interchange of both the dummies 4 and § and the labels p and p

-~

Of course p and p’ must be interchanged everywhere, including in the
exponent, as must the mq@uli p and p° in the denominator, which is
unchanged. Now since the electric-dipole transition moments are real

and the magnetic-dipole transition moments are imaginary, (4.4.1)

becomes
AE (vi,a-b)
y i(p-p').R -i(p-p").R
- _ hCEp_ orroos P ~ _ - - ot 1
B Z Z [ 42 V? ] mt'i Hq e ne pma*’&{ ° }D\u
r,s pp 0

(4.4.3)

The two terms of (4.4.3) reinforce following the changes p’ 2 -p’ in

-~
~

the first term and p ® -p in the second noting that g is invariant
to this latter change. The numerical coefficient is then +1/2. Adding

the remaining terms gives a total
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AE (Total) =
Z z or ro os a o~ i(p+p').R ( )
l.l m p‘(x. e v ~S y 4.4a4
ZEZVZ He 4 Hg & FemEm L8 5
£ys B’

with the corresponding coefficients given in Table 4.3.1 in the column
headed Cj and the resulting sum given by S5 in Table 4.3.2. For
instance, with the (-) outside in (4.4.4) the entry for (vi), above,
is a (-) in the column Ci.

Before proceeding let us compare (4.4.4) with (4.2.3), the
dipole-dipole interaction. The three major differences are the new sum
(Ss replaces Si); the interchange of moments for B (uzo 3 mzo); and
the new form of the angular part resulting from the sum over the
product of the electric and magnetic polarization vectors ie E}tmé;kgbﬁ
replaces ;ié;}é' This final point illustrates the simplification
which the magnetic-dipole term brings to the working; the solid angle
integrals are simpler functions of the wavevectors. In this case we
will require the integral (4.3.5) instead of (4.3.6) for the integral
over dQ’.

To continue, (4.4.4) is simplified by substituting for S5 and
summing over the wavevectors; following this the next step is to
perform the angular integration. The result is simplified by
substituting for the quantities tti(pR) and Tbn(p'R) from (4.2.7) and
(4.3.11). This gives

@
Ol‘ ro os so

®
£ L
4n452h z 4£hn (k_+k_)
o

T 8(PR)T, (P R)p’p’”

1

X -

(k_+p)(k_+p)  (k_+p")(k_+p’ )]

dp’'dp . (4.4.5)

|
e
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The standard integrals (4.3.12) and (4.8.10) are used to simplify
(4.4.5). The even integrands. in both are firstly obtained by the
combination of the two terms in the final bracket of the above
expression, a process which yields the infinite limits. The quantities
wéﬁ(pR) and gm(pR) in the resulting expression then take their

definitions (4.2.9) and (4.3.13) from previous sections. Hence

or ro os so

uou
AE = &TLZ 4' ¢ £ ¢
ane h ae?ne? 4 (k_+k_)
[\ 8}
1 [ 6
X|———— | T . .(pR)p,_(DpR) + n_(pR)w, (pR)]p dp . (4.4.6)
J(k;p)(kgp) @ m A
0]

Expanding (4.4.6) and collecting the terms gives

[o o]
or ro os so0
AE = — > R E: ¢ J
41t3£2h 22 dom'm, (kr+ks) (k_+p) (k_+p)
0
. .48, B. 23
X[sianR[ bk 3L§] + cos2pR ~ g ¥ ]}p dp . (4.4.7)
PR PR p %R

which is the analogous form to (4.2.11), with e and Béé given by
(4.2.6). In subsequent derivations the equivalent expression will be
omitted but this double angle form will be assumed. From here it

follows easily that the final energy shift is given by

—1 Ol‘ ro os 8sO

AE =
anse h 2p2 ;&m&m }: ; Hg mp
@®

‘[ krpse—ZPR { ai&+34}£ ZB-(/& B'(/&
X . + +

+
2 2 2 2 2.2 3.3
(k_+p )} (k_+p") PR PR pR
0

dp ’ (4.4.8)
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which, in terms of the polarizability of molecule A and the mixed

electric-magnetic analogue G££(B) for B, is given by

@®
P . . ZB- B.
h A e, . a4-2or| “ig*Pis %Pip Big
AE = ————¢, R_la,. . (icp)Gzp(icp)p e o, ot + + dp.
16nge§R2 44m MJ‘LQ £L B DR szz paRa
o
(4.4.9)
In (4.4.9) G££(B) is given by
00, . = 2j hcu o8 8o 4.4.10
Gu(tcu) - 1 2 u& III£ . ( [l ] )

= Esi+(hcu)

It is difficult to compare the energy shift (4.4.9) with the
dipole-dipole result (4.2.13). The magnitude of the shift depends on
the geometrical coefficients, which are complicated. Note though that
the polarizability G££(B) is small compared with a&C(B)‘

The description of results is limited here to the fluid phase, in
which the molecules are allowed to rotate freely. We may see that the
energy shift (4.4.9) vanishes under rotational averaging by examining

the first term. The rotational average will introduce a factor

64-45“5#-&"'“4-’& = Cm‘xw = 0 (4.4.11)

to the expression. Now because € 8m is antisymmetric to interchange of
i & £ whereas % is symmetric, the term vanishes. Therefore unless
the molecules have fixed orientation there is no discriminatory
dispersion interaction between a chiral and an achiral molecule. The
discriminatory contribution for oriented molecules may be obtained
from (4.4.9) by rewriting the expression in terms of the rotatory
strength for molecule B (see the following subsection (b) for its

definition) a quantity which changes sign with enantiomer.
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b) Interaction between two chiral molecules.

Progressing from this result we next determine the interaction
between two chiral molecules. The intermediate states of both
molecules may now couple to the molecular ground state through
electric- or magnetic-dipole, due to the low molecular symmetry. The
Hamiltonian now contains the additional term -T(é).P(EA); we allow a
magnetic-dipole interaction at each centre. Because there are two
vertices at each centre there are four times as many graphs to
consider as in the pure electric~dipole case; there are forty-eight in
total. The graphs (vi,a-d) are shown in Fig 4.3 and their contribution
is given below.

The resulting energy shift consists of two parts, one symmetric
and one antisymmetric to interchange of p and p°. The two parts are
treated separately at first, following the same procedure as above and
are then combined to give the final result. The rotationally-averaged
result is quoted and the near- and far-zone results are then
determined.

Using Fig 4.3 for the graphs (vi,a-d) the fourth-order energy

shift is given by

AE (vi,a-d)
hznlzl or ro os s€o
=+ZZ 2z |Himj He e
1/
r,s pp’ o
~ ~ ’ - AI - AIA ~ I~ _i(g—gl).g -1
X %i8%ie “€iem 8inPmPn ~€iemc8inPmPn +a£&q4£ € Dyje
(4.4.12)

Examining this expression we see that it contains two types of
terms; the second and third, corresponding to the graphs (vi)a and

(vi)d respectively, are of the mixed electric-magnetic type,
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FIG 4.3 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION:
GRAPHS LEADING TO DISCRIMINATORY EFFECTS

(p,2) -mL(B)b{(BB)
r s r s
-m,(A)b,(R,) -m,;(A)b,(R,)
(El;xl) -mp(B)by(R,)
(via) (vib)
-EL(B)bﬂ(BB)
-m;(A)b.(R,) -m;(A)b.(R )
4 4 AL s 4 3 AL s
-mﬂ(B)bL(BB)

(vic) {vid)
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resembling in part the form of the terms in case (a); graphs (vi)b and
(vi)c lead to the first and fourth terms of (4.4.12) and take the form
of dipole-dipole interactions. In the latter type one photon is
created and annihilated by magnetic-dipole coupling with the field and
the other by electric-dipole coupling. Now the sums over electric and
magnetic dipole polarization vectors are identical; hence the form of
(4.4.12).

The terms inside the curly brackets in (4.4.12) are common to
each set of combined results for the graphs a-d, provided we choose
the indices § and € for the magnetic-dipole interactions, and so the
total energy shift may be written as one expression. The sum is then
broken into two parts, one symmetric- and one anti-symmetric to the
interchanges p > -p and/or g' 3> —g'. Making the appropriate changes to
each of the component terms such that the exponential part is common

leads to a total energy shift which is given by

AE (Total) = AE3+AEa , (4.4.13)
with
2 , ~ o~ ~ A i(P"’P')'R
- h I)p or ro os so ’ ’ ~ o~ ~
AE8 = }E [ 4czp2 ]“L mé Hg mp {éiﬁqjt + aquég}e Sz’
r 0

(4.4.14)

_flz:EL or ro os so_ . ~n, ' A0 i(g"’gl)'l‘ss
122 Hi ny Hg Te Citm £jn)PmPn * PpPn (e 3’
. 0
(4.4.15)

where S2 and S3 are the sums corresponding to the coefficients C: and
C: of the appropriate terms and are given in Table 4.3.2 .

We follow the method used above; after substituting for the sums

the angular integration is followed by performing the
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p- or p ' -integral. Straightforward manipulation gives the final
result.

Considering the symmetric term firstly, it may be written as

® ©
or ro os so

_ Mmoo m
v T ”{rw(pmr%(p'n) +tw<p'n)r%(pn)}

4n thc r,s (kr+ks) o0
P 1 1
x - pop’ 2dp’dp (4.4.16)
(k_+p)(k_+p) || p+p"  p-p’

which we see is very similar to the dipole-dipole equivalent form
(4.2.8), as noted above. The factor p replaces (kr+ks+p) as a result
of the new sum, and of course the transition moments are different.

Hence we may write down the energy shift directly as

or ro os €o

H, m; Ho m
(kr+ks)

x L T, 2 (PR), p(pR) + © g(pR)T o(pR)|p'dp .  (4.4.17)
J(k;p)(k;p)[ “wm e o0
0

by inference. Expansion of (4.4.17) and collection of the terms leads

to the final result below.

©

-1 or ro os soj pse_sz

s 32 3.2 i £ L 2 2., 2 2
an’eghe’r® Lt (k_+p°) (K *p")

)
B.o. B.p.p4C.p: 2C. , . C.o.:

X[A‘Q'E + ikt + ¢£4£2 :£4£ + ;éic + Lf’f dp , (4.4.18)
pR PR PR PR
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with

Ai&{& = aééafc

BL&%C = L&B}C+B££q;£ . (4.4.19)
Cigje = PusPie

The result is similar to (4.2.13); p6 replaces krksp4 in the integrand
but the two are dimensionally equivalent. Of course this is not the
full result. We must add the remaining terms before making any
comparisons.

Returning to the antisymmetric part we regain the cross terms

hZEE' or ro os so - N i(ptp).R
4e, = +Z Z 4e2 /P Hemg Mg e €iemEein)PmPn t PpPn(® 53
r,s pp’ o

(4.4.20)

which should prove no difficulty since it was noted in (a) that such
terms provide simpler working.
Substituting for 83 and integrating using (4.3.5) for both

photons gives

® ®
or ro os so

U, m; Hpm
_ -1 i 4787 rpy 3,73

AE = ———{€,p E&}nwme&gm}z JIHM(DR)WR(D R)P’D

4 thc (k _+k_)

S r s

0o
p’ 1 1

x — - dpdp’ (4.4.21)

(k_+p")(k_+p"}|| ptp°  p-p’

after interchanging m & m in the second term of (4.4.20) for
simplicity. The two terms of (4.4.21) may be combined since the
integrand is even in p and the use of (4.8.10) to evaluate the

p-integral gives
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or l‘O OS SO

-———-———{ +€
dm&tn Wlﬁé'm}zs (k_+k )

[

1 [ , ’ I7 4
x e, (p’R)n_(p'R)|p" dp” . (4.4.22)
J(kr+p')(ks+p') m n ]
0

Dropping the primes and simply substituting for Qm(pR) and nnpr)

gives the final result

AE = -1 e s ormrouosmso
3" 4nPe2hoR2 im® &;n.mtﬂt PR 4
) r,s
6 -2pR
[ ple P 2 1] ( )
x 1+ — 4+ ——|dp . 4.4.23
ToZpt) ale® | R pR%)
)
Now defining
Dcﬁéﬂ = cb&meégﬂ,mtqt (4.4.24)

and combining this result with (4.4.18) gives the total result

®
6 -2pR
-1 or ro os so p e
AEz___Zu.m.u mJ
3 2, 32 174 "L 2 2,2 2
dn”e he R o o(kr+p )(k +p")
+2D p4C.p:p4D:p.p 2C.p.p C.p.:
Bigie gt BigietCinietPigie Cigje Cisje
*1Aieie*Digie 2 2 33 ‘Y44 |dp-
PR PR PR pR

(4.4.25)

The result may be given in a number of forms, for example in terms of
moments, polarizabilities or rotatory strengths. Its form above is
similar to (4.2.13), although the coefficients of the terms are

different; we can see that the near-zone result (obtained from the
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final term) will similarly have an R_G dependence on intermolecular
separation, although it will be orders Qf magnitude smaller due to the
magnetic-dipole interactions. The near- and far-zone results will be
given shortly.

In terms of the mixed electric-magnetic polarizability for each

molecule given by (4.4.10) the oriented result is given by

®
k -
AE = ﬁj (1cp)G&£(1Cp) sz
16m cocR
(4]
[ ‘D BM‘PZD{M M+C4'£4‘€+DM 204&4& ‘(’&4& do.
L£4£ gL 7 DR szz b 33 p‘R‘

(4.4.26)

It is this term which accounts for the discriminatory dispersion
interaction [11], since the polarizability ng(icp) changes sign with
enantiomer. A fuller description accompanies the summary in
Section 4.7, which compares all of the results.

Let us apply this result to the fluid phase. Rotationally
averaging (4.4.25) gives such an interaction of freely rotating
molecules in terms of the transition moments. We obtain

®
4 -2pR

AE = Z (”o:.-mro)(uo? so)J p e — 4+ 6 + 3 dp.
18n°¢_hcR” - (kr+p ) (k +p”) pR pR*

(4.4.27)

In the 1limits of small and large intermolecular separation

(4.4.27) takes the forms shown overleaf.
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NEAR-ZONE LIMIT

1 RI’ORQO
AE, , = = Z . (4.4.28)
12n € c R (E_ +E )
r,s ro so
FAR-ZONE LIMIT
h3 ro_so
AE, , = —— Z RR (4.4.29)
3n e R (ETE )
r,s ro so

R'° and R®° are the rotatory strengths for the two molecules defined

by

Rto - Im(“ofmto

~

) ; (4.4.30)

the rotatory strengths are thus real quantities, since the magnetic
dipole transition moments are complex, and change sign with enantiomer
since E is antisymmetric to inversion whereas m is symmetric. The sign
of the dispersion interaction in (4.4.28/29) thus changes with
enantiomer, although relative sign cannot be determined if the two
molecules are chemically different. For like molecules Qé see that the
R-R and S-S interactions are repulsive, whilst +the different
enantiomers attract. Note that the far-zone interaction now has R-9

dependence on intermolecular separation.

c) Interaction between an electric dipole polarizable molecule and

a magnetic dipole polarizable molecule.

The discriminatory result obtained above relied on the constraint
that the two magnetic-dipole vertices were on different centres. Here
we consider the remaining case where such interactions are confined to

one centre; molecule B. This interaction is of the same order as that
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in (b) and is important for molecules with large magnetic
susceptibilities. The twelve required time-ordered graphs are deduced
directly from Fig 4.1; graph (vi) for this case is given in Fig 4.4.

The contributions to the energy shift are determined and added in
the wusual way, with the result expressed in terms of the
polarizability « of molecule A and the magnetic susceptibility X of
molecule B, which will be defined when required. Again near- and
far-zone results are given.

Using Fig 4.4 for graph (vi) we obtain

or ro os ~o° -l(g-gl)‘lj -1
AE (vi) = Z Z 462V2 MMy Mg me € L omE j4nPmPne Dyi
r.,Ss pp

(4.4.31)

which, as we expect, is very similar to the cross terms of case (b)
above, and so the derivation will largely follow that of AEa in that
case. Similar terms arise from the eleven other graphs, all with a
negative coefficient. Note that (4.4.31) changes sign when we

substitute p ® -p. Combining the terms in the usual way gives

AE (Total)

or ro os 8o A A 1(g+gl)-§
Z Z 4' ’11 Mg M -uﬂ/m. 4.(/n,p p € S4 ’ (4.4.32)
45

r,ys pp’

if we note also that

o8 80 o8 SO

since this term contains a product of magnetic-dipole transition
moments. Again, S4 is given in Table 4.3.2 . Substituting for S4 and

proceeding;
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FIG 4.4 : TIME-ORDERED GRAPH FOR THE DISPERSION INTERACTION:
MOLECULE WITH LARGE MAGNETIC SUSCEPTIBILITY

(p,0) 4 m(B)Pg(Rp)

(pl ’xl ) -m‘e(B)b‘C(B’B)

(vi)
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® ®
or ro os_ 8o

H, M, mg m
AE = —L ¢ ¢, Z N, (o' R)N, (pR)D’p
4n4e§hc3 ikm"4om, (k +k ) n ™
r,s roe 00
(kr+ks+p') 1 1
x - dpdp’ 3 (404-34)
(k_+p")(k_+p")|| p+p"  p-p’

which is directly comparable with (4.4.21). Hence, deducing the
integrated form of (4.4.34) and dropping the primes, we get

®
or ro os so

H; “i mg mp J (kr+ks+p)
(k +k_)  J(k_+p)(k +p)

.S S
AE = 32 35.5 6}8 E:
47 Eo'hc ros
b}

6
N, (PR)P, (PR)p dp

o
(4.4.35)

The R-dependence of (4.4.35) is identical to that in (4.4.22); the

final form of the integral is then

_ 1 s~ or ro os so
AE = BnaezhcaRzeé&ijfﬂJ%ngnE: Hy “4 Mg Te
0 r,s
®
k kp'e 2P 2 . 1
X > % > > 1+ —+ > dp . (4.4.36)
(k_+p ) (k_ +p ") PR pR
o

which is the oriented result for the interaction between an electric-
dipole polarizable molecule and a magnetic-dipole polarizable
molecule. Observe that in the near-zone the interaction takes the
inverse fourth power in the intermolecular separation, as will be

shown below. Rotationally averaging this result gives
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4]

-2pR
k p e
AE = Z ms°|2J > [1 2 ; z}dp.
6n € h ~ (kr+p )(ks+p ) pR PR
0

r,s

(4.4.37)

The oriented result in terms of the polarizability for A and the

magnetic susceptibility X&z(B) for B is given by

®

h ~ -~
AE = ———E—E—_ECL&mﬁjﬁﬁsanR [ (1cp)X££(1cp)p e ZPR[I +—z +_%_E dp
32n EOCR PR pR
0
(4.4.38)
with
B, . Eso os SO
X&{(ICP) = 2}: ——E;——___—E m£ mc (4-4-39)
r Eso+(hcu)

Consider the values of (4.4.37) in the limits of small and large
intermolecular separation; these are the fluid phase interactions.
It is easily shown that (4.4.37) reduces to give the expressions

below.

NEAR-ZONE LIMIT

E E
AEN_Z - = i — }: ro so I”rolzlmsolz .
72n°e“he™ R (E +E ) ~ ~
0 48 ro so
(4.4.40)
FAR-ZONE LIMIT
A B
bE, = h__«(Ox(0) (4.4.41)
64n ce, R

where the isotropic, static polarizability «(0) and susceptibility
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X(0) are defined by (4.2.20) and (4.4.42), below, respectively.

Imsolz
x%0) = %Z X (4.4.42)

s s0

The far-zone result (4.4.41) shows an R’ dependence on intermolecular
separation. It will be convenient to combine this result later with
the diamagnetic contribution to thérdispersion interaction, since the
two results are of similar form and taken together describe the pure

magnetic-dipole interactions of a molecule.

4.5 Electric-quadrupole contributions

A consistent study of the dispersion interaction up to the order
of the magnetic-dipole interaction must also include electric-
quadrupole contributions, since the two forms of coupling are of the
same order, approximately a factor of «, the fine structure constant,
times the magnitude of the electric-dipole interaction.

Analogously to the previous section the electric-quadrupole
results have three contributions; there may be one or two quadrupole
vertices, and these may be confined to one centre or shared by the two
molecules. The derivations have similarities with both the pure
dipole-dipole case and with the magnetic-dipole interactions discussed
in Section 4.4; minor variations arise simply from the nature of the

interaction terms.

a) Interaction between an electric dipole polarizable molecule and a

dipole-quadrupole polarizable molecule.

We start with the case of one electric-quadrupole vertex, at

molecule B. As in Section 4.4 (a) we are required to evaluate the
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contribution from the twenty-four time-ordered graphs which account
for this interaction. Since the electric quadrupole interacts with the
electric displacement field much of the working follows the form of
Section 4.2, with the electric-quadrupole moment replacing the
electric-dipole moment in each expression. However, here the relative
sign of the contribution from each graph depends on whether the
quadrupole interaction creates or annihilates a photon; a creation
gives a -i, whereas annihilation gives +i. Further, since the
quadrupole interaction contains the gradient operator, the resulting
expressions contain an additional wavevector component, brought down
from the exponential part of the field expansion, which dimensionally
counteracts the additional length which the quadrupole moment has
compared with the dipole moment. Once evaluated, these terms must be
written in a suitable form so that they may be combined; the working
then follows as before.

A consequence of the higher power of p or 9' is that additional
integrals are required. These new standard integrals were presented in
Section 4.3 .

From Fig 4.5 (vi) we get

AE (vi,a-b)

S )Y e fhenlerremqaan - agende BTy
-t 2¢_v]|2¢, V|"i i e Um\Bigsem ~ Aijeom© »

[o]
£15 Pp”
(4.5.1)

where

~ ~ ~ ~ -

B igem = p’aiéq?ﬁpk s ALsem = pabm?ﬁépt , (4.5.2)

and 573 and a?ﬁ take the same definition as in Section 4.4. Let us
examine (4.5.1) briefly. The (-) comes from the fourth-order

perturbation result, whose sign is unaffected by exchange of two
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photons. That is, the four interactions with the electric displacement
field give a numerical factor of +1. In (vi)b the quadrupole vertex
annihilates the (g',l') photon with Vtgxp[ig'.gl giving the ipk in
BL}&&mf Ai}&lmt appears with a (-i) since in (vi)a the quadrupole
vertex creates the (g,z) photon. Each of the remaining pairs of terms
include the quantities AQﬂUhn and BQﬂMMn » although the signs and the
exponential factors vary. Each pair must be manipulated such that the

total sum may be written as one expression. Now since

i) Bqﬂuhn is antisymmetric to the change p° % -p’, and

~

ii) Aq#uhn is antisymmetric to the change p # -p ,

we may combine all of the terms and write

AE (Total) = AE (i-xii,a-b)

= - hep |fhep’ | jor ro es0s0l, .3 i(g+g').t}s
- 2¢ V| |26, 7" ¥4 & Um)Mightm * Bijeem (e .
15 PP’ aom
(4.5.3)
Note that each term now has the same sign; the sum is identical to

that in the pure electric-dipole case. Substituting for S, in (4.5.3)

and performing the angular integration gives

® ©
or ro os_s8o
1 Hy HyHg Qo 3,3, . (k. +k +p) 1 1
AE = — =3 pp dp'dp - - ,
4n E:of\c s (kr+ks) o (kr+p)(ks+p) p+p p-p
X[p'fw(pR)oé-M(p'R) + pom(pR)t%(p’R)] , (4.5.4)

using the definitions (4.2.7) for tié(pR) and (4.3.9) for 0k4£(pR).

Integration over p’ gives
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FIG 4.5 : TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION.
HIGHER ORDER CONTRIBUTION: ONE ELECTRIC-QUADRUPOLE VERTEX
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or ro os_so

Tyl Tya Ty
AE = 312 Z i "4 T8 “em
4T Eoﬁc s (kr+k8)
®
J (k +k +p) [ ) 7 (
x = T.p(pR)V . p(pR) + 0. ,(pR)w; (pR)]p dp , 4.5.5)
ik ml imk £
(k_+p) (k_+D) ? ¢
)

where D}m& is a quantity which was used in Section 4.4 and is given in
full in the appendix. Comparing (4.5.5) with the pure dipole
equivalent form, (4.2.10), we see that the quadrupole interaction
complicates the expression slightly; p7 replaces ps, and we require
the quantities V(pR) and o(pR) in favour of @(pR) and T(pR). Before we
proceed from here we use the fact that the moments are real to
interchange the indices 4 ® 4 in (4.5.5) and write the second term as
ojml‘pR)méi(pR)' This eases their combination later.

Written out in full (4.5.5) contains a large number of terms,
each with a complicated geometrical coefficient. However it is
possible to write (4.5.5) in the usual double angle form, and hence
proceed as before, by introducing a matrix form to deal with these
terms. A considerable simplication is then achieved by combining these

terms to give the result

-1 or ro os.so
AEz————ZM- M, Hp Q
a2 e%heR? i 7 T8 “m
0 r,s
5 -2pR
kkpe B. C. D. E. F.
e e e 2 e By
(k +p")(k_+p") PR pR  pR pR PR
o

The general form of (4.5.6) is important. The coefficients AL - Eiam
are required in order to extract the useful interaction energies in
the appropriate cases from this result but take up too much space to

be given here; they are derived and given on page 144 at the end of

this section. The above form may be written as
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c D F

L—m'Ei-»m.‘ 4-m dp
T 2.2 3.3 4 4 5_5 !
PR pR pR pR pR

-h . .
—f—_;—J« A(1C1D)A&?,m(1cp)pse

o+ BL-ml
id ?
16m°€ R

-2pR A-m

AL—m

(4.5.7)

where A&&m, is the mixed dipole-quadrupole dynamic polarizability

defined by
A&?/m(‘l'»cu) = ZZ —2-82-(;1—2- MZSQ;/;L (4.5.8)
r so

The discussion of results is limited here to the fluid phases. It
would be of interest, although tedious, to determine the limiting
values of (4.5.6) in the near- and far-zones and compare them with
those of (4.2.13). Comparing (4.5.6) with (4.2.13), the dipole-dipole
result, it is evident that the term in (pl:'l)_5 will cause this
interaction to fall off more quickly with intermolecular
separation.

If we allow independent molecular rotation, to give the fluid
phase interaction, then we must take the rotational average of
(4.5.7). This result vanishes. This may be seen by examining the
result more closely: the tensors'aig(icp) and A&Zm(icp) are second and
third rank respectively. Considering the first term of (4.5.7) as an
example, rotational averaging will therefore give a factor of
6'££Lmﬁi-mf the first term of which is, upon expansion of Aiam using

i
(4.5.36) and (4.5.39), 5£4£&Cmgiﬁgjgﬁ&mf Since €em is antisymmetric

A A A

to interchange of € and m and R£&m is symmetric, the term goes out.

The remaining terms follow similarly.
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b) Interaction between two dipole-quadrupole polarizable molecules.

We next consider the case where two molecules interact through
electric-dipole and electric-quadrupole coupling. Since the electric-
quadrupole vertices occur at different molecular centres each
equivalent graph from Fig 4.1 (page 97) must have four counterparts
here, corresponding to the permutations of assigning the interactions.
Hence there are forty-eight contributions to be evaluated, analogously
to Section 4.4(b). The relative sign of each now depends on the exact
nature of the quadrupole coupling: if the two interactions create and
annihilate, respectively, either virtual photon then the term will
have a numerical coefficient of (i)}(-i) = 1; otherwise we get -1 ie
two creations/two annihilations leads to an overall minus.

The interaction terms may be chosen with the indices

==}
|

~€y M (AV(R,) -€'Qu(A)Vdg(R,)

int

e, 'p(B)dp(R,) -€7'Q,, (B)V di(R).  (4.5.9)

The second and fourth terms of (4.5.9) are represented on the graphs

overleaf as ’'Quad’. The contribution from these graphs is found to

be

AE (vi,a-d)

- hCE hCEl orQro ostoK-— -i(g-g,).l}D-‘l (4 5 10)

- 2e V| |2,V He j&yé mn"ij8tmn° vi i
r,s pp’

with K-"SE ={- Aige + B e +Copp ~ D },
(4.5.11)
and

A A A ~ ~ ~
4

Aigemn = p'pp#p,mdma&'c i Biigemn = PP D iPn%e%n}
(4.5.12)

CEE = pppi.pmd&law 3 DEE = pp pé.pma&cdm .
(4.5.13)
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FIG 4.6: TIME-ORDERED GRAPHS FOR THE DISPERSION INTERACTION:
ELECTRIC DIPOLE-QUADRUPOLE CONTRIBUTION
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In (4.5.10) the () in K refers to the sign of the terms A and D. The
term Agﬂuhwn arises from the graph (vi)a etc; hence the (-) since the
(B',X') photon is created at A and the (Q,X) photon at B. Similar
expressions occur from the other graphs; the pairs (A,D) and (B,C)
also occur with the same sign in the remaining eleven sets. We wish to
manipulate (4.5.10) in order to write it with K' as a factor ie so
that all four terms have the same sign. By the normal method we then

obtain a total

ro os s O _ + 1(E+B’)‘§
AE (i-xii,a-d) = Z Z 28 7 28 VIJ Qg«ﬁ ﬁQMWM'L Sl’
r,s pp’
(4.5.14)

where we again see that the sum S1 is identical to the pure dipole
case; this is a characteristic of electric multipole interactions.
Substituting for S1 and integrating over the solid angle using the

definition (4.3.10) for Ei}&t (page 106) gives

Ol' I"O os_soO

[+ o}
- QUun (k +k _+p) 1 1
AE = 412 E: Qg e j [pap,adp,dp r s _ ,
4m e _hc (k_+k_) (k_ +p)(k_+p)| pt+p’ p-p
r,s 00 r s

[0 BT (DR)Egp 1y (B'R) DB (BRIT g0 (0" R)

B’ 0g (BRI 1 (B R) 4DDEge, i (BRIT p(0'R)|  (4.5.15)

The p’-integral in the first term of (4.5.15) introduces the new
quantity ¢&n}m‘pR) mentioned briefly in Section 4.3. ¢&n§m(pR) takes

its definition from (4.8.14). This yields
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® .
or_ ro os_so
-1 f-“" Qé& “‘C QM (kr+ks+p)
AE = 3 2 p dp
e she T (k 4k ) 0(kr+p)(ks+p)

21 (PR gy (PR) =0 (DRI g (DR) g (BRI (BR)+E gy, o (DR} (B8) ]

(4.5.16)

The integrand, as expected, contains the factor pB since there is an
additional quadrupole iﬁteraction compared with the result in (b). The
expansion of (4.5.16) is effected in a similar manner to that of
(4.5.5), by writing the terms in matrix form. There it was possible to
combine both terms. However, here the final form is written as the sum
of two terms formed by combination of the first and last and second

and third terms respectively of (4.5.16). This leads to the expected

form
-1 or, ro os,_ so
AE = ———— E: B, Q.2 Mp Q
g3e2heR? 4 4R L “mn
] r,s
® 6 -2pR
XJ k kpe [A +°B£-n.|CL~n +0DL-n,_Ei~n +2Fé—ﬂ,,GL~n dp
2 2,,.2, 2 |i-n"“ T2 2 7“3 3" a_a 5 5 ' 6.6
(k +p") (k_+p") PR pR  pR pR pR pR
0
(4.5.17)
where again A; _ - G, . are given at the end of this section. We then
obtain
[ o]
-h A . B . 6 -2pR
AE = —__EEE_EJAij(ICp)Afmum(1°p)p e “P
2ne R
BL—n CL-n DL—'n. EL—fn Fi-tn GL-fn.
Aj_n *2 t— t25 5 v 2 +—/—|dp (4.5.18)
PR DpR PR pR PR DR

Again the general form of (4.5.18) is important. The term in (pR)-s,

which results from this higher-order interaction, will result in a
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steeper fall-off of the intermolecular interaction than in (b) or
compared with the dipole-dipole case.

Let us consider this result for freely-rotating molecules. As an
example the first term of (4.5.18), after averaging, contains the
factor 2egﬂfuhmn9L£§£§n§;%n which is identically zero. Hence we find
that this result vanishes under rotational averaging, as we expect for

a dipole-quadrupole coupling at one centre.

c) Interaction between an electric dipole polarizable molecule and

an electric quadrupole polarizable molecule.

The final case of interest is one where both quadrupole
interactions are confined to one centre. This is an important term for
a quadrupole polarizable molecule since the interaction is not
affected by molecular rotation ie the energy shift is non-zero even
after rotational averaging and so may be detected in fluid mixtures.
There are twelve graphs which contribute to this interaction, one of
which is shown in Fig 4.7 cf Fig 4.4. Again the relative signs of the
contributions from these graphs depends on whether the photons are
created or annihilated at B.

For graph (vi) we obtain

BE (vi) = - hop?| [hep'®| jor jrap aey 0?5 =, THERDER
e 2e, 7| [2€,7 Mi Hi e “mn PmPE%in®je® "
r,s pp’

(4.5.19)

following the sum over polarizations. Since the two quadrupole
interactions are at B then (4.5.19) (and each of the other eleven
terms) contains one unit vector B with a prime and one without,
corresponding to exchange of the two virtual photons. Let us

rationalise the sign of (4.5.19). The (-) follows from the sign of the
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FIG 4.7 : TIME-ORDERED GRAPH FOR A HIGHER ORDER DISPERSION TERM:

ONE-CENTRE ELECTRIC-QUADRUPOLE CONTRIBUTION.

(p:2)  A-€."Qgp(B)V,dp(R,)
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perturbation result only. In (vi) we see one photon absorbed and one
emitted at B; as discussed this gives a (+) factor.

We wish to write (4.5.19) with the prime on the Mm-wavevector and
with exp[i(g+g')] as a factor in order to combine it with the other
terms. By interchanging the indices € @ m and £ & n and changing

p = -p in (4.5.19) it is possible to write the total as

top'®| jor roq osy wo” =~ =, 1(pt)-E
AE (i-xii) Z Z 26 Vv Q% Q pépmawdwe S‘l
r,s pp’

(4.5.20)

gsince the quadrupole transition moments are real. Substituting for S1

leads to (4.5.21)

Ol‘ ro

_ Q Q
AE = 412 E: i My &&
4ix eohc rs (kr+ks)

J J R : (PR)O 1 (D'R) ( )
X p p‘ - o‘iu pR g. p,R dpldp ’ 405021
(k_+p)(k_+p)| p+p"  p-p’ #nm

which on p’-integration gives

(D
i or roQ“ Q (kr+ks+p)
AE = 312 Z J am(pR)vm(pR)pgdp-
aneshe o (k 4k 0(kr+p)(k8+p)

(4.5.22)

The integral in (4.5.22) is identical in form to one of the terms of
(4.5.16); the derivation from here onwards is identical, leading to
(4.5.23), below, which only differs from (4.5.17) in the pre-integral

factor ie the moments are different. The constants AL n = Gi_n have

already been determined in the calculation of Ai—ﬂ,- Giwn and are

given later (page 144). Thus we obtain
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-1 or ro
AE = ———— E: ., M Q Q
g2 e®heR? i 74 ££
0 r,s
® -2pR
XJ kk,pe [ . pien Cin Pim Ein Fin Sin i
2z, |-n T4 T2 2 3.3 4.4 “ 55 6.6 ’
(k,+p )(ks+p) PR pR pR pR pR DR
0
(4.5.23)
In terms of polarizabilities, this result may be expressed as
AE (Total)
o
e | 2pR
=11C A, B . 6 -2p
= ——53(%ii(icp)Ogp, - (icp)p e
32n3€zR2J i
0
4 ’ r ’ s . .
B C. D’ E: F’ G’
x|A; o 42— 4T 42 4 42T +——=ldp  (4.5.24)
. PR pR PR DpR PR pR

where e&(mwl is the quadrupole-quadrupole polarizability defined by
0 5seien) = 2) —— Q¥7qg5 - (4.5.25)
7 E  t(hcu

This 1is the general result for the interaction of a dipole
polarizable molecule and a quadrupole polarizable molecule at any
separation. Below we shall consider such an interaction for molecules
in the fluid phase.

Let us consider the limiting values of (4.5.24). Firstly we take
the rotational average. Assuming the notation of Andrews and
Thirunamachandran '°*! we write

<u°ru;°Q££ Ay, ° = <, oLy’ LerLlepdmo nm>“;r“r°qu Qv;°

(4.5.26)

Now since the quadrupole moment tensor is traceless, it can be shown
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that (4.5.26) reduces to

[+]

-1 roj2 8 8o
%0 6&4('26££§MM1 + 3pndpn + 38&nﬁuhn)lg I fQp By

(4.5.27)

It is then necessary to evaluate 6&4(-28££§ﬂw1 +38&m5ah1 +35&mﬁu2n)A£~n
etc in order to determine the far-zone result (which retains all of
the terms). The near-zone result requires only the evaluation of the

Gimn term. The resulting expressions are given below.

NEAR-ZONE LIMIT

roj2_.os, so
IE l QXyQXu

AE = 2 2.8
8n E0R r,s (Ero+ Eso)

(4.5.28)

This is the short-range interaction which shows an R-8 dependence on
intermolecular separation. The far-zone limit (4.5.29) is appropriate

for dilute gas mixtures.

FAR-ZONE LIMIT

B

A
ap = 1593 3h§ (00, ,,(0)
1280 m € R
(8]
(4.5.29)
. B .
with Gquu(O) defined by
og8,_80
6, (0 Mkl
0 =
Ay 15 E
s+ 8 80
(4.5.30)

The numerical factor in (4.5.29) differs from that obtained by

. [65] . . .
Thirunamachandran by a factor of sixteen. This factor arises from

the change of unit (SI vs Gaussian).
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CONSTANTS OBTAINED FOR THE ORIENTED QUADRUPOLE RESULTS

The results (4.5.7), (4.5.18) and (4.5.24) are incomplete in that
the coefficients for each term have not been given. The general form
of each result may be seen clearly: each is a function of the products
of the electric-dipole, electric-quadrupole or mixed dipole-quadrupole
polarizabilities for the molecules and a sum of terms with increasing

negative power in (pR), which have coefficients N,

im (N=A-F), N

and Ni_ﬂ’(N, N’ = A - G) which have a numerical factor and a factor
which depends on the orientation of the intermolecular axis. It is of
interest to give these coefficients and to outline how they were
obtained since the complete expressions then contain all the
information required to determine the quadrupolar, intermolecular
interactions of molecules at any separation, whether oriented or
allowed to freely rotate. |

The determination of these coefficients relies on the evaluation
of the expanded forms of the products Téﬁ(pR)U?miﬁpR) and
Time(PRIC g(PR) in  (4.5.5), T p(pR)®pp 0 (DR)s  Oppy (DR)Vgp,(DR),
ow(pR)vm(pR) and Ewm(pR)wu(pR) in (4.5.16) and OM(pR)vém in
(4.5.22), where each of the Greek quantities takes its previous
definition with the appropriate choices of index.

Such products may be determined by rewriting the latter
quantities in a matrix form with the help of some new definitions. Let

us defi th lumn vecto u.., V.. nd ""ee b
s define e colum rs iy Ve a y
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(a. .0s )
a b, .
@ idé e
Uy = 8 . ’ Vg = | b ’ Wige = | it
“ ik d e
\ e‘%&-- £ J
(4.5.31)
with
.= (8, ~R.R ; .= (8, -3R.R.) , 4.5.32
o = B RR) 5 B= (8-SR ( )
Bk 4 Re
.., = =8..
izt %R&
. = "'6..8 . . .
di gp = (Sb&RR£+ 4/{,'RR£+<SQI£RR,£+52#‘,;1212&+6&(;RR)
e..EC = 6 R£R£
We then have, for instance,
T.,(pR) = sinpR  cospR sinpR é g u. (4.5.35)
ik DR szz p3R3 0 -1 ik

Similar expressions follow for Gbm£(pR), E&n}m‘pR) etc, using the
vectors U Vi}& and W, 80" The required coefficients NL-ML etc are
then obtained directly by collecting the coefficients of the
trigonometric products resulting from TL£(pR)v?m£(pR) etc; the latter

are then written in double angle form (see for example (4.2.11)) and
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the final result follows from the exponential form of the expressions.
In this way the coefficients may be written in a matrix form, with a

numerical factor. Thus we obtain

2-3
NL = UT MN V. e N = A,B,..F (4.5.36)
T ..2-5 T 3-3
N, o = U Mo Wg .+ V. M2 Vg, N =A,B,..G (4.5.37)
N = vy N =A',B,..G', (4.5.38)
L—n = . Nl jn’lﬂ. > - ’ g Iy oJe

where T denotes the transpose of the vector and M""® is an rxs matrix.

These matrices are given overleaf.



Table 4.5.1: MATRICES OF CONSTANTS OBTAINED FOR

QUADRUPOLE RESULTS

1 2-3

0 ] ’ MB
3 2-3

5 ] ’ ME
-2 )
) )
-10 -1
-1 0
-90 -4
-22 -2
-105 -3
-55 -3
-210 -6
-300 -10
0 )
-210 -6
0 0
-210 -6

r

1 o

- 0o o
R
(66 -9

= -9 1
30 -5
(405 -78

= |-78 1s
[ 93 -18
(226 -45

= |-45 9
45 -39
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6 -1 2
1 0 1
0o 0 o
30 -6 6

[} ]
w o
N

.

=

=

o

(105
-18
33

(225
-45

(-1
(-2

(8

-1
L1

4

(-4

L_

-1
-1

-18

-45

-9

(=]

12
-1

32
18
60

10
36
66

10
56
86

50
90
90

50
90
90

-1

=]

-1

-1

18
-2
10

36
-6
12

56
30
36

90
18
18

S0
18
18

THE ORIENTED

-60
10
-20,

-66)
12
-18)

186)
-36

42,

90)

-18
18)

-90)
18
-18,

(4.5.40)

(4.5.41)
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4.6 The diamagnetic contribution

The interaction Hamiltonian (4.3.1) includes all terms of the
required order for intermolecular coupling involving the exchange 6f
two photons. Section 4.4 discussed interactions involving the
magnetic-dipole moment; to complete a study of the magnetic field
interactions we must consider the final term of (4.3.1), the
diamagnetic term. This term is second order in the magnetic field and
so the energy shift corresponding to two-photon exchange is obtained
using overall third-order perturbation theory, a first order
interaction in this term. Straightforward manipulation leads to a
result which is similar in form to the final case of Section 4.4
(where the magnetic-dipole interactions were confined to B); the two
results are therefore combined.

The relevant time-ordered graphs are shown in Fig 4.8. Note that
there are only three in this case, corresponding to the intermediate
states where there may be one or two virtual photons present and
molecule A may be excited or in its ground state; the two-photon
interaction at B does not cause an excitation. Hence the molecule B in
its ground state must have a non-zero expectation value for the second
rank coordinate tensor.

The total energy shift is given by

<olH,  |II><IT|H.__ |I><I|H.  |o>
AR = ZZ int int int , (4.6.1)
(EII-EQ)(EI_EO)
IT 1

with Hint given by (4.3.1). It was stated in Chapter 3 that each

two-photon interaction carries an additional factor of two because of

the possible permutations arising from the sums over wavevector in the
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definitions of the fields. Including this factor we obtain for the

first graph

AE (i)
- _eh 'h r ro 1(134'8,).13 -1
2Vz wn.c&mz Z“ i ‘Gl qn’ Z pr ete;;bmbne D,
16me oo S
]
(40602)
where 2 <qa£qau>B denotes the expectation value of
o
) (g, (B)-R,) (g, (B)-Ry),, (4.6.3)

@
for the ground state of molecule B. The other pair of terms are
similar and combining the three in the usual fashion gives a total,

after summing over the polarizations, of

AE (Total) = AE (i-iii)

e h” *h? B A A, i(g+gl)'§
= 16m EZVZ €etmeuntimg® ing Z Z“ <qa£q(xu> pr PpPge
PP’
x{DT’ o DT?.} (4.6.4)
1 11 111

(4.6.4) includes a complicated product of four Levi-Civita tensors.
This arises partly from the component form of the interaction term at
B; two are generated by the sum over polarizations. This product of
tensors may be written in a simpler form as a sum of terms involving
Kronecker delta tensors by applying the usual contraction identities.
Taking the value of the sum over the energy denominators from
Table 4.3.3, summing over the wavevectors and proceeding as before we

obtain from (4.6.4)



~148-

FIG 4.8 : TIME-ORDERED GRAPHS FOR THE DIAMAGNETIC CONTRIBUTION
TO THE DISPERSION INTERACTION

2 ‘ 2
gﬁ {(SG(B)-BB)XE(EB)}

(1)

2

2
r %E {(ga(B)"gs)xP(gs)}

(ii)

2

2
%E {(gd(B)_EB)XP(EB)}

(iii)



-149-

2
- B
AE = —5—¢. . E E He K< pa,,,
32n4m5§02 Hfulg = L i 74 AL

K ©
2,3 1 1 1 )
x ng(p'R)ng(pR)p p - - - ~|dpdp” , (4.6.5)
(k_+p")| ptp p-p
00
where
. = 6 6 6 ) 5.8 .6.
Ciituly itPug ™ Piglinle * %iPlug (4.6.6)

as outlined above. Upon integration this gives

®
1 ’ 16 ’
AE = ,e“£¥§: }:u°r o< J——-—-—-ﬂ (p'R)pp(p'R)p’ "dp’,
32ﬂ e’ c Tt o’ (k_+ ) ¢
o
(4.6.7)
which may be simplified to
e2 or ro B
AE = -——41—————— R,R E: }: i ‘Y89’
64n3mezc R ubg tg ol o
[+ 3
4 -2pR
kpe 2.1
x 1+—+ > dp. (4.6.8)
(k%+p%) PR PR
T

This is now a familiar form. However, if we compare (4.6.8) with
(4.4.37) we see that the major difference between the two expressions
is the absence here of those parts'which depend on the excited states
s of B, a consequence of the nature of the interaction term.

Rotationally averaging this result gives

® . 4 -2pR
o) kpe 2 1
AE = > }: E:Iu < 2,8 ————|1 + = + —=|db,
144ﬂ mE ¢ R (kr+p ) pPR pR
(8]

(4.6.9)
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which agrees with that obtained by Thirunamachandran [55]. The
oriented result in terms of the polarizability for molecule A is

given by

-e°h 4 -2pR 2 1
AE = —S ¢ Ll R R }: J (1cp)<q q p e 1 +— == dp
1281t me-cR” ¢ aeou’ PR p°R’

(4.6.10)

We find that in the near-zone (4.6.10) vanishes; this may be
physically rationalised since the intermolecular coupling of a
two-photon interaction at one centre with a polarizability at the
other cannot be described in terms of non-retarded coupling,
appropriate for the near-zone.

In the far-zone we obtain the result

2
AE - ___:QEE___; ;: q‘(0)<g§>B . (4.6.11)

F-2Z 3 2
128~n EomcR po

The diamagnetic contribution to the dispersion interaction in the
far-zone therefore takes an inverse seventh power in the
intermolecular separation. This result, in terms of the static
polarizability of molecule A, 1is similar in form to the
contribution from the magnetic susceptibility of molecule B (4.4.41).

It is convenient to combine the two results to write

AEmag _ 9h

F-Z7 3 2 7

«*(0)x.,(0) (4.6.12)
641 € oCR

where x;(O) is the diamagnetic susceptibility of B in its ground

state, given by
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. _J.B e2 2B
xg(0) = 9%x(0) - &= Z g r (4.6.13)
(04

The magnetic susceptibility %(0) and the static polarizability «(0) of
a molecule are both positive in magnitude but the sign of the
diamagnetic susceptibility depends on the competition between the two
terms on the right hand side of (4.6.13). If x;(O) is negative the
molecule is said to be diamagnetic.

The following Section summarises and discusses the results from
this and the previous Sections to present an overall view of the

dispersion interaction to this order.

4.7 Summary

In this Chapter quantum electrodynamics has been applied to the
calculation of dispersion energies between molecules with different
polarizability characteristics. In order to do so the electric-dipole
approximation was lifted and electric-quadrupole, magnetic-dipole and
diamagnetic interactions were considered. It was assumed that no
incident fields were present on the molecules, as such fields can

£65,661  In each of the results the

modify the intermolecular energies
properties of the molecules are described entirely by one of the forms
of polarizability defined in the text.

There follows a summary -of these results, which apply to
interactions between chiral as well as achiral molecules, beginning
with the electric dipole-dipole interaction. Subsequent results, which
similarly are valid for all intermolecular separations, will generally
be smaller in magnitude than this interaction, and hence not the

dominant terms wusually, although when considering the interaction

between chiral molecules the higher-order mixed electric-magnetic
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terms are the lowest order terms which account for the discriminatory
effect. Allowing for this, in the description of the results attention
is then focused primarily on the dependence of the interaction on
intermolecular separation.

The derivations and the main results given at the end of each
Section apply to the interaction of oriented molecules at any
separation. From these general results we may obtain more specific
expressions by making certain assumptions, appropriate to the physical
case in question. For instance, should we wish to know from these
results the interaction between oriented molecules in the near-zone
then we simply retain the final term of each expression following the
assumption that the photon wavevectors are much greater than the
wavevectors of the molecular transitions.

In this account the results discussion is confined to
interactions between molecules in the gas and liquid phases. Our
assumption is then to allow free rotation and the expressions are
modified by taking the rotational average to account for this. In
particular the far-zone results apply to mixtures of dilute gases.
Table 4.7.1 shows the R-dependence of the various interactions in the
two limiting cases, given in the two right-hand columns. The column
headings Molecule A and Molecule B indicate, through the appropriate
polarizability, which interactions couple the two molecules. For
example, aA(O) for A and GB(O) for molecule B refers to a p-y type
interaction for one molecule and U-m coupling at the other, as
described using ~the time-ordered graphs. The horizontal lines
partition terms of different order.

To put this discussion into some physical perspective, an
approximate value should be attached to R in the two cases.
Experiments conducted by Tabor and Winterton (591 investigating how

molecular interaction varies with intermolecular separation have
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quoted results for separations of mica surfaces of between 5nm and
30nm. They assume that the molecular case does not differ markedly
from the condensed phase interaction, in which the complete transition
from R'6 to R'7 behaviour takes place between 10-20nm; below 10nm and
above 20nm we may assume the two limits.

The electric dipole-dipole interaction is a well-known result. In
the near-zone we recognise the R—6 dispersion energy or van der Waals
interaction. This force may be considered to arise from fluctuations
in electron density and the R-dependence is obtained from second-order
coupling of the -electrostatic dipolar interaction term [45]. The
deviation from perfect gas behaviour is due to this interaction.
Similarly the other near-zone results may be obtained from
electrostatic interactions using higher multipole terms. However,
these interactions do not allow for retardation effects and the
results are only valid at the molecular separations discussed above.
Outside this range other effects, due to retardation, are observed and
the interaction falls off to an R-7 dependence.

The result (4.2.15) extends previous works since it is both valid
at all separations outside overlap and applies to the interaction
between oriented molecules.

As noted, the interactions containing electric-quadrupole and
magnetic-dipole coupling are 2-3 orders of magnitude smaller than the
electric dipole-dipole result for each vertex which we replace and so
are not the dominant terms. It is nevertheless useful the examine the
various terms for their dependence on intermolecular separation.

At a glance Table 4.7.1 highlights a major physical dissimilarity
between the electric-quadrupole and magnetic-dipole interactions. When
the molecules are allowed to rotate there is no intermolecular force
arising from dipole-quadrupole coupling at one centre, that is the

mixed dipole-quadrupole polarizability Ai;& for a molecule vanishes
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TABLE 4.7.1 SUMMARY OF THE CONTRIBUTIONS TO THE DISPERSION INTER-

ACTION IN THE NEAR- AND FAR-ZONES: ROTATIONALLY AVERAGED RESULTS

Molecule A Molecule B R-dependence/ | R-dependence/
near-zone far-zone
o(0) «(0) R"® R’
a(0) G(0) zero result zero result
x(0) A(0) zero result zero result
G(0) G(0) R~® R™®
A(0) A(0) zero result zero result
«(0) x(0) -7
2 zero result R

«(0) <@g
a(0) 6(0) R™® R™®
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with averaging. The ©polarizability Gi}’ on the other hand,
representing electric-dipole/magnetic-dipole coupling of a molecule
remains and rotating molecules may be coupled in this way via the
electromagnetic field provided that the interaction at the other
centre is of the appropriate symmetry; the a{é(A)-Gi4(B) coupling
vanishes under rotation, whereas the Gig(A)_Gié(B) interaction is
non-zero and shows discrimination.

As discussed in Section 4.4(b) the latter interaction may be
written in terms of the rotatory strengths Rto of each molecule,
giving (4.4.28) and (4.4.29) for the near- and far-zones respectively.
In the near-zone we observe an interaction proportional to R-6 and
predict an inverse ninth dependence on separation in the far-zone. It
was noted in the text that the rotatory strengths take opposite signs
for enantiomers and hence both results show discriminatory effects.
Thus the A(R)-B(R) and A(R)-B(S) interactions differ in sign; for
chemically identical molecules like species repel and for opposite
isomers AE [A(R)-A(S)] < 0. Note though that the rotatory strengths
may be positive or negative and so it is not possible to predict the
absolute s8ign of an interaction if the molecules are different
chemically.

The discriminatory results given in Table 4.7.1 for the near-zone
and far-zone interactions have previously been determined [11’60]; the
account here is an extension of those works, which assumed
approximations appropriate to each case at the outset and hence did
not determine the complete result. The far-zone dipole-dipole result,
for example, may be determined from just four of the twelve
time-ordered graphs shown in Fig 4.1, based on slightly different
physical grounds; energy may be borrowed from the vacuum subject to

the energy-time uncertainty relation AEAt 2 h and so the retarded

result is obtained from those terms which contribute if the photon
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frequencies are very small. When intermolecular separation is small
the photon energies must be much larger to satisfy the same principle,
since the time-scale is short. Hence a different set of four graphs
should be considered. It 1is only when the complete range of
separations is required that the full set is included.

The results given in this account could also be obtained by
choosing the Heisenberg form of QED, where the field operators,
instead of the states, show the time dependence. The dispersion
interactions are then determined by calculating the response of one
molecule to the Maxwell field of the other. Such calculations have
been done by Thirunamachandran (651 for the interaction of an
electric-dipole polarizable molecule with a magnetic-dipole
polarizable molecule and an electric-quadrupole polarizable molecule,
applicable at all separations and allowing the molecules to rotate.

The results given here agree with those obtained by
Thirunamachandran for these cases and with the earlier work by
Mavroyannis and Stephen [60], who presented only the limiting results.
In the latter paper an alternative form of Hamiltonian was used in the
calculation (the authors chose the Lorentz gauge instead of the
Coulomb gauge). We find that, having confined the magnetic field
interactions to molecule B (ie combining the diamagnetic interaction
with the magnetic-dipole interactions), molecules with large
susceptibilities will interact with an electric-dipoie polarizable
molecule with an R-7 dependence on intermolecular separation in the
far-zone. The near-zone result vanishes. The near-zone result for the
«(0)-6(0) interaction, however, (with molecule B assumed to have a
large quadrupole polarizability) reméins and shows R-8 behaviour. In
the far-zone the interaction is retarded by a factor which approaches
R'1 and so we predict a result proportional to R-g. Whilst confirming

the results in this form, this account presents, in addition, the
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general, oriented expressions.

In the following Section any additional identities which were
used in previous Sections without explicit justification are given as
an appendix. Further explanation of some of the steps used in the
method of Section 4.2 is given and the derivation of the angular

integral results is outlined.

4.8 Appendix

In this section some of the detail of the general method used
throughout the previous sections is accounted, and the remaining
definitions are given.

If we study the expression (4.2.3) we see that it results from

summations over photon polarization vectors in expressions of the form

AE (i)
/ i(p+p’).R
- - hCE ’hcg or ro og so -~ ~ ~
- Z Z Z[ze V][ZC I,]“L”#uﬁy‘ce
’ ’ 0 (o]
r,s pp AA

The appropriate sum is given by

A A

(*) 1ya (M) =
Zei (K)e;, (k) = (8;Kkik)) . (4.8.2)

A
In the consideration of magnetic-dipole interactions, Section 4.4 also
uses the results (4.8.3) and (4.8.4), overleaf, as discussed on

page 102.
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A
Zei‘”(psé,‘”(p = ke (4.8.3)
A
M) e My - o
}: bL (E)bé (5) = (814 kLk{) (4.8.4)
A

The sums over p and p’ in~}4.2.3) are replaced by integrals in the

limit V= ® of the volume of the quantization box for the

electromagnetic field;

(1/v) 2 ===> (Zn)‘3J dp (4.8.5)
p Koo -
Hence (4.2.4).
The expression (4.2.8) is written down by separating the
wavevector integrals in (4.2.4) into their radial and angular parts

using the relation

d’p = pdpd® (4.8.6)
and then performing the angular integrals. The latter are done using

a combination of the identities (4.3.4) and (4.8.7), below.

t+ip.R ~ *ip.R
Y tdQ = i p;e " dQ (4.8.7)

b
Similarly, repeated use of (4.8.7) allows the integrals (4.3.7) and
(4.3.8) to be evaluated and (4.3.5) is given directly. The quantities
on the right hand side of these expressions have been defined in the
text.

Finally this leaves a discussion of the evaluation of the

p’-integral in (4.2.8), and the definitions of the quantities viéé(pR)
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and ¢Q4££(pR), resulting from similar integrals, which were used in
the text. The relationship between the pair {tié(p'R),&&4(pR)} is

given by (4.3.12), as stated. It is easily shown that this result may

be obtained by using the standard integrals te7l

©

sin(ax
jA—ldx

(x4B) nicos(aPB) (4.8.8)

-0

and

®

coslax
[eostax)y,

(x+B) nsin(aB) (4.8.9)

-0

and their derivatives with respect to a. Similarly using (4.8.8/9) we

obtain the analogous expressions (4.8.10-12)

©
n,(p'R)p"> a
J do’ =  -p e (pR) , (4.8.10)
(p+p’)
-0
® 4
0. .2(P'R)D’
J—'Mi—dp' = p4ﬁv(-4-£(pR) (4.8.11)
(p+p’)
-

and

©
E..2p(D'R)D’
J it dp’ = p51t¢w(pR). (4.8.12)
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The quantities vi}&(pR) and d%d&t(pR) are given below.

4_4

”£4£(pR) = {R,R ﬁ& _sinpR _ ngﬁgﬂ + 15§§ﬂ§3 + 15S0SpR
PR PR PR p' R

é 2_2 3_3 4_4

iy > y|cospR _ .sinpR _ _cospR
R PR PR

14 2.2 3.3 4 4

—a'ﬁi sinpR _ ,cospR , .sinpR , gcospR
PR PR PR pR

(4.8.13)

A
¢, ge(DR) = {-R-R- g £[°°SPR ~10810BR _45COSPR ;5SINRR | ;5COSPR

2_2 3.3 4_4 5.5
pR PR PR PR PR )

\

3 3 Y 4_4 5 85
p R PR PR

cospR -SinpR »COSPR
+(6L&6§£ + 6§£666)[ - -3

i Ll 2 2 “3 3 4_4 5 5

5.5 sinpR _ ,cospR + -SinpR + 2COSPR
PR PR PR PR

PN

+ (ﬁwRé.Rc + SLCR#R& + 95, R;Rp + S%RLRﬁ + S&CRLRj)

2.2 3.3 4_4 5. 6

x sinpR _ GCOSER + 15sinpR + lscospB
PR PR PR PR

i 3 3 4_4 5 5

o » |cospR _ ,sinpR _ . cospR sinpR cospR
+ 8..R£R£ 4 > 9 + 15 + 15
PR PR PR PR PR

(4.8.14)

In the text results were quoted in terms of the dynamic
polarizability or magnetic susceptibility of the molecule and mixed
electric-dipole/magnetic~dipole and dipole/quadrupole analogues.

In Table 4.8.1 these quantities are defined together for reference.
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Table 4.8.1: DEFINITIONS OF DYNAMIC AND MIXED DYNAMIC POLARIZABILITIES

Dynamic polarizability:

E
o0 , . ro or ro
o®%(icu) = zE S A (4.8.15)
v = Eri+(hcu)2 v

Electric/magnetic polarizability:

6o(en) = zizL R (4.8.16)

. m.
E 2+(hcu)2 v e
r ro

Dipole/quadrupole polarizability:

E
A Sgldcu) = ZZ ——— 7 Q% (4.8.17)
4 2 B Ze(hew)® ¢4

Magnetic susceptibility:
E

(o] e . ro or ro
X; ;(4cu) = 22 ————m; m, (4.8.18)
id E 2+(hcu)2 i 4
r ro
Quadrupole polarizability:
E
8.%%p(dcu) = ZZ —— Q7%Qpy (4.8.19)
ikt - Er:+(hcu)2 L
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CHAPTER 5

ION-MOLECULE INTERACTIONS

H.1 Introduction

The multipolar Hamiltonian has been used in Chapter 4 to give a
comprehensive account of dispersion interactions between neutral
molecules in their ground states. Such interactions are fully
retarded; the coupling proceeds entirely via exchange of transverse
photons since all electrostatic interactions between the molecules
were eliminated in the construction of the Hamiltonian. It is now of
interest to relax this restriction on molecular neutrality and
consider similar interactions where molecules carry a net charge. The
Hamiltonian theory appropriate for such cases was developed in
Chapter 2 and shall be applied here in the discussion of such
ion-molecule interactions. This multipolar theory, however, is not
suited to a discussion of the interactions of free electrons. A theory
will be presented in the following chapter which deals specifically
with this special case.

For the calculations here it is assumed that both ion and
molecule are held fixed. The required interaction terms are recovered
from the final form of the Hamiltonian given in Chapter 2, with the
note that this condition eliminates those interaction terms which were
dependent on the vector potential. The non-retarded results which are
then determined here include all terms up to electric quadrupole.
These terms may be added to the results of the previous chapter and
the charge-octupole interaction is determined so that all terms up to

. -6 .
a cut-off point of an R dependence on separation have been taken
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into account. The minimal-coupling treatment of this interaction is
also outlined as a contrast.

The molecular ion is also assumed to have a permanent dipole
moment; this 1is a necessary assumption since there can be no
intermediate state sum for the ion where the interaction is
electrostatic. Consequently, the energy shift will depend on a
molecular property of the neutral molecule, such as a polarizability,
but simply on the charge and dipole moment of the ion.

We begin by considering charge-dipole electrostatic coupling and
this is followed by the consideration of higher charge-multipole
terms. Included also are combinationé of these interactions and all
multipolar interactions to the same order. The interactions are again

described using time-ordered graphs.

5.2 Non-retarded electric-dipole interactions

We aim here to present for the first time the complete multipolar
expression for the dispersion interaction between an ion, A, and a
neutral molecule B. This requires the determination of those terms
dependent on the ionic charge QA. The interaction Hamiltonian for
the system is

-1 4 -1 4
H - - eo E(A)'Q (EA) - so QLJ(A)v;dL(BA) + W

int elec

-1 L -1 1
" & H(B).d(By) - €, Qu(B)V,di(R)

(5.2.1)

where Wel is the electrostatic interaction term of the Hamiltonian

ec

(2.7.4) and is made up of the complete charge-multipole series. The

(68,69]

first three terms of the multipolar expansion of Welec are



-164-

welec = - (QA/4HGO){M¢(B)§L/R2 + Q%(B)ﬂLJ/Ra - BQ%&(B){}‘(‘.@‘}
(5.2.2)
= W+ W, + W, (5.2.3)

in which the interactions are charge-dipole, charge-quadrupole and
charge-octupole respectively. In (5.2.2) BL} takes its definition from
(4.2.6) and in W3 the component Q‘%"&(B) of the third-rank octupole

moment tensor for B is

Q,4(B) = (1/31) ) e (a,Ry) (a,Ry) (g, Ry)g
7
(5.2.4)

with ¥ to be summed over all electrons and nuclei, and the geometric

factor Gié& is

Y A A A

(5.2.5)
In this expansion the intermolecular vector R is defined as
R = Ry - R, (5.2.6)

This section deals with those terms up to electric dipole which
include the charge-dipole interaction. This includes the fully
electrostatic interaction given by Fig 5.1, in which the horizontal
dashed lines refer to interaction potentials, and interactions, given
by the third-order perturbation result, which also proceed through an
exchange of one transverse photon.

For dipoles favourably oriented with respect to g we expect the
dominant contribution to the interaction to be the electrostatic

charge-dipole term. From Fig 5.1 we obtain
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4E, = —(1/2)(1/4H€0)2Qiaz;(B)RLRJR—4

(5.2.7)

The R_4 dependence is well-known; the result is given here in terms
of the static polarizability of the neutral molecule.

Those interactions which are part Coulombic and part

transverse-photon exchange are next considered. Fig 5.2 shows the

graphs for such a case. For example, in graph (i) the various states

are given by

li> = [E_(A); E_(B); O(p,A)>
l1> = |E_(A); E_(B); 1(p,A)>
|11> = |E_(A); E_(B); 0(p,A)>
[£> = [E_(A); E_(B); 0(p,A)>

(5.2.8)

There are six graphs in total, the three shown plus three for emission
of the virtual photon by molecule B. The third-order perturbation
result is straightforward. Summing over the wavevectors and
polarizations of the virtual photon as is required and adding the

various contributions using the simple result

1 1 1 _ 2
B + B B + B - B
(hep)E_ E__(E__+hcp)  (hep)(E__+hep) (hep)E__
(5-209)
gives an energy shift
2 ~ -5
8E, = (1/4me) QAu2°(A)az;(B)RLB;£R , (5.2.10)

which is of the form expected.
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FIG 5.1 : ION-MOLECULE DISPERSION: THE COULOMB INTERACTION

(o] (o]
w‘l

(o] S
w‘l

O o

The result makes use of the identity

~ A~ i .R -~ -~ ip.R
1 2 1p.» -3 r'..3 3. -1
= (5..—p.p.)e = (2n) (6, -p:p.)e dp = - (4nR”) 'B..
Vv p g Piv§ j if Pilj p i
(5.2.11)

which 1is obtained through the transverse delta dyadic. The shift
contains an R-5 dependence on separation and requires the ion A to
have a permanent moment. It is because of the fact that A interacts
through its permanent moment that this interaction, which proceeds
through thé exchange of a virtual photon, leads to a non~retarded
energy shift. The London result (Section 4.2) is obtained from here by
replacing the charge dipole interaction with the exchange of a second
transverse photon through electric dipole inferaction. Intermediate
states are required for A with the retarded interaction, giving a
result dependent on its polarizability and which shows the R._6
behaviour.

This accounts for the first set of interactions, those up to

electric dipole only. We now go on to consider higher-order terms; we
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FIG 5.2 : ION-MOLECULE DISPERSION INTERACTION:
NON-RETARDED ELECTRIC-DIPOLE CONTRIBUTIONS
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include both the transverse field interaction with electric quadrupole
vertices and the electrostatic charge-quadrupole and charge-octupole

terms. The study gives all terms up to an R.6 interaction.

5.3 Higher multipole interactions

First we consider the remaining electrostatic contributions.
These are shown in Fig 5.3. In (i) and (ii) a charge-quadrupole or a
charge-octupole interaction occurs along with charge-dipole coupling.
In Fig 5.3(iii) the interaction 1is described entirely by the
charge-quadrupole potential. The corresponding energy shifts are

easily determined and added to give

AE, = -(Q,/4me)”"
X{Azgﬁ(B)ﬁiﬁj&R-s + (1/2)03550 (BB By R ™® - 3EZ}u(B)§¢a;uR'G}

(5.3.1)

In (5.3.1) 62;&£(B), the quadrupole-quadrupole polarizability, is the
quadrupole analogue of the static polarizability and we have used the
definition
”OSQBO
o0 - 4.' 2‘“
s so )
for the static dipole-octupole polarizability. These terms are of the

same order as the London expression and may be significant, depending

on the symmetry of molecule B. AS

L?&‘B) is the static form of the

dipole-quadrupole polarizability.
There remain two further contributions to the intermolecular
energy shift; (a) the electrostatic interaction potential is of the

charge-quadrupole type and both of the virtual photon interaction
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FIG 5.3 :
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ION-MOLECULE DISPERSION:

HIGHER-ORDER COULOMB INTERACTIONS
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vertices are of the electric dipole type; and (b) the electrostatic
interaction potential is charge-dipole and the virtual photon
interaction is via a dipole vertex at one molecule and a quadrupole
vertex at the other. An example of the type (a) interaction is shown
in Fig 5.4. There are six such graphs. With the use of (5.2.9) the

energy shift arising from these graphs may be evaluated to give

BE, = (1/4re)%Q,up°(A)Ag; (BIB, BypR™" (5.3.3)

which we see falls off with the inverse sixth power of separation.

If we assume that selection rules allow the latter type of
interaction, for example if the molecule or ion is optically active,
then we must consider a further six graphs for the quadrupole
interaction at each centre. Typical graphs are drawn in Fig 5.5.; the
interactions should be of the same order as (5.3.3), above {(coupling
proceeds through charge, two electric dipoles and a gquadrupole) and
the form of the graphs again leads to the use of (5.2.9) in order to
sum over the energy denominators in the thifd—order _perturbation
expression. In the final result the two sets of terms have been
combined, giving

-6

8B, = -3QA(1/41IEO)2(MEO(A)AZ;-&(B) + Q};Z(A)«Z;(B)]R‘;GMR

(5.3.4)

This accounts for all interactions up to and including a cut-off point
at an R-6 dependence on separation.

It is briefly shown below how the result to electric dipole may
be obtained through the use of the minimal-coupling interaction terms,

with a comment on the calculation of higher-order interactions.
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FIG 5.5 : ION-MOLECULE DISPERSION:
NON-RETARDED ELECTRIC-QUADRUPOLE CONTRIBUTIONS
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FIG 5.6 : ION-MOLECULE DISPERSION BY MINIMAL COUPLING:
ELECTROSTATIC CONTRIBUTIONS
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5.4 The minimal-coupling result

This alternative method is not given in detail here. Attention is
merely confined to those terms arising from the ionic charge: the
equivalence of the dispersion terms for the neutral case is assumed.
Even for results in the electric dipole approximation the inclusion of
the gz(g) term is warranted and the twelve multipolar graphs of
Fig 4.1 are replaced by the well-known sum of twenty seven in the
minimal-coupling method.

For the present problem the intermolecular potential energy VAB
in the minimal-coupling method is given by (5.4.1). The first term,
V1’ of (5.4.1) is of course common to both formalisms. V_ is then the

2

familiar dipolar interaction.

-~ 2 3
Vg = - (1/4“60){éAHL(B)RL/R - ML(A)Hg(B)ﬁi4/R }

(5.4.1)

First note that since we are calculating an energy shift there
will be no contribution from those interactions of the form of Fig 5.2
but with the g.g(g) coupling for the virtual photon. This follows
since diagonal momentum matrix elements are zero. Next, of the
electrostatic interactions left to consider, the first has been dealt
with and is given by (5.2.7). We are left to consider the interaction
given in Fig 5.6, where the factor 2 accounts for the interchange of

V1 and Vz. The combined energy shift gives
2 oo oo - -5
AE_ = (1/4me )7Q,Hg (A)aLé(B)Riﬂ;&R ) (5.4.2)

which equals the contribution (5.2.10) from the six graphs of Fig 5.2.

Hence the total energy shift up to electric dipole has now been
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generated using the minimal-coupling interactions.

5.5 Summary

The multipolar Hamiltonian has been used to calculate the
contributions towards the ion-molecule energy shift which depend on
the net charge of the ion. All interactions up to R_6 have been
calculated and each of the results depends on one of the forms of
static polarizability (dipole-dipole, dipole-quadrupole etc) defined
for the neutral molecule. As well as its dependence on the ionic
charge, where the interaction includes exchange of a virtual photon
the energy shift also requires the ion to have a permanent dipole or
quadrupole moment.

An important point to note is that all of the results are
non-retarded, even those for which the interaction included exchange
of a virtual photon. This follows since in such cases the ion
interacts through a permanent moment. The energy difference between
initial and intermediate or intermediate and final states is then
independent of a term for the ion and the resulting sum (5.2.9) leads
to shifts which may be written in terms of the static molecular
polarizabilities. Each shift therefore applies at all intermolecular
separations.

The dominant term is that given by (5.2.7), where the interaction
is of the charge-dipole type. The shift has an R-4 dependence on the
intermolecular separation and, unless the molecule has a very small
dipole-dipole static polarizability, this will always be the leading
term. Two interaction terms have a magnitude which falls off as R-s.
These are the electrostatic charge-dipole/charge~quadrupole interac-
tion and the charge-dipole interaction which is accompanied by

exchange of a virtual photon through electric dipole coupling at both
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molecule and ion. The remaining R™® terms, which require the
higher-multipole static polarizabilities for B to be significant, are
likely to be less important than the pure dipole term (4.2.15),
although we note that their contribution will not fall off by a factor
which is inversely proportional to R in the far-zone.

Note that we have excluded magnetic-dipole interactions. Just as
there is no static interaction between a permanent electric dipole and
a magnetic dipole, we find that there are no magnetic-dipole
contributions to the energy shift arising from graphs of the types
considered here. For example, when we replace the electric quadrupole
vertex of Fig 5.5(i) with a magnetic dipole vertex we obtain an energy
shift of zero. We were also able to neglect the terms of (2.7.8) and
(2.7.9) in which the interaction is via the vector potential. This is
a result of our constraint that the 1ion is held fixed; these
interaction terms do not appear in the Hamiltonian if there is no
ionic contribution to the current density.

The equivalence to the order shown in Section 5.4 is rather
elementary and perhaps does not emphasize the advantages of the
multipolar over the minimal-coupling treatment. As we consider the
higher-order terms, however, the simplicity of the multipolar
calculations becomes more apparent. In Chapter 3 the relative merits
of the use of the two interaction Hamiltonians in the calculation of
matrix elements was discussed. It was shown through the use of sum
rules how the higher-order energy terms obtained in the
minimal-coupling method from the expansion of the vector potential
were equivalent to those written down directly from the expansions of
the multipolar formalism; we concluded that the latter method was both
easier to use and physically more suitable. The same conclusion should
be reached here for the matrix elements which involve exchange of

transverse photons.
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However, the multipolar Hamiltonian has not previously been used,
as it has here, to determine the interactions between charged species.
We must therefore assess how much this treatment has benefited the
calculations. The partial cancellation of the intermolecular potential
energy term in the multipolar Hamiltonian has been discussed at

length. The remaining electrostatic terms, given by We in (5.2.1),

lec
all depend on the net charge of the ion A and form a series of
charge-multipole interactions. We have cancelled all multipole-
multipole interaction terms in the construction of the Hamiltonian so
that there is no term of the form of V2 in (5.4.1). Besides those
terms which interact through the vector potential, however, the
minimal-coupling interaction Hamiltonian boasts an intact

intermolecular potential energy term Vin Only two terms were

ter’
required here for the interactions to electric dipole but for the
consideration of higher-order interactions we require the full
multipole-multipole account. Each molecule will interact with the
dipole potential, quadrupole potential etc of the other giving a
rapidly expanding number of terms with increasing order of the
interaction. For example, in the case under consideration here, to R-G
this would require the use of dipole-quadrupole (R-4) interaction
potentials.

The interaction Hamiltonian (5.2.1) is therefore of considerable
use in the calculation of the interactions between ions and molecules.
The non-retarded interactions are determined in a straightforward
manner, improving considerably on the minimal~coupling method, and are
obtained directly in terms of molecular properties; this then allows

them to be compared with the retarded interactions determined by the

conventional multipolar interactions.
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CHAPTER 6

THE INTERACTION OF FREE ELECTRONS WITH MOLECULES

6.1 Introduction

The interaction of free electrons with atoms and molecules is of
continuing interest both theoretically and experimentally [70-73],
most notably in the investigation of elastic scattering. For example,
Au (71,723 has calculated electron-atom interactions wusing the
minimal-coupling formalism for all parts of his calculations. Now in
this work we have already seen the benefit of applying the
transformation to the multipolar formalism even for systems carrying
net charge; 1in Chapter 5 ion-molecule dispersion interactions were
derived in terms of the static polarizability of the neutral molecule.
In such an important area of interest a similar study of the
interaction between a free electron and a neutral molecule would be
highly desirable. However, the theory presented in Chapter 2 assumes
that all interacting species may be allocated a centre of mass or
charge about which a multipole expansion is appropriate. Clearly this
assumption is invalid in this case. The dynamics of the free electron
are best described within the minimal-coupling formalism, with a
suitable choice of wavefunction describing an associated momentum
state, It is therefore appropriate that such a theory should be
detailed which addresses this problem whilst preserving the multipolar
description of the molecular interactions.

The transformation to the multipolar Hamiltonian is adapted here

by considering the free electronic and molecular terms separately.

Only the latter terms are transformed such that the new Lagrangian
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leads to a Hamiltonian in which the free electron interacts via the
vector potential and the interactions of the bound electrons proceed
through the electric displacement field. The electrostatic terms are
unaffected by the transformation. The Hamiltonian is then used to
determine the interaction of a free electron with a molecule. For
convenience and without loss of generality the centre of mass of the
latter is taken to be the origin. The interaction is found to be
composed of both non-retarded contributions, and retarded terms for
which we present both general results and results in the far-zone. All
of the results apply for a given separation and in each case the
electron is assumed to have a small initial momentum.

It was shown in Chapter 1 that there is considerable freedom
regarding the exact function used in the transformation of the
minimal-coupling Lagrangian. As an alternative to the transformation
described above it is possible to add the time derivative of an
additional term, thus transforming the free electron parts as well.
Such a procedure is discussed briefly also and it is shown that the
free electronic charge may contribute to a new transverse field, with

which it interacts, thus eliminating the ©p.a(q) and az(q)

interactions. However, as in the general Hamiltonian for ion-molecule
systems it is not possible to eliminate the vector potential
completely and the transformation was found to be less useful than was
anticipated.

We begin with the presentation of the modified theory for an
electron-molecule system, giving the two forms of transformation. The

resulting Hamiltonians are then applied to the calculation of

. . . . 4
ion-molecule interaction energies, correct to e .
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6.2 A new Lagrangian

The dynamical system consists of a free electron, defined by its
coordinate q and momentum P, a neutral molecule B and the quantized
radiation field. The labels a and a are used for the electrons and
nuclei, respectively, of the molecule, which may be considered at rest
with the origin defined at its centre of mass.

Much of the development of the theory naturally follows that
given earlier in the first two chapters. Hence it is sufficient to
present here only the new features. Choosing the Coulomb gauge, the
initial form of the Lagrangian is taken from (2.2.10), although its

exact form is reliant on the choice of charge and current densities.

The charge density is

plx) = - ed(r-q) - ) 8(r-g) +e)1,8(r-a,)
(¢4 a
(6.2.1)

The transformation to the multipolar Lagrangian previously followed
the partitioning of the current density in terms of the polarization
and magnetization fields. These fields are again introduced for B,
since we wish to describe its interactions in terms of its multipole
moments. The free electron contribution to the current density is
unaltered. Hence the total current density may be partitioned such
that

i(r) = jlesr) + j(Bir) , (6.2.2)

~ o~

with the composite terms taking the forms
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jle’sr) = -eqd(r-q) (6.2.3)

and

j(B;r) = p(B;r) + VxM(B;r) . (6.2.4)

The fields in (6.2.4) take their previous definitions, except that we

have put Ry = 0, ie

1 1
p®ir) = - ) g [ Srdg ) +e) 2., [ slrg an
«(B) a(B)

(602.5)
and

- 1 - 1
MBz) = - e ) (axa)| 2(rAg ) + e ) 2,(g,xq,)[ A8(x-hg,an.
(o} 0
«(B) a(B)
(6.2.6)

The transformation of the Lagrangian, which follows next, is the
important step in the formulation. The restrictions on the form of the
function chosen for addition to the Lagrangian were given earlier. We
may write

Lo = Lo - Sfoi(Bir)a, (r)a’ (6.2.7)
new min dtJ¥4VTLITAONLTT L

whére the familiar transformation now includes only the polarization
field for B. The interaction of the electron current (6.2.3) with the
vector potential is thus left unaltered. Should we consider a system
where the electron might interact with a number of molecules then the

total molecular polarization field would be required in (6.2.7).
The new Lagrangian 1s again written as the sum of particle, field

and interaction parts and the transformation follows the elimination

of the scalar potential. The electrostatic terms formed by this are
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included in (6.2.8) with a partitioning into an intermolecular term,
given below, and an intramolecular term for the molecule. In the
particle Lagrangian (6.2.9) the nuclear terms are written separately;
these are retained for completeness but it is recognised that in many
problems, such as the scattering of electrons by atoms, they may be
discarded. Thus

L = L + L + L (6.2.8)

new part rad int

with
pare = (8/2)3% + (n/2) Y o+ ) (n/2)a5 ¢V, (B)
« a
(6.2.9)
Lwa = <€o/2>f{é<s>2-°2<i’*e<£>>2}d3£’
(6.2.10)
and
L = - Ip+(B'r)é-(r)d3r + J{?XM(B‘r)}-a-(r)d3r
int LA S AN ~ o DAL L
- L 3
- efam s radt -V, :
(6.2.11)

The intermolecular potential energy term is given by

v = ( e ] Z - - 2 % (6.2.12)
inter 4ﬁ£o o Ig—gdl |g-ga| ‘ te

a

From these expressions the canonical momenta may be written down
directly. Note that the integration over r in the third term of
(6.2.11) may be performed after first writing the integrand with the

complete delta function, which is allowed since a(r) is transverse.
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6.3 The canonical momenta

The canonical variables are given by (q,p) for the electron,
(ga,ga) and (ga,ga) for B and the field variables are given by the
pair (a(r),ll(r)) as usual. The momenta, defined from the Lagrangian,

are given by

PL = med“.’ - ea’.{’(g)

(6.3.1)
Pit) = Pedi(a) ‘I(B«(B;E”“B‘E)]Ldar

(6.3.2)
Pita) = Paia) - | (raBi b))%

(6.3.3)

and

HL(E) = EOAL(E) - pi(B;f) )

(6.3.4)

Note the forms of the particle canonical momenta. For the electron, p;
appears in its minimal-coupling form whereas pL(a) and pi(a) are
written in their usual multipolar form in terms of the auxiliary

fields na(B;r) and na(B;r), which are redefined as

1
n (Bir) = -e z 9 I AS(r-Aq )dA (6.3.5)
«B) °
and
1
n (Bir) = +e E Za, I AS(r-Aq )dh . (6.3.6)
a(B) 0

A rearrangement of these expressions in order to obtain the velocities

will precede the formation of the Hamiltonian.
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6.4 The Hamiltonian

The Hamiltonian constructed from (6.2.8) is given below. The

standard partitioning gives

(1) (2)

= +
new part rad int int elec self '’

(6.4.1)

where each term is written out explicitly below. The particle

Hamiltonian is simply given by

. .2 1 g 2 2
el = D/2m o EEa‘B) + (1/2) 2 p2(B)/n_ +V, . (B),
e o a
(6.4.2)
the radiation Hamiltonian by
2 2 2,3
Hrad = %J{QL (E)/€0+ EOC (YXE(E)) }d E (6'4'3)

and the interaction terms are given by

1)
H

int

= (e/mp-ate) - [pmin). & -famin) b’y

(6.4.4)

and

2 2
B2 = (1/2m) ) ([ngBiern(ea®s) + Y (/2m)([n Bir)xb(r)d’)
«(B) a(B)
+ (ez/Zme)gz(g) .
(6.4.5)

In contrast to the conventional transformation of the minimal-coupling
to the multipolar Hamiltonian for neutral systems where all

electrostatic terms are completely eliminated, V given by

inter
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(6.2.12) remains after the transformation and forms part of the
interaction Hamiltonian. The first terms of the Taylor expansion of

inter about the origin are given by

_ _|_e - 2 _ . 3
W= [4,150]{%(3)%/‘1 + Qu(B) (5 3%%/(1} .
(6.4.6)
The remaining self-energy term is
1 L 2.3
Hself = Z_COIIP (B’E)l d.l:
(6.4.7)

In (6.4.4) the magnetization of the neutral molecule T(B;E)
assumes the definition used in Chapter 4, modified only by the choice
of origin.

Let us consider fhe distinctive features of this new Hamiltonian.
The field canonical momentum is the same as the electric displacement
vector field (apart from sign) and the coupling of the molecule with
the field is given by conventional multipolar interactions. The
interaction of the free electron with the field, however, is given by
the g.f(g) and gz(g) terms. As mentioned earlier, one significant
difference in contr#st to the Hamiltonian of Chapter 2 is that now
there is no corresponding intermolecular polarization product, a
consequence of the transformation used. The partial cancellation of
the intermolecular potential energy term in that case does not take
place here and hence (6.2.12) is left intact.

These terms will be used shortly to consider the interaction of
an electron with a neutral molecule. In addition to the electrostatic
interaction between the pair there are terms arising from exchange of
virtual photons. The constraint will be that both electron and

molecule return from any intermediate state to their initial states.
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First we extend the theory of the preceding sections by considering an

alternative type of transformation.

6.5 An alternative transformation

In this alternative transformation the total time derivative
which is added to Lmin now includes a term for the electron as well.
The explicit form of the transformation is

d

3
L = L. - adJPi (B r)a (r)d r o+ egt qjaj(E)S(E—g)d r

new min

(6.5.1)

The first total time derivative has been dealt with; the multipolar
form of interaction for B will not be considered further. The second
term transforms the electronic parts. The form of this term was chosen
specifically to maintain the similarities between the molecular and
electron parts.

In the resulting Lagrangian new terms appear in L;

nt?

lnt inter

Jq a (r)5L (r- q)d r+ efq (V.2 (r S(S-g)didag -V
(6.5.2)

with the intermolecular potential energy term again given by (6.2.12).
In writing the first term of the above expression it has been noted
that the contribution from the longitudinal part of the total delta
function is zero. The second term results from the total time
derivative of the delta function and integration by parts. The new

forms of the canonical momenta are then
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o
&~
1

na; + efa,(%a,(r))5(r-g)a’r

(6.5.3)
and

. 4 L
n.(r) egai(r) - pi(Bir) + eqd;,(r-q) .

#

(6.5.4)
The new field canonical momentum is a modified form of the
displacement vector field. Its cross term with pi(B;r) following the
square of éi(r) in the construction of the Hamiltonian will have the
dimension of a polarization product and will thus partially cancel the
electron-molecule potential energy Vinter.

Using these canonical momenta the Hamiltonian follows

immediately. The new terms only are given below. Hence

_ (1) (2)
Hnew - part * Hrad int Hint. elec + self
(6.5.5)
with Hpart unchanged and Hrad given by
2 2 2| .3
Hrad = %J{QL (E)/EO+ 8OC (ng<£)) }d E ! (6'5.6)
where d‘(r) is a new transverse field to be defined shortly,
B! = (e/e )q.d"(R) - (e/2 +q;p,|9,a,(R)
ine = (e/65)a.d (R e/2m,) (P ata e [V a (R
-1 L 3
- €] jg(B;f).g (r)d’r (6.5.7)
2 = (e%/2n )|q.V.a.(R V.a,(R (6.5.8)
ine = (e/2m)098,(R)1qg7;a,(R)} , +5.

and the remaining electrostatic and self-energy terms are given by
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.
elec inter

= - (e/eo)Iq}pt(B;f)sj;g(f‘g)d3f + V.

(6.5.9)
and

2
_ _e . 0.3
Hself - 250\[\‘1*"1&64‘4'({ B)&:&(E E)d r.
(6.5010)

The molecular term has been included in (6.5.7) since it is written in

terms of the new field. In the definition
d(r) = Eoe(r) + p(B;r) - eqd(r-q) , (6.5.11)

an electronic as well as a molecular term contributes to this new
field. This choice will then give

(r) = -g‘(f) (6.5.12)

~mult .

by analogy, although Q(E) given by (6.5.11) should not be mistaken for
the displacement field, which uses the same symbol. Let us compare
this Hamiltonian with (6.4.1) derived earlier. A new interaction term
has been derived which describes how a free electron may interact
through the exchange of transverse photons. However, the vector
potential has not been eliminated; this is only possible for neutral
systems and charged systems at rest. In fact, the transformation has
produced a first-order term with the dimension of a magnetic
interaction and a second-order term of a diamagnetic equivalent,
neither of which 1is straightforward to use. Further, unlike in
molecular interactions, where the dipole approximation may be used,
each of these terms would have to be considered in the study of
electron-molecule interactions since there can be no question of order
with regard to magnitude. Likewise the electrostatic terms are

complicated. It was easy to consider just Vinter in (6.4.1). The
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corresponding terms here would result from a simplification of
(6.5.9). In Section 2.6, where the intermolecular polarization product

contained integrals in closed form, W was determined as a complete

elec
sum. In this case we could only determine these terms in the form of a
series expansion. Of the two Hamiltonians (6.4.1) and (6.5.5), the

former is the more suited for applications and is the one used in the

following section.

6.6 Electron-molecule interactions

The Hamiltonian developed earlier in this chapter is used here to
determine the interactions of a free electron with a neutral molecule.
The use of perturbation theory gives the interactions in the form of
energy shifts for a given separation. The interaction Hamiltonian for

the system is

H,, = (e/m)p.a(a) + (e°/2m )a"(a) - €] n(B).d"(0)

3

- (e/4”€0)#L(B)qL/q
(6.6.1)
where the molecular centre of mass is defined as the origin. The
position vector relative to this centre and the momentum of the
electron are denoted by q and p respectively: the electron is

~ ~

described by the state |g> with an associated momentum p = hf. The
electric dipole approximation is assumed for the interaction of the
molecule with the electromagnetic field.

Typical time-ordered graphs showing the interactions between an
electron and a molecule are drawn in Fig 6.1, where a vertical double
line represents the molecule. The graphs characterise the type of

interaction. Graphs (a) and (b) determine the non-retarded interaction

whilst (d), (e) and (f) will account for the fully retarded
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contributions. In Fig 6.1(c) the interaction is partly Coulombic and
partly due to transverse photon exchange. The graphs are used to
calculate the interaction up to e4 and the total energy shift is the
sum of these results.

The electron is assumed to have a small momentum so that its
change of kinetic energy upon interaction with the field is small
compared with the spacing of the intermediate states of the molecule.
For this case the addition of the energy denominators is greatly
simplified and some of the results of Chapter 4 are used here.
Further, in some cases the separation q is sufficiently large (the
far-zone 1limit) that the virtual photon energies are small. The
molecule may also be assumed to be random oriented with respect to D.

We first consider those interactions which are purely

electrostatic and thus clearly non-retarded.

i) Non~retarded interactions

If the neutral molecule B has a permanent moment then the lowest
order interaction is given by Fig 6.1(a). The energy shift for this

case may be written down directly as
AE(a) = (-e/ame )u°°(B)a,q 2 (6.6.2)
a - -e o u‘L q‘(’q « Qo

which is a simple charge-dipole interaction dependent on the inverse
square of the separation. The higher-order electrostatic term, given
by Fig 6.1(b), involves a sum over the free electronic and molecular
intermediate states. Now the energy denominator for this case is given
by [Eso—(pz—p'z)/Zm], where the second term is the difference in
kinetic energy of the electron in the two momentum states. It is a
good approximation to assume that this quantity is small compared with

Eso if the electron is slowly moving. This allows us to make the
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FIG 6.1: CONTRIBUTIONS TO ELECTRON-MOLECULE COUPLING IN QED
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expansion
1 1 (p°-p’%)/2m [(p°-p’ %)/2m]?
= + +
E_ -(p"-p"")/2n E_, EZ_ E-_[E, -(p"-p’")/2n]
(6.6.3)

and assume that the major contribution comes from the first two terms
of (6.6.3). The contribution from the third term of (6.6.3) may be

neglected so that the remaining terms give the shift
AE(b) =~ AE’'(b) + AE’’(b) . (6.6.4)

The contribution with the first term as the denominator is
straightforward; E;: may be taken into the definition of the static
electric dipole polarizability of molecule B. Effecting closure over
p’ gives the non-retarded result

~

BE'(b) = (-®/2) (4me )"} (B)q 00" (6.6.5)

which is independent of the electron momentum p.

In order to evaluate AE’'’(b) we make use of the relationship

2 ,2 , -3 , -3
[(p"-p"")/2ml<p’ |q;a " |p> = <p’|laq;a " H,,  1lp>
(6.6.6)

where Helec is the Hamiltonian for the unperturbed electron, and the
commutator

faq;a” 301 = (ih/2m)|B, q"° B, a’ (6.6.7)

q‘(‘,q 10 lee = 1 m) 4'4'(1 pé'+p} 4‘4"1 « 0.
with

BL4 = (8L4 - 3qu4) . (6.6.8)
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It is then possible to effect closure over p’ and obtain

08 80
Ty “n
AE"“(b) = (e’h®/2m)(4me )7® E?ﬁ—(aqmq‘;q{)q °,
S 80

(6.6.9)

which is small compared with (6.6.5). Contributions from the third
term of (6.6.3) are even smaller, with higher inverse powers of
q-dependence, and are neglected.

Next we consider the interactions given by the six graphs of the
type Fig 6.1(c), which include the exchange of a virtual photon in

addition to the electrostatic interaction.

ii) Coulomb interaction plus transverse-photon exchange

An exact solution of the contribution from graphs of the type
Fig 6.1(c) to the total energy shift is not possible. However, with
the use of an expansion of the type (6.6.3) for each factor in the
denominator we may consider the separate contributions individually.

The first term after angular integration of the photon wavevector is

8E'(c) = i(2m) > (amey) " (e®h/2e min, ) H3THET
© S
><(4ﬂ)f[‘r~(kq) - T, (ka)lapa oD’ (k)k°dk = 0
44 i4 £
0

(6.6.10)

where p; is the component of the electron momentum along the direction

i tig(kQ) is defined by (4.2.7) and D’ (k) refers to the sum

1 1 1
D'(k) = + + .
E (E +hck) hck(E +hck) E hck
sO 80 80 80

(6.6.11)
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So we need to consider the next term in order to obtain a contribution
from this set. Upon integration the leading term gives

08 €60

®
BB (c) = i(2m) " (e*h/2eln®)p, ) 13UE” [ o sptka)Bpga D’ (K)KdK
] 0

(6.6.12)

with the now slightly more complicated sum over the energy factors

given by
1 1 (Eso+th)
D' (k) = —J—— + 2 o 2
Eso(Eso+hck) (hck) (Eso+ﬁck) Eso(hck)
(6.6.13)

and 0L4£(kq) also assuming its earlier definition (4.3.9.). A useful
result may be obtained from this expression in the far-zone, where
E._>» hck. The sum reduces to

o)1
D..(k) = Z(Eso(hck)] (6.6.14)

which is then used in (6.6.12). To simplify the calculation we may
choose one axis of the laboratory frame to be parallel to the electron

momentum. For a freely rotating molecule we then obtain

2

8B (c) = i(3e”h/32n’c m cz)cl(B)p(g'é)q'5

(6.6.15)
where «(B) is the isotropic, static polarizability of B and p is a
unit vector along the direction of the electron momentum. This term,

in contrast to those of the previous sub-section, is dependent on the

magnitude of the electron momentum.



-193-

iii) Fully retarded interactions

This final section considers all interactions which are fully
retarded. Coupling may proceed via exchange of a single or two
transverse photons and the interaction vertices are either linear or
quadratic in the vector potential. To begin with, consider Fig 6.1(d).
Two such graphs account for the exchange of a virtual photon. However,
following angular integration we find that the two terms give equal

and opposite contributions ie

BE(d) = i(2me/egme)pghs” (B) [T, (ka) - T, (ka) Tkdk
(o}
= 0 (6.6.16)

and so there are no contributions from this form of coupling.

The twelve graphs of Fig 6.1(e) may be used to determine the
energy shift arising from an exchange of two virtual photons. The form
of the graphs 1is familiar from the dispersion calculations of
Chapter 4, except, of course, that here the electron interacts with
the vector potential. The use of f(f) instead of g(s) at the electron
vertices does not provide any difficulty, however, since we may make
use of the results of Tables 4.3.1/2 to evaluate the sum over the
energy denominators. The relevant sum is S4 and an exact expression

for AE(e) is

’ ,

tnte) = (e, e, ) 1 L

S

E

2 ~ o~ ik.q ik’ .q
L “L&“;{<B|e ~ ~|g'>(g'|e - ~|g>

E8°+hck'-(p2-p'2)/2m 1 1 1
x 2 2 2 2 [ - ](hc)
(E__-(p"-p" ")/2n]l[hck’-(p"-p" ")/2n]l[E__+hck']‘k+k’  k-k’

(6.6.17)

~

in which g is defined by (4.2.5). The evaluation of (6.6.17)
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requires an approximation; we again assume that for a slowly moving
. 2 ,2 . . . . . .
electron the quantity (p -p’ " )/2m is negligible in comparison with the

other energies. This allows closure over p’ so that a result may be

~

quoted for a given q. Following angular integration the complete

result reduces to

08 SO
[TyaeT
2 2 £ 7L
BE(e) = (e/2mcqme) pp; ) =
s so
®® 1 1
’ 2 1 ’
xf j T g (k)T p (K q)[——- - ——-}k k' dkdk’ .
o o k+k’ k-k’

(6.6.18)

Before proceeding note that the pre-integral factor is symmetric to

the interchange of the indices 4 & 4§ and/or 4 & £, Integration over p’

gives
“osuso
AE(e) = ﬂ(e/aneomc)zq_spLDJE £t
s so
©
xffw(kq)(dﬂ[(kq)ZCOS(kq)] + Bﬂ’[l - (kq)sin(kq) - 008(kq)]]dk.
(4]

(6.6.19)

Using (4.2.7) for tLﬁ(kQ) we may write each term in a symmetric form

so that a suitable change of variable gives for the integral of

(6.6.19)
(s}
(Zq)-if{Zaixggcil(x) + (aiﬁﬂjﬁ + Biﬁq}C)Tz(x) + 23¢£B;CT3(X)}dX
)

(6.6.20)
where the trigonometric functions Tn(x) are
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Tl(x) = (x/2)sin(2x) (6.6.21)

Tz(x) = cos(2x) - sin(2x)/x + sin(x)/x (6.6.22)

T, (x) = [sin(Zx)-Zxcos(Zx)]/Zx3 - sin(2x)/2x - [sin(x)-xcos(x)]/x3 ,

(6.6.23)

and
kg = x . (6.6.24)

With the use of standard integrals t671 it is easily shown that the

integral (6.6.20) is zero, so that

AE(e) = 0 . (6.6.25)

Thus there is no contribution to the electron-molecule interaction
from two-photon exchange with graphs of the type Fig 6.1(e), within
the approximations used.

However, there is another type of two-photon exchange which needs
to be considered. It occurs through quadratic coupling with the vector
- potential as shown in Fig 6.1(f). There are three such gy&phs. Summing
the three terms with the use of Table 4.3.3 gives after angular

integration

©

dkdk’ .

2z (k'q)  k°T, z(kq)
AE(f) = -(e”/16n" € nc”) 2 A i f i8

s o ks+ k o Kkt k'

(6.6.26)

Integrating over k and dropping the primes gives

(kq)

AR(f) = -(e?/16m°€? mc a>) z u°‘ 5e f
k + k

s 0

x[uw[-kqCOS(kq)] + B glsin(kq) - (kq)™" + COS(kq)/(kq)]]dk

(6.6.27)
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Now with limits O to ® a final evaluation of (6.6.27) cannot be done
exactly. However, as for AE(c), we may determine the contribution in
the far-zone; (6.6.27) is modified by the use of ks » k and the final
result is found to be dependent on the static polarizability of B. The

use of standard integrals gives an energy shift

3 2 . -5
AE(f) = -(e’h/256m €que)ot: (B) (8, 47q,0)q

(6.6.28)

which has the same g-dependence as the aforementioned term but does
not depend on the electron momentum. This concludes the calculation of

. . . 4
all interaction energies up to e .

6.7 Summary

It has been calculated here that the interaction between a free
electron and a neutral molecule is made up of both electrostatic terms
and terms which arise from transverse photon exchange and that the
former are the more dominant, especially if the molecule is polar.
The results are summarised below.

For molecules with a permanent moment the lowest order
interaction is given by (6.6.2). This is the simple charge-dipole
interaction and the 1inverse square dependence will dominate
higher-order terms. Since there is no contribution from coupling
involving the exchange of one virtual photon (6.6.16), the complete
interaction to e2 is entirely electrostatic.

The remaining interactions up to an order of e4 have also been
determined. The calculation of the second-order electrostatic coupling
was made following the binomial expansion of the energy denominator, a
step which took the assumption that the electron is slowly moving. The

resulting terms then form an inverse power series in the separation q,
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such that the first two terms only need be considered. The first,
which behaves as q_4 and depends on the static polarizability of the
molecule, corresponds to the ion-molecule interaction (5.2.7) and is
the dominant term for the interaction of a free electron with a
non-polar molecule since it remains for all separations. This
contrasts the dispersion interaction studied in Chapter 4, in which
the London result falls off with increasing separation to give the
Casimir-Polder interaction. The second term, which behaves as q-s, is
considered as a small correction term to the total electrostatic
interaction.

We next considered the third-order interaction made up of the
exchange of a virtual photon in addition to electrostatic coupling.
The leading term was determined for the far-zone case and it was found
that the energy shift was proportional to the electron momentum and
the static, isotropic polarizability of the molecule, with a q-s
dependence on separation. A result with similar q-dependence was
obtained in the far-zone for the‘leading term from the third-order
interaction involving exchange of two photons (6.6.28). Unfortunately
it was not possible to obtain an exact, general result in these cases.
Where two-photon exchange proceeded through interactions linear in the
vector potential it was found that there were no terms significant to
the overall energy shift, although contributions from terms smaller in
magnitude have yet to be calculated.

The new Hamiltonian developed here to study the interaction of
free electrons with molecules 1is both ideal in its form (with
multipolar expansions describing the molecular interactions and a
momentum state representing the electron) and easy to apply. The
results given may be compared with those of Au [71'72], whose
calculations used the minimal-coupling Hamiltonian. As far as is

comparable our results agree; he has obtained terms with the same
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q-dependence, although his work applied to the electron-atom rather
than the electron-molecule interaction. The Hamiltonian itself was
written down for a single electron and molecule, although a more
general form for a collection of electrons and molecules follows
naturally. The extension to a study of electron-ion interactions is
also straightforward, since the multipolar Hamiltonian for the
interactions involving ions has been developed here also.

The work presented in this chapter forms the basis for further
studies on electron-molecule interactions. As well as the calculation
of higher-order terms of the type dealt with here it would also be
logical to relax some of the restrictions imposed on the nature of the
interaction. The results given are in the form of an energy shift for
a given separation q. If we were to consider more general cases, in
which the momentum state for the electron may change, then perhaps we
could consider scattering processes. For example, if we were to define
initial and final momentum states fof the electron as |B> and |g'>
with |g| = lg'l then an integration over all space would allow the
results to be interpreted as contributions towards the elastic

scattering of an electron.
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