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ABSTRACT

The Wallace high-energy expansion of the scattering amplitude is discussed 

and generalized to the case of scattering of a spin-one particle from a potential 

with a tensor spin-orbit coupling. A generating function for the eikonal phase 

(quantum) corrections is evaluated in closed form.

The first and second Born amplitudes are evaluated for a Gaussian potential- 

distribution. It is shown that the Wallace-corrections bring the eikonal scattering 

amplitude closer to its Born counter-part. The tensor structure of the Born am­

plitude are calculated by developing an SMP program.

The Glauber eikonalization approach is extended to the case of spin-one scat­

tering. Difficulties arise from the properties of spin-one operators as well as 

the unequal treatment of the initial and final momenta inherent in the eikonal 

scheme. Different methods of arriving at the Glauber-amplitude, including a 

diagonalization scheme which enables us to expand the exponential matrix in a 

closed form, are presented.

For the medium energy deuteron-nucleus scattering, the first order correction 

is dominant, and is shown to be significant in the measurement of the polariza­

tion parameters. This conclusion is supported by a numerical comparison of the 

eikonal observables with and without corrections, versus the exact observables 

calculated using a numerical resolution of the Schrodinger equation.
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CHAPTER 1

IN T R O D U C T IO N

In this thesis we will discuss different approximation schemes for describing 

the scattering of massive spin-one particles off spinless nuclear targets1 within 

the framework of non-relativistic potential theory.

It is well known that the spin structure of quantum particles does not emerge 

as a consequence of the symmetrical or the dynamical prerequisites of quantum 

mechanics. Rather spin is introduced empirically in the theory to account for the 

magnetic properties of the quantum particles. Classically, magnetic properties 

of a charged particle arise from its rotation around its centre of mass. However 

no quantum analog has been formulated that can generate such a classical phe­

nomenon. Nevertheless the intrinsic spin of a quantum particle is described as 

spin angular momentum and is postulated to transform under symmetry opera­

tions in the same way as angular momentum.

Special relativity offers a framework in which spin could be understood. In 

the case of spin-half fermions, the Dirac theory provides an understanding of the 

spin structure of the particles, which arises from the requirement of invariance 

of the theory under the Lorentz transformation. However, there is no theory

1In this thesis we are only concerned with spin-one incident particles scattering off spinless 
targets. In what follows we will omit mentioning the spin of the target nucleus and describe our 
interactions by referring only to the spin of the incident particle.
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as simple and elegant as Dirac’s in describing spin-one particles. In general the 

different types of interactions that can occur, because of the spin structure of the 

particles, are selected using the invariance requirements imposed on the scatter­

ing amplitude and hence on any potentials used in their description. In nuclear 

theory the invariance requirements invoked are those of time reversal and space 

reflection. For instance, spin-half interactions can occur via a central ( spatial ) 

and spin-orbit potentials. The latter couples the spin and orbital momenta of 

the particle. Both of these momenta being axial-vectors hence their product is a 

scalar with regard to time reversal and space reflection.

A spin-one particle interacts [1] with a spinless target through a central, a 

vector spin-orbit potential and three tensor potentials caused by the coupling of 

the particle’s spin to the radial variable, the linear momentum and the orbital 

angular momentum of the particle. The contribution of any of these potentials 

to the scattering process depends very much on the energy range at which the 

interaction is taking place and on the interaction channels that are being studied. 

Spin-dependent interactions have explained a number of interesting phenomenon 

in the field of nuclear physics. Perhaps the most famous is the oblate structure 

of the deuteron which is understood [2 ] to arise from the tensor spin interaction 

between the two nucleons of which it is made of.

In the nuclear context spin-one particles, such as the deuteron or 6 Zi, can 

be regarded as made up of spin-half constituents ( nucleons ). This has led to ef­



forts to construct the phenomenological spin-one potential by folding the sum of 

the spin-half potentials of the constituent fermions over the internal coordinates 

of the composite particle. This approach is called the folding model [3]. It is 

successful in explaining the origin of the radial-spin tensor coupling, mentioned 

above, as resulting from the nucleon-nucleon tensor interaction averaged over the 

volume of the non-spherical spin-one composite particle.

Using the folding model [4,5] we can see that the spin-orbit tensor coupling 

is related to the process of elastic break-up of the composite particle. It is a 

second-order term which is due to the averaging of the nucleon-target spin-orbit 

interaction.

The tensor coupling of spin to linear momentum anticipated in the potential 

is best understood with reference to the low energy process of Pauli-blocking [6 ], 

which prohibits the incident nucleon from occupying a spin-state already occu­

pied by a target nucleon with the same energy quantum number.

In this project we are interested in the Eikonal approximation and in the 

way the spin-one structure of the incident particle affects the eikonal scatter­

ing amplitude. The eikonal approximation is one of the most successful theories 

in describing scattering process, especially at small scattering angles and high 

energies of the incident particle. The theory originates from geometrical optics, 

where waves are approximated by straight line rays. The basic idea is best under­

stood in analogy with the diffraction of waves through a slit. If the wavelength



is 5  fr'jQftcompared to the width of the slit then the passage of the wave through 

the slit can be studied in terms of the passage of a light-ray through the same 

slit. In quantum scattering this is equivalent to the high energy condition on the 

incident particle. This is reflected in the fact that the eikonal phase is obtained 

by performing a straight line integration along the direction of the incident mo­

mentum. Moliere [7] and then Fernbach, Serber, and Taylor [8 ] applied this to 

nuclear scattering.

The theory acquired its most elegant and comprehensive exposition in Glauber’s 

formalism [9,10]. However in the scattering of a particle through a potential, the 

notion of a straight line path is true only for small deflection angles of the particle. 

Glauber improved the angular validity of the theory by choosing the direction 

onto which the effect of the potential is measured to lie half-way between the ini­

tial and final directions of the scattered particle. This redefines the phase-shift 

of a particle deflected by an angle of 6 as equivalent to following a path which is 

only deflected by 0 / 2  while travelling through the potential.

Many attem pts were made to improve the calculation of the phase function of 

the particle to account for the bending of the particle’s path inside the potential. 

Saxon and Schiff [11,12] replaced the eikonal phase by the WKB phase, on the 

ground that the latter includes the eikonal phase plus higher order terms when 

expanded in powers of the potential strength divided by the product of the wave 

number and the particle’s velocity. Sugar and Blankenbecler [13] systematically 

developed an eikonal expansion of the scattering matrix. Their work is based



upon a series of eikonal approximations to the particle propagator in which the 

energy denominator is linearized in the momentum by expanding about the ini­

tial, final and intermediate wave vectors. However most of these approaches [14] 

were complicated and did not offer any straightforward prescriptions for calcu­

lating the needed corrections.

Wallace [15-18] developed a complete high-energy expansion of the Fourier- 

Bessel representation of the scattering amplitude. The expansion is not so closely 

tied to a small angle approximation and hence improves further on the Glauber- 

type of eikonal approximation, which appears as the leading order term of Wal­

lace’s expansion. In one of his papers Wallace [17] demonstrates his method 

through converting the partial wave sum exactly into a Fourier-Bessel impact 

parameter representation. In the same paper he shows that the WKB phase 

contains the Glauber phase as its leading term in an expansion in powers of 

the potential. Wallace’s method was concerned with spherically symmetrical 

potentials, though he did suggest a possible treatment of spin-dependent inter­

actions. Other attem pts followed and were directed at calculating the non-eikonal 

corrections for spin-half interactions [19,20], but they did not present a simple 

prescription similar to that of Wallace.

Waxman et al [21] developed Wallace’s scheme to incorporate the case of 

spin-half scattering. In their work they distinguish carefully between the impact 

parameter dependence due to the linear momentum and the angular momen­

tum  variation of the eikonal phases arising from the spin-orbit coupling. This
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approach is important in the case of spin-dependent interactions which are mo­

mentum dependent as well as non-spherical. They also draw attention to the 

fact that in the case of spin-orbit interactions the Schrodinger equation does not 

mix states with total angular momentum j  =  Z +  1 / 2 , j  =  Z — 1/2 which makes 

it possible to calculate the Wallace corrections unambiguously.

One of the deficiencies of the conventional Glauber amplitude lies with its 

second-order scattering term [22-24]. To understand this we expand the Glauber 

amplitude in a power series of the potential strength and as we show in chapter 

four, the first-order term of the Glauber expansion is identical to the first-order 

Born term. Higher order terms of the series have the same order of interaction 

in the potential strength as the corresponding Born terms. However the result­

ing series is found to alternate between pure real and pure imaginary for terms 

of different order. For example, the imaginary part of the second-order Born 

term has its equivalent Glauber term whereas the real part disappears within 

the Glauber expansion. The straight-line approximation plays a significant role 

in the vanishing of the real part of the second-order term. In the Wallace ampli­

tude the correction phase contains a major part arising from the correction to the 

straight-fine assumption. A real part of the second-order scattering term  is thus 

generated. Furthermore Swift [22] has demonstrated a method of calculating the 

non-eikonal corrections via the higher Born-approximation.

In chapter two, we will introduce the spin-one formalism used to develop
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the general form of the spin-one amplitude. In this chapter also we discuss the 

spin-one optical potential and its formalism which we relate to the spin-half op­

tical potential via the folding model.

In chapter three we will start with the Born-approximation and develop the 

series up to its second order term. Since we are interested in the structure of the 

amplitude we will limit our calculation of the second order term to using a Gaus­

sian potential-distribution which can be resolved analytically. For the first-order 

term we present the scattering amplitude resulting from using the full spin-one 

optical potential. In calculating the second-order term and in our numerical cal­

culations ( including the first-Born term ), we will only use the tensor spin-orbit 

coupling. This is motivated by the fact that in working out the partial-wave 

series, which we will carry out later in the thesis, the other two tensor couplings 

mix states of different orbital angular momentum and hence result in a set of 

coupled equations which are analytically intractable.

The first-Born amplitude will serve as a tool in determining the proper eikon- 

alization procedure. The second-order term is of such complexity as to render 

any attem pt to calculate it by hand at the least unreliable. We will use a soft­

ware package called SMP to handle the complicated spin-structure occurring in 

this calculation. The calculation will be checked using the optical theorem which 

relates the imaginary part of the second-Born term  to the total cross-section in 

the case of scattering in the forward direction.
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In a large part of our work we will use a numerical program called DDTP [25], 

or the Deuteron Optical Model Program, which calculates the elastic scattering 

of deuterons by nuclei. The program solves the Schrodinger equation exactly 

using the partial-wave decomposition. It describes the scattering by an optical 

model potential which can include the central, spin-orbit and the three tensor 

couplings. All components of the potential may be complex, and many different 

options for the radial dependence of each component are available. The version 

we will employ has been modified to include relativistic kinematics. In chapter 

three, we will arrive at the second-Born amplitude numerically via the exact 

DDTP and compare that with our calculation. The numerical calculation of our 

second-Born term was carried out using the SMP package.

In chapter four we will develop the eikonal amplitude. However, because of 

the properties of spin-one operators, we arrive at an ansatz which contains non­

commuting terms. This makes it very difficult to expand the exponential phase 

function in powers of the potential and then sum it in a way that decouples the 

spin-dependence of the phase function as Glauber [9] did for the spin-half eikonal 

amplitude. To overcome this difficulty we first drop the velocity dependence of 

the tensor spin-orbit coupling on the grounds that this was done with regard to 

the linear spin-orbit term. The resultant amplitude fails to reproduce the first- 

Born term. In a second approach, we rewrite the exponential m atrix in terms



of three orthogonal matrices which we arrive at by diagonalizing the exponential 

matrix. This procedure results in an amplitude which has the correct first-Born 

limit, but which is manifestly asymmetric under time reversal. Although this is 

a property of the eikonal amplitude in general, nevertheless Glauber’s half-angle 

approximation eliminated this deficiency from the theory in the spinless and spin- 

half cases. We were not able to achieve this in the spin-one case. Finally at the 

end of this chapter we conjecture an ansatz which we formulate with the above 

predicament in mind and show that it does reproduce the correct first-Born term.

In chapter five, Wallace’s derivation in the case of spinless interactions is 

discussed together with Waxman et al’s calculation of the spin-half amplitude. 

From this we generalize the Wallace scheme to include the spin-one case. We 

then go on to calculate the first quantum corrections to the eikonal phase which, 

as we demonstrate, improves the second-order eikonal contribution and brings it 

appreciably closer to its Born counterpart. We also compare the Wallace eikon- 

alized amplitude, with and without correction to the exact DDTP amplitude 

in the case of d -a  scattering using a Gaussian potential. We will also present 

the observables of the Wallace eikonalized scheme with and without corrections 

together with the exact DDTP ones, in the case of the scattering of d -58Ni at 

deuteron incident energies of 400 and 700 Mev. The potentials used are obtained 

by folding the appropriate nucleon-nucleus optical potentials derived from the 

Dirac model*
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A full discussion of the results obtained, along with the various conclusions 

that can be drawn, can be found in chapter six.



CHAPTER 2

TH E SC A T TER IN G  OF SP IN  O N E PARTICLES

(2.1) N on-relativistic spin-one operators and eigenfunctions

In this section we will define the spin-one operators, vectors and the scattering 

matrix. While the spatial coordinates vary continuously, the spin variable can 

take only a limited number of discrete values. In general [26] the wavefunction 

of a particle with spin S can be represented in the form of a column vector 

with (2s +  1) components. The spin operators in this case are represented as 

matrices with (2s +  1) rows and columns. The physical space and the spin space 

for a free particle are independent, hence the wavefunction of the particle can 

be represented as a product of the physical and spin wavefunctions. This also 

implies that we can assign to the spin variable the value of the projection of the 

particle’s spin along any physical direction.

We have defined <f>l to be the eigenfunction of the operators for the square of the 

spin S 2 and for its component Sz along the direction of the Z-axis1. In our case

s — 1,

S 2<t>i = s(s + 1) # ,  (2.1.2)

1In accordance with the Madison convention we will choose the the incident momentum along 
the Z-axis.



and

s,<K = v<pv . (t . i . s )

We define the Levi- Civita antisymmetric tensor of rank three2 by means of,

{ + 1  if (ijk) is a cyclic permutation of (xyz),
— 1  if (ijk) is a non-cyclic permutation of (xyz), (2.1.4)

0  otherwise (some or all subscripts are equal).

A property of these tensors, which we will make use of is,

Sijk Limn — &jm&kn ^jn^km 5 (2.1.5)

where we employ the summation convention.

Spin operators, in general, satisfy the following angular momentum commu­

tation relations,

[ $ , $ ; ]  =  iSijkSk (2.1.6)

together with the constraint3,

S 2 = S i  +  Si  +  Si  =  21. (2.1.7)

They are also Hermitian,

Si =  s ) ( 2 .1 .8 )

In matrix form these operators may be represented by

/  0  - i  0  

i 0  —i 
{ 0 i 0

1 0  \

0  1 , Sy
1 o )

/ I
s

* =  0
l  0

1

(2.1.9)

2Cyclic permutation of (xyz) are (xyz), (yzx), and (zxy), while non-cyclic permutation are 
(xzy), (zyx), and (yxz).

3I is a 3 x 3 diagonal unit matrix, with the value of all off-diagonal elements equal to zero, 
we will omit writing it explicitly except to avoid confusion.
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An im portant property of these matrices is that the product of any three of them 

can always be reduced to a sum of quadratic products plus that of linear ones

[27].

SiSjSk = %-  (SiitSkSi + f iki5,5,. + SjkiSiSi) + i  (6-ijSk + SjkSi) .

( 2.1.10)

It follows from this that an arbitrary 3 x 3  m atrix4, can be build out of the unit 

m atrix Ui, the three spin matrices Si and quadratic products of spin matrices in 

the symmetric form,

Sii =  +  SjSi)  -  (2.1.11)

It is interesting to note that while the orbital angular momentum operator gen­

erates rotations of the spatial degrees of freedom of a physical system, the spin 

angular momentum operator rotates its internal degrees of freedom. The spin 

operators defined above are related to the generators of the group S0(3) by a 

similarity transformation [28].

The spin eigenfunctions form a complete set of states,

f t U i .  =  (2.1.12)

Spin-one particles can be represented by a three-component spin wavefunction 

corresponding to the three possible eigenvalues v  =  + 1 , 0 , — 1  respectively, namely,

1 ^ 0 ^ f ° )
4>\i = 0 ,<t>\ = 1 = 0 (2.1.13)

0 J U / \ U
4We are describing the reduction of a general second-rank-tensor with nine independent com­

ponents into a scalar, three independent linear tensors, and a symmetric tensor with zero trace.



(2.2) Scattering m atrix

We shall consider the case of scattering of particles with definite spin 5  =  1 

by a fixed spinless potential. The Hamiltonian of a spin-dependent interaction is 

of the form,

The corresponding Schrodinger equation is,

( 2 .2 .2 )

The interaction, 1^(5, r), between particles with spin degrees of freedom is in 

general non-central, which means that it depends not only on the relative distance 

between the particles but also on the m utual orientation of their spins.

Assuming that the potential tends to zero faster than r - 1  as r —> oo, a 

particular solution of the above Schrodinger equation exists [29,30] which satisfies 

the asymptotic boundary condition

l' ( r )  ------> NKi,a,u\ / r—*oo
eikr

exp[ik{ • r\4>av +  - (2.2.3)

This describes5 a wavefunction which is the superposition of a plane wave of 

wave vector ki and an outgoing spherical wave with an amplitude T vv< depending 

on 6 and <j> and inversely proportional to r. If the interaction depends on the 

orientation of the spin6 ( polarized ), then there is no azimuthal symmetry and

5N is a normalization coefficient and the wave vectors are defined as ki  =  (0 ,0 , A;*) and 
kf = kf (sin 6 cos <j>, sin 6 sin 0, cos 9).

6By polarization we mean the non-random orientation of the particle’s spin.

19



the amplitude, in general, depends on (j>.

The differential cross-section for scattering accompanied by a transition of the 

particle from an initial state with spin component v  to a final state characterized 

by a spin component 1/  is given by the square of the modulus of the amplitude.

(Tv^ v>(ki,kf ) =  |.?w (£ i,£ /) |2 . (2.2.4)

If the incident particles are unpolarized and their spin projection after scattering 

is not fixed, the cross-section must be averaged over the possible values of the 

spin projection in the initial state and summed over all the possible values in the 

final state.

^  =  2 7 T T ^  \ ^ ( k k , ) \ 2. (2.2.5)
vv'

For unpolarized particles there is no preferred direction hence, the averaged cross- 

section can depend only on the scattering angle 0.

The amplitude defined by eqn ( 2.C L. 3  ) is a 3 x 3 m atrix in spin space and 

so can be written

w'(@) = A  S  • 3  -\- . (2.2.6)
7/3

A, 3  and C7/3 are the coefficients of the representation . They depend on the ge-

ometry of the collision determined by the vectors k{ and kf.  Nuclear interactions

are invariant with respect to rotations, reflections and time reversal. This must

be reflected in the structure of the amplitude. Therefore A  must be a scalar

function of the above vectors. Also since S  is an axial-vector it follows that the

7S-fp was defined by eqn ( 2.1.11 )
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function B(ki ,k f) ,  must also be an axial-vector. The only axial-vector we can 

form using the initial and final wave vectors is,

rt =  k{ x kf , (2 .2 .7 )

hence we now get,

B(ki ,k f ) = B(B)n.  (2.2.8)

£y/3 also has to be a symmetric tensor which is invariant with respect to reflections

and time reversal. This in turn can be constructed using the vectors ki, kf  and

—* n

0,0 =  Cnh^h0 +C k,k)^f + C K f{klk?t  +*;*?) ,  (2 .2 .9)

where the C’s are scalar coefficients, and we note that part of the ^-dependence

is still attached to the unit-vectors. We can form another vector namely,

q =  k i  x  f t . ( 2 . 2 . 1 0 )

This is orthogonal to both ki and n, and therefore not independent of the com­

bination already employed.

As mentioned earlier the unpolarized amplitude does not depend on the az­

imuthal angle. If we therefore set it equal to zero, then the three orthogonal 

vectors ki, h  and q will fall on the Z,Y and (—X)-directions respectively, also 

the vector kf  will have components in the X-Z plane. Using the commutation 

relation eqn ( 2.1.6 ) we cast the SXSZ component on the n-direction leaving only 

the SZSX component. Furthermore we make use of

21



eqn ( 2.1^J~) to limit the other symmetric tensors to and Sy. The scattering 

m atrix then takes the form

JP(0) =  A \ 0 )  +  B\(9)S- ft +  B\(9)SZSX

+ Cl(&) [(5 ■ k ) 2 - 1] +  C'n(0) [(5- h f  -  |

Here the superscript ( i ) refers to the choice of the Z-axis along the direction of 

the incident wave vector.

—* —^

It is hard to impose invariance under ki —*■ —kf in this frame. To see the 

consequences of this we will define another reference-frame which is referred to 

as the average quantization frame. In it the Z-axis lies along the direction of
—f  —♦ —k

the average momentum, (ki +  k f ) / 2 = k. We can reach this average-frame by 

rotating the scattering matrix around the Y-direction through an angle of ( 9/2 ), 

The transformation is defined by,

. , 0 ^ . 0
z =  z cos -  — x sin —

2 2

./ • 0 *x = z sin -  +  x cos -  ,
2 2 ’

( 2 .2 .12)

with the prime standing for the average frame. Applying this to the m atrix 

J~l(9), we arrive at the scattering m atrix in the average-quantization frame.

2
f av(0) =  A av(9) +  Bav(9) ( S - n )  +  Clv(0) (S • k) — -

3J

+  T O  ( S - n f  -  - j (2.2.13)

Here

A a', (9) =  A*(e) ( 2 .2 .14)
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The transformation is only consistent if the following relation holds,

v m  =  (*•*■«)
COS V

This shows that there are only four independent amplitudes in ( 2.2.11 ).

(2.3) The O ptical Potential

In this section we will discuss the optical-potential. The optical model [31] 

substitutes particle-nucleus interaction by a potential well. It derives its name 

from the analogy between the particle-nucleus scattering and the scattering of 

light by a cloudy crystal ball. The model is very useful because of its capacity to 

fit experimental data phenomenologically. For spin-dependent interactions the 

potential includes, beside the central term, additional operators which couple the 

spin to the spatial dynamics of the interaction. As in our discussion preceding 

the construction of the scattering matrix, in this section we will employ general 

invariance principles as a tool in selecting the possible forms of interaction be­

tween spin-one particles and spinless nuclei.

Conservation of angular momentum requires that the potential be a scalar 

function under rotation of spatial variables. Also invariance under spatial reflec­

tion implies that the potential must have even parity. Again as in the case of the



scattering matrix, we write the potential in the general form,

V (£ ,r) =  Vc(f)  +  V,(f)R ■ S  + F„(r) £  . (2.3.1)
7/3

•4
Here R  is an operator composed of vectors selected from the spatial operators 

( coordinate ) f , ( momentum ) p — — i V  and ( orbital angular momentum )
—f

L — —ir x V . The spin operators have even parity, which implies that R  must 

be also chosen to have even parity. Out of the three spatial vectors listed above 

only L has even parity. Hence only one spin vector is allowed, namely

V.(t) L - S .  {2.3.2)

We have the above three vectors ( n — r, p, L ) out of which to construct the 

symmetric spatial tensor8 R ”p- The tensor takes the form,

R^p = Crr^rp -f- CpP^pp +  CjjL^Lp. [2.3.3)

Satchler [30,32] introduces the re-coupling relation,

S 2 ' R 2{ v i , V 2) =  {S - ^ ( S  • V2 ) -  - ( v 1 X V 2) -  y p i - y .  {2.3.4)

This is identical to our symmetric tensor S^p. To see this we use the commutation 

relation eqn ( 2 .1 . 6  ) in eqn ( 2 .1 . 1 1  ) to arrive at

*̂7 / 3  =  S^Sp — —SypaSa — —S^p, {2.3.5)

which is same as Satchler’s relation.

In terms of S^p Satchler [1 ] writes the three tensors as,

Tr =  S2 - R 2(r, f)  =  ( S - r )2 -

8See the discussion preceeding eqn ( 2.2.9 ).



T„ = S 2 - R 2(p,p) = (S - p ) 2 -

Tl =  S2 - R 2( L ,L ) =  ( 5 - f ) 2 + \ s - L ~  \ l 2 . (2.3.6)

One other notational difference is his choice of a unit vector r. This is of

no consequence since it entails only a change in the definition of the function

Vr(r) -> r2Vr(r).

The tensor Vr(f)Tp exhibits an extra complication, arising from the spatial 

gradient in its argument. This would violate time reversal invariance, once the 

direction in which the operator acts is reversed 9. However the symmetric com­

bination, [Vp(r)Tp -f Tp Vp(r)\, overcomes this difficulty and guarantees the re­

quired time invariance. Finally the most general optical potential describing the 

interaction of spin-one and spinless particles takes the form,

V(S ,  ?) =  Vc(r) +  V , [ f ) S - L  +  Vr(f)Tr

+  Vp{r)Tp +  TpVp(r) +  VL{r)TL . (2.3.7)

(2.4) D euteron folding m odel

For completeness, we will present an outline of the folding model. The fold­

ing model constructs the deuteron interaction potential by averaging the optical 

potentials of the nucleons over their internal motion inside the deuteron. Watan- 

abe [3] has shown that, to first order in the potential strength and neglecting the

deuteron D-state, the folding model generates a central potential and a vector

9For an illustration of this complication in the case of first-Born amplitudes, see eqn (3.2.^)
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spin-orbit coupling. If the D-state of the deuteron is included, to first order in 

the potential strength, this would result in some of the Tr tensor term  contribut­

ing to the interaction. The inclusion of second order D-state contribution, would 

induce a small Ti  coupling, arising from the nucleon-nucleus spin-orbit potential. 

However [33], if break-up of the deuteron in-flight is considered, then a consid­

erable Tl contribution will be present. Finally the use of a velocity-dependent 

( non-local ) nucleon-nucleus potential gives rise to Tp type tensor coupling [6]. 

We shall demonstrate the calculations briefly.

We first define the displacement between the centre of mass of the nucleons 

to be fd = | (fp and the vector r = f p —rn. Here rp and rn are the position

of the proton and neutron respectively. In terms of the neutron-nucleus ( Vn ) 

and proton-nucleus ( Vp ) potentials, the deuteron-nucleus potential is given by,

V ( f dyf)  = Vp(rd + ^ r)  +  Vn( fd -  i r ) . (2.4.8)

We ignore the proton’s Coulomb potential and take the nucleon-nucleus poten­

tials to be of the form,

Vi =  Vc(f)) +  V. ( n ) S i - L i .  (2.4.9)

The deuteron wavefunction is expanded in terms of the complete set of neutron- 

proton wavefunctions,

y(rd ,r)  = $ 0(rd)Xo(r) +  J  dk $k(rd)Xk(r) • (2 .4 .10)

Here the function $(rd) describes the motion of the deuteron with respect to 

the target nucleus, and %(r) is the internal wavefunction of the deuteron. It



is straightforward to show that the functions $ 0 and obey the following 

Schrodinger equations,

-  U0(rd) +  (E  -  e„) $o(rd) = 0 ,

and

-  U0(?d) + (E  -  ek) $k(r<i) =  < k\V(rd,r)\0 >  $<,(7^ ) .  (2 .4 ,

In the first equation we have neglected the break-up term 10, /  dk <  0|F|fc > 

X f e ( f ) ,  and in the second equation we neglected the off diagonal term 11 , /  dk' < 

The folded potential UQ is that derived by W atanabe and given

by,

U0(fi)  =  J d r \ Xo\2V(rd, r ) .  (2.4.13)

The outgoing waves are calculated iteratively. This is carried out by assuming 

tha t 3>*.(f*d) satisfies the same differential equation as $ 0(rd). By repeating this 

it is straightforward to obtain the formal solution,

$k(rd) =
< k\V(rd,f)\0  >

( 2 - 4 - 1 4 )

Substituting this in the Schrodinger equation we arrive at,

Ui(rd) = U0(fd, f )  +  I dk
<0|V |fc > <  fc|V|0 >

(2.4.15)

10This term would give rise to a T& type of tensor if the D-state of the deuteron is included in 
the wavefunction ( see eqn (2.tyvX^ below ). However Stamp neglected it on the basis that it is 
accounted for by the imaginary part of the nucleon-nucleus potential.

11These terms can be significant numerically however, since we are only interested in the way 
the deuteron optical potential is related to the nucleon-optical potentials, we will disregard any 
unnecessary complications.
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The deuteron’s internal wavefunction x ( f )  is m  general expressed in terms of 

the functions u(r)  and w(r)  standing for the S-state and D-state components of 

respectively. It takes the form

1
X(r) =

(47T)1/ 2

ti(r) w(r)
 1------7^a-r r y 8 np (2.4.16)

The spin-operator <rnp is derived from the symmetric tensor eqn ( 2.1.11 ), with 

the replacement r*—» r , and assuming the deuteron spin to be the vector sum of 

the neutron and proton spins 12, S  = f (<?n +  <rP)- Hence,

np = 6 2 7  =  3 S2(r„,irp) - R 2(r ,r)  

=  3(<?„ • r)(crp ■ f )  -  9„ ■ Sp .

Using the above wave function in eqn ( 2ifAZ  ), the potential becomes

(2.4.17)

U0(fd) = Uoc(rd) +  U0,(rd) S - L  + UoT(rd)S2 - R 2(rd, t d). (2.4.18)

“ f  —f

Here L =  —ir^ x Vrd is the orbital angular momentum of the centre of mass of 

the deuteron. The scalar functions in the above equation are, to leading order

[5],

U ^ u )  =  ^  J  dr Vc(\rd + ^r\)
u(r)

(2.4.19)

UP.(rd) = J  drV,(\ fd + ^ f \ )
u (r)

1 +  r- £ f )  , K U M )

U0T(rd) =  ^ j  drV'(\rd +  \ A ) U{T)W{r)^ {COSe) (2-4.21)

12The cri are Pauli spin matrices. The neutron and proton spin spaces are independent of one 
another, [<rn ,a p] =  0.
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Here 0 is the angle between the vectors and r. In writing the spin-orbit 

potential Uoa we neglected the D-state contribution. However we observe that the 

tensor folded-potential would vanish if w(r) = 0. This potential is a consequence 

of the D-state of the deuteron.

To calculate Ui, we will assume the deuteron is in a pure S-state [4]. We will 

also use plane waves for the loop momentum | k > and assume the equality of the 

neutron and proton radial potential functions Va(rn) = Va(fp), so that we can 

now write

<  0| V"|A; > <  fc|V|0 >  =  —  J  J  dr1 drF(r, r')exp[i(r — r*) • k] (^S - Lj

(2.4.22)

with

F (r , r ‘) =  “ (r ) +  1*1) " ( r' ) V> ^  +  , (2.4.23)
rr'

Substituting this in eqn ( 2.H*.l5 ), assuming e* is a constant average excitation 

energy e and hence utilizing the delta-function arising from the integration over 

the k-space, we arrive at.

u ^ )  = u 0( fd) +  ^  j d r ^ m ^ ± M ^ 2 ( s . £ y . ( u .

The second part of the above equation is of the tensor type T^. Therefore we 

see that the local nucleon-nucleus potential when folded produces two types of 

tensor interactions which constitute part of the deuteron’s optical potential.

This potential structure is not unique to the deuteron-nucleus scattering, 6Li- 

nucleus scattering [34,35] exhibits similar properties. According to the cluster
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model, the 6Li  wavefunction can be constructed of d + a  particle wave functions. 

In this model it has been shown that the 6Zi-target optical potential may be 

obtained by folding the sum of the deuteron and a  particle potentials, over the 

6Li  ground-state wavefunction.
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CHAPTER 3

TH E B O R N  A P PR O X IM A T IO N  

TO TH E  SC A T TER IN G  A M P L IT U D E

In this chapter we will discuss the Born approximation for the scattering of 

spin-one particles off spin zero targets. In section ( 3.1 ) we will outline briefly 

the basic formulae. In sections ( 3.2 ) and ( 3.3 ) we will employ a Gaussian 

potential to calculate the first and second Born amplitudes respectively. In sec­

tion ( 3.4) a check on the imaginary part of the second-Born via the first-Born 

amplitudes is carried out using the optical theorem. In the subsequent section 

we develop the high energy limit of the Born amplitude. Finally we present the 

results of our numerical calculations for the second-Born amplitude and compare 

it with i t ’s equivalent contribution arrived at from the exact calculation using 

the code DDTP.

(3.1) Introduction

The Born series is in essence a perturbative expansion of the scattering am­

plitude in powers of the potential strength [29,30]. The rate at which the series 

converges depends on the strength of the scattering and on the length of tim e1 

a /v  the particle spends within the potential. When this time is short compared

*a is the range of interaction, v is the velocity and VQ the strength of the potential
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to the time required for the potential to influence the particle fi/V0, the scattering 

is then weak enough and the series converges, i.e.,

V  a
<  1 (3 . 1 . 1 )

riv

At high energies, and/or weak potential conditions, the series converges rapidly 

such that only a few terms are important. In such cases the Born amplitude is a 

practical method of computing the observables. The approximation can also be 

used generally to establish certain general properties of the scattering amplitude. 

In these cases it is sufficient to know only tha t the series does converge.

In terms of the vectors kf representing the initial and final wave vectors 

respectively, our coordinate system is defined by,

q  =  k{ — kf  , k =  +  kf ) ,

ft =  kf  x k{ =  k X q . (3.1.2)

We begin by writing the scattering amplitude for the scattering of a particle 

with spin S off a fixed spinless target as an operator in spin-space. If the incident 

and scattered particles have magnetic quantum numbers v  and v ' respectively, 

the amplitude has components

Fvv'(kf,ki) = <  s , v  | F(kf ,ki )  I 3 , i/ >  . (S.1.8)

In this representation we can write,

H h ' k )  = g  j d r ^ r f v ( s , f)#j?(f). ( S . 1 . 4 )
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Here (i is the particle mass, V ( s , r )  is the optical potential defined in section 

( 2.2 ) and is an outgoing wave function, defined by the Lipmann-

Schwinger equation as,

***09  =  * * 0 9  +  * ? ( * )  ( ’ ■**)

—f —4
Here, i>ki(f) = exp[A?j • r\ is an incident plane wave of wave vector and

*3*09 = j  d ?  G ^ { t , ? ) V ( s , v ' ) ^ \ t ' ) .  ( 3 . 1 . 6 )

In the above expression the Green-function is defined as

_  - 2M f e x p [ i k ' - ( f - r ' ) ]
°  ( r ’ T )  -  (2W J V ’ - V - i e "  d k ’ { 3 -1 -7)

where for the physical scattering amplitude kQ =  \ki\ = \kf\. The Born-series

is arrived at by iterating eqn ( 3.1.5 ) and then substituting in eqn ( 3.1.4* ).

Iterating once gives the first-Born amplitude, namely

F i B & f k )  =  ^  I  dr  ( 3 . 1 . 8 )

The second iteration results in the second-Born amplitude

'P ( t  t  \ _  1 f  V i k i i k ^ V ^ k f )  r*r 2B( k i , k f ) -  ^  J  ( i , _ k,  +  i£) dk, ,  ( 3 . 1 . 9 )

where

V ( k p , k J  =  ^  f d r j t ’ r' V ( r , r ) e - ii'i) f . ( 3 . 1 . 10 )
27r J

This is identical in structure to the first-Born, except that ^f, /? stand for the 

initial, final or loop momenta.
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(3.2) F irst-B orn A m plitude

In this section and the following one, we will employ a Gaussian potential of 

the form
2 2

Vj(r) =  Vj  exp[—̂ —], (3.2.1)

to describe the interaction. Here Vj  is the potential strength and a = y/2/a  

is the range of interaction. It is a short-range potential that decays rapidly for 

r > a. Its most appropriate use is in describing a target with a small number 

of nucleons, where saturation in the middle is negligible, e.g. Helium. However 

the prime motivation for employing a Gaussian potential in this calculation is 

its mathematical simplicity which allows us to arrive at analytical expressions of 

the required amplitudes.

The amplitude, as has been explained before[ see eqn ( 2.1.27 ) ], is constrained 

by symmetry requirements imposed by parity and time reversal to take the form2

F i b (0) = A 1B(0) +  B1B(6 ){s -h )  +  C?B(e)S2 - R 2(h,h)

+ C}B(e )S 2 ■ R 2(k ,k )  (3.2.2)

If we define,

f i { q2)  = S  /  d f v ^ e i i f ’

then we can write

A i b(B) =  h( q2) (S.2.4)

2The subscript I B  will be employed to indicate that this is the first-Born term. The form of 
the amplitude is general and independent of the order of perturbation.



The contributions to CiB(0) and CiB(0) come only from the tensor terms. Using 

the re-coupling relation eqn ( 2.2. If ) together with eqn ( 3.1.2 ) we can write,

S 2 ’ R 2 — S2 ’ R 2(k)k) ^*“*2 ' -^2 (9 ) • (3.2.6)

t )b(9) =  £  j  drVr(v) S2 ■ R2(V k , ) e ^  ?

=  - S 2 -R 2( V ^ i )  f (q2)

=  4q2 [§2 ■ R2(h,n) +  S2 ■ R 2(k ,  * ,) ]  f l ' t f ) ,

where we have defined,

(3.2.8)

Also we have

T2B(0) =  ^  /  dfVL(r) e i f ?  [§2 ■ R2( f  x  ki t r x  h)  -  i§2 ■ R 2(kh *=)] 

=  — [ S 2 • R 2(k, x  V j ,  k, x  V j )  +  S2 ■ R2(kl: V j ) ]  / i ( j 2 )

=  S 2 - R 2(n,n)

+  (2 fc2 +  * di2(k,,ki) / i ( 9 2) (3.2.9)

Similarly,

^  J  d r e ^ r '  [ v p( r ) S 2 - i i 2( V * V j )

+  5 2 -E 2(V?,V j)V p(r) i&i -r

,21
5 2 -B 2(fc2 - ^ )  -  5 2 -H 2(n ,h ) 4 fp(q2) ■ (3.2.10)



Here the arrows indicate the direction in which the operators act. Finally, group-

p p  ̂ a p p
ing the coefficients of S 2 X R 2(k,k)  and S 2 X R 2(n,n),  we write

C U 6 )  =  V / : V )  +  y / i ( 9 2 )  -  4 n 2 / i V )  -  ^ / P ( ? 2 ) ( * . * . « )

and

<?«(*) =  V  / ; '( ? 2) +  ( y  +  2fc2 ) f ' L ( q 2 )  +  k 2 f p ( q 2) (J.Jg.J*)

The above expressions for .Aib, B\b , C\ls , are general forms ( for any radial

potential-density ) of the first-Born scattering amplitude for the scattering of 

spin-one particles off a spinless target.

For a Gaussian potential of the form given by eqn (3.2.1), it is straightforward 

to show that

/,(g 2) -  e x p [ ^ ]  ■ { S . t . l S )

Employing this in the above general expressions, we finally arrive at the following 

expressions for the scattering amplitudes.

A 1B(«) =  e * p [ ^ l  ■ (P.1.14)

B1B(6) =  | « |  exp[— (3.2.15)2or

a m  -  ^  - P i j S i  { < £  + 5  + ? }  ■ <>•'•»)

{ < £ ♦ 5 > ' * - 1 ? -  ^  j  ■ <>•'•«)
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(3.3) Second-B orn A m plitude

We will now calculate the second-Born amplitude, limiting the tensor contri­

bution to the optical potential to the Vl( t )S2 •&2( L ,L ) term. The calculation is

non-trivial in that it includes several hundred terms. We overcome this difficulty

by using the computer software SMP ( Symbolic Manipulation Program ) [36]. 

Before describing the computer calculation we will put the formulae in a conve­

nient form. We rewrite the potential3

V(r)  =  Fc( r )  +  Vtl(r)(S ■ L) + VQ(r)($  ■ L f  + V „ (r )L \  (3.3.1)

where

V.(W =  V-.(r-) +

Vq(r) =  V,(r)

Vu(r) =  - |v , ( r )  (3.3.2)

Using eqn ( 3.3.1 ) we cast eqn ( 3.1. to) in the form

V(fc/3,fc7) =  Vc(kf3,k^)  +  V8 i(kfs,ky) +  VQ(kp,k-,) +  Vu(k^^k^) (3.3.3)

For a Gaussian potential of the form given by eqn ( 3.2.1 ), and in a similar spirit 

to the first-Born calculation, we first define

3It is im poitant to note that with our limitation of the tensor contribution, we are only left 
with three independent potential terms.

37



where = kp —

Using the definition of the Levi-Civita tensor eqn ( 2.1.4 ), we can now write,

=  V f f i k p X ) .  (3.3.5)

v.i(k0,ky) =  - 2(v :  + % f ( k fi, ky) ( S - P  x j f » ) .  (3.3.6)
OL L

VQ(k0,ky) =  Q f ( Z l),iLl)£,mn£rvtSlSr [sm k?q%

+ P P j nt -  • (S-S-V
a  J

Vu(k0,ky) =  ^ - f ( h X )  [ * ( P  ■ P )  -  ^ ( P  X fc'1')2] (3.3.8)

Equation ( 3.3.3 ) can now be rewritten in the forrn

V(k0, p )  =  (3.3.9)

Using this in equation ( 3.lfi ), the scattering amplitude can be expressed as,

F 2 B ( q i f )  = J  dkiMQuQif  , (3.3.10)

where,

*  -  ■ ( m j , »

Now,

f (q2, k2) — J  dkiM

=  exp[-<l2/4o:2] |>/7rQa(^) +  Y E<*(k)} (3.3.12)

Here4

Qa(k) =  -  D ( ^ t . )  ( J . J .J J )
a: a

4Note that k =  (0, 0, k o c o s 0 /2 ) .

38



and

E a(k) =  e - ^0 - ^2/"2 — e - ( ko + k¥ / ai (3.3.14)

with the Dawson integral [37] defined as,

D(x) = e-*2 / X d t e ~t2 . 
Jo

(3.3.15)

To calculate T 2b we need to solve integrals of the form

Fi = J  dk, k] M , ( 3.3.16 )

where iis the i’th  component of the momentum. Using param etric differentiation, 

we first write

a ‘
k ) M  = ki + 2 d

2 dki
M . (3.3.17)

Hence

Fi = +
a 2 8

f ( q \ k 2). (3.3.18)
2 dk.

Note that the differentiation in the above expressions are with respect to the 

average momentum defined in eqn ( 3.1.2 ). After some algebraic manipulation 

we obtain

Fi = k i ( f  + a 2/ 1 ) (3.3.19)

Fij — k i j ( f  + 2  a 2/ 1 +  a 4/ 2) +  8i j(— f  +  y / 1) (3.3.20)

Fijk — kijk{f +  3a /  -(-3a /  + a  /  ) 

+ * ; * ( y / + a 4/ 1 + y / 2) (3.3.21)

39



?ijki = kijki( f  +  4a2/ 1 +  6 a4/ 2 +  4a 6/ 3 +  a 8/ 4)

+  2 „ , < y /  + ^ f + ^ / - + y f >

+  y«*( y  /  +  y / 1 + y / 2 ).  ( J. J.M J

We have defined the tensors

d
r  =  ( ^ ) " / ( ? 2,* 2)

k i j k =  k{ kj  kk •  •  •

J îjk — k}. &ij -I- k0Sjk -f- kjSik

ywkl = "aTT ̂  3kl
i

Zijki =  hjSki 4- kikSji +  kuSjk

4- kjk^n 4- 4- . ( 3.3.23)

From now on the algebra becomes more complicated due to the large number 

of terms involved. The idea is to carry out the multiplication implied in the 

scattering m atrix eqn ( 3.3.10 ) and then to substitute in the resultant eqns 

( 3.3.19-22 ). The substitution of the above param etric differentiation formulae 

is equivalent to integrating eqn ( 3.3.10 ) by parts. The expression we now have 

for the scattering m atrix is in terms of the function f ( q 2, k 2) and its derivatives 

multiplying a tensor made of the spin matrices coupled to the momentum vectors 

in the manner defined by eqns ( 3.3.6-8 ) and their products, where the loop- 

momenta designated by / in eqn ( 3.3.10 ) have been replaced by the average 

momentum via expressions ( 3.3.19-22 ). This expression is several hundred
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terms long. However it is a 3 x 3 matrix, whose elements can be calculated by 

summing over the repeated indices. This is all done using SMP [36].

The fundamental feature of this software is its ability to handle variables. This is 

what we need because for every term  of our expression a different combination of 

indices occurs. To overcome this we construct a chain of commands in SMP which 

picks up the indices occurring in an expression. If we denote this symbolically 

as ’’List” we can formulate its action by

'List'  f ( i , j , k ) g ( i , K , j ) h ( k , J . )  => [ i , j , k \ (3 .3 .2 4 )

In principle the action of this command can be described as constructing a set 

formed by the intersection of all the variables in the expression ( indices ) and 

the full list of alphabets. In the resultant set no index occurs twice. Equipped 

with this set we can now sum over its constituents. These are labeled by their 

position in the set rather than their names.

Finally we write the result in the form defined by eqn ( 2.1.27 )

=  V l f + V i l f

5 k2 AkA
+  +

' 37&V k 2qA 2k4q2 k AqA
' 72a4 +  18a6 “  9a6 72a6

W  +  I 4
18a2 9a4 72a2 36a4 +  / 1

2k q k q 5k2 8fc4 5o2 q
+ -------— H-------— I--------1--------------— +  ——3a4 18a6 18 9a2 72 18a2

37 feY  k2q*
36a2 6a4

4

+  f  

+  f

.4 137k2q2 k2qi  2 i t y  fc4o4 4fc4 q
 — H  --------— H-------- -— I---------1- —72 6a2 3a2 12a4 9 36

18

+  V 2 i f

k2q4 2k*q2 k*q4
18 a 2

' JfeV 2 k2 q2

+  ^ / 4 72 J

6a4 3a2 6a2
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B2B(8)

C2b(8)

+  f 1
k2q2 2 k2
3a2" T ~ / : * V } (3.3.25)

= y  y  < -r oc r />* 1

-  v0lv0A f
5kq kq3 2k3q k3q
12a2

+

V
kq3 4k3q k3q3
Za2

H K < { /

3a2 4a4
5 kq kq

6a:4 3a4

+  f 2 '

+ 12a6 +  f 1

kq3 _  2k3q P q 3
4a2

5 kq  
~12 
kzqz 
"12" }

fc3g kzqz 
16a2 ' 8 a 4 2a 4 +  16a6

I- f 1 

I- / 2

5kq  , &(j3 &3g ^  3Aj3̂ 3
16 4a2 a 2

kqz kzq 3kzqz
~S 2~ +  16a2

16a4

+  / 3*v16 } (3.3.26)

f l

+  f 1 

-  f 1

n

4a2 
P q 2 ' 
a :

q2 +  P q 2* V
2

392

Zk2q2 
8 +  2a2 +  / 2'

8a2 +

i !  +  * v
8 2a2

2a4 _

+  K i V . .  |  /  f

3 f c V } + K 2 { -  

- /- / 2 }  +  H i {

Zk2q2 ' 
4a4

/

7<7

« 2 * V 1
8a2 4a4

96a2

48a4 48a4
.  -2 -■>

f 1

lZk2q2 7k2q4 _  fcV  * V

7 f  9
96 24a2

96a6 4a6
1 0 1 ,2  J  TL2 _4

/ 2

/ 3

 ̂ 13« ^
48 48

’ 7k2q* P q 2 
"96 4~

24a2 +  32a4
7k2qi Zk*q2
32a2 4a2

* V
12a2 +  t i h

48a8 
Z P q 2

+4a4 12a6

+ 8a4

48
(3.3.27)



+  v j l - f

+  v ^ f  

f e V '

k2 q
+2a2

7k2

24a6 
k*q2 
8 a 4

-  /*

24a2 

+  / 1

+

8a2
fc4

- z 1

7«2

fe2 o2 
2 +  8 ]}

k2q4
3a4 96a2 48a4 96a6

I k 2 2k4
+24 3a2

K
96

+  f
r k4

3~
r_
48

24a2
k4q2 '

k 2q4
32a4

32a2 8a2

96 24 }■
(3.3.28)

(3.4) A  check using th e optical theorem

The optical theorem relates the total cross-section of an interaction to the 

imaginary part of the scattering amplitude in the forward direction, namely5

47r
a t =  — ImT(Q — 0). (3 .4 -1 )K

Now for purely elastic scattering

<7, =  f  dSl | F(0)  |2 . (3-4.2)

We write the scattering amplitude as

H « )  =  VoF i b (0) +  V ? r 2B(«) +  v 2f 3B(0) +  • • • ,  (3 .4 .3 )

where VQ ( the potential strength ) is the perturbation parameter.

Substituting this in eqn (3.4.2) results in

0t = +  V*(TiB2B +  V 4(a2B2B +  ^IBZb) +  "*  (3.4-4)

5The extension of expression ( 3.4.1 ) to the amplitude T vl,>(6) defined by eqn ( 3.1.3 ), is
straightforward but we will not need it here, see the paragraph preceeding eqn ( 3.4.8 ).
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with

<TiBjB = J  dSlFiT■}. (3.4.5)

On comparing ( 3.4.4 ) with the right-hand side of eqn ( 3.4.1 ), with eqn (3.4.3) 

substituted for T ( 0), we can write

47T
Vibib = - ^ I m T 2B(6 = 0 )  (3.4.6)

Air
&1B2B = — I m T z B ^  = 0 )  (3.4-7)

etc-••

In the case of spin interactions there will be an equivalent relation for each of 

the spin amplitudes, i.e. for each independent m atrix element. However because 

of the condition that 0 is equal to zero, only two independent amplitudes will 

survive, namely -4.(0) and C*.(0) in our representaion. These two terms contribute 

to the the check carried out on the trace ( Tr ) of both sides of eqn (3.4.5).

~ I m  [Tr F 2B(0)\ =  J  d n T r [ r 1B(ki,k,)^iB(ki,ki)] , (3-4-8)

where

J7}B(ki,ki) = T \  B(hi,ki). (3.4-9)

Now

FiB(ki,ki) =  f c( K h )  +  fs(ki,ki)(S • ki x k i )  \ f i ( h , k i )  { S 2 • R 2(ki,ki)OLl cl v

+  ^ S 2 • R 2(ki x kh ki x ki) J .  (3.4-10)

If we define ki — (0,0, kQ), ki = (fcosin0cos 0,&osin0sin<^>, &ocos0), and make 

use of the relation q =  2&osin0/2, then after some algebraic manipulation we
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obtain

T r [ F 1B( K , k ) F 1B(kh k0j\ =  3 / c2 +

+

2fc2«2 34
a 2a4 f .

2fc4
3 a4

1
+

2 a6 24a4 3a8
kl \  .

12a6 3a8
i  k l  2k l '  

+6 a 4 3 a6
, q

q + 24a8 fi ■ (3 -4-W

The integrals on the left-hand side of eqn ( 3.4.8 ) are of the form

17 =  J

= f  d6  sin#?2” exp[--^]
a * Jo a £

(3.4.12)

n  =  0,1,2,•••

It is straightforward to show that,

/iirVj 4 k l
(3 -4 .13)

Also,

d
dx a- (3 .4 -14)

Using eqn ( 3.4.11-14 ), the left-hand side of eqn ( 3.4.8 ) takes the form

2 h2 1 2£4
L .H .S  = 3I c° +  - f i }  -  - - I ;1 +  ^ 1 ?

r ki
6 a4

1

+

a
2 ki

+

3a6 
kl

12a6 3a8

2 a4

V  +

3a4
kl  1

+2a6 

* j 4
24a8 1

+
2 ki

24a4 3a8 Ii
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The trace of the second-Born amplitude is readily calculated from 

eqn ( 3.3.25-28 )

T r F 2B{0 = 0) =  3 V02cf  +  Vc
\2 k2

cr
f  + 2k 2/ 1

. 4kA 2
+  v j { — f

+
5k2 8fc4 
" T  3a2 f 1 +

5 k2 4fc4
+6 a 2 3 a2 /  •

From eqn ( 3.3.12 ) and the definition of the function E a(k ) eqn ( 3.3.14 )

Jra /(0 , k2Q) =

U
Akt

a 1 (3.4-17)

Finally if we develop the L.H.S using eqns ( 3.4.13,14 ) or the R.H.S using eqns 

( 3.4.16,17 ), together with the necessary derivatives of f we arrive at the same 

result, namely

R.H .S  = L .H .S

=  f a * )2 |  V 2
a*k„ oc

4 kl.
exp[ -  1

+  Vi

+ VJ

2 4 r 4k2.
k f c 4 + + eXp^ " ^ _
7 7 8kl

+

2 i_ 
&?a4 a 6

6&2a 4
. 41fe?,

3a:6 3a8
7

exp I _  _________________ + J L  + !M
a 2  ̂ I 6&2a 4 3a6 3a8)])

This same procedure can be applied to any element of the scattering matrix. 

This concludes our check of the second-Born amplitude.
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(3.5) H igh-energy Lim it o f the Second-Born A m plitude

As was mentioned in the introduction, one of our aims is to compare the 

corrected Eikonal expansion with the exact perturbation series. To achieve this 

we must make sure we are describing the same scattering domain. This is ar­

rived at by limiting the Born amplitude to the forward-angle ( small-momentum 

transfer ) part of the scattering domain i.e,

(S .5.1)

This leads to

k ^ k K l - - ^ ) .  {3.5.2)

Also from the definition of the Dawson integral eqn ( 3.3.15 ) we note that for

large x we get

~  S  + J?
and for small x,

D(x)  — > x . (3.5.4)

Using eqns ( 3.5.2-3 ) in eqns ( 3.3-13-14 ) we can write

and

^  =  — (1 -  (3.5.6)
k  4 k l K 2a2 ’ y ’

From the above relations it is straightforward to calculate the high-energy limit 

of the function /  and its derivatives f 1' “5.
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We can thus write down the high-energy small angle limit of the second-Born 

contribution to the scattering matrix. We present our formulae in terms of the 

real 3ft and imaginary S? parts.

9ft A.2 b{@) fi2y/irexp[-
4 a 2

V 2r oc

+ v>

5kl+

+

4 a 3fc2 
Akltf

144a 3A:2 
13 q2+

24a5 9a9
71 q2

+

8 a 5&2

17fc^4 
288a11 576a13

Kq*

+9a 7 576a3 A:4 576a5*1 288a7
25?4 55g4 , 83?4

3072a3fc?

+ V

1152a6fc| 
1

+ + 23^

+

2304a7A;2 576a9
~2 w

12a 3fe2 2 a6 
4 5 q*

48a3!:1
.A

+ 48a6ife2
7 92 

24a7

+ +256a3fc? 192a5fci 64a7fc2 48a9 }•

C*A 2b(&) fi2TT exp[

M 4
144 a 10 

19?2

+ Kq*

y 2
“ 2 a 4fc. +  V 3

7fe.
72a4fc, + 7 V

W  , fc‘94

288a 6 A:,
+

1152a12 
25g4

+9 a10 144a12
7 94

+

+

1536a4l:J 
fe.+

288a6

fc„92

+

2 fe3
H 1 +9 a8
7«4

36a6 144a8
13g2

288a4fc?

384a8 A:,

6 a 4A 3 a6 12a8
4

24a4fc3
„4

+
24a6fc„ 128a4 A:? 96a6fc3 96a8 A } •

(3.5.8)

u b 2B(0)

+

+

fi 7r exp[

13gs 
192a6 A;2

q*
192a10

4 a2 J

7«

- V 0CV0 

7?
48a4fc2

3̂

+ 24a6

4 a4fc2 2 a6

K q + K q3

+

3a8 24a10

16a4&4

5q3
96a4fcJ

16a6 A;2

24a8 128a4fc6 256 a6fc4 96a8fc2
7 4 + 79 *29 +  *29*

64a4A:2 32a6 4 a 8 32a10
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55s
128 a 4*J + 13«3 93

256ofikl ~  32a*

+ 256a10
+ Vr

512a 4*0

+

+ 9q'
1024a ek$

16a4*? 8 a6 64a4*4 64a6 *3d}•
(3.5.9)

B-i b (Q) ~  /i2v ^ ex p [——  ] |  V ^K 3? +

+

+

59s
32a5*i!

VolV0

M L
96a11

479s

+ 8a7A;,

7g
96a3 A:3 

5?3

+

192 a 3 A;5 
7 q*

+

64a5 A;5

7q
16a5A;0 

53 q3

8 a 3A;3 4 a 5A;„ 32 a 3fc5

+ 64a7A:3

5A;Qg 11M 3 
6 a 7 48a9

593
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7q 21q 5 Jc0q
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+

128a11
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47?5
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+
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21g5 3g5
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32a 3fc3 16a5fe,
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+

1024a7Jb3
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128a3 A;5
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+ 512a9Jfec 
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128a5 A:3

32a7A? 256 a5fc5 256a7fc3J }■
(15.70J

^ 2 b (^) ~  /Lt2\/7rexp[-

+

+

+

3g2

4 a2

64a3fĉ
3<?4

+

VocVoi 8a3A;2 4 a 5

4a5A;2 8 a7
9 qA

256a3 A;5 128a5̂
3 9

+

+ VoiVc 

3 q2
16a7 +

16a3 A;2 
9 q4

+

32a7A;2 

9 q2 3 q:
8 a 5 128a3A;̂  8 a 5A;2

27^
512a3A:5 256a5A;4 +

3<Z4
64a7A;2J
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^ Ck2B(0)
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+

+

16a3k% 8a5
3 q4

+

+

3 q2 
128 a 3A;4 
9 q4

8a5 kl
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+ 32a8 A;,
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3g4

+ 8a 6k,
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+

+

+

128a4A~j 64a6A?8 ' 32a8Â
23kq2 3kq4 A;g(

fe3g
64a10

_______________ H g2
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3 +

192a12 
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512a4fc5 256a 6fc| +

48a6 
13?4

96a8fc. }' {3.5.14)

(3.6) N u m e ric a l ca lcu la tio n s

In this section we present the results of the numerical calculations of the scat­

tering amplitudes eqns ( 3.3.25-28 ) together with the second-Born contribution 

to the exact amplitudes, which were calculated from the program DDTP6 [25].

As mentioned before, the numerical calculation of the amplitudes ( 3.3.25-28 )

6See the introduction page 12-13.
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was carried out using the SMP package [36].

The DDTP program calculates the amplitudes to all powers in the potential 

strength, we therefore have to develop a technique for picking the second Born 

terms. Now the second-Born term is quadratic in potential strength and hence 

is the same in the case of an attractive or repulsive potential on the other hand 

the first Born changes sign. It follows that

m > B  ~  { F +(0) + T - { 0 ) } _ llVo , (3 .6.1)

where the superscript + , — represents attractive and repulsive potential strength 

respectively. To ensure that no higher-order ( even ) terms contribute, we re­

peated the calculation varying the potential strength until the variation in the 

amplitude corresponded to the square of the variation of the potential. We se­

lected the different coefficients in the amplitudes ( 3.3.25-28 ) through a procedure 

which can be represented as follows, e.g.the case of V 2a and

( ^ ) | V02„ contribution =  ^ { ,̂ (V oI)V'oc= 0) +  ^ ( V o i .V ^ O ) }  > ( 3 . 6 . 2 )

J~2B ( 0 ) \ v ocVoacontribution =  ^  {^(V "oi= 0) ~  ,V"oc = 0) }  ’ ( 3 . 6 . 3 )

and similarly for the other coefficients.

As a model for our Gaussian potential we choose the case of an a-particle. 

The following are the parameters used; reduced mass fi = 6.542 fm, wave number 

k = 2.927 / t o " 1, potential strength V0 = 0.005 f m -1 , and range a =  2.149 fm. 

The figures presented in the next few pages show good agreement between our
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calculations and the DDTP ones. Note however that the DDTP results start 

showing rounding errors for small values of potential strength.
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CHAPTER 4

T H E  G L A U B E R  SC H E M E

(4.1) Introduction

The Glauber theory [9,10] provides a very useful approximation to the scat­

tering amplitude in the high energy limit. In this limit, the energy of the incident 

particle greatly exceeds the magnitude of the interaction potential. The other 

condition that typifies the Glauber approximation is tha t the reduced wavelength 

of the particle is assumed to be much smaller than  the potential width ( a ). In 

summary one needs Va/ E  *C l  and ka 1 and under these conditions the scat­

tering is peaked around the forward direction.

Starting from the Lippmann-Schwinger eqn ( 3.1.5 ), the Glauber approxima­

tion assumes the separability of the wavefunction into a product of the incident 

plane wave and a function modulating it,

^ki{r) = exp[iki -r\ $ ( r ) ,  (4-1-1)

$ (r)  is a smoothly varying function, which is defined such that it satisfies the 

condition,

|k * ( f ) |  »  | v  (4 -1 -2 )

Substituting eqn ( 4.1.1 ) into eqn ( 3.1.6 ), we get

4>sc(r) =  J  dr1 exp[—ik{ - r] Gout(r, r') V (S ,  r1) exp[ik{ - r'] 4>(r') (4.1.3)
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We will limit the tensor contribution of V  (S,r ')  to V l ( t ') S 2 - R 2(L,L) .  Letting 

the momentum operators in the potential act on the wave function and using 

eqn ( 4.1.2 ), we arrive at.

$ ' c(7̂ ) — — 1— f  du — exp[ik u ( l  — u>)] A(r — u) (4-1-4)
27r J  u

where

A(r) = $(r)  {Vc(r) +  Va(r)(S - r x k i )  +  VL(r) [S2 • R 2(r x k ^ r  x ki)

- i S 2 ■ R ,(^ ,rO ]}  (4-1.5)

and we have made the substitutions.

u = r — r‘ , u) = k{ - u (4-1-6)

Integrating over u? by parts and keeping only the leading term ,

$ “ (f) =  - J l  f  dud<j> 
27r J

exp[i k u ( l — ci?)]
A ( f  — u) + 0 ( h ,  (4-1-7)

_ !  kdi k

where <j) is the azimuthal angle of u. Note that A(r)  varies appreciably only 

within the distance, d, which is assumed to be much larger than 1/k.  The main

contribution to this integral is when a? =  1. This corresponds to ki and u being

parallel. In this case

 7 poo
$ 5C(f) — —  / d uA(r  — u) (4. I . 8)

v Jo

where v — k/fi.  If we define the Z-direction to be along tha t of the initial 

momentum it follows tha t u =  (0 , 0 , z'), hence

r — u =  b +  ki (z — z') (4.1.9)
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and

=  —  r  dz'°A(b +  z'ki) (4.1.10)
V J -OO

The solution of the subsidiary Lippmann-Schwinger equation for <l>(r) is now,

4>(r) =  e x p  f  dz1 A(b +  z'ki) • (4-1-1-1)
L V J - 00 J

Substituting this in eqn ( 4.1.1 ) and using the result in eqn ( 3.1.4 ), we arrive 

at the scattering amplitude

T ( k f  • ki) = —̂  [  dr exp[—zfc/ • r]F (Jf,r) exp iki • f  f  dz A(b +  zki)
27 t  J v  J —00

(4.1.12)

In what follows we will assume that the scattering angle is sufficiently small 

such that the replacement (ki — k j ) —̂ q  — (q, 0,0) is justified. Carrying out the 

Z-integration, which is an exact-differential, and using the boundary condition 

$ ( — 0 0 ) — 1, we get

F ( k f  • ki) =  —  J  | l  — exp — — J  Q(b-\-zki)dz j (4-1-13)

Note that, in carrying through the last calculation, all the terms tha t are odd in

the Z-component (in the function A(b -f zki)) vanish. Hence,

g(b  +  zki)  =  Vc(r) +  F,(r)(5 ■ b x k{) +  VL(f)  {S 2 • R 2(b x k h b x  £ )

-  i S 2 ■ R 2(kh b ) }  . (4-1-14)

By implementing the definition of $(r),  eqn ( 4.1.2 ), it followed that in effect 

we have replaced the linear spin-orbit operator by its semiclassical counterpart,

s - f x W  — ► s • r x h (4.1.15)
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In so doing we have neglected the velocity-dependent part in tha t term. However 

the coupling in the quadratic spin-orbit term, sketched as

( s • r  x  V ) ( a  ■ f x V )  ( 4-1.16)
V-----V----- '

results in the term  —i Vl (f )  (s • ki)(S • b). As we will see later, this gives rise 

to a contribution to the scattering amplitude which is not invariant under the 

operation of time reversal except in the forward direction. This is due to the 

unequal treatm ent of the initial and final momenta. Our immediate problem

—♦ A

however is that it does not commute with the other terms in Q(b +  which 

makes it difficult to expand the exponential m atrix in a power series. To over­

come this last difficulty we will diagonalise the matrix, allowing us to write it in 

terms of three orthogonal matrices each corresponding to one of the eigenvalues 

of the original m atrix. The resultant expression can be expanded in a power 

series. This method will be discussed in section ( 4.3 ). In section ( 4.2 ) we will 

follow a much simpler route which is along the fines of neglecting the velocity- 

dependence, namely we will make the replacement V 2 —> k f . By construction, 

this ansatz does not contain the first-Born amplitude as its first-order limit ( in 

powers of VQj ).

In our final route, discussed in section ( 4.4 ), we will replace the integrand of 

the exponential function ( 4.1.14 ) by an average which is given by the matrix- 

operator and its Hermitian conjugate. This is motivated by the need to ensure
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that the ansatz is Hermitian. As we will show later the resulting ansatz is simple 

( with regard to commutivity ) to handle and gives rise to an amplitude that 

contains the first-Born approximation as i t s  leading term.

Before we proceed, it is im portant to discuss the connection between the 

eikonal and the first-Born amplitude. A straightforward examination of eqn 

( 4.1.12 ) shows tha t the first order term, in powers of the potential strength, is 

formally identical to the first-Born amplitude. However, a similar examination 

of eqn ( 4.1.13 ) reveals that the vector r tha t appeared in eqn ( 4.1.12 ) has 

been replaced by the vector 6. Because of the property of cross-products, namely
—4 —♦ —♦
b x ki = r x ki, terms of this form in the eikonal ansatz are not affected by the

■4 “f —♦
above mentioned replacement. As for the term  —i Vl (t) (S-k i) (S  •&), the replace­

ment of r by b means the loss of the contribution, —i Vl (t) kz S*. This apparent 

contradiction between eqn ( 4.1.12 ) and eqn ( 4.1.13 ) stems from the fact that 

the direction of the incident momentum ki has been treated preferentially in the 

eikonalization calculation. It should also be noted tha t the non-invariant contri­

bution we mentioned earlier is also connected to this preferential treatm ent of ki. 

p h ase -fu n c tio n . The eikonal phase-function will be defined as,

X iW  =  —  r  Vj(b +  zki)dz. (4-1-17)
V J - OO

It is equivalent to the change in action which a projectile along the classical

path1 r = b +  vtki would experience in a complete trajectory. The phase-

function represents a picture in which each part of the incident wave passes

H is the time of flight
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through the interaction region following a linear path  and undergoes a shift of 

phase characteristic of that path.

In the case of spinless interactions ( Voa, VQi —> 0 ) the ^-dependence is limited 

to the scalar product q • 6, and this gives rise to the familiar result,

a a /*°°
F( k f - k i )  =  ik / dbbJ0(qb) [exp[z%(6)] — 1] . (4-1.18)

Jo

We have here made use of the integral,

<*2ir
/  exp[iqbcos <f>\ d<f> = 2tt J0(qb). (4-1.19)
Jo

The amplitude arrived at resembles the expressions much discussed in optics 

describing the diffraction of light by a transparent object.

In the general case the <j> dependence is complicated by the presence of the 

spin couplings. However, this does not interfere with the straight-line path  of 

the projectile and all that we have mentioned concerning the phase-function still

holds. Using (4.1.1*J) we will write the spin-one eikonal-function as,

£(t )  =  - -  f°°  g (b  +  z k i ) d z .  ( 4 . 1 . 20 )
V  J —oo

For future reference we will develop some of our expressions further. First we 

define f  =  b x k{, so that

(S  • f )  — sin (j> Sx — cos </)Sy
/  0 i e - *  0

- i e i4> 0 iff* | . (4.1.21)
\ 0 0
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Also

(5  • f  )2 =  sin2 <l> Si  + cos2 ip S 2 — sin <j> cos tp(SxSy +  SyS x) 
1 0 - e ~ 2i* \

Similarly,

0 2
- e 2̂  0 /

( S - k i ) ( S - b )  = - =  0 0 0
v 2  I q _ ei<t> o

(4.1.22)

(4.1.23)

(4.2) S im p le-e ikonal

In this section we will neglect any velocity-dependence when constructing the 

exponential ansatz. In addition to the approximation shown in eqn ( 4.1.15 ), we 

will make the replacement V 2 —> k2. This can be shown to lead to an expression 

similar to eqn ( 4.1.14 ) without the term  —i Vl (t ) (s • ki)(s • b).

We now write the eikonal ansatz as (subscript ‘se* is for simple-eikonal),

where

2 (kb)2 . . .  1 ,
Xo =  X c  s— Xi . Xi =  «o(X» +  2 Xi)

X2 =  ( kb f x i  ■ (4 -2.2)

This ansatz is formed of commuting matrices 2 allowing us to expand each expo­

nential term  separately in a power series,

e t(«-r)xi =  1 +  i(s  . f )  s in (x i)  +  (* " r )2 [cos(%!) -  1] ,

2We note that Q is non-Hermitian and that by neglecting its velocity dependent contribution 
we arrived at the above expression which is Hermitian.
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e<(M)J*2 _  i  +  ( (4.2.3)

where we have used the properties of spin-one matrices,

( ^ - t ) 2"*1 =  ( S - r )  ; ( i - . f ) 2" =  ( s - r f .  (4 .2.4)

Hence

elfae(6) =  e*Xo { 1 +  i(s • f )  sin(xi) e*X2

+  ( s - r ) 2 [co s(x i)e lX2 -  l ] }  . (4.2.5)

Finally the scattering amplitude may be written in the form

H h , k i )  =  ^  I  d b e ** { r „ ( 6 )  -  »Ti(6)(« • r) +  r 2 ( & ) ( f .  f ) 2} , (4.2.6)

where

T„(b) =  1 -  e<x° , rx(6) =  sin(x i)ei(xo+x“)

r2(6) =  [ 1  -  cos(xi)eix“] e'*°. (4.2.7)

The exponential can be expanded as a sum of cylindrical Bessel functions,

exp[*5 • 6] =  f ;  i m Jm(qb)e im* . (4 .2 .8 )
m = —oo

Integrating over the azimuthal angle using the integral 3,

/•2-7I-

/  d4 =  2* 8 m n , (4.2.9)
Jo

*we also made use of the relation, J_n (cc) =  (—l ) w J n (x)
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and rearranging the resulting expression in the form given by eqn ( 2fL. 1/ ), we 

finally arrive at

A ae(0) = i k  bdbJo(qb) 1 -  ^ ( l  +  2 cos(%i)elX2) e’xo (4-2.10)

B ae(0) — —i k  [  bdbJ\(qb) s in (x i)e^Xo +X2  ̂ (4-2.11)
Jo

C” (0) = - i k j ~ b d b J 2(qb) [ l - c o s ( x i ) e ix2] e ’X0 (4.2.12)

C kae(e) =  ^  j H  bdb (Jo(qb) +  J2(qb)) [ l - c o s ( Xl)e ix2] e ix°. (4-2.13)

As noted earlier, our starting ansatz in this section was, by construction, 

bound to fail in reproducing the first-Born amplitude. This can be readily seen, 

for example, by expanding the single spin-flip amplitude in powers of the potential 

strength. To first order this results in

#5e(0)|i'W er =  -*  k2 [  dbb2 J Y(qb) ( x 3 +  Xl) • ( 4-2-U)
Jo

This is seen to depend also on the tensor potential Vl(t), while the Born calcu­

lation depended only on the vector potential.

As before we will assume that the potentials are of the Gaussian form defined 

in ( 3.2.1 ) with equal scattering ranges ( ai = a a ). We will make use of the 

integral [37] (Sftm >  — l,3fta2 > 0),

T. —m. -----

fOO
/  Xi(b)bm+1 Jm(qb)db 
Jo

r°° exp[_ a 262 / 2] bm+1Jm(qb)db 
Joak

fiVjy /2tt /  qr
ak  \(o:2)m+1 
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where Xj is defined by eqn ( 4.1.17 ). This allows us to write

&se — —ik 2 ( I S)1 +  Z{t l )

=  i >X- - "Js  ( Vo +  \ v l )  ex p [-g 2/2 a 2] . (4.2.16)

If we compare the final expression with eqn ( 3.2.15 ), we can see that the two 

single spin-flip amplitudes differ by the term  in the above equation. The dis­

agreement is a structural one, which does not show itself either in the spin-nonflip 

amplitude A(0)  nor in the double spin-flip ones Ck,Cn. However the double spin- 

flip terms agree with the first-Born only in the leading k-terms. This will be 

discussed in detail in the next section. It is im portant to remind ourselves that 

the eikonal amplitude has been calculated on the basis that the spin is quantized 

along the direction of the initial momentum. In the following section we will 

rotate to the average frame ( k = (ki +  k f ) / 2 ), though this will not lead to 

any significant improvement on the results. In the case at hand it can be said 

that the coupling we have neglected4 has partially destroyed one of the basic 

structural properties of the eikonal approximation, its first order correspondence 

to the first-Born.

4See eqn ( 4.1.16 ) and the argument preceeding it
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(4 .3 ) D iagonalization  o f  th e  eikonal ansatz

In this section we will diagonalise the full eikonal-matrix given by eqn ( 4.1.10). 

In terms of the definitions developed at the end of section ( 4.1 ) we will write

i£(b) = ix  o +  i£si- (4-3-1)

where

Sai =  {(s - r ) x i +  (s - r f x 2 -  i(s - ki)(s - b)xz} , (4-3.2)

and we have defined the function,

Xs =  (kb) xi - (4.3.3)

In explicit m atrix form we have,

/  X2 / 2  [-*Xa/V2 +  i x i / V ^ l e - ^  - X 2 ^ li*/7. \
£ .1  =  - i x i e * / V 2 X2 iXie - ^ /V 2 ( 4 . S . 4 )

V -X 2e2iV  2 [ix3/^ 2  -  »Xi/V2]e *  X2/2 /

The two matrices in eqn ( 4.3.1 ) commute with each other, so that it is SBi which 

we will diagonalise, treating Xo as a multiplicative factor in the same way as we 

did in the last section.

From the theory of matrices [38] we know that a m atrix ( called TZ ), which 

diagonalizes Sai may be found by grouping the eigenvectors of Sai into a square 

matrix. To calculate both the eigenvalues and the eigenvectors, we will solve the 

characteristic equation of the matrix, defined as,

| Sal -  7] | =  0

=  - V 3 +  2X2V2 -  (xl  +  %3Xi -  x Dv -  (4-3.5)
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This gives three characteristic roots, or eigenvalues of the m atrix Ssl

Vo =  0 , r]±  =  X 2  ±  \Jx  1 - XsXi (4 .3 .6)

The eigenvectors associated with these eigenvalues satisfy the equation

( £ . 1  -  n x ) i x =  o . U. S .  7)

where £A are the eigenvectors and A =  0 , + , — stands for the three eigenvalues. 

Solving these three simultaneous equations for f  A, grouping the resultant vectors 

in a m atrix form and defining,

*  = Xi (4-S.8)
X i  -  XsXi

we get,

rc =  ( t ° , ( +, C )
i i
0 - iy /Z X e*

~2 i<f>

1 \
iy /2X e i<f>

_ e 2i<f> j
(4.3.9)

This m atrix diagonalizes £.i,

e,i =  - R A H - 1 , (4.3.10)

where the m atrix TZ' -1 is the inverse of the non-singular m atrix 1Z and is given 

explicitly by,

n - 1 =

The m atrix A is defined as

( 1/2 0 e " 2̂ /2
1/4 ie~i4>/2 V 2 X  - l / 4 e " 2̂

V 1/4 —ie~i<f>/2y/2 —l /4 e _2i<̂
(4.3.11)

A =  r)° A0 +  rf+ A + +  rj A_ , (4.3 .12)
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where

/ 1 0 0 ^ / 0 0 0 \A0 — 0 0 0 , A+ = 0 1 0
\ 0 0 0 ) I 0 0 0 /
/ 0 0 ° \A_ = 0 0 0 •
V 0 0 1 /

(4.3.13)

These matrices are projection operators, A 2 =  A j, which also commute with 

one another. This allows us to expand the exponential m atrix in a power series,

0 * £»i _  g ^ -  A  72

=  R  e*A 7?_1 .

Furthermore, since rj0 = 0,

e'A =  1 +  (e** -  1 ) A + +  (e1”-  -  1 ) A _  . 

Finally we can write,

ei£(6) -  e ixo +  +  (e*i- _  1)jVL } ,

(4.3.14)

(4.3.15)

(4.3.16)

where

A 4 =  R  A ± -R -1

= ±  * ^ (*• *<)(*• ^)

(4-3.17)

The scattering m atrix takes the form

R(kf - k )  =  ^  / d b e '^  |© 0(6) +  0 ,(6 ) [ ( s * S 2 -  cos<£

(4-3.18)
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We have defined

0 o ( 6 )  =  1  - ,*X0

@i(&) — — A 'sin (x i/A ') e^X2+ Xô

e 2(b) = [ l  -  co s(x i/A ')e iX2] eixo

Carrying out the (^-integration using ( 4.2.8-9 ), we arrive at

where,

.4(0) =  ik f  bdb 0 O(6) +  - 0 2(6) Jo(qb) 
J o  I o J

b 1($) = ik r b d b e ^ M q b )
Jo

Bi(9)  =  - k  j T  bdb 0 ,(6 ) [l -  i j ]  J^qb)

ik r°° -*
Ck(0) =  — 5- /  bdb &2(b) [Jo(qb) + J2(qb)]

l  J o  
1*00

Cn(0) = - i k  /  bdb 0 2(6) J2(qb).
Jo

(4J.19)

F(0) = A(0) + B1( 0 ) S - n  + B2(9)SZS*

+  Ck(9)§2 ■ R 2(k i , k )  + Cn(0)S2 ■ R2(ni,rii) , (4.3.20)

(4.3.21)

UnHke the simple-eikonal, this scattering m atrix takes the form of the general 

m atrix defined in section ( 2.2 ) eqn ( 2.2.11 ). In the limit Xi ^  X3  the function 

1 /X 2 —> 1 and we recover the result we arrived at using the simple ansatz.

If we expand the functions 0(6) in powers of the potential strength, retaining 

terms only up to the second order, we get

0 o ( 6 )  i x c  +  y ( & 6 ) 2 x z  +  X c  -  k b ) 2X c X l  +  ,
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0 i ( b )  {kb)(Xa + ^ Xi) ~  Kkh) [xcX* +  ^XcXi +  —j - X s X i  +  ^ ~ x i j  »

0 2(6) ~  - i ( k b ) 2xi +  ( 2XcXi +  x l  ~  ~  ^ r ~ X i  • (4.3.22)

In a similar way to the discussion at the end of section ( 4.2 ) we assume the

potential to be of Gaussian form ( on =  a a = a c ). We also generalize the

definition of eqn ( 4.2.15 ) to5

r  bm+1Jm(qb)db. (4.3.23)

Using this function, together with the above expansions, in eqn ( 4.3.21 ) we

arrive at

1st+2 ndorder

+

X

+

C k ( 0 ) \ l l,t+ 2 ndorder ~

+

X

5 Where; r =  0 ,1 , 2.., a jv =  a 2, ajo =  ot2 f  2 and for mathematical convenience we have defined;
XO =  1» => ,j,m  =  ^ j,m -

ik ■r i t  2fc2r i^ c , 0  " r  -^c.c ,0 g  c ,l,0

! A)* /c4 9
3 x «>a,o 2̂ i,i>0 9 ,1,0

- f lV o V 2 7T
exp i

{(

a° 
y 2

~  + ^ i

9 2 l , • 2 r 9 2 l+  t f i  ,r e x p [ -  —  ]

a 4fc
2kz

2 a 2
-lb JbV

+ +
kq:

9 a8

tfc3
" T

12a6 9 a10 144a12 48a8
k kq2

3 a6 12a8
C i r l+  v 0‘v .

—2k kq21i 
+3 a6 6 a 8

(4.3.24)

^ 1,0 ~b -̂ c,Z,o "b 2^ 3,*,0 ^ 1,2

k 2
lc, 1.2 + -  k w  -  7T (z '2'.o +  2?a0

a

6

5 +  i ^ T r e x p ! ^ ]M V ^,.2 T7!  r - r ,  , • .2____ r - 9
2a2

)fe3 k 
+ +

4 a 2 
kzq kzq2

6a8 16a6 12a8 12a10
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96a10 192a12
_  y 2  ̂

°’ 4 a 6
_  V cV l —

° ° 2 a6

(4.3.25)

Similarly we have,

X

- f l y / 2 tti2 2 t {- q  
  — k q V* exp I —

k/ *

Vi

-2 k(l

32 a8 
2

+

2 a2 J
+  i fj,2irexp[ - r

4 a2

- V z —  V CV
8 as 0 0 4 a 8

6 a8 4 8a10

i V M (4.3.26)

Finally in a similar calculation to that described above we arrive at,

fli(0)li -+2»'W«, =  l i ^ - k q ( v :  + V l ) e x  p[ q2I or 2 a 2

iT 7 < '  fc2g ifcV '

3a8 24a10
k2q k2q3
2 a 8 16a10 J } 5”

(4-3.27)

and for the first order term  of # 2 (0 )

8 , ( 0) |l Jtorder —
mV®F, TrZ r“ 92nc, c -fcgF0 exp[— ]SZSXcr (4.3.28)

As was mentioned at the end of the last section this calculation assumed 

spin-quantization along the direction of the incident m om entum. The average 

( rotated amplitudes ) 6 are related to the ones defined in ( 4.3.20 ) by,

A av(0) = A (9 ) , (4.3.29)

6 For the definition of the transformation see eqns (
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Bm (ff) = B1(0) +  d c o s 2 ^ S 2(0) -  ^s in0Ck(0)j , (4-3.30)

C f(0 ) =  Ck(0)cos0 + sin0B2(0), (4.3.31)

C™(0) =  Cn(0) -  sin2 |c*(6») +  ^ - B 2(9). (4.3.32)

We also get a term  th a t is a coefficient of the m atrix  S XSZ,

B3(9) = C O S0B2(0) — s in 0Ck(0 ) . (4.3.33)

It is im portant to note here tha t the amplitudes defined in eqn ( 4.3.21 ) do not 

satisfy the reduction relation eqn ( 2.2.18 ). Hence the extra spin-flip term  in 

eqn ( 3.3.20 ) ( the coefficient of SZSX ) does not disappear upon rotating to 

the average frame. Now from eqns ( 4.3.24-2^) above we can immediately write 

( k = k cos 6 )

—q2.
2a2 c r

C™(0)|i* w er =  exp[——] ----—  VQ k +  - q  (cos0/2 -  - )  . (4.3.34)

In the limit of 6 very small we can see that this has improved the results and 

approached the first-Born result. In a similar way the unwanted tensor contri­

bution to the spin-flip becomes less significant in the limit of small 6. However 

it does not vanish completely.

The diagonalization approach has not solved the structural problem of the 

Glauber eikonalization scheme. There is still a tensor contribution to the single 

spin-flip amplitude. Nevertheless the diagonalization did highlight the fact that 

the non-Hermitian tensor contribution has resulted in a non-symmetrical scat­

tering m atrix. However in the no-spin-flip am plitude we get complete agreement
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with the first-Born. In the double spin-flip case we can see tha t we are missing 

term s of order ( 1/A;2 ) in both Cn and Ck. This is true for both the simple-eikonal 

and the diagonalized-eikonal.

(4.4) S ym m etrica l eikonal ansatz

In this section we extend our conjecture, concerning the Hermiticity of the 

exponential ansatz, a step further by using it as a defining tool for constructing 

an alternative ansatz. A straightforward way of ensuring the Hermiticity of the 

ansatz is to average the original matrix together with its Hermitian conjugate. 

The expression we are after is defined by (‘sy’ is for symmetrical ),

a .  w  =  S h i i t e

From eqn ( 4.1.21 ) it is straightforward to calculate,

z H b) =  Xo +  (s -f)xi + ( s - r f x i  + i ( s - b ) ( a - k i ) x 3 -

(4-4-2)

Now using the commutation relations defined by eqn ( 2.1.6 ) we can write,

[ (*•&)>(*•&) ]  =  (4-4-8)

From the definitions ( 4.2.0.) and ( 4.3.3 ) we know tha t,

2xi -  x3 = 2 ( k b ) x . .  ( 4-4-4)

Hence we can now write

£*y(h) =  Xo +  ( s - t ) x s  +  ( * - t ) 2X2 - (4 -4-5)
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In its spin-structure this expression is identical to £ ae(b). The difference is in the 

coefficient of the spin-orbit term . This equivalence allows us to use the results 

derived in section two with the replacement,

Xi — ► (kb)xs  • (4 -4 -6 )

For example,

B .y ( 8 ) =  - i k  r b d b J x i q b )  s i n f t . J e ^  + x - W W .  (4 .4 .7)
Jo

Also upon expanding this in the same manner as ( 4.2.14 ) we arrive at,

B.v(9) =  m  1 ”J ,  ^  v :  exp[(—g2/2 a 2)] . (4 .4 .8 )

This is readily seen to agree with eqn ( 3.2.15 ) for the corresponding Born

amplitude.

86



CHAPTER 5

T H E  W ALLACE SC H E M E

(5.1) Partial-w ave analysis

In this section we will develop the partial wave expansion [39] describing 

the amplitude of a spin-one particle scattering off spinless target. We begin by 

defining the generalized spherical harmonics

y%A*) =  E  C ( l s j , m u M )  , ( 5 .1 .1 )
mu

where the C ( l s j ,m v M )  are Clebsch-Gordan coefficients [40,41], and are the 

normalized eigenvectors of the spin defined by eqn ( 2.1.13 ). The above func­

tions are eigenfunctions of both the total angular-m om entum  operator and its

z-component,

= Hi +1)3#. 

j . y &  =  n y £ .  {5-i-s)

They are also eigenfunctions of the squares of both the orbital angular-momentum 

and spin operators,

& y » .  = » a + i ) y jK ,  (5-1-4)

= * ( «  +  i  {5.1.5)

From the symmetry requirement that the interaction potential be a scalar
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under rotation, it follows that the Hamiltonian, describing spin-dependent inter­

actions, defined by eqn ( 2^Z.l ) is also rotationally invariant. This implies the 

following commutation relations,

[j z, h ] =  [ P , H ]  =  0 .  (5 .1 .6)

Consequently, j  and M  are conserved and we can expand the scattered wave 

function in term s of the following complete set of states [42],

*£(*) = E * t A * > r ) z £ ' & ) y # f ( f ) ,  ( 5 . i . 7)
I’l j M

where

z f “ { k)  =  yLM(ki) .<P'J. (5 .1 .8 )

Using the orthogonality of the generalized spherical harmonics and defining the

potential m atrix,

vf., .(?) =  2 i i j d n y i , ^ ( f ) v ( s , r ) y W ( f )  (5.1.9)

we obtain the coupled radial wave equations,

-  %  +  k* 
r 2 dr dr r 2

The radial functions satisfy
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where r') is the radial coefficient in the expansion of the Green-function

of the outgoing wave function ^ ^ ( r )  in a m anner similar to eqn ( 5.1.7 ).

From the definition J  = L + S,  it follows that,

S - L  =  i ( j 2 - L 2 - S 2) (5.1.12)

Inspecting the tensors1 Tp(r)  and Tr (f), we note th a t beside the central and the 

vector spin-orbit terms, only the tensor2 Tl(v)  is made up of operators of which 

the y f sM(r)  are eigenfunctions. Since we are interested in analytical forms which 

enables us to study the scattering qualitatively rather than quantitatively, we will 

from this point onwards restrict the tensor contribution of the optical potential 

to TL(r).

Using eqn ( 5.1.12 ) the potential is now given by,

V ( S , f )  =  Vc(r) + I  ( v ,  + i Vr.(^)) ( j 2 -  L2 -  S2)

+  1 VL J 4 + L 4 + S 4 — 2 ( j 2L2 +  J 2S2 +  L2S2) - ^ L 2 .

(5.1.13)

Substituting this in eqn ( 5.1.9 ), and making use of eqn ( 5.1.2-5 ) together with 

the orthogonality of the generalized spherical harmonics and the fact th a t the 

potential conserves parity, the radial equation decouples into states j  = / rb 1, y =  I 

with diagonal potential matrices

V f '+1(f) =  2/* |  V.(f) +  IV,(r) +  I  ( l  -  i )  lf ( f )}  (5.1.14)

1See the definition of these tensors eqn ( )

2This follows from the commutation relation, ^Tx,(r), S  • L j = 0 ,  together with relation 

( 5.1.12 ).
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v r ' - ^ r )  =  2,1 { Ve( 0  -  (i +  l)V .(f) +  ( i  +  I(Z +  5 ) j  v , ( f ) )

(5.1.15)

vrl(f) = 2p |v . ( f )  -  v .(f) +  0  -  | (Z +  l ) j  V;(r)| (5.1.15,1

From the asymptotic expansion of the wave function we can write the scattering 

amplitude as,

F P(9) =  - 2 Tri £  (5.1.17)
11', j M

where

(5 .1 .15)

The S-matrix elements j/a are calculated from the asymptotic form of the radial 

wave functions,

{ - { - ) l5we~ikT +  , (5.1.19)

and are given by

Svi  =  hi1 ~  f  d r r 2ji(kr)
v

x ^7i',r(r )^rr ,/ '(r )- ( 5.1.20)

Now unitarity and time-reversal invariance of the S-matrix implies that

^i,v — exp[2i^/] (5.1.21)

The functions Sfy are called the eigenphaseshifts and are real for a real potential. 

The scattering m atrix given by eqn ( 5 .1.1^) can be calculated by working
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out the Clebsch-Gordan coefficients implicit in the equation, together with the 

fact th a t the S-matrix is now diagonal, along the same lines as eqn ( 5.1.14-16 ). 

We can obtain the required answer by first defining [39] the projection operators

_  ( S - L f  + ( § . £ )  -1(1  + 1)
n'0  -------------- i(7TT)  {5JM)

_  ( S - L f  + (l + 2 ) ( S - L )  +  (/ +  l )  , .

H,+ "  (i +  1)(2Z + 1 ) -------------  { 5 J -23>

( S - L f  + ( l - l ) ( S - L ) - l
n,~ “ -p T T )  (5-1M)

These allow us to write,

Fp{6)  =  ^  E  (2l +  X) { T‘+ Hi+ +  T‘~ n ‘-  +  n ‘» }  P‘(cos 9 ) ( 5 J -25 )

Regrouping the terms, we can write

{ A  + BC( S - L )  + C0( S - L f } P , ( c o s $ )  (5.1.26)
1=0

where

A  =  T,+ -  T,~ + (21 + 1 ) J f  (5.1.27)

„ _ ( l  +  2) (21 +  1) r „
B° -  (T+i) 1 ~ ~ ~ r Ti -W T T )T‘ {5J-28)

Q — _ J _ _ 7 1+ _L Ti (2/ +  l ) yQ gg.
c ° -  (l + l )  1 +  I 1(1 + 1) 1 •

To calculate the m atrix coefficients of Ba and C0, we first define the spherical

polar coordinates

k f  =  (sin 6 cos <f>, sin 8 sin <f>, cos 8)

8f =  (cos 8 cos (j>, cos 8 sin <f>, — sin 8)

<\>f =  (— sin 0 , cos <f>, 0) (5.1.30)
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The gradient operator in this coordinate frame, can be written as

Hence

_  „ d  ;; 1 d ? 1 ^V K/ — Kf— h Bf —  —  + <f>f---- ;—-  —
T OKf Kf ov Kf sin 6 o<p

(5.1.31)

S  • L  =  - i S ' ( k f x V K )

(5.1.32)

Now

(S  - L) Pi(cos6) = i(s • (j>f) Pj)(cos 0) ,  (5.1.33)

and similarly ( we have used the fact that, J^Pj(cos0) =  0 )

(S  • L)2 P/(cos 6) =
—̂ A -  COS V a — A

( 5 - « / ) 2 r ^  +  (S  ■ e , ) ( s  ■ h )sin
P ^co s #)

COŜ  Dl,P| (cos 0 )  ^ - P i  (cos 0)
Sin U . ( 5.1.34)

We will choose (j) = 0, so th a t

( 5 * T ) |^ =0 Pi(cosO) =  i S y Pi ( cos0), (5.1.35)

and

( S - L f ^ o  P^cosB)  =
cos 6

( 2 -  522) —  -  S.S,
sin 0

Pj^cos 9)

-  S i  P f  (cos 6) (5.1.36)

Using the above relations in eqn ( 5.1.25 ), together with the recurrence relation

[43],
9  r n s  9

(5.1.37)
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we find

—* COS \f —* -4 A A
•M « ) =  A'p + B \  p {S ■ h) + B\ P( S ZS X +  rS2 ■ R 2(ki, h ) )sin u

+  CiiPS 2 - R 2(h ,h) (5.1.38)

with

4  =  £  { (2/ + 3 )  T+ + (21 -  1) T f  +  (21 +  1) 2? } P,(cos 9) (5.1.39)

H*  ̂ V 1 f  4" 2) ™+ (J — 1) (21 +  1) o 1 p i /  fl-i ( k i ifl\
B ' p  = 2 * g i ( 7 T i ) Ti z 1 ~7 (7T T )Ti J , (  } (5'i 4 0 )

4 . , - + j i r - f r l p j f l V ' i  <«•>•«>

c ; - '  =  - 2 k s { ( i T T ) T * +  K  - f m y 3?  } ' ? ( ” •*>■

The superscript ( i ) stands for spin-quantization along the direction of the inci­

dent beam.

At the end of section ( 2.1 ) we defined an average frame, (ki + k f ) / 2 = k, 

through the transform ation ( 2/2.1 The scattering m atrix in the average-

quantization frame was given by3

p ; v(0) = A<?(9) +  B f { 9 )  (S  . n)  +  C ll (e )S2 . R 2(k , *)

+  Q W 5 2 J 2(n ,r i) ,

(5 .143 )

where the transform ation from T % to T av was defined by eqns ( 2/2•/^ -/?  ). In

term s of eqns ( 5.1.3^-42.) the transform ation leads to

3See eqn ( 2/2.13).
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■A?(0) =  AP(0). (5.1.44)

B?(0)  = B W )  + l- B i tP(6)

1 /  (2/ +  3) . (21 — 1) (21 -f 1) o \  pi(  q\
=  ^ g i T T w 7 ' — ~ T> - w n j T i i  , (  h

(5.1.45)

(5.1.46)

C“>  =  Q ,P(0) +  B l P(6)

= (2  cos 6 +  sin2 0/2 )C™P(6)

+  ^ j f e  £  { lTi+ +  V +  W  -  (2l +  W  }  P‘ <<*><>)• (5 .1 .4V

(5.2) F irst-B orn  am p litu d e

In this section we will calculate the first-Born amplitude as a limit to the 

perturbative S-matrix. Iterating eqn ( 5.1.20 ) with the help of eqn ( 5.1.11 ) 

together with eqns ( 5.1.14.16) we see that the first-Born contribution is of the 

form

Sia = 1 -  k  f  d r r 2 [ji(kr)]2Vis(r )- (5.2.1)
Jo

Substituting this in eqns ( 5.1.44.-4 ̂  ) and using the summ ation formula [36],

f)(2 Z  +  l)y ,(* r) ]* f l(« * « )  =  (5 .2 .2)
fci 9r
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It is straightforward to arrive at the first-Born amplitudes calculated in section 

( 2.1 ). For instance,

A ? \l-o r d e r  =  \  £  ( 2 /  +  1 ) « .  P,(cOS  0 )
^ I

00
dr r Vc(r ) sin qr

1

P V oct/ 2 *  r 2 / o  2l  ( K O=  ------ exp[—q / 2 a  J . (5.2.3)
ot

And similarly for all the other amplitudes.

(5.3) Fourier-B essel expansion  o f  scatterin g  am plitude

In this section we will review briefly Wallace’s m ethod [17] for converting the 

partial-wave sum to a Fourier-Bessel expansion of the scattering amplitude. In 

describing his m ethod we will, for the sake of clarity, limit ourselves to spinless 

interactions. This will be generalized to the spin-one case later in this section. 

In the absence of spin couplings, it is clear from eqn ( 5.1.14-16 ) that

exp [2*5*] =  exp[2i£j“] =  exp[2i^°]. ( 5 . 3 . 1 )

Hence, the scattering amplitude ( 5.1.25) reduces to,

H 9) =  £  r ,P ,(co s0 ), (5.3.2)
1=0

r* =  (~i / k) ( l  +  i )  [exp[2i$i] -  1] . (5.3.3)

Regge has shown [44,45] th a t the summation param eter I can be continued from 

the discrete integer values to the complex angular momentum plane, where the 

physical angular m om enta are only realised when I takes non-negative integer
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values. It follows th a t for well behaved potentials, Tj can be interpolated to give 

T(l) as a function of a continuous variable. Both these functions are analytic 

over the summ ation range. For large real values of / the potential remains small, 

this implies that the phase shift tends to zero as

6{l) = 0(1/1) .  (5.3.4)

On the basis of Regge’s calculation, we can now convert the partial-sum  into an 

integral over real values of I using the Euler summation formula,

P(0)  =  r  dlT(l)Pi(cos$) -  R\(0 ) , (5.3.5)
Jo

= £ 7 A P ’" (1 /2 )P 2" - 1(O,0). (5.3.6)
n = l  VZ7V -

Here,

(q  \  2 n —1
m J {r (Z )P i(cos0)}  , ( 5 .5 .7 )

and bm(x) =  B ^ / ( x )  are the generalized Bernoulli polynomials [36] with b0(x) = 

1 and b\(x) = —x/§.  Terms similar to R\(B), corresponding to / =  oo, arise in 

the Euler Formula but these have vanished because of the constraint ( 5-3-4.) on 

the phase-shift.

As we have mentioned in our introductory chapter of this thesis, there have 

been many attem pts to derive the im pact param eter representation of scattering 

amplitude. They are approximate procedures valid only near the forward direc­

tion where Ri(0)  is negligible. They assume that the angular mom entum  is so
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large as to allow the replacement

°° f—1((21 +  I ) s in { 0 /2 } ) 21"
Pi{cosO) ^ =  J o [(2J +  l)sin(0 /2)] . (5 .3.8)

n = 0 Vn V

Macdonald [46] has developed the leading corrections to the above equation 

that can be employed to improve on the results. However, Wallace developed an 

infinite series expansion of the Legendre function which contains the above limit 

as its leading term . Starting from the power series expansion of the Legendre 

functions [46],

TVm-zn V  r (” +  ; +  l )  b s in (* /2 )]2"
P,(cos9) -  £  f H T P T T i )  ("!)’ ’ ( 5 J -9)

he expanded the ratio of the T functions in a power series of (I +  1/2), in which 

the generalized Bernoulli polynomials occur as weighting coefficients. This was 

then developed into the following derivative operator

r w i V i )  =  £  ( S 5 i { I } ’" *"i « 12' + ! ) } (l + 5 1” '

Substituting this in eqn ( 5.3.9 ) and observing tha t we can interchange the sums 

( the Bessel function arising from the sum over n is differentiable continuously 

to all orders ), he finally got

p , ( c o s 0 )  = bA ^ i i i 2 l + 1 ) }  J»[(2i+1)sin(*/2)1-
(5.3.11)

Substituting this into eqn ( 5.3.5 ), integrating by parts and rewriting the non­

vanishing boundary terms ( I  = 0 ) as # 2 (0 ), we arrive at,

P(6)  =  dlJ0[(2l +  1) sin(0/2)] W  T(l)
Jo
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+ R 2{ 6 ) - R 1(6).  {5.3.12)

We have here defined

— i ( i ft i r a  l 2m
(5.3.13)

Wallace proved by direct non-trivial calculation tha t the above remainders are 

equal and hence cancel each other. The partial-wave sum can then be converted, 

without approximation, to the integral

F(0)  =  k r  dbbJ0(qb) SF(b)V(b) , (5.3.14)
Jo

where the operator,

S F(b) = b~l W(b)  b . (5.3.15)

We have previously used the semi-classical identification of the im pact param eter4, 

kb = (I +  | ) .  At interm ediate energies ( 1 / A j ^ 0 ) i t i s  clear th a t S F(b) will 

introduce derivatives of the phase-function. As Wallace shows, these unitarity 

corrections are of kinematical nature. They are necessary if the Fourier-Bessel 

representation is to satisfy unitarity.

The phase-shift is in principle determined from the relation ( 5.1.15)). This

is achieved in several ways, one of which we illustrated in section ( 5.2 ). Al­

ternatively it can be determined by solving the radial equation ( 5.1.10 ) or its 

Lipmann-Schwinger equivalent ( 5.1.11 ).

4From now on we will use this identification,e.g T(l)  —*■ T(6) also W ( l )  —>W(&).
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(5.4) Spin-one in teractions

In what follows we will extend the Fourier-Bessel representation of the  scat­

tering am plitude, in a similar spirit to tha t of the development of the spin-half 

case by W axman et al [21] , to spin-one interactions. Using eqn ( 5.1.18 ) and 

the definition of the S-matrix elements ( 5.1.20 ) then, for example, the general­

ization of r(6) eqn ( 5.3.3 ) to the case of the am plitude A av(B) eqn ( 5.1.4i ) ,  

results in

VA(b) =  (t +  1/2) [(e2i{+ +  e2" - )  +  e2"°
3 ik

  .

and similarly for the other amplitudes. We will define the following functions,

m  =  |  (s+ + 6-  + s°) (5.4.2)

A x (b) =  2 (5+ -  S~) ( 5.4-3)

V x (b) = 2  ( « + + « - -  26°) . (5.4-4)

In term s of these functions we can write

e*{+ + e 2« -  =  2 c o s (^ ) ) e x p [ i (x ( & )

e2tf+ _ e =  2 is in ( ^ ^ l ) e x p [ i (x ( 6 )  + ^ ^ ] .  (5.4.5)

It is straightforward to arrive at

t w n  * f r v - m  V x ( h)wf-i , o , A x (6h  r - ^ W nTa W  = - g  < exp[z(x(6) — )](1 +  2cos(—— ) exp[z -  ])

2z . . V x ( b) \ A  i k i *\
kb > exp[zM 6) +  “ 6 ~ ■W J {5.4,6)
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r s (4) =  |  2tfc6sin(A^ ^ ) exp[i(x(&) +  Vx^ ) +  cos(A * ^ )

exp[i(*(6) +  Vx^ )] -  exp[i(x(6) -  —j ^ ) ]

-  ™(A^ ) e*P[*(x(6) + VX^  )]| (5-4-V

r c(J) =  { ( 1 -  c° s (A ^( i ) ) exp[P * ^ ] ) exp[i(x(6) -  Vx^ )]

' * sin( AXi ^ ) exp[»(x(i) +  VX} ^ )] |  (5.4.8)2 kb

To make use of the derivative expansion of the Legendre functions ( 5.3.11), we 

introduce the following Legendre recurrence relation5 [47],

P ^cosfl) =  +  _) f  Pi[cos 6) dcos 0. (5.4-9)
sin v J cos 8

Hence we can now write

A ? (0 )  = k I™ bdbJ0(qb)SF(b)VA(b) (5.4-10)
Jo

Baj?(9) = 2 sin(0/2) [°° d b j x (qb) SF(b) TB(b) ( 5.4.11)
Jo

Ciy(d)  =  2 sin(0/2) I "  dbJi(qb) Spib) T^(6) ( 5.4-12)
Jo

Q > (« ) =  (2  cos 8 +  sin2 0 /2  )C£>(0)

—k sin2 8 r  bdbJ0(qb)SF(b)T^(b). ( 5-4.13)
Jo

(5.5) A d ynam ical m od el for th e  phase-shift

In this section we will develop a closed form expression for the phase-shift

5 Note that in ref [47] the definition of the associated Legendre polynomials differs than that
of ref [43] by a minus sign. In our work we use the latter definition.
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function. First we define the function

u}(r) = ( 5 .5 .1)

which we can use to cast ( 5.1.10 ) in the form

’ d_
dr2

u\(r)  +  (fcf(r))2 u\(r)  =  0 (5.5.2)

Here we have defined the local wave number,

fcf(r) = k 2 -

i(i + 1)
-  V!(r)

1 /2

(5.5.3)

The corresponding local wavelength is 2Tr/kj(r). In the case when the kinetic 

energy of the incident particle is large, the wave number changes little over 

distances of the order of the local wavelength. However, as we approach the 

classical limit the wavelength gets very long such th a t kj —> 0. These are the 

classical turning points, where the radial m om entum  vanishes. The singularity 

of the angular m om entum  barrier at the origin ensures tha t there will be at least 

one such turning point for / > 0, no m atter how high the kinetic energy. We 

assume tha t kf(r)  has only one zero, i.e. there is only one classical turning point. 

This distance ( rt ) is the distance of closest approach for a particle of angular 

m om entum  I. Outside this distance / increases and the variation of k{(r) becomes 

small so long as the potential is smoothly varying, even though the potential itself 

may still be appreciable.

The scheme we have just described is the Wentzel-Kramers-Brillouin ( WKB ) 

approximation [42]. From the above argument the approximation postulates an
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exponential ansatz as a solution for the radial function. This solution becomes 

exact in the limit k 2 »  V0. The WKB phase-shift [29], is given by

1 tj- /*oo f  r I n  1 / 2  'J

(o  =  ( » + 5 ) 2  - k n  ~ L  { k* - Vj{l’r) - { l + 2 )1/rl  -  * } d r ■

(5.5.4)

For a given incident m om entum  k and large / the turning point is close to the 

free case of l /k.  The potential6 remains small over the region r0\iarge to  infinity. 

Expanding7 the integrand in powers of V( l , r ) / k 2 and integrating by parts the 

first order term  gives ( kb = (I +  1/2) ),

S j KB(l) | , . w . ,  -  d z V j ( l , r ) . (5.5.5)

This is the Eikonal phase function. It should be emphasized th a t the impact 

param eter in this limiting case, is the distance of closest approach of the classical 

trajectory, which corresponds to the classical turning point. This picture becomes 

fragile if I approaches zero. In fact it is in the proximity of such point8 that the 

expansion param eter is too large to be at all meaningful.

Wallace [15-18] expands eqn ( 5.5.^t) around the param eter e ~  VQ/h k v  and 

shows tha t the WKB phase-shift can be expressed as,

OO

S j KB(b) =  £  5i(b) , (5 .5 .6)
n = 0

6Unlike the spinless case, the potential depends on I  Nevertheless, with some care, the 
argument still holds.

7Note that this is not entirely legitimate since this alters the value of the turning point which 
is defined in terms of the integrand.

8For classical scattering when 9 =  180° , then the kinetic energy—> 0.
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where

«<*> -  - s o r n j i l f i s  ~ m \ I } '  J ~ d‘ v r ' M ■ I5 " *

To emphasize the separate radial dependence from the spin-coupling one, / —> b 

the argum ent of the potential is expressed in term s of (b,r), where r 2 =  b2 +  z 2. 

In their work Waxman et al, discuss the consequence of the /-dependence of the 

potential with regard to the differential operator in the above sum. The operator 

is equivalent to,

This fixed-/ form dem onstrates the independence of the expansion on the /- 

structure of the potential. It also stresses the dynamical nature of the series. 

Using the displacement operator they write eqn ( 5 S & )  as,

1 r°°
SYKB(l) = =- f ° °  dk'2 f ° °  r d r \ l  -  exp 2 J k2 J o  I

x ( * V  - { l + \ f ) - ^ H ( k ' r - ( l  + \ ) ) ,

(5.5.9)

where 7i(x) is the Heavside step function. Expanding the exponential and car­

rying out the integration over k'2 it is straightforward to arrive at the Wallace 

expansion. The first two term s of the series are

m  r°°
m  =  J0 dzVj (r)  (5.5.10)

8{{h) =

(5.5.11)
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The WKB phase contains the Glauber phase function ^ ( b)  as ^ s  leading order 

term  in a derivative expansion in powers of the potential. The higher order terms 

1 can be thought of as dynamical corrections to the straight line path  of the 

tra jectory  inside the potential assumed by Glauber. Wallace goes on to show 

th a t if higher order corrections to the WKB approximation, such as the Rosen 

and Yennie ones [48], are included, the extra contribution which is linear in the 

potential cancels the unitarity corrections to the Sp(b) operator.

(5 .6) T h e  e ik o n a l a m p litu d e

If we go back to the three elements ( V+,V _ ,V° ) of the reduced potential 

m atrix  given by eqn ( 5.1.14-16 ) and, with the help of eqn ( 5JJ .f  ) , define the 

E i k o n a l  p h a s e s

X3(b) =  2 SfrKB(b)

=  2 ( S l ( b )  +  5 { ( b ) ( 5 . 6 . 1 )

Then we can write

X + ( f y  =  ( X c  -  \ x s  +  i x z )  +  k b (  X s  ~  ^ X z )  +  ^ ( k ^>)2X h  ( 5 . 6 . 2 )

X ~ { b )  =  ( X c  ~ ^ X s  +  j j r X z )  -  k b (  x ,  +  ^ X z )  +  \ { k h Y x i ,  ( 5 . 6 . 3 )

X Q{ 5 )  =  ( X c  ~  X s  +  ^ X i ) ~  ^ i k 5 ) 2X i -  ( 5 . 6 . 4 )

Substituting these into eqn ( 5M". we obtain,

X ( 5 ) 0 =  ^ ( 3 X c ( b )  - 2 X s ( b )  + X i ( f y )  , ( 5 . 6 . 5 )

A x ( & ) o  =  ( k b ) ( 2 x s ( b )  -  X z ( & ) )  , ( 5 . 6 . 6 )
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®x(&)o =  X«(4) ~Xi(b)  +2(fc6)2Xi(4) (5.6.7)

Inserting these into the Fourier-Bessel representation eqns ( , we ar­

rive at the Wallace’s Eikonalised scattering amplitude. These amplitudes, as 

expected, give the correct first-Born limit, as we will dem onstrate later.

We first calculate the first-quantum  correction using eqn ( 5.5.11 ). Remem­

bering th a t the operator does not act on the combination (kb),  we will define, 

( 7>/? = c , s , l  ),

X-ws(&) =

Hence we can write,

m
2k3

8 d
1 + b db k dk

[ +°° dzV^(r)V0(r). (5 .6 .8)
J  — oo

x ( b)i =  ĵ ( k b f x u  + (kb)2( ?x« ~  ^ X u  ~ ^Xu ) 

1 1 2  4 5
+  Xcc +  g Xu +  2 *»» +  gXc! _  gXc. — qXI.j (5.6.9)

AxWi =  kbf (x i3 -  ^Xu) ~ (kb)(2xss +  ^Xu + 2Xd ~  | Xi* ~  4x«)

V X(b)i = - | ( k b ) \ u  +  (fc&)2( 2x «  +  ^Xzz +  4 * cj -  y X z * )

3 5 7
gX/i 2Xci "b ^XZa ~b 2Xca •

(5.6.10)

(5.6.11)

Expanding the T functions ( 5.4-. 6 r  8) in powers of the potential and retaining 

term s only up to second-order we get

^ ( 6 ) ^ ( 6 )  ~  |  X c  +  X c c  +  i x l  +  ( k b ) 2 ( ^ X s s  +  ^ x l )

(~5(kb)2 +  A(kbf )  ^ x u  +  ~ X ? ]  } »+  -I
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S F(b)rB(b) ~  |(fc 6 ) 2 ( -  2XcX. +  2 ix . “  ^Xi

+  2 ix c  ) +  (—̂  +  5(kb)2 +  4(kb)4)

qXIs — g Xu — gXzXa +  -Xz }. (5.6.13)

S F(b)Vkc(b) i  { (hh)''sm u k
~Xi ~  Xd +  ~jXu ~

3 i
~ iXcXi +  yXzX* ~  ~̂ X\ 

1 .1
-  2 4 ( 4  +  W  ( kVf )  [xh  +  iXi }} • (5-6.14)

The m ain difference between these expressions and the equivalent spinless and 

spin-half cases is tha t, we needed to keep one term  higher in the perturbative 

operator «Sir(6 ), namely

SF(b) = (5.6.15)
24fc2 db

This is because of the extra b(kb) 2 coefficient th a t appears in the functions r ( f e ) .  

For example,

r  B(b)
ib

latorder sin# (kb)2 -  -  x.(5). (5.6.16)

From the structure of the operator ( 53-13 ), it follows th a t the extra (kb) factor 

requires us to include the second order term  in the aS'jt(6 ) series. To first order in 

potential strength the Eikonal condition |&x(6 )| |Vx(&)|> allows us to neglect

all derivatives of the phase function arising9 from this operator. Hence we get,

SF(b)TB(b)\ 1st order
i(kb ) 2 

sin 9 X.(&)• (5.6.17)

9These are the unitarity corrections mentioned earlier, see the discussion following 
eqn ( 5.3-1^>).
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Higher order term s, on the other hand, involve both  kinematical ( unitarity ) and 

dynamical corrections, though the unitarity corrections are of order (1 /A;) smaller 

than  the dynamical ones. In what follows we will restrict the Eikonal condition, 

mentioned above, to the unitarity corrections. To compare the Eikonafiized with 

the exact Born amplitude we again assume the potential to be of the Gaussian 

form given by eqn ( 2.2.1 ). In this case the function ( 5.rf.8 ) simplifies to the 

form,

^  =  S i  ( (q6)2 ~  I )  • { 5 J J 8 )

We once more use the function defined by eqn ( 4.3.23 ) and, after some algebraic 

m anipulation, arrive at,

9fM(0) K-t+^order =  ~ G X p [ -

+  f i 2 y / i r e x p [

q2 ,VC
2a2 a 3  

2 (
1 J V 2

+ V 2 

35 q
+

1st + 2nd order

M3{0) |

4 a 2 (
5 2k2q2

24a5 9 a 9

2 5 q4

+

288a7 576a9 +  V 4I r n

4a3k 2 
17k2qA 
288a11 

1

8 a 5 A; 2

k 2q6
576a13 
7 q2

+
5A; 2 

9 a 7  

,4
+2 a 5 2 4a7 48a9 }

ft 7rexp| q 2 ] \ v 2 14 a 2 ~ a 4fe 
2  k3 1k3q2 k3q4 

9 ^ 1 0  +  144a12 +  9 ^

+  v 2

+ V 2I w n*

5 k 5 kq2
36a6 144a8
k kq2

3 a 6  1 2 a 8

l at+2 ndorder
/ i 27T

2 COS 0/2
exp | 1

(5.6.19)

(5.6.20)

4 - V  V  —  4- V ,t v o c r os a 1 v olo r

4 a 2 ( 
5 q

+KzK.
5q 2k2q k 2q3  '

12a6  ~~ 3 a 8" 12a 10

16a6
. k2q f c V I  y 2 9 ] \

2 a 8  16a10 J “  4 a 6  J J
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{5.6.21)

+

+

+

fiy/2TT
2  cos 0/2

exP[-

2  cos 6/2  

V0lV0i 

kq 5

exp[-
4 a 2

j* _  kq 
2 a 2 J a 5

2 f
—V V +

96a3fc3 

7 q3

+

2 a5fc 32a7& 
25 g 5fcg 23A:^3

96a11 
5kq

+

96a7k
2Skq3

48 a 5k

+ VZ

+
6 a 7

9

48a9

kq*
12Sa3k3

5q3

2 1  q 
32 a 5fc

8 a 7  64a9

+  V' 5I r n
5g

128a11 + 128a7fc

+16 a5& 32a7& } (5.6.22)

$lCk(6)\\'>*+2ndorder ~

X

fl\/2lT
cos2 6/2

exp[ 

5
2 a 2 5 4 a 5

8 a 5

KS

-  v l

16a7
35

384a3 A;2 

5

15
6 / 2  

39s

cos-
exp[-

4 a 2

16a5 
5Aj2

+

32a7 
23k2q2

192a5 384a7 24a7 192a9

16a5 32a7

+
k 2qA

384a11

(5.6.23)

fl2TT
cos- 19/2

exp[

+

4 a 2

fc3

- v ocv ol~  +  v olv c u

i t y

48a6 6 a 8  48a10

2 a 6

- V 2 —  
05 4a 6

4 a 6

(5.6.24)

We have defined fc =  k{ cos 6/2, the magnitude of the average initial and final 

momenta. These three amplitudes are seen to be in complete agreement with the 

first-order Born amplitudes eqn ( 3.2.14-17 ). However calculating the first-order
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term  of the amplitude Cn(0) through eqn ( 5ff.l  i  ) results in

r  (a\\ fc?(2 cos0  +  sin 8/2) 3 1
L ' n y V ) \ l ' * o r d e r  — --------------------; 2~a----------------M , 1  V  K  -Li qsm u

k2qq qfiy/Zrr
exp[-q2/2 a 2] V lc

a ‘ 4 a 5
. (5.6.25)

cos2 0/2

This is again the same problem we faced in connection with both the simple 

and averaged Eikonal amplitudes, only this tim e it is confined to this one term. 

However if, instead of using the recurrence relation ( 5.V. 6  ), we used,

Jm
FT (*) =  (1 - x 2r ^ — Pn(x) ,  (5.6.26)

then we would have reached the result,

Cn(0) = -  [ sin2 -  +  sin2 0/2 - -d ^ k f  bdbJ0(qb)xi
1 a cos2 0 dcosO J Jo

= /z\/27rexp[—q2/2 a 2] V/
rk2q2 q2

4 -  + (5.6.27)
a '  4 a 5

which is identical to the first-Born amplitude. Nevertheless, because of its simpler 

form, we will use the first derivation when carrying out our numerical calcula­

tions, bearing in mind that the difference is only (a 2/2 k 2) which can be neglected 

at high energies.

(5.7) N u m erica l calculations for a G aussian  p oten tia l

To complete our analysis we calculate numerically1 0  the Wallace-eikonalized 

scattering amplitudes eqns ( 5.4.10-13 ) without corrections, using the phases 

defined by eqns ( 5.6 .5-7 ), with the first-quantum  corrections, using eqns 

( 5.6.(f-ll ) substituted in eqn ( 5.6.1 ). In the graphs Fig ( 5.1-4 ) presented

10This calculation was done using the Fortran computer language rather than SMP.
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in this section we compare the eikonalized amplitudes with the exact amplitudes 

which were calculated using the program  DDTP [25]. As in section ( 3.6 ) we 

have used a Gaussian distribution for the potential. In this section however, we 

use complex potentials. The imaginary part of the central potential has been 

fixed using the optical theorem. The imaginary part of the spin-orbit and ten­

sor potentials are assumed to be equal and fixed to have the same ratio to the 

complex central term  as the ratio between the central and spin-orbit term  in 

nucleon-nucleus scattering [21]. The following are the param eters used; reduced 

mass // =  6.542 fm, wave number k =  2.927 / m -1 , range a = 2.92794, potential 

strength Voc = (0.10135 — i 0.12949 ) /m -1, Vos = (0.05067 +  i 0.02746 ) /m -1 , 

and Voi = (0.02533 +  i 0.02746 ) fm ~ 1.

The results show th a t the inclusion of the Wallace corrections improve the 

amplitudes significantly.
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(5.8) N u m erica l calculation o f  th e  observables for d—58N i

In this section we will use a numerical distribution for the potential [5]. This 

phenomenological potential has been calculated by folding the nucleon-nucleus 

Dirac optical potentials [49-52]. We employ the same distribution for both the 

spin-orbit and the tensor potentials. Two sets of results for d- 58N i  observables 

are presented, 400 and 700 Mev incident deuteron energies. In both cases we 

compare the exact ( DDTP ) observables with those calculated from the Wallace- 

eikonalised amplitudes, with and without corrections. The graphs clearly demon­

strate the significant effect of the corrections in improving the agreement between 

the exact and the eikonal observables. Finally we present an example of the type 

of agreement tha t exists in the case where the tensor-potential Tl (t ) is switched 

off. From this last graph we can see that the effect of Wallace’s dynamical cor­

rections is more significant in the case when the tensor spin-orbit coupling is 

included in the optical potential. In this calculation we have worked in the ref­

erence frame defined by the Madison convention. The tensor analyzing powers 

together with the transform ation from the amplitudes defined by eqns ( 5.4.10- 

13 ) to the set of five amplitudes employed in the DDTP [25] code are both given 

in the appendix.
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CHAPTER 6

C O N C L U SIO N S

Previous work [15-19,21] established the connection between the Fourier- 

Bessel expansion of the scattering amplitude and its eikonal counterpart in the 

cases of spin-independent and spin-half spin-zero interactions. This project is 

mainly concerned with generalizing the above mentioned approach to the case of 

spin-one spin-zero interactions. We have developed a direct connection between 

the partial-wave and Fourier-Bessel descriptions of the scattering am plitude in 

the case of spin-one interactions. This connection is very useful and provides 

some corrections to the Glauber eikonalized amplitudes.

We discussed four different schemes for arriving at the scattering amplitude. 

The first of these was the perturbative Born-scheme which we developed in chap­

ter three. Limiting the potential distribution to a Gaussian form, we calculated 

the first and Second Born amplitudes for an interaction involving a central ( spin- 

independent ), a vector spin-orbit and a tensor spin-orbit term s. The second Born 

term  involved a large number of terms. In calculating it we made use of the SMP 

software language. We then calculated the high-energy limit of the Born ampli­

tudes.

By inspecting the formal expression of the eikonal am plitude, we can verify 

that an expansion of the eikonal scattered wave function in powers of the poten­
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tial results in a perturbative series that agrees with the Born-series exactly only 

to first order. The higher order eikonal term s, however, alternate between pure 

real and pure imaginary, this does not happen in the exact Born-series. Swift 

[2 2 ] has dem onstrated that the eikonal am plitude is the high-energy limit of the 

Born series at fixed mom entum  transfer. We therefore employed the Born terms 

first as a tool in deciding on the validity of our various attem pts to eikonalize 

the scattering am plitude and second to compare the eikonal amplitude with and 

without Wallace’s dynamical corrections with the high-energy limit of the Born 

series.

In our second approach we attem pted to eikonalize the scattering amplitude 

in a m anner similar to G lauber’s treatm ent of the spin-half case. Difficulties arise 

partly from the properties of spin-one operators and partly from the preferential 

treatm ent given to the initial m om entum  in the eikonal scheme. The presence, 

in the exponential ansatz, of vectors th a t lie in the scattering plane meant tha t 

we could not follow Glauber and replace the initial wave vector by the average 

vector. In our first attem pt to overcome these difficulties, we followed Glauber

[9] and dropped the velocity dependence completely from the eikonal exponential 

ansatz. This eliminated the problem of the non-commuting matrices which were 

present in the original ansatz, hence allowing us to develop the eikonal amplitude 

by expanding the exponential m atrix in a power series using the properties of 

spin-one matrices. However this approach is very much equivalent to the Glauber
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wave vector averaging mentioned above. This m eant th a t the resultant m atrix 

misses the terms tha t he in the scattering plane. In fact we ended up with a 

m atrix  th a t resembles a scattering m atrix arrived at by defining the Z-axis along 

the average direction of the incident and final momenta.

In an alternative route we diagonalized the exponential m atrix and rewrote 

it in term s of three orthogonal matrices. This allowed us to expand the ex­

ponential m atrix without any approximations. The resulting amplitudes show 

improvement in the agreement with the first Born term , in particular at small 

scattering angles. However, some structural protl€nrvs still persist in the single 

spin-flip amplitude, where a tensor contribution occurs ( compared to the first 

Born ). We conjectured that these problems result from the non-Hermitian na­

ture of the exponential ansatz. In our final eikonalization attem pt we built an 

alternative symmetric ansatz by averaging the exponential m atrix together with 

its adjoint. The resulting amplitude agrees with the first Born. The development 

of this approach to include the second order term  would have been very useful 

in deciding its agreement with the high-energy limit of the Born term . This is a 

point th a t we think should be followed in future work.

In our third scheme we generalized Wallace’s approach [15,18] to the case of 

spin-one interactions in a m anner similar to tha t followed by Waxman et al [21]. 

This approach is very satisfactory in th a t it deals with all the potential term s
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without any approximation and results in an amplitude th a t agrees structurally 

with the first Born term. Wallace has shown tha t the eikonal phase function is 

the first order term  in an expansion of the WKB phase function in powers of 

the param eter V0/%kv. This provided us with a straightforward prescription to 

calculate dynamical corrections to the eikonal phase. These corrections can be 

thought of as correcting the straight line path  of the particle in the potential by 

the more realistic curved path.

We find tha t the corrections reintroduce the missing im aginary part of the 

second Born term . They also improve on the real part and on comparison with 

the high-energy limit of the second Born term  we find th a t the corrections im­

prove the agreement significantly.

Throughout our work we checked and enforced our results by carrying out 

the appropriate numerical calculations. In the case of the second Born term  

we checked our results in the forward direction using the optical theorem. We 

also extracted the second Born term  from a numerical code which solves the 

Schrodinger equation exactly ( DDTP ). The agreement between both results 

confirmed tha t our calculations are free from m ajor errors.

We compared the eikonal amplitudes, with and without corrections, to the 

DDTP calculation, using a Gaussian distribution for the potential. We find tha t 

the corrections improve the results significantly. In our final numerical calcu­

lation we employed a realistic distributions [52] obtained by folding the Dirac
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optical potentials for nucleon-nucleus scattering and calculated the cross sec­

tion and analyzing powers for the case of d -58Ni at 400 and 700 Mev incident 

deuteron energy. The improvements due to the corrections are very satisfactory 

and dem onstrates clearly the need for the Wallace corrections at interm ediate 

energies.

As mentioned earlier a through investigation of the symmetrical eikonal ansatz 

would be very instructive and neecbto be carried out. It would, also, be very 

interesting to study the case of including the radial and the m om entum  tensor 

couplings in the optical potential. A similar study of the different eikonalization 

schemes together with Wallace scheme would complete the study of spin-one 

spin-zero potential scattering case. However, we anticipate that the fact th a t the 

radial and the m omentum tensor interactions mix spin states of different parities 

would make it very difficult to arrive at analytical expressions of the phaseshift 

functions. Nevertheless an approach where these tensor couplings are introduced 

perturbatively could be considered.
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A PPEN D IX

O BSE R V A BL ES

In this appendix we define the observables which were numerically calculated 

in section ( 5.8 ). First we will relate the scattering amplitudes defined by eqn 

( 2.2.13 ) to those employed by the DDTP code [25] and widely used in the 

literature ( e.g. see Robson [26] ).

In calculating the observables we worked in the Madison reference-frame, which

is defined such th a t the Z-axis is along the direction of the incident mom entum  
—* —+
ki and the Y-axis is along the direction of ki x kf.  In this frame some authors 

define the scattering m atrix to be of the form, ( ‘m ’ stands for Madison )

/ A m B m
V m  g m  _ V m  | {ap.l)

\  Cm - B m A m
M T  =

Only four of these amplitudes are independent since they satisfy the relation

Cm =  (A m - S m ) - V 2 ( B m + 7?m )c o t« . (ap.2)

These am phtudes are related to the ones defined by eqn ( 2.2.13 ) in the 

following way,

A m  —  -  
*  ~  3

3.4“” -  \ c i v +  e r  (cos(^) +  i  sin2 (0 / 2 )) (ap.3)

s ~  -  *  0 ^ '  ^ t 4 >

Cm =  - 1  [ C  - C ?  sin2 (0 / 2 )] (ap.5)
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v m = + ^ c r  (ap.6)

= A a v + ic»« +  i (  2  cos 6 +  sin2 (0 / 2 ) )C f  . (ap. 7j

The cross section and analyzing powers are given by [25,26]

<x{9) =  \Tv(MmMl)

% q{6) = Tr( ] ■ (aP-S)

The m atrix  elements of the tensor operators Tkq are defined in term s of the 

Clebsch-Gordon coefficients as ( v  is the spin quantum  num ber )

<  ̂ WkqW >  =  (2& +  l ) 1/ 2 < s i / , \ a k v q >  . ( a p .9 )

In the case we are studying 6  =  1.

Finally the observables are given by:

3<r =  2 [|.4m | 2 +  |S ” | 2 +  |C” | 2 +  \Vm\2] +  l ^ l 2 (ap.10)

3o-iTu =  \ /6 S  [B„( Am -  Cm ) +  £ ^ D m] ( a p . l l )

3<tT2 0  =  V2  [|.4m | 2 -  2 |S m | 2 +  |Cm | 2 +  I'D” *!2  -  |£m|2] (a p .l 2 j

3<r r 21 =  - V e s  [B^( Am - cm) +  c ^ m ]

3<tT22 =  V3  [23?( A ^C m -  |Dm|2] . (ap.lJ,)
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