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Abstract

For engineers, the two most important aspects of dynamical analysis are high 
amplitude resonance vibrations and structural stability, i.e. whether a steady state 
solution is stable under small perturbations.

For the former case, a novel and simple method based on Poincare mapping 
technique has been devised to predict an imminent flip bifurcation. This bifurcation 
represents the beginning of the second order subharmonic response.

For the latter case, we discovered that while classical quantitative analytical 
techniques work well in establishing the ‘local’ structural stability of a steady state 
solution, the global geometric structure of the catchment region can alter dramatically 
such that even an initial condition close to the steady state can diverge from it rather 
than being attracted. This phenomenon known as fractal basin boundary occurs when 
the invariant manifolds of the saddle separating the steady state solution from any 
remote attractor cross. The critical point in which the invariant manifolds just touch 
can be accurately predict by the Melinkov’s method. Because of the complicated 
interwoven nature of the invariant manifolds, it is called a tangle. If the invariant 
manifolds are originated from the same saddle, the crossing is known as a homoclinic 
tangle, if originated from different saddle, a heteroclinic tangle. The critical point 
is then known as homoclinic or heteroclinic tangency.

Tangles arc also intimately related to chaotic behaviour. The creation and 
destruction of chaotic attractors have been observed through a series of homoclinic 
and heteroclinic tangency. In fact, after the invariant manifolds of an inverting saddle 
cross, the unstable manifold becomes the chaotic attractor. This leads us to believe 
that all chaotic attractors are topologically the same.
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Preface

Over the past decade, physicists, biologists, astronomers and economists have 
found a new way of understanding the growth of complexity in nature. This new 
science, called chaos offers a new way of seeing order and pattern where formerly 
only randomness or unpredictability was observed.

Chaos in engineering is a relatively new subject, probably because engineers 
are more interested in steady state behaviour and large amplitude resonance 
phenomena. Even when they find some "noisy" behaviour, they would most probably 
attribute it to some form of numerical error. In 1985, J.M.T. Thompson and R. 
Ghafarri of University College London, London University were researching into the 
dynamical behaviour of a mooring tower used in the North Sea. Because of the 
discontinuity in the restoring force, non-linear dynamical behaviours were found. 
Typically, a fundamental resonance response curve coexists with a high amplitude 
subharmonic solution. Coexisting solutions serve as a warning to engineers whose 
usual practice is to use an existing steady state solution as the initial state when the 
control parameter is changed, thus probably missing the high amplitude solution.

Most important of all, when the mathematical model of this mooring tower was 
modified to take into account the condition in which one restoring force was infinitely 
stronger than the other, a persistent gap was observed between periodic solutions 
where no steady state solution could be established. They used different numerical 
methods to solve their mathematical model and observed the same behaviour. Instead 
of attributing these to numerical errors or even instability, they used the Poincare 
mapping technique to look at the phase space of this system and to their amazement, 
instead of a random behaviour, they discovered a well structured pattern of dots in 
the phase space. While they could not predict the movement of any one dot after 
each cycle, they certainly knew that it would stay within the structure. This was the 
hallmark of chaotic dynamics. After their report of chaos in engineering structures, 
more engineers have reported the discovery of chaotic behaviour.

This thesis is a continuation of the work since the discoveries of chaotic behaviour 
exhibit by the mooring tower. Tremendous progress has been made since then. 
These include research into fractal basin boundaries, tangles and Melinkov’s theory.



The thesis will be divided into three parts. The first part will be a discussion of 
basic theory of bifurcation and chaotic dynamics. The second part will be theory 
and techniques developed and used in the course of the research. The third part is 
the applications, where practical problems are developed into mathematical models 
and extensive investigations have been conducted.



1 Dynamics of Flow

All bodies possessing mass and elasticity are capable of vibration. Thus most 
engineering structures experience vibrations and their design generally requires 
consideration of their oscillatory behaviours.

Oscillatory systems can be broadly characterized as linear or nonlinear. For 
linear systems the principle of superposition holds, and mathematical techniques 
available for their treatment are well developed1,2. In contrast, techniques for the 
analysis of nonlinear systems are less well known, and difficult to apply. Moreover, 
techniques like perturbation method and harmonic balance give only approximate 
solutions3'6. As most real-world dynamical problems and engineering structures 
confronting the analyst are nonlinear, mathematical models very often can only be 
investigated by numerical simulations. With the wide availability of powerful 
computers, the qualitative topological approach has now been recognized as an 
essential tool to the understanding and interpretation of the results produced by 
numerical techniques. Furthermore, this new approach has given us new insight into 
the mechanisms in which instabilities occur and from which method of prevention 
can be devised. Introduction to geometric theory for ordinary differential equations 
can be found in Jordan and Smith7, Abraham and Shaw8'10, Thompson and Stewart11, 
and Arnold12.

The approach we shall adopt in tackling engineering dynamical systems can be 
broken down into the following steps:

1.) Construction of a mathematical model.

2.) Direct numerical integration to obtain general information.

3.) Topological techniques to classify equilibrium or fixed points and identify
instability phenomena.

4.) Quantify the characteristic of an imminent bifurcation.

Qualitative theory will centre mainly on the identification and study of fixed 
or equilibrium points. Elementary fixed points include the stable ‘centre’ and ‘sink’ 
and the unstable ‘source’ and ‘saddle point’. We shall see later that a ‘centre’



represents a pathological condition between stability and instability which is not 
‘generic’ and hence ‘structurally unstable’. Here the essential meaning of stability 
can be defined as: if any small perturbation close to a fixed point remains close to 
the fixed point at all time, the fixed point is stable.

We begin in this Chapter a brief examination of dynamical systems theory. 
Terminology used throughout this thesis will also be defined. Although there is a 
relatively complete quantitative and analytical theory for linear differential equations, 
a study of many nonlinear equations involves transformation into a linearized form: 
hence a brief review of linear oscillators will serve well to illustrate some fundamental 
concepts and features of the phase plane.

1.1 Autonomous systems

The second order differential equation of general type

x=f (x ,x , t )  (1.1)

can be interpreted as an equation of motion for a mechanical system. Here x represents 
displacement of a particle of unit mass, x  its velocity, x  its acceleration and /  the 
applied force, so that equation (1.1) express Newton’s law of motion for the particle:

acceleration = force per unit mass.

A mechanical system is in equilibrium if its state does not change with time. 
This implies that an equilibrium state corresponds to a constant solution of equation 
( 1 .1).

We distinguish between two types of equation:

(i) the autonomous type in which /  does not depend explicitly on t.

(ii) the non-autonomous or forced equation where t appears explicitly in the 
function /.

A typical autonomous equation of motion is the linear oscillator expressed in 
the standard form

x + bx + cx = 0 (1.2)
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where b characterizes the damping and c the stiffness. Plotting the acceleration *

against the displacement x  as shown in Figure (lb), we have for light damping the 
familiar damped oscillatory motions typical of a pendulum vibrating with small 
amplitude in air. The only equilibrium state is the state of rest, i.e., (x,;c) = (0,0) 
and if the damping b is zero, this is called a centre. Since any damping introduced 
will destroy the topology of the phase space trajectories, this is structurally unstable, 
as can be seen by comparing Figure (la) and Figure (lb).

Stable equilibrium states are not the only attractors that can arise in a 
two-dimensional phase space. A second type of attractor is the stable limit cycle, 
namely a steady closed oscillation that attracts all adjacent motions. In order to 
construct this mechanical oscillator, we must first ensure that for small amplitude 
oscillations the damping is negative so that amplitude will increase. However, large 
amplitude oscillations are contained by introducing a positive damping. In effect, a 
nonlinear damping term is necessary. We consider, then, the oscillator

x - c x +  dx3 + kx = 0

and typical trajectories are shown in Figure (2). For given initial conditions (x >x) 
with small amplitude, we can linearize the above equation and drop the dxz term. 
We then have an unstable focus due to negative damping. Here trajectories spiral 
outwards away from the centre point repellor. For large amplitudes, the nonlinear 
term dominates, ensuring that all motions of the system tend towards a stable 
steady-state oscillation, the limit cycle. In fact, this is the only possible attractor 
and the whole phase space is its domain of attraction. One can see immediately in 
this simple example the importance of taking into account nonlinear effects when 
large amplitude oscillations are possible.

The nature of the solution for the linear oscillator modelled by equation (1.2) 
can be classified by looking at the characteristic equation. Assuming the solution 
x =AeXt, and substituting this relation into equation (1.2) gives

(X1 + bX + c)Aelj = 0 

For a non-trivial solution we must have
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X.2 + ft A, + c — 0

The roots of this characteristic equation can be obtained from

- b + ^ ( b 2-4c)X.=

K=

2

- b - ^ ( b 2-4c)

These roots can be real or complex depending on the discriminant D, where

D = b2- 4c

and hence it is this parameter that determines the type of motions.

If D is positive, we have two distinct real roots and the assumed solution is 
therefore

x - A xe^-\-A2e ^  (1.3)

where and A2 are arbitrary integration constants to be found from the initial 
conditions. If D is negative, we have a pair of complex conjugate roots Xl2 = R ±/z, 
giving solutions of the form

x - e RtsmIt (1.4)

Furthermore from equation (1.3) and (1.4), it can be seen that if the roots are 
real we have a monotonic convergence or divergence of the trajectories. If the roots 
are complex then we have trajectories which spiral towards an attractor or away from 
a repellor. Also, a real and positive eigenvalue or a complex eigenvalue with a 
positive real part means that the equilibrium solution is unstable. Therefore the 
eigenvalues characterized stability13,14 of the equilibrium point and they are sometimes 
refered to as Liapunov exponents15. This is summarized in Figure (3) which shows 
sketches of the phase portraits next to the corresponding (R, I) Argand diagrams. 
For thorough stability we must have b > 0 and c > 0.
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1.2 Structural stability and hyperbolicity

We can now define more precisely the meaning of stability. Although an
equilibrium is identified by the condition that the vector field vanishes at a point, a
full-phase-space picture of different types of equilibria emerges only by considering
the structure of trajectories nearby. For a nonlinear dynamical system the basic types
of equilibrium can be identified by a local linearized version of the dynamics near
the point of equilibrium. That is, the nonlinear equations are replaced by approximate
linear equations; this approximation is only correct in a small region of phase space

oohej)
surrounding the equilibrium point and^the equilibrium is not critical.

Consider an n-dimensional system of first-order differential equations, where x 
is an n-dimensional vector and F is a real n-dimensional vector function:

x = F ( x )

and suppose that the point PE=(xE) is an equilibrium state characterized by:

F(xe) = 0

This equilibrium point is stable if every nearby solution stays nearby for all future 
time. If the equilibrium configuration is represented by the point P® in the space 
of the variables x, it is clear that a perturbation can be represented by a point P in 
the neighbourhood of P6. We will say that PE is Liapunov stable16 if, for every 
neighbourhood U of P10 in this phase space, there exists a smaller neighbourhood 1^ 
of PE contained in U, such that every solution starting in Uj will remain in U for all 
t>0.

If all solutions tend to the equilibrium as t tends to infinity, then PE is said to 
be asymptotically stable. Conversely, if it is possible to find any local perturbation 
that moves the system away from rest, PE is called an unstable equilibrium point. 
Hence while a centre is stable it is not asymptotically stable or structurally stable. 
These three different qualities of equilibria are illustrated in Figure (4).

Consider again our n-dimensional system of first-order differential equations, 
according to our definition, we must superimpose a disturbance £ to xE, obtaining 
the perturbed equation:
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4 = f (*£+S)

Next, F(x e + %) can be expanded in a Taylor series around xR so that:

% = F{xE) + Fx(xE)t,+lLFxx(?E%2+ .....

where for example Fx(xE)£ is the Jacobian of F evaluated at the rest state.

Since stability can be detected by examining a small neighbourhood of the 
equilibrium point, so ^ can be assumed small, and its successive powers £2,^3, .... 
can normally be neglected. On the other hand F(xE) is zero for equilibrium, and the 
following linear variational equation can be written:

The solution £(r) = { ^ i ( 0 > (0} must tend to vanish when t goes to infinity,

if the equilibrium state is to be asymptotically stable. The condition for this is that 
the real parts of all the eigenvalues of H = Fx(xE) must be negative.

Hence the topological condition has been converted into an algebraic condition. 
To examine the stability of a normal equilibrium point we have now merely to solve 
the characteristic equation, and to examine the real parts of its roots. An equilibrium 
point whose local linearization involves only eigenvalues with non-zero real parts is 
called hyperbolic. Here we can define the index of an equilibrium point as the 
number of eigenvalue with positive real part, as illustrated for example by Abraham 
and Shaw10. If this index is equal to zero, then in the linear approximation the 
equilibrium is stable. Increasing values of the index correspond to increasing degrees 
of instability near the equilibrium point; we might therefore refer to this integer as 
the instability index.

Once the instability index of an equilibrium point is determined by counting 
the signs of the real parts of the eigenvalues, additional information can be found in 
the imaginary parts of the eigenvalues. If the ordinary differential equations are 
written, as we have assumed, for real quantities, the local linearizations must have 
only real coefficients, and so complex eigenvalues occur only in conjugate pairs.
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Figure (5) shows a sequence of different dynamics, each having an equilibrium point 
with complex conjugate eigenvalues. The clockwise angular speed on each trajectory 
in each system is the same, because the imaginary parts of the eigenvalues are the 
same; but the trajectories wind down rapidly, slowly, or not at all depending on the 
real part of the eigenvalues. In either of the first two cases, small changes in the 
dynamics can change the rate of decay but not the qualitative picture: trajectories of 
a perturbed system still spiral inwards. In the third case where the fix point is a 
centre, any perturbation of the dynamics will break the closed loops and cause 
trajectories all to spiral inwards or all to spirals outwards from the equilibrium. In 
the qualitative viewpoint, we can regard the non-hyperbolic equilibria, such as the 
centre in plane phase space, as having atypical structures nearby. Since we consider 
not just families of trajectories but families of nearby dynamical systems and the 
nearby systems might include all imaginable small perturbations of the dynamic laws 
and equations; they might also include all approximations that could be used in 
constructing a mathematical model. To obtain among all these a non-hyperbolic 
equilibria is hence atypical. Therefore, only the hyperbolic fixed points are generic. 
The two inward spiralling dynamics can also be qualitatively represented by any 
sufficiently good approximations. Thus the dynamics near a hyperbolic equilibrium 
point are structurally stable, while the non-hyperbolic equilibrium point is not 
structurally stable. For this reason, we believe that local linearization is a valid 
approximation for hyperbolic fixed points in any number of dimensions.

1.3 Local bifurcation

It is imperative to talk about instabilities with bifurcations. Very often, a loss 
of stability corresponds to a bifurcation when a control parameter is varied. In the 
geometric view point, we can define a bifurcation as any point in the control phase 
space which gives rise to a structurally unstable vector field. In particular, local 
bifurcation can be characterized near a single point in phase space: hence equilibrium 
point bifurcations are clearly included. We shall see later that using Poincare mapping, 
the bifurcation of periodic orbits can also be characterized at a point and so can be 
classified as local bifurcations.

Local bifurcations can be studied by their normal form which is a low-order 
approximation of the original vector field. Typically, if
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/(ji,jr0(|l)) = 0

where p represents a single control parameter, then x0(p) are paths of equilibrium 

points in control phase space. Linearization of the vector field at each Jt0(|i) give us 
the eigenvalues. Any value of p<, where the linearization has eigenvalues with zero 
real part is non-hyperbolic and hence a possible bifurcation point. Finally, we can 
compute the lowest order terms of the nonlinear function /  to obtain the local form 
of bifurcation. Various forms of local bifurcation exist depending on the way in 
which the eigenvalues traverse the Argand plane.

If a dynamical system is dependent on a control parameter p then by varying 

p, the eigenvalues Xj will describe some paths in the complex plane. Suppose that 
at p = Po the eigenvalues are all in the negative half plane, so that the system is 
asymptotically stable, and let p increases. If the eigenvalues are assumed to cross 
the imaginary axis transversely, it is easy to see that the simplest ways in which a 
system can lose its stability are either a real eigenvalue crossing the imaginary axis 
or a pair of complex conjugate eigenvalues crossing the imaginary axis. The first 
case involves essentially one eigenvalue, and is therefore the simplest transition that 
can occur. The second, in which two eigenvalues cross the stability boundary as a 
pair, involves two eigenvalues, but there are strong simplifications because they are 
complex conjugate. In the presence of the necessary nonlinear coefficients these 
two transitions give rise to the only two typical bifurcations of equilibria that can 
be observed under the influence of a single control parameter. The first manifests 
itself as the Fold bifurcation17, associated with an inherent stiffness dropping to zero, 
while the second gives the Hopf bifurcation18,19, associated with an inherent damping 
changing from positive to negative. In either case, the phase portrait is structurally 
unstable at the point of bifurcation.

1.4 Global bifurcation

As we define bifurcations in a geometrical view point, a new class of bifurcation 
should be incorporated into our definition. These are the global bifurcations which 
sometime do not manifest themselves as a transfer of stability from one attractor to 
another like the Hopf or fold bifurcation. Bifurcations of the global type involve a 
qualitative change in the topology of the invariant manifolds, i.e., the inset and outset
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of a saddle. One obvious example is the homoclinic connection in the Lorenz20'22 
system and the boat capsize problem which we shall discuss in a later chapter. 
Homoclinic tangency occurs when the inset and outset of a saddle touch. This 
qualitative change can dramatically affect the basin structure of the phase portrait 
without changing the attractor. Therefore, this special bifurcation can not be observed 
in the control phase diagram. However, this is especially dangerous as the basin of 
attraction is quickly eroded after tangency so that instability occurs when a small 
finite perturbation is given23.

One example of global bifurcation which leads to a destruction of an attractor 
is the heteroclinic tangency. Here tangency occurs between the inset and outset of 
different saddles. This bifurcation again can be observed in the boat capsize problem.

As a further example, consider the Blue Sky Catastrophe24 in which a homoclinic 
connection results in a limit cycle disappearing into the blue. This is schematically 
illustrated in Figure (6). In the leftmost portrait, the inset of the saddle point at the 
top is a separatrix between two basins. Below this separatrix, all points generate 
trajectories which eventually settle onto the limit cycle. Above the seperatrix any 
point will generate trajectories which moves away to a remote attractor. As the 
control parameter is varied, the inset moves closer to the limit cycle and they eventually 
coincide at \ic. The homoclinic orbit now has an infinite period and as the parameter 
is increased further, the relative position of the inset and outset has interchanged so 
that all points generate trajectories which diverge to the remote attractor. The inset 
has ceased to be a separator and the limit cycle has vanished into the blue.

We must note here that this dynamical system has only a two dimensional phase 
space so that homoclinic connection generates a closed orbit. In a three dimensional 
case as we shall consider, the inset can cross without forming a closed orbit and an 
attractor can be destroyed when the inset touches it. Also, Blue Sky catastrophe is 
a discontinuous bifurcation and in the terminology of Shilnikov25 this is a dangerous 
boundary.

A sub-class of the global bifurcations is the local/global bifurcations whereby 
a local bifurcation, for example a fold catastrophe, triggers a sudden discontinuous 
transition. This transition is determined by the global structure of invariant manifolds. 
One such example is the intermittency explosion to a chaotic attractor which occurs
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typically in the periodic window during a cascade of period doubling bifurcations. 
Before the transition to chaos, we can expect the global structure of the phase space 
will give rise to chaotic transients. (This will become clear in Chapter 3.)

A complete classification by Thompson et al11,26 of bifurcation arranged according 
to their topological dimension and incorporating various terminologies is shown in 
Figure (7). In summary, there are two basic types of bifurcation, one is the local 
type where bifurcation occurs distinctly in the control phase diagram and usually a 
normal form analysis can be performed. While the point at which homoclinic tangency 
occurs can sometimes be obtained analytically using for example the Melinkov’s 
method, global bifurcation involves a study of the phase space itself. Any global 
bifurcation is determined only by the geometrical or topological configuration of the 
invariant manifolds. Hence global bifurcations have no algebraic solution.

1.5 Non-autonomous System

A typical non-autonomous system is the periodically forced linear oscillator 
given by the differential equation

mx  + f (x,x)  = F sin cgf

F is the forcing amplitude and C0y is the forcing frequency. By defining x = ooyr; the

ratio of the forcing frequency to the natural frequency of the undamped, undriven 
oscillator as rj; and the ratio of the actual damping to critical damping as the 
magnitude of the forcing, along with the stiffness can be incorporated as a scaling 
factor into the definition of x, and we have for a linear oscillator

rfx  + 2r\Cjc + x  = sin x

where a dot denotes differentiation with respect to the new scaled time x. The 

solution for a driven linear oscillator can be obtained analytically as the sum of its 
complementary and particular solution. The complementary solution can be written 
as

xc = exp(-£x/r|) [A sin(co/c+/?)]

where
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and A and p  are just integration constants which can be found from the initial 
conditions. The particular integral of this equation, which represents the final 
steady-state, can be written as

The complete general solution is then just the sum of these two contributions, i.e.,

x(x)=xc+xp

It can be seen that for a positive damped system, the complementary function gives 
only the transient response and exponentia decay. The system will eventually 
achieve dynamical equilibrium, i.e., a periodic solution giving by the particular 
integral. Even for a linear system, there is no Liapunov exponent as such that can 
be used to define stability so that it is difficult to classify bifurcation. This is where 
the Poincare mapping comes in and opens a new horizon to dynamical systems 
theory.

Poincare mapping is a standard technique in dealing with the three dimensional 
phase space (x , x , t ) of our periodically driven oscillator. In effect, the trajectories 
in the three-dimensional phase space are projected on to the (x,jc) plane, thereby 
reducing the dimension of the phase space by one. Furthermore, trajectories are 
sampled stroboscopically in step with the forcing frequency, Cfy, i.e., whenever t is 
a multiple of T = 271/ooy as shown in Figure (8). From a three-dimensional flow 
problem, we have now derived a two dimensional discrete system. While this discrete 
dynamical system often can not be defined analytically from a flow problem, all

1
x,

where
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mapping points can be obtained numerically. In particular, a periodic solution now 
becomes a fixed point and a local normal form analysis can be performed and 
bifurcations classified. This in fact will be the topic treated in Chapter 2.
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2 Discrete Dynamics

In this Chapter, we shall concentrate on the study of mapping as dynamical 
systems. As we have observed in Chapter 1, a three-dimensional flow problem can 
be sampled to become a two-dimensional mapping problem. Therefore, stability 
properties of a map as well as its local bifurcation forms are directly related to the 
original flow problem. The main advantage of using a mapping is that the original 
periodic solution is transformed into a fixed point so that a local analysis can be 
performed with ease. As will be seen in later Chapters, our numerical analysis is 
based entirely on two dimensional mapping theory. The robustness of our techniques 
demonstrates the fact that this is an indispensible tool for understanding the behaviour 
of dynamical systems. As this powerful method is not widely used in engineering, 
we site here in the reference list a few foundation references27'30,6.

The first to introduce this point mapping idea is probably Poincare, and studies 
are later made by Birkhoff, Arnold and Smale. In recent years the theoretical aspects 
of discrete time systems as well as their applications to problems in mechanics are 
investigated by many; for example by Hsu31, Thompson32 and Ueda33.

For our investigations, we take a non-linear differential equation of the form

x+f(x,x)x+g{x)  = e{t)

where e(t) is periodic of period T. A dot refers to differentiation with respect to t. 
By setting x  = y , this equation becomes

X=y

y=- f ( x , y )y -g (* )+e{ t )

or in general

x=X(x , y , t )

y=Y(x, y , t )  (2.1)
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where X(x,y,t) and Y(x,y,t) are both periodic in t with period T. Let x(t) and y(t) be 
the solution of equation (2.1) which starts from a point P0 in the {x, y) plane. The 
coordinates of P0 are then given by x(0), y(0). We focus our attention towards the 
location of the point Pm at the instant t = mT, m being 0, 1, 2,.... Let us call the 
transformation P0 —» Px the mapping F and express this as P^FPq. If a solution x(r), 
y(0 has period T, then the point P0 is a fixed point of the mapping F. If x(t), y(t) 
is a subharmonic of order n, (n=2, 3, 4,....), i.e. a solution of period nT, but not of 
period T, then the points P0, P1,....,Pn,1 are called periodic points. They are all fixed 
points of the nth iterate, Fn, of the mapping F. Thus, in order to study the behaviour 
of the solutions of equation (2.1) as curves in the (x, y, t) space, it is now only 
necessary to study the successive mapping of a initial point on the (x, y) plane, or 
in short, the transformation of the xy plane into itself.

2.1 Stability of two dimensional map

Once a fixed point is found, its stability can be investigated by looking at its 
local linear normal form. Consider now a two-dimensional map given by the equations

*i+i=Fbi>yi)

yi+t=GC*i.yi) (2-2)

This map can be considered as the Poincare map of a three dimensional flow, in 
which case the functions can only be obtained numerically. If (x E, y E) is a fixed 
point, so that

x E = F(xE, y E)

y E = G(xE, y E) (2.3)

we can examine this fixed point’s stability by considering a small perturbation. Let

xi =xE + \ i

y i = y E+'>l;

so that
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xi+,=xE + ̂ 1 = F(xE + ̂ ,yE+r\i) 

y,-+1= y E+ Tii+1= g  (xE+ 1,-, y E+ Tj;)

Expanding the functions F and G in Taylor series at the fixed point, and using 
equation (2.3), we have

£«• +1 = F x ^ i  + fy l. + 2 + F y y r f )  + ......

n,yf G£,  + G ,n .+ i {GJ,] + 2G^,T1, + G „ ^ ) + . (2.4)

where all the derivatives of F and G are evaluated at the fixed point (.xE, y E).

Assuming ^ and rj are small, we can neglect the nonlinear terms and retain

only the first derivatives. Denoting them as a, b, c, and d we can obtain the variational
equation as

^ i + i =  a ^ i +  b r ] i

T W i ^  + dtli (2.5)

or in matrix notation

= (2-6)

Let and % 2 be the eigenvalues of the matrix H, which are both real and distinct.

Then it is always possible to perform a transformation of coordinates7, so that equation 
(2.5) becomes

Hf+I = XiUi

vf+i = ^Vi (2.7)

Now, the coupled equations become independent, and the stability question is solved 
immediately. The system is asymptotically stable if -1 < A,12< 1, but unstable if 
either ^  or ^  are greater than 1 in absolute value. If one of the eigenvalues has
modulus equal to 1 and the other is less than one then the linear approximation is
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not sufficient to establish its stability. We should note here that while the eigenvalues 
of a flow are called Liapunov characteristic exponents; eigenvalues of a map are 
known also as Poincare characteristic multipliers.

If and % 2 are complex conjugate eigenvalues, where

^i,2 =  a ± I 'P

it is again possible to perform a transformation of coordinates so that equation (2.5) 
becomes

“,+i = a» ,-pv ,

vi+i =  PMi +  « v. (2 .8)

By introducing polar coordinates and letting

ui = rt cos 0,

v, = ri sin 0, (2.9)

we can rewrite the eigenvalues in the exponential form

^1 = a + i p  = pe‘*

X2 = a - i p  = pe~‘*

so that

a  = ̂ p{e"+e-")

P = |p ( e * - e ^ )  (2.10)

Using equation (2.8) we have (ju0, v0) = (r0,0O), so that when i=0 we have

rx cos 0X = pr0 cos(<J) + 0O) 

rx sin 0! = pr0 sin(<J> + 0O)
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and when i=l

r2cos 02 = p2r0cos(2<j) + 0O) 

r2 sin 02 = p2r0 sin(2<|) 4-  0O)

Hence, in general,

(2 .11)

0* = 0O + ki|> (2 .12)

Or by substituting equation (2.12) into equation (2.11) gives

Since rk is just the radial distance from the fixed point, the fixed point is only 
asymptotically stable when p < 1. In this case, trajectories spiral in towards the fixed 
point while when p > 1 trajectories sprial outwards and the fixed point is unstable. 
Again if p = 1 the linear approximation can no longer establish the fixed point’s 
stability.

Looking at the eigenvalues, one can see immediately that the stability criterion 
is best discussed in the complex plane. In fact, if both the eigenvalues are within 
the unit circle of the complex plane, the fixed point is asymptotically stable; if either 
one of the eigenvalues is outside the unit circle, the fixed point is unstable. Hence, 
the stability boundary on the complex plane is the unit circle itself. This contrasts 
markedly with the flow problem where the stable region is the negative half plane. 
This is worth emphasising because while our mapping problem is derived from a 
flow using the Poincare mapping technique, we must treat the problem as a map 
rather than a flow. A comparision between the stability boundary of a flow to that 
of a map on the complex plane is shown in Figure (9).

Like the flow problems we discussed in Chapter 1, a discrete dynamical system 
loses its stability when the stability boundary is crossed. Depending on the way 
the eigenvalues pass this boundary, different types of bifurcation can occur. This is

-25-



summarized in Figure (9) as well. Before we go on to discuss bifurcational behaviour, 
it is instructive to discuss stability in terms of the invariants of the matrix H. The 
eigenvalues of this matrix are given by

The stability boundaries in the (T, D) plane are sketched in Figure (10). The parabola 
is defined by the equation

T2- 4 D = 0

On the right of the parabola is the region where

T2-4D  <0

indicating the eigenvalues are complex. On the left of the parabola the opposite is 
true so that all eigenvalues are real. The three straight lines LN, LM and MN are 
the boundaries where the eigenvalues are critical. Values outside these boundaries 
indicate instabilities.

The two dimensional mapping problem derived from a flow as in this case 
using the Poincare mapping technique is a special class of general two dimensional 
map. This is because trajectories in a flow are continuous and can not cross each 
other so that eigenvalues of different sign are inadmissable. Therefore if one 
eigenvalue is positive/negative the other one must also be positive/negative. In terms 
of the stability boundary in the trace-determinant plane, it is only necessary to consider 
the positive right hand half plane. Furthermore, for a dissipative system, the Jacobian

X2-  (a + d)X + {ad-be)  = 0

and writing

a + d = trace of H = T

ad - be = determinant of H = D

we can express the eigenvalues in term of these invariants, as
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of the matrix H i.e. ad-bc, is always positive and less than one so that the Neimark 
bifurcation is not possible. This in turn leads to the conclusion that any local 
instability will^due either to a flip or a fold bifurcation.

2.2 Bifurcations of two dimensional map

To analys e the fold and flip bifurcations, it is only necessary to consider the 
map to be essentially one dimensional. This is because at the bifurcation point, only 
one eigenvalue is critical. Such a reduction is based on the Centre Manifold theorem. 
A geometrical interpretation of this theorem is that trajectories are attracted towards 
the centre manifold, ( i.e. the critical eigenvector ) rapidly and then converge to or 
diverge from the fixed points. Therefore, this theorem allows us to view this 
eigenvector as a local approximation of the higher dimensional map.

Let us imagine that we shall neglect all the mapping points until they have 
converged onto the centre manifold. The centre manifold is thus one dimensional 
for a two dimensional map. Or one can also imagine that a perturbation is given to 
the fixed point in a way that the displacement is along the critical eigenvector only. 
If x =xE is a fixed point of the map xi + l =F(jtJ), so that

x e =  F { x e)

we can examine the fixed point’s stability using a perturbation technique as before. 
Therefore, we superimpose a small disturbance to the fixed point x E,

x = x E + $ (2.14)

so that

xi+1=xE + ̂ +1 = F(xi) = F(xE + £)i)

and again, assuming that F has a power series expansion, we may write equation 
(2.14) as

x£ + i;l + 1 = FCx£) + F %  + \ f eJ > + ....

-27-



where F E = Fx(xE), etc.

We can now denote the coefficients of the series as C, D, E,... and using the 
fact that x E = F(xe), the mapping becomes

Z)i+1 = CZsi+D% + E? + .....

Again assuming £I+1 is small, we retain only the linear term of the expansion so that

By recurrent, we can put equation (2.15) in terms of the initial point £# as

Accordingly, the fixed point is linearly stable only if -1 < C < 1.

If C lies between 0 and 1, any perturbation decays monotonically, while if C 
is greater than 1, they grow monotonically. This is called divergence. If C lies 
between -1 and 0, disturbances decay in an oscillatory manner with Qs sign alternating 
between postive and negative. While if C is less than -1, any disturbance will grow 

oscillatorily. This is called flipping. Figure (11) are two examples of a two dimensional 
map approaching a fold and a flip bifurcation. Of special interest is the way in 
which the map converges rapidly onto the centre manifold indicated by the thick 
line.

We are now in a position to discuss the fold and flip bifurcations of the two 
dimensional map. Bearing in mind that we shall only consider the one dimensional 
centre manifold.

Consider now the response of a map with a control parameter P, so that

y=F(x ,P)

As the control parameter is varied, various fixed points will trace out paths in the 
(x, P) phase-control space, and it is the bifurcation of these path that we would like 
to address.
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In order to study the singularity at the bifurcation point P = P C, it is useful to

expand F as a Taylor series in both the variable x  and the change in P from its 
critical value, i.e., p =P -P% as follows

y =B +Cx +Dx 2 + Ex 3 + ...

+ p(Bx + Cpc +Dpc2 + Epc* +.. .)

+ p 2(Z?2 C^x ~̂ ~Dpc2 Epc3 + (2.16)

2.3 Folds and saddle-node bifurcation

To examine a fold in the fixed points, we measure x  from the fixed critical 
point itself. In other words, the critical point is positioned at the origin. Since x=p=0 
is a fixed point, we must have, from equation (2.16), B=0. This point is also critical; 
therefore C must be equal to 1. Because the path is a path for a fixed point we can 
set y=x and consider the typical case in which D and Bi are non-zero. Then the 
local first-order approximation for the path is

Dx2+Bxp  =0

Hence the local form of a fold bifurcation is a parabola, an example of which 
is shown in Figure (12). Here, the lower branch of the parabola represents a stable 
path while the upper branch is unstable. The left hand diagram shows that any 
iteration starting with a negative value of p diverges monotonically to infinity. While 
for positive p, all iterations converge to the stable branch. On the right hand diagram, 
any iterations start under the unstable path converge to the stable path while iterations 
starting above the unstable path diverge to infinity. Hence the unstable path is a 
separatrix between the catchment regions of the attracting path and the attractor at 
infinity.

The stability coefficient corresponding to C along the path can be found by 
differentiating the function F(x, p) to give Fx, where

Fx — C + 2Dx  + 3 Ex2 +.. ..  + CjP +... . 

giving the first order solution
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Fx = l+  2Dx

Hence, as x changes from negative to positive, the coefficient changes from less than 
1 which is stable, to greater than 1 which is unstable as x changes sign along the 
path.

Other normal forms of saddle node bifurcations can be obtained using various 
constraints but will not be discussed here as they are not typical with only one control 
parameter. Interesting readers could consult the literatures listed in the reference 
list34"36 which give an excellent and thorough treatment on this topic.

2.4 The flip bifurcation

The flip bifurcation is characterised by the coefficient C=-l. This time, we 
shall measure x from the path so that

B = 5 j = B2 — . . . .= 0

Refering to equation (2.16), for a most typical loss of stability with increasing p, we 
can set Cx non-zero and negative.

Since the oscillatory response indicates an n=2 path will bifurcate from the 
primary n=l path, we can focus our attentation on the second iterate

z = F \ x )  = T(x)

Therefore, at the origin (0, 0), i.e. the critical point, we have

T. = ( F f

At this point, the map F is at incipient flip with Fx=-1, so that the map T is at 
incipient divergence, since Tx=l. However, the second iterate of an n=l fixed point 
is still the same fixed point, i.e., y=x implies z=x, we can therefore expect the n=2 
solutions to include the primary n=l path. In fact the primary path becomes an 
unstable path.

The first few terms of the Taylor series expansion of the map F2 are
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z =C(Cx +Dx2+Ex3 + C1xp)+D(Cx +Dx2 + Clx p f  + E(Cxf  + Cxp(Cx)

For an n=2 solution, z=x, and since C=-l, the z cancels with the C2* so the first 
order n=2 solution will be given by

Ex3 + D 2x 3 + Cxpx = 0 

At the critical point, i.e., the origin, jt=0 or

C1p + x 2(E+D2) = 0

Notice that the continuous existence of the primary path excludes the possibility 
of a n=2 saddle-node bifurcation. With Q  negative, a supercritical flip bifurcation 
occurs with (E + D2) positive and a subcritical flip bifurcation with (E + D2) negative.

Numerical examples of both type of bifurcations are shown in Figure (13). 
Convergence or divergence along the paths are as indicated by the arrows. Refering 
to Chapter 1, the subcritical bifurcation is thus classified as a dangerous bifurcation 
as there is no indication of the imminent catastrophe.

For a simple three dimensional flow problem, we may hope that most attractors 
and bifurcations will give rise to either a fold or flip bifurcation. However at certain 
value of the control parameter, a sudden onset of chaotic motions may occur and 
this will be the topic of Chapter 3.
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3 Chaotic Dynamics

Dynamical systems with irregular, nonperiodic, ‘chaotic’ time evolutions are 
frequently encountered in physics, chemistry, and biology. One famous example is 
the rising of smoke in still air from a cigarette. Random oscillations appear at a 
certain height in the smoke column, and they are so complicated as to apparently 
defy understanding. Although the time evolution obeys strict deterministic laws, this 
system seems to behave according to its own free will. Physicists, chemists, biologists, 
and also mathematicians have tried to understand this situation. In fact a great deal 
of excitement in nonlinear dynamics today is centred around the hope that this 
transition from ordered to disordered flow may be explained or modelled with 
relatively simple mathematical equations. It is the recognition that chaotic dynamics 
are inherent in all of nonlinear physical phenomena that has created a sense of 
revolution in physics today. The constituents of a strange or chaotic attractor involve 
two apparently paradoxical phenomena. Namely, it has a steady attracting set but 
not an attracting fixed point, and within this attracting set, neighbouring orbits separate 
or diverge exponentially fast.

The long held belief that given an initial condition, we know what a deterministic 
system will do far into the future, has now proved to be false. Because even with 
the simplest conceivable equation of motions, almost any non-linear system will 
exhibit chaotic behaviour; and given any infinitesimally different starting conditions 
they often end up with widely different outcomes.

Since the pioneering works of Lorenz, later strengthened by Ruelle and Takens, 
the concept of strange attractor or chaos has provided a new way of thinking about 
the aperiodic behaviours observed in dissipative dynamical systems as well as in 
experiments. The sensitivity to small deviation has important consequences from a 
physical point of view, since due to some initial uncertainties, the information about 
the original state of the system is lost in a finite amount of time and so the system 
is effectively unpredictable. While chaotic dynamics exhibit random like phenomena. , 
the discovery of an underlying order holds out the promise of being able to predict 
certain properties of noisy behaviour.
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We must distinguish here between the so-called random and chaotic motions. 
The former is reserved for problems in which we truly do not know the input forces 
or we only know some statistical measures of the parameters. The term chaotic is 
reserved for those deterministic problems for which there are no random or 
unpredictable inputs or parameters.

3.1 Criteria for chaotic vibrations

The search for theoretical criteria to determine under what set of conditions a 
given dynamical system will become chaotic has tended to be ad hoc. The strategy 
thus far has been for theorists to find criteria for specific mathematical models and 
then use these models as analogs or paradigms to infer when more general or complex 
physical systems will become unpredictable. An example is the period-doubling 
bifurcation sequence discussed by May37 and Feigenbaum38.

Their investigations concern the bifurcational behaviour of the one dimensional 
map given by:

= (3.1)

They discovered solutions whose periods double as the parameter X is varied. 
One of the important properties of equation (3.1) that Feigenbaum discovered was 
that the sequence of critical control parameters Xn at which the period of the orbit 
doubles satisfied the relation

lim = i  , 5 = 4.6692..
m  —> <x> Km _  i  0

This important discovery gave experimenters a specific criterion to determine 
if a system was about to become chaotic by simply observing the pre-chaotic periodic 
behaviour. The importance of Feigenbaum’s work was that he showed how all 
period doubling behaviour satisfies the above relationship. Thus, for a mapping 
relationship parameterized by a control X, the sequence of critical values, Xm, of this 
parameter at which the orbit’s period doubles satisfies the same relationship as that 
for the quadratic map. Thus, the period-doubling phenomenon has been called 
universal and 8 has been called a universal constant, now known as the Feigenbaum 
number.
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Another theoretical technique that has led to specific criteria for chaotic vibrations 
is a method based on the search for horseshoe maps and homoclinic orbits in 
mathematical models of dynamical systems.

In 1899 Poincare27 remarked on the complexity of the behaviour of dynamical 
systems having what he called a homoclinic point. Using his mapping technique, 
he realized that for phase space with more than two dimensions, invariant manifolds 
can cross without actually coinciding. Once the invariant manifolds cross, then they 
must intersect each other an infinite number of times due to recurrence. The 
consequence of these transverse intersections (homoclinic points or heteroclinic points) 
is a complex recurring structure called a tangle.

A tangle due to the intersection of the invariant manifolds of two different 
saddles is called a heteroclinic tangle. When the invariant manifolds belong to the 
same saddle point, it is called a homoclinic tangle. Each intersection point is called 
a heteroclinic or homoclinic point. A tangle contains an infinite number of secondary 
intersection points and was described in detail by Birkhoff*9.

Perhaps the most important concept of chaos is best illustrated by Smale’s 
construction of a horseshoe map. Basically, this involves mapping a square onto 
itself. The dynamics behind this mapping is such that the square is stretched in the 
vertical direction and compressed in the horizontal direction. It is then folded or 
bent into a horseshoe like shape and placed over the original square. Overlapping 
regions are then retained and the rest are considered lost. By continuing this process, 
original neighbouring cluster of points gets dispersed to all sectors of the square. 
This is the same as a loss of information as to where a point originally started from. 
Smale was able to demonstrate some remarkable properties of this mapping. Namely: 
infinitely many periodic orbits, (all unstable), uncountably many aperiodic orbits and 
at least one point in the cantor set whose orbit comes arbitrary close to every point 
in the set, i.e. the set is transitive. These properties are in fact identical to those 
found by Birkhoff when he looked at the problem of a tangle. Furthermore these 
properties are precisely those that describe chaotic motions and can be found in all 
known chaotic attractors of dissipative dynamical systems. Smale’s horseshoe-type
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dynamic is in particular related to the homoclinic trajectory of an inverting saddle 
because of the necessity of mapping back onto itself. All these theoretical aspects 
will be demonstrated in our application described in Chapter 7.

The appearance of horseshoe-like dynamics is directly related to the occurrence 
of homoclinic orbits. To see why homoclinic orbits lead to horseshoe maps, we 
recall that for a dissipative system, areas are mapped into smaller areas. However, 
near the unstable manifold ( i.e. the outset of a saddle ), the areas are also stretched. 
Since the total area must decrease, the areas must also contract more than they stretch. 
This is schematically illustrated in Figure (14). It can be observed that areas near 
homoclinic points also get folded. It is believed by some mathematicians that 
horseshoe maps are fundamental to most chaotic differential and difference equation 
models of dynamical systems. This idea is the centre piece of a method developed 
to find a criterion for when chaotic vibrations are possible in a dynamical system.

The Melnikov method is used to measure the distance between unstable and 
stable manifolds, ( i.e. the inset of a saddle ) when that distance is small. Hence it 
is possible to calculate the critical control parameter in which homoclinic tangency 
occurs. However, homoclinic orbit is only a necessary but not sufficient condition 
for chaotic vibrations to occur as we shall demonstrate in Chapter 7.

Folding and mixing actions are well known criteria for chaos. These actions 
can be graphically illustrated by the Poincare maps or phase plane portraits. For 
low dimensional dynamical systems, this qualitative technique has become the de 
facto standard to present a chaotic attractor. To demonstrate the folding and mixing 
actions of a chaotic attractor, we shall briefly discuss our earlier work on the 
Birkhoff-Shaw chaotic attractor.

This chaotic attractor was reported by Shaw40 working on a variation of the 
Van der Pol equation. The dynamical system investigated by Shaw is described by 
the equations

A =0.7y + 10x(0.1 - y 2) 

y = -x  + 0.25 sin(1.57r)
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To obtain a Poincare section of the chaotic attractor, an arbitrarily chosen initial 
condition was computed over many forcing cycles until the transient died away. 
Thereafter, from this single trajectory, the next 1000 return points were recorded, 
i.e., the coordinates (x, y) after every forcing cycle. This produces a Poincare section 
of the chaotic attractor at <J> = 0 where <}> is the phase angle. If we now perform 
numerical integrations on these 1000 points in 10 degree steps for a whole forcing 
cycle, a sequence of 36 successive Poincare sections can be obtained as shown in 
Figure (15). This can be described as a cylindrical model of the Birkhoff-Shaw 
chaotic attractor in full three-dimensional phase space.

At the ‘front’ section corresponding to <J> = 0, we have labelled 41 points which 
approximately spread evenly on the attractor at this phase angle. By integrating 
these initial conditions forward for exactly one forcing cycle, these points reach the 
‘back’ of the ‘cylinder’. Using these numbers for identification, it can be observed 
that after one forcing cycle, these points have already been ‘mixed’ together so that 
it is impossible to identify the number sequence. This mixing action can easily be 
demonstrated by unwrapping the cylindrical model to obtain the projection of the 
trajectories onto a two-dimensional phase space as shown in Figure (16). On the 
right hand diagram, the trajectories are obtained by numerical integrations and their 
position are now a function of the phase angle, <j>, and the angle 0 with respect to 
the x axis. Although not very obvious because of the heavy ink, the trajectories did 
cross if examined closely. The reason for this mixing action to happen is because 
part of the chaotic attractor folded onto itself as demonstrated in the series of Poincare 
sections shown in the middle of Figure (16). The solid dots on the left hand diagram 
mark the apparently completed folding of the ‘wing’ (DE and AF) and immediately 
thereafter, this part of the chaotic attractor begins to stretch and a new ‘beak’ starts 
to emerge. Eventually, the beak becomes the wing and the whole cycle repeats ad 
infinitum so that a complete mixing of any sequence of initial conditions is possible. 
Obviously this gives rise to the exponential divergence and unpredictability of nearby 
starts.

3.2 Quantifying Chaos

Chaos has been discovered both in the laboratory and in the mathematical 
models that describe a wide variety of systems. In common usage, chaos is taken
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to mean a state in which chance prevails. To the nonlinear dynamicist, the word 
‘chaos’ has a more precise and rather different meaning. A chaotic system is one 
in which long term prediction of the system’s state is impossible because the 
omnipresent uncertainty in demanding its initial state grows exponentially fast in 
time. The rapid loss of predictive power is due to the property that orbits (trajectories) 
that arise from nearby initial conditions diverge exponentially fast on the average. 
Nearby orbits correspond to almost identically prepared systems, so that systems 
whose differences we may not be able to resolve initially soon behave quite differently. 
In non-chaotic systems, nearby orbits either converge exponentially fast or at worst 
exhibit a slower than exponential divergence: long term prediction is at least 
theoretically possible.

Rates of orbit divergence or convergence, called Lyapunov exponents41,42, are 
clearly of fundamental importance in studying chaos. Positive Lyapunov exponents 
indicate orbit divergence and chaos, and set the time scale on which state prediction 
is possible. Negative Lyapunov exponents set the time scale on which transients or 
perturbations of the system’s state will decay.

The exponential divergence of adjacent starts can be demonstrated by a 
divergence study on the chaotic attractor originated from our investigations of the 
impact oscillator. This system is a limiting case of the bilinear oscillator described 
in Chapter 6. Results of such a study are shown in Figure (17). Here, starting at 
a point (x0 ,*o) and then a point (x0 + 10-r ,x0 + 10'r)- We have observed the distance 
R between two subsequent motions for four different choices of 0to ,x0) on the located 
steady state chaotic attractor. For each of these four choices we have taken r=3, 5, 
7 and plotted -log R against the number of cycles completed. Here R is taken as 
the shortest distance between the two adjacent starts after each cycle, hence:

R =VAx2 + Ax2

The noisy straight lines on these logarithmic plots confirm that the adjacent 
solutions diverge exponentially before becoming completely uncorrelated. The slope 
of these noisy lines are then averaged to produce the Liapunov exponent, 0.16, which 
is positive, indicating a chaotic response.
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In fact, this was only an ad hoc approach. The divergence of chaotic orbits 
can only be locally exponential. Since if a system is bounded, the distance between 
two adjacent starts cannot go to infinity as suggested. Thus to define a measure of 
this divergence of orbits, we must average the exponential growth at many points 
along a trajectory. Wolf43,44 suggested that one began with a reference trajectory and 
a point on a nearby trajectory and measured their rate of divergence. When this 
became too large, one should look for a new ‘nearby’ trajectory. However, our ad 
hoc approach served as an easy and computational inexpensive effort to identify a 
chaotic phenomenon.

Both ‘chaotic’ and ‘strange attractor’ have been used to describe the nonperiodic, 
random like motions. Whereas chaotic is meant to convey a loss of information or 
loss of predictability, the term strange is meant to describe the unfamiliar geometric 
structure on which the motion moves in phase space. We have described a quantitative 
measure of the chaotic or informational loss aspect of these motions using Lyapunov 
exponents. We shall now describe a quantitative measure of the strangeness of the 
attractor. This measure is called the fractal dimension.

To understand the term ‘fractal’, the simplest example will be the Cantor Set 
discovered by George Cantor in 1883. An example of the construction of a Cantor 
Set begins with a line segment with unit length. This line is subdivided into three 
sections. By removing the middle segment of points, the total number of segments 
is increased to two and the total length is reduced to 2/3. This process is continued 
for the remaining line segments and so on. At each stage one discards the middle 
segments of points creating twice as many line segments but reducing the total length 
by 2/3. In the limit, the total length approaches zero but we are left with a set with 
an infinite number of points. Since a line is one dimensional and a point has zero 
dimension, this set of points has thus a ‘fractal’ dimension between zero and one, 
i.e., a fractional dimension. The property of this set of points is that when one keeps 
enlarging any part of the line segment, the same structure will be repeated ad infinitum 
which is just the same geometric structure that occurs in a chaotic attractor. Thus 
we can expect that a chaotic attractor has fractional dimension45.

Various mathematical techniques have been used to calculate the fractal 
dimension of strange attractors such as the capacity dimension46, point-wise
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dimension47, correlation dimension48 and information dimension49. The practical use
of all the dimensions in measuring and characterizing chaotic vibrations has yet to 
be settled. In many cases, it is sufficient to establish that the dimension is not integer 
or that the attractor is indeed strange.

In addition to the application of fractal ideas to a description of the chaotic 
attractor itself, boundaries between competing attractors, not necessary chaotic, may 
also have fractal properties. This so called fractal basin boundary has been discovered 
in the ship-capsize problem and will be discussed in Chapter 7.

Fractal dimensions and Lyapunov exponents have been widely used by scientists 
working with numerical models. For experimentalists, a spectral analysis is by far 
the most popular measure, because the idea of decomposing a nonperiodic signal 
into a set of sinusoidal or harmonic signals is widely known especially among 
engineers. The assumption made in this method is that the periodic or nonperiodic 
output can be represented as a synthesis of sine or cosine waves:

In general, the function F(co) is a complex function of co and to represent certain 

classes of output /(f), the integration of equation (3.2) must be performed along a 
path T in the complex © plane. Numerical calculation of F(co), given /(f), can often 
be very time consuming even on a fast computer. However, a more efficient algorithm 
called the fast Fourier transform (FFT) can be used. Given a set of data sampled at 
discrete even time intervals, the discrete time FFT is defined by the formula

(3.2)

where

x ff\t • •e = cos cof + 1 sin cof

N
T(J) = ! / ( / ) * -2n i(I  -  l)(J  -  iy N

where I and J are integers.
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When an output signal is periodic or quasiperiodic, the power spectrum will 
show a set of narrow spikes indicating that the signal can be represented by a discrete 
set of harmonic functions. Near the onset of chaos, a continuous distribution of 
frequency appears and in the fully chaotic regime, the continuous spectrum may 
dominate the discrete spikes. Illustrated in Figure (18) is a typical power spectrum 
of a steady-state chaotic motions, showing a white noise type power spectrum which 
confirmed the existence of chaotic motion.

Quantitative measures of chaotic dynamics are essential tools when qualitative 
techniques such as the Poincare map is impossible. This is especially true for systems 
with extreme frequencies (106-1 0 9) (as in laser systems) in which Poincare maps 
may be difficult or impossible to capture. In addition, there are systems with many 
degree of freedom where the Poincare map will not reveal the fractal structure of 
the attractor section: or the damping may be so low that the Poincare map shows no 
structure but looks like a cloud of points. However the above three techniques will 
provide us with hard evidence on the existence of chaotic dynamics.

3.3 Bifurcation of Chaotic Attractors

We have seen in Chapter 2 that periodic attractors can bifurcate via the fold or 
the flip bifurcation. These two bifurcations are of the ‘local’ type. A chaotic attractor 
can suddenly be destroyed via the Chaotic Blue Sky catastrophe when it is tangent 
to the invariant manifolds so that this is classified as a global bifurcation. We shall 
now discuss a type of bifurcation of chaotic attractors which has a local character 
but involves invariant manifolds nevertheless. Therefore we can classify it as a 
local-global bifurcation after Thompson and Stewart11.

In Chapter 1, Figure (7), we have shown a table for the bifurcation of attractors. 
For a chaotic attractor, there are the intermittency and chaotic explosion that we have 
not discussed. In fact these two types of chaotic bifurcations are of the local-global 
type and they often appear as a pair in a periodic window within a chaotic regime.

In the case of intermittency, bursts of chaotic or noisy motions occur between 
periods of regular motions. Such behaviour was even observed by Reynolds in pipe 
flow preturbulence experiments in 1883. Hence such a dynamical system is close
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to a periodic motion but experiences short bursts of chaotic transients. An explanation 
of this behaviour has been proposed by Manneville and Pomeau50 in terms of one 
dimensional maps.

From their numerical experiments, they investigated the statistical behaviour on 
the duration of the periodic motions between each burst of chaotic transients. They 
found that the mean time interval of periodic motions was proportional to the control 
parameter and established the relationship:

where X is a control parameter and Xc is the critical value at which chaotic motion 

occurs. As X - X c increases, the chaotic time interval increases and the periodic 
interval decreases. To measure Xc, one must measure two average times xx and x2 
at corresponding values of the control parameter, that is Xx and X2 . This should 
determine the proportionality constant in equation (3.3) as well as Xc. Once Xc is 
obtained, one should then measure other values of (x,A.) to validate the scaling 
relationship of equation (3.3).

In Figure (19), part of the bifurcation diagram of the quadratic map is greatly 
enlarged along the parameter axis to show a period three window. The abrupt 
appearance of the period three solution near C=1.75 is due to a saddle-node bifurcation. 
To the left of this control parameter, we can see a higher concentration of points 
near the impending period three orbit which indicate the appearance of intermittency.

At the end of this period three window, just past c=1.79, it can be observed 
that the three bands of a ‘period three* chaotic attractor bifurcate to another chaotic 
attractor and fill the entire interval. This is the chaotic explosion or in Grebogi’s51 
terminology, an interior crisis. In this one dimensional case, the bifurcation is caused 
by the unstable saddle, generated by the saddle node bifurcation, touching the chaotic 
attractor. The path of the saddle is represented schematically by the dash line. 
However, in phase space of more than one dimension, this explosion can happen as 
a chaotic attractor touches the inset without touching the saddle itself.
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The mechanism for chaotic explosion is similar to the Chaotic Blue Sky 
Catastrophe: however there is no jump to a remote attractor in this case. We can 
infer that there must exist a chaotic attractor which is non-attracting before the 
periodic attractor vanishes. Therefore, chaotic transients must exist prior to this 
transition and in fact this phenomenon also applies to the intermittency explosion. 
Because of the existence of chaotic transients, typically the result of intersecting 
invariant manifolds, we can expect that a local bifurcation will trigger a global 
transition to chaos. Hence the name local-global bifurcation.

-42-



4 Qualitative analysis of dynamical systems

In the theory of nonlinear oscillations, dealing with strongly nonlinear systems 
is always a very difficult task especially when the global behaviour of the systems 
becomes important. This chapter presents several efficient and practical ways of 
examining the global behaviour of nonlinear dynamical systems. Global bifurcations 
are associated with a profound change in the topological configuration of the invariant 
manifolds of a saddle point. A variety of types of global bifurcation exists, depending 
on the particular topological configuration of invariant manifolds involved. In general, 
any topological change in the configuration of invariant manifolds can be expected 
to cause some qualitative change in behaviour. In some cases, like the homoclinic 
connection in the Lorenz20 system, this change dramatically affects the basin structure 
of the phase portrait without changing the attractors. Other global bifurcations create 
or destroy attractors, for example a heteroclinic connection. With such change, the 
domain of attraction or catchment region corresponding to different attractors can be 
drastically altered (fractal basin boundaries52,53), reduced (competing coexisting 
solutions) or even suddenly disappear (Blue Sky Catastrophe54).

To an engineer, the main motivation to examine the global phase space is 
whether these catchment regions of various coexisting attractors change when a 
control parameter is varied. Catchment regions are always separated by the stable 
manifold or inset of a saddle: therefore the latter is sometimes called a basin boundary. 
To understand these phenomena, it is inevitable that the global phase space must be 
thoroughly explored.

One common but important feature when modelling nonlinear dynamical systems 
is the possibility of multiple coexisting solutions. One obvious example is the bending 
over of the resonance response curve associated with a softening or hardening spring. 
This folding of the resonance response curve results in the familiar hysteresis due 
to two fold bifurcations as well as the coexisting high and low amplitude solutions 
seperated by unstable saddle point. The final or steady state solution thus depends 
crucially on the chosen initial conditions given to the system. As the control parameter 
is varied, the area of the catchment region changed so that there is no guarantee that 
a chosen initial condition can always settle onto the same steady state solution. This 
dependence on initial conditions has practical importance to engineers. As will be
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seen later in this chapter, a high amplitude subharmonic resonance can easily be 
missed due to a coexisting fundamental response This is in contrast to a damped 
linear dynamical problem where a unique solution means that the whole phase space 
of initial conditions acts as a basin of attraction.

During the course of the research, various methods have been developed to 
investigate the global behaviour of dynamical systems. In this chapter we shall 
discuss these methods using various mathematical example as well as practical model 
of engineering problems.

Mathematical examples will be of the form:

x+ x+ B (x )  = F{t)

F(t) = F(t + T)

The three dimensional phase space for this equation is defined by (x,x,t), and the 
Poincard section is defined by the (x,x) plane at t equal to multiples of the forcing 
period. Notice that when a system is autonomous, i.e. time invariant, it is possible 
to obtain a picture of the phase portrait of the flow, by considering an ensemble of 
trajectories. Trajectories in flow phase portraits are effectively governed by the 
position of the attractor. For example we can observe trajectories defining the 
catchment regions of two coexisting limit cycles separated by an unstable saddle 
cycle as shown in Figure (20). This simplifies the task of evaluating the set of initial 
conditions. For a forced (nonautonomous) system as we shall consider here, the 
phase portrait is a collection of Poincare sections so that we can only observe a series 
of dots approaching the attractor and no information is available between each step. 
Thus to obtain the catchment regions we need to consider every point of the phase 
space and it is this seemingly impossible task that we would like to address.

4.1 Interactive Graphical technique

As we have mentioned earlier, global bifurcation is directly linked to the changes 
in the topological configuration of the invariant manifolds. Furthermore the catchment 
regions are separated by the inset of a saddle. Therefore it is obvious that the first 
step should be taken to locate the saddle point so that inset of the saddle can be 
traced and hence the global structure of the phase space can be obtained. However,
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this is not an easy task since the saddle is an unstable point. One of the techniques 
we have developed to locate a saddle point is based on its linear mapping characteristic. 
As we sample a three-dimensional flow problem using a Poincare mapping technique, 
we reduce the dimension of the system by one so that all the equilibrium solutions 
become points in the two dimensional section. Close to an equilibrium point the 
trajectories of the mapping (Poincare) points resemble a linear system. These 
trajectories can be represented pictorially by a straight line joining two consecutive 
Poincare points. The characteristics of the trajectories are governed by the saddle’s 
local eigenvalues. Figure (21) shows some typical trajectories of a two dimensional 
linear map with different eigenvalues. In the same way, we can identify a typical 
equilibrium point for a nonlinear system by these characteristics if we are close 
enough to the solution.

To locate a saddle point through an interactive graphical technique, the unforced, 
i.e. autonomous, counterpart of the forced equation under consideration can be used 
to analytically determine the coordinates of the saddle equilibrium point. For small 
forcing we can expect that the location of the corresponding unstable cycle will 
remain nearby. A set of starts in the form of a circle encompassing the estimated 
saddle point is then initiated. The system is then run forwards and backwards in 
time for one forcing cycle. For each start, a line is drawn joining the Poincare points 
and a series of vectors is established. Since an inset or outset will separate vectors 
pointing in opposite directions, as shown in Figure (22b), an estimate can be made 
of the location of the saddle by guessing the intersection point of the inset and outset. 
This operation is then repeated with a sequence of progressively smaller circles so 
that each estimate will be improved until the required accuracy is reached.

Having approximately located the saddle point, this point can be used as an 
initial condition such that by running time backwards and forwards, the inset and 
outset can be traced out in the phase projection. However, we found that the sequence 
of Poincare points along the inset always has a very large step size, so that we cannot 
obtain a well defined curve. The only way to obtain a pseudo-continuous curve 
which represents the locus of this separatrix is to consider a number of initial conditions 
close to the saddle point and use the so called ladder method.
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The estimated saddle point is first used as an initial condition to run backward 
in time for one cycle; as the initial point is very close to the saddle, after one cycle, 
the two points obtained are still very close together so that we can approximate this 
section of the inset as a straight line. By subdividing this line into ‘rungs’ and 
iterating each rung backwards in time systematically, an almost continuous curve 
can be achieved. Figure (22c) illustrates this procedure schematically, where the
points P0,PiJP2....  and Q0, Qi, Q2—. represent Poincare points along the inset and
outset respectively. P0 and Q0 are chosen to be very close to the saddle point and 
the sections corresponding to one iteration of the map are denoted B0, Blv... etc. 
along the inset (Aq, A1v... along the outset).

Hence by using an interactive graphical routine to locate a saddle point and 
applying the ladder method we are able to trace the path of an inset to determine 
the domain of attraction for a particular periodic solution. We shall see an illustration 
of this technique later with a practical application concerning the oscillations of an 
articulated mooring tower. The ladder method has also been used in more detailed 
studies in the ship-capsize problem where the basin boundary seperating two attractors 
become extremely complicated and is indeed fractal in nature.

4.2 Grid of starts technique

The grid of starts technique is the easiest to implement computationally. As 
we have mentioned earlier, in order to investigate the global bifurcational behaviour, 
we need either to locate the saddle and trace the inset or examine every point or 
state in the Poincare section. The second method is rather impossible, since there 
are infinite number of point in the section. However, in practice the phase space 
can be divided into a grid covering the region that is of interest and we can record 
the final steady state of every point on the grid. By using different symbol to 
distinguish between different steady state attributed to each point on the grid, the 
catchment regions and the global characteristics can be obtained. This method is 
computationally very demanding and the resolution depends on the grid size so that 
when a system becomes complicated with, for example the occurence of fractal basin 
boundaries, this method becomes impractical.
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The importance of grid of starts technique however should not be undermined 
by its expensive computational time. Consider the case when homoclinic intersection 
occurs. This special type of global bifurcation involves crossing of the invariant 
manifolds giving rise to fractal basin boundaries. Once this occurs, the catchment 
regions are so fragmented that a small perturbation can lead to dramatically different 
coexisting attractors. The advantage of grid of starts technique is that it can zoom 
into specific region and made a high resolution study as will be seen in later chapter.

Figure (23) is the catchment regions of the Duffing’s equation presented earlier 
with k=0.1 obtained by Ueda55,56 with a smooth boundary. This is produced by the 
grid of starts technique. After the appearance of homoclinic tangency at k=0.05 the 
smooth boundary has become fractal and this is highlighted in Figure (24) by enlarging 
different area of the original phase space.

Later in this chapter we shall introduce a method which is similiar to the grid 
of starts technique but which eliminates the need to obtain the steady state solution 
of every point on the grid.

4.3 Variational equation and the Van der Pol plane

The first mathematical example is a nondimensionalised form of Duffing’s 
equation, namely:

C 3 1x + 2—x + x + a x  = F0cos—t (4.1)
T|

in which the parameter rj is chosen to be the control variable and the remaining 

values are fixed as the constants,

£ = 0.1 a  = 0.05 F0 = 2.5.

This equation has been extensively studied in the mathematical literature and also, 
has been used to model large amplitude vibrations of a buckled beam, the behaviour 
of elastic strings, and large forced motions of a pendulum11,13.

Solutions of this seemingly simple equation are still not completely understood 
with new! phenomena which govern the behaviour of the response still coming to 
light. Subharmonic resonances and regimes of chaotic motions have been identified.
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But here we shall restrict our attention to the area in which there is a jump to 
resonance along the fundamental solution as the parameter T| is varied. This equation,
can be solved immediately by numerical method but instead we shall derive a
variational equation using a method which assumes a slowly varying amplitude and 
phase of the harmonic solution (Hayashi16). If we assume that the solution of the 
system is close to a harmonic response then we may let

x(t) = u(t)cos t - v (0  sin t (4.2)

The amplitude of the nonsinusoidal response can be usefully and appropriately 
defined by

A=V(m2 +  v 2)  (4.3)

and a corresponding phase,

<j> = -tan - 1 v /m  (4.4)

Effectively we are looking at transient motions close to the periodic steady state. 
The new coordinates (u, v) now define the Van der Pol plane in which the primary 
rotation of the solution has been eliminated. Solution curves are plotted now in the 
(u, v) plane where trajectories do not cross; the (u, v) plane being termed the Van 
der Pol plane (Thompson57). If the Duffing equation was solved numerically and 
trajectories plotted as usual on the (x,x) plane then trajectories cross and mingle 
causing the phase portrait to be unclear. This is of course due to the fact that the 
original system has a full three dimensional phase space spanned by (x,x) and time. 
Here the (m , v )  axes rotate with respect to the (x, y) axes so most of the cross overs 
on the two-dimensional phase are eliminated. Now provided that the response of 
the system is predominantly harmonic then under our assumptions, the transformation 
‘unscrews’ the fibre of trajectories at the corresponding rate of rotation. This can 
be seen in Figure (25).

For our nonlinear oscillator described by Duffing’s equation in the range of 
parameters under discussion, we can finally make an approximation by averaging 
the exact equation in u,v and t following the methods of Krylov and Bogoliubov as
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given, for example, by Hale58, assuming that the new variables u and v are slowly 
varing functions of time. We may ignore terms involving m , v  and any cross product 
terms. Using this form of solution we differentiate to yield

y - x  = (m -v )co sf-(w  + v)sinr 

y = x= -(u  -2v)cosf + (-2m +v)sinr (4.5)

and

(4.6)

Substitution of the equation from (4.2) to (4.6) into equation (4.1) and matching the 
coefficients of cos t and sin t, yields the approximating system

One immediate advantage of this new system is that it is autonomous so that 
the phase space is now only two dimensional. Therefore we can obtain the catchment 
regions by considering an ensemble of trajectories. Trajectories in the new (u, v) 
coordinates system will not cross and the cusping feature of the exact trajectories 
will also be eliminated as shown in Figure (25). Since these cusp like features and 
subharmnonic responses are smoothed out by the approximate system, equation (4.7) 
is referred to as the smoothed variational equation. A complete amplitude response 
diagram can be obtained for Duffing’s equation for various levels of damping, as 
shown in Figure (26). We note that the bending over of the response curve which 
creates two alternative stable states depend on the damping level as well as the 
restoring function. The point at which this system jumps to a remote state is of 
course due to a fold bifurcation with the unstable path denoted here by a dotted line.

I f  3
U = ------ (Tl2 - 1 ) V - 2 C r i M — :0CV(W2 +  V2)

I f  3
V =    (n2- Du  + 2CTIV—:COl(u2 + V2) + Fn (4.7)
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With £ = 0.1 hysteresis occurs for values of rj between approximately 1.45 and 

1.73. The final steady state motion of the system depends entirely upon the initial 
conditions. The system’s phase portraits in the Van der Pol plane are plotted for 
six values of r| in Figure (27).

In these diagrams, initial conditions are given equally spaced around a circle 
and then the smoothed variational equation is solved using a Runge-Kutta integration 
routine. The points marked along the trajectories represent Poincare points taken at 
multiples of the period of the forcing. The flow in these diagrams can be interpreted 
in polar coordinates as the continuous adjustment by the system of its amplitude A 
and phase <|>. The catchment regions for the two competing stable steady state 
oscillations, represented in this Van der Pol plane as two sinks, are bounded by the 
separatrix passing through the unstable saddle solution; one of the domains of attraction 
is shown dotted whilst the other is left blank. As the variable r\ is reduced the 
catchment region for the small amplitude solution decreases until it vanishes at just 
below 1.452, after which all trajectories are attracted towards the large amplitude 
resonant motion. The disappearance of this small amplitude solution is due to a fold 
bifurcation of the response curve at the point Q. By examining the beat frequency 
of the transient responses it is possible to make predictions of this incipent folding 
action as Q is approached. (Bishop and Franciosi59, Thompson and Virgin60).

4.4 Analogue computer simulation

The analogue computer is a device that is naturally suited for the study of the 
dynamical behaviour of oscillating systems. This computer essentially comprises a 
set of units able to perform certain mathematical operations, which when properly 
coupled together, may be used to solve differential equations or, systems of differential 
equations. These basic units and the mathematical relationships obeyed by their 
input-output variables are shown in Figure (28). All variables are represented by 
voltages; system inputs are represented by voltages, as well as system outputs or 
responses.

The behaviour of the system may be observed and recorded using oscilloscopes 
and electromechanical recorders. The accuracy of the analogue computer however 
is limited by the precision of the components in the machine, and the ability to 
measure the voltage accurately.
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The advantages of using analogue computer simulation are the speed and the 
ease in programming. Essentially, this involves connecting various units using a 
piece of wire. Its flexibility is due to the development of a wide range of easily 
applicable nonlinear function-generating components. Thus in many cases an analogue 
simulation of a nonlinear problem may be the most practical and economical approach. 
Indeed, Ueda’s work on nonlinear dynamical systems has been assisted by a hybrid 
of a large analogue and digital computer.

For problems involving the use of the analogue computer, it is necessary to 
scale properly the system variables (or inputs) so that the voltages that represent the 
variables do not exceed the full dynamic range of the components in the computer. 
Here, the ‘normalized variable’ magnitude scaling technique61,62 and the time scale 
factor method63,64 have been applied throughout. A thorough algebraic presentation 
of the scaling technique can be found in Ghaffari65.

Our analogue computations were performed on an EAI-1000 Analogue computer 
supplemented by an external wave generator. The resulting system allows quick 

approximate results to be obtained under, for example, different values of initial 
conditions.

The example we have used in our studies is again a version of Duffing’s equation 
with no linear stiffness; namely

x+lcx +x3 = B cost

This equation has been considered by Hayashi16 and extensively studied by Ueda66. 
For variation of the two parameters k and B a wealth of nonlinear behaviour has 
been charted by Ueda, including coexisting periodic and chaotic solutions. In the 
absence of a natural, linear frequency the usual resonance response diagram can be 
drawn by plotting B~m, a measure of the forcing-frequency/system-frequency ratio, 
against B~m multiplied by the amplitude which in turn gives an appropriate 
amplitude/static-response measure.

With the coefficient of damping held constant at k=0.2 the familiar form of an 
engineering resonance response curve is shown in Figure (29) obtained by digital 
time simulations and confirmed by analogue studies. If the variable B is increased, 
i.e. B~m is decreased, a jump to resonance can be initiated. The hysteresis implied
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by this jump leads to two alternative harmonic solutions onto which the system may 
settle, depending upon the initial conditions. The region of initial conditions on the 
(.xyx ) plane which results in motion decaying onto the small amplitude solution has 
been obtained by analogue computer simulations using a grid of starts. To illustrate 
how this area of attraction diminishes as (x,x) is decreased, this grid of starts method 
was carried out for seven values of B within the hysteresis loop. The results are 
displayed in Figure (30). The catchment region for the small amplitude solution is 
represented by a square while the catchment region for the large amplitude solution 
is left blank. As the control parameter is decreased to the fold point, just below 
1.34, the shaded area diminishes indicating the respective dominance of the two 
relevant modes. To confirm our analogue study, also included in this Figure is a 
diagram obtained by Ueda when 5=0.3 (B~m = 1.49) which compares favourably 
with our own result shown here in the Figure where (B~m = 1.50).

The Poincar6 points (shown in small squares) and trajectories of the stable 
steady state oscillations are also given in the diagrams of Figure (30). It should be 
remembered though that the phase portrait shown here is really a two dimensional 
projection of the solution from the three dimensional phase space. In the diagram 
by Ueda, the saddle point, denoted by the number 1 lies on the unstable path, 
correspondingly indicated by the dashed line in Figure (29).

We have detailed several ways in which the domains of attraction for competing 
harmonic solutions can be evaluated. In the next section we shall see how these and 
further methods may be applied to mathematical models in the field of offshore 
mechanics.

4.5 Examples in Offshore Mechanics

In this section we shall present some examples in offshore engineering when 
nonlinearity in the restoring force leads to coexisting fundamental and subharmonic 
solutions with a sensitivity to initial conditions. The major practical implication for 
engineers is the possibility of relatively large amplitude subharmonic oscillations of 
compliant and offshore structures in parameter regions well away from the natural 
frequency in what might otherwise be considered ‘safe’ conditions.
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4.5.1 Subharmonic resonance of an articulated mooring tower

The first example involved an articulated mooring tower used in the North Sea 
to load oil into tankers. This mooring tower has a discontinuity in the restoring 
force such that it’s behaviour is essentially nonlinear in nature. This dynamical 
system is defined mathematically as follows:

X + 2—X +KX  =-^-sinxn if
where a dot denotes differentiation with respect to time (x), X  represents displacement, 
£ is the damping factor, r\ is the frequency ratio, Kx is used to denote whichever of 
Kx, for positive displacement, or K2, for negative displacement, is appropriate for the 
domain under consideration and:

X, = (1 + Va)/4arf 

X2 = (l+Va)/4rf

where a  = k2/kx is the stiffness ratio while kx and k2 are the stiffnesses for positive 

and negative displacement respectively.

A detailed description of this dynamical system will be presented in a later 
chapter.

Because of the underlying nonlinearity, the existence of coexisting subharmonic 
solutions is possible. This has been extensively charted by Thompson67 for a range 
of the control parameter tj. We shall concentrate here on the parameter range such 
that the n=l fundamental solution coexists with the larger amplitude n=4 subharmonic, 
which occurs well away from the fundamental resonance at T| = 1. An enlargement 
of this region on the amplitude response diagram is shown in Figure (31e). The 
dangerous implications for design engineers is clearly seen in this figure, in which 
the subharmonic solution can have a maximum displacement considerably greater 
than that of the harmonic solution.

To illustrate the differences in the two alternative solutions we detail here some 
results where the control parameter is fixed at rj = 3.95.
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Figure (31c) shows a study of the transient decay of the system as a time history 
of the displacement, while the corresponding phase projection is given in Figure 
(3Id). Two alternative starts are used, Sj, converging onto the smaller amplitude 
n=l solution, and S4 decaying onto the larger n=4 subharmonic. If the system is 
allowed to oscillate at the lower amplitude state then as r\ is slowly varied, some 
transients will decay onto this harmonic solution. However given a different initial 
condition, for example caused by some sudden external loading, the higher amplitude 
state can be achieved. To safeguard against this, we must chart the catchment regions 
for the n=4 subharmonic solution. The problem now centres on the location of the 
separatrices which form the boundaries of the domains of attraction, Figure (3If), 
and the determination of the stability of the system under normal environmental 
conditions.

In order to uncover the catchment regions, the location of the period four saddle 
was first obtained by graphical technique and then the ladder method was applied 
to trace out the inset of this saddle. Figure (32a) shows this result displaying both 
the inset and outset to each of the four saddle points (since we are sampling at every 
forcing cycle instead of every fourth forcing cycle). In this Figure each dot represents 
a Poincare point but it should be remembered that the collection of points which 
form a curve will be from a set of different starts (rungs) and not a single start. 
From these data, one can immediately access the probability of the mooring tower 
attaining subharmonic oscillations under environment loading.

Alternatively, a grid of starts could be used to evaluate the catchment regions. 
Such a task was also completed for the same parameters and included here is the 
equivalent diagram for comparison with Figure (32b). Starting conditions leading 
to the small amplitude n=l solution are indicated by the hatched region, which is 
composed of small crosses showing each trial. Starting conditions leading to the 
large amplitude resonant n=4 solution are indicated by the blank region, trials in this 
region having been made on the same resolution as the crosses.

4.5.2 Surge motion of a moored semi-submersible platform

A second brief example from the field of offshore mechanics concerns the surge 
motions of a floating semi-submersible platform chained to the sea bed by catenary 
mooring lines. These chains exert a nonlinear restoring force on the structure shown
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schematically in Figure (33a). Here the stiffness function K(X) and the local restoring 
force k(x), are obtained by curve-fitting design data using third order polynomials, 
as shown in Figure (33b): note the analogy to a hardening spring restoring force. 
The simplified equation of motion used to model this system is of the form:

rrvc+bx+ k(x) = F0 sin

Again, this problem has been the subject of a detailed parametric study and the 
relevant coefficient values can be found in Bishop and Virgin68. We shall focus our 
attention on a region of parameter values where it has been shown that stable, 
coexisting n=l and n=2 motions persist. Figure (33c) shows the maximum amplitudes 
and the position of the Poincare points as a function of the wave period, while Figure 
(33d) shows the time series and the corresponding phase portraits of the two competing 
steady states when 7=19.7 seconds.

For fixed values of the forcing wave period the catchment regions enclosing 
these alternative solutions can be mapped out as shown in Figure (33e) by tracing 
the inset of the saddle points. A sweep through resonance given in Figure (34) 
shows the relative dominance of the two modes. This clearly bears some resemblance 
to the catchment regions for Duffing’s equation as illustrated in Figure (24). Again 
the subharmonic oscillation has the greater amplitude so that care must be taken 
when investigating this, or any other nonlinear system. Of special concern is that 
we are considering here regions of wave period that might very well coincide with 
design wave conditions away from the fundamental resonance at approximately 
T=44.9 seconds, and yet still achieving dangerously large amplitude motions.

4.6 Simple cell mapping technique

So far we have met several methods which can explore the phase space so that 
the global behaviour of the dynamical system can be explored. However, it is also 
true that they are quite tedious to implement. Like the graphical technique and the 
smoothed Van del Pol plane, they are only practical for simple systems. When we 
deal with problems like fractal basin boundaries, the only real possibility is the grid 
of starts technique. However even for a really coarse grid with 100x100 starts, we 
had 10,000 points, and for each starting point, 50 forcing cycles are required so that
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we can be reasonably sure that it has attained a steady state. Then the total number 
of forcing cycles needed to be simulated will be 500,000. This is tremendously 
expensive even with a high speed super computer such as the Cray. It is with this 
in mind that we have employed the simple cell mapping technique.

Using the grid of starts technique, we have to follow the trajectory of each 
intial condition until a steady state is reached. Thus, on the two dimensional phase 
projection, we can observe a series of dots or Poincar6 points moving across the 
plane until the Poincare point is repeating in a cycle, i.e. a periodic solution. Obviously, 
if we want to uncover the catchment regions, we can cover this phase space with as 
many points as possible and strike a balance between computational efficiency and 
resolution. However, we have no information about points which do not fall on this 
grid so that the final result on the catchment regions will still be an approximation, 
although all the computed points are exact within the numerical accuracy of the 
computer and the integration routine employed.

Since it is impossible to define each and every point of the phase space on the 
grid and then obtain the final steady state of each point as accurately as possible, 
we divide the two dimensional phase space into cells, each cell being a square instead 
of a point. This square covers an area of the phase space, and we assumed that 
every point within this cell would have the same steady state behaviour. Then the 
Poincare map will map one cell into another cell rather than from one point to another 
point. Again, a steady state periodic solution will be obtained when a cell is repeatedly 

mapped onto itself. The advantage of this method can be easily understood. When one 
trajectory is defined on this phase plane leading to a steady state, whenever we 
encounter a cell which lies on this trajectory, we know immediately the final steady 
state of this cell and it is not necessary to apply the Poincare map again. Therefore 
each cell need only be mapped one step forward and the final steady state can be 
determined. Using the same resolution as the grid of starts technique mentioned 
above, we are 50 times faster than the grid of starts technique and consequently we 
can afford to increase the resolution by defining a smaller cell.

This simple cell mapping technique is similiar to Hsu’s cell-to-cell and 
generalized theory of cell to cell mapping but is simplified to enhance efficiency.
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While the generalized theory can deal with more complicated global behaviour, it 
sacrifices computational speed by incoporating probability techniques which defeat 
the origin aim of improving efficiency.

4.7 Computational algorithm of simple cell mapping technique

In this section we describe the basic idea of the algorithm which allows us to 
determine the periodic cells and their domain of attraction in a very effective manner. 
We shall use the same terminlogy as Hsu so that the interested reader can get to 
grip with Hsu’s69'73 generalised theory much more easily.

Periodic motions and periodic cells. Let Cn denote the cell mapping C applied 

n times to form a sequence of K distinct cells Z(j), j=l,2,...K which satisfy

Z{n + 1) = Cn(Z(l)),« = 1,2, -  1

Z(1) = C*(Z(1))

This is said to form a periodic motion of period K. Hence each of the sequence’s 
elements Z(j) is a periodic cell of period K or simply a P-K cell. A P-l cell thus 
have the same period of the forcing frequency.

Sink cell and regular cell. When a cell is mapped outside the region of interest, 
say to a remote attractor, the sequence of mapping is stopped and the cells are said 
to map to a sink cell. This is arbitrarilyssigned as a P-l cell. Cells within the region 
of interest are called regular cells.

The evolution of the system starting with any regular cell Z can lead only to 
three possibilities:

(i) Cell Z is itself a periodic cell of a periodic motion. The evolution of 
the system is simply a periodic solution.

(ii) Cell Z is mapped onto the sink cell after r-steps. Then this sequence 
of cells belongs to the domain of attraction of a remote attractor.

(iii) Cell Z is mapped into a periodic cell of a certain period after r-steps. 
Thereafter, the evolution is locked into that periodic motion. Then this sequence of 
cells belongs to the domain of attraction of that periodic motion.
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In order to differentiate different domains of attraction, it is useful to introduce 
two numbers to delineate the properties of each cell. They are the group number 
G(Z) to distinguish coexisting attractors and the periodicity number P(Z) to identify 
the period of the attractor. To each periodic motion obtained, a group number is 
assigned to every periodic cell of that periodic motion and also to every cell in the 
domain of attraction. A periodicity number equal to this period is assigned to all 
the cells in this group. Hence, the problem presents itself as to determine these two 
numbers for every regular cell when a cell mapping is given.

The algorithm involves processing the cell by applying the mapping 
systematically. For example, for a two dimensional problem, we can use a two 
dimensional array where each element’s position in the array reflects the coordinates 
of the centre of the cell on the phase plane. During this process, we must also be 
able to distinguish three kinds of cells. The first ones are those which have not been 
processed, they can be called virgin cells. The group number of these cells can be 
conveniently set to 0. Therefore a virgin cell Z is characterized by having G(Z)=0. 
The second kind of cells are those which are under processing but the steady state 
solution has not been identified either as a sink cell or a periodic cell. These cells 
can be characterized as having a group number of -1. The third kind are those whose 
group and periodicity numbers have been assigned. Thus G(Z) is characterized by 
a positive integer. Hence, the group number is serving as a flag in computational 
terms.

Starting with a cell Z, we have a sequence of cells produced by the mapping; 
in our problem, this sequence of cells is derived from numerical integration of the 
original differential equation. We have:

Z -> C(Z) -> C2(Z) C (Z )

For each mapping sequence, there are three possibilities for each cell which is under 
processing:

(i) The newly generated element C‘(Z)=Z' is such that its group number 

G(C(Z))=0 indicating that the cell C‘(Z) is a virgin cell. In this case we continue
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to apply the mapping and locate the next cell C ^ Z )  in the sequence. Before doing 
that, we must now set G(C!(Z))=-1 in order to indicate that C!(Z) is no longer a virgin 
cell but one which has been processed.

(ii) The newly generated cell C‘(Z)=Z" is found to have a positive integer as its 

group number G(Z"). This indicates that Z’ has already been processed in a previous 
sequence. Since the current processing sequence has been mapped onto a cell with 
known final motion this sequence of processing can be stopped. Obviously all the 
cells of the present processing sequence will have the same group number as well 
as the periodicity number as that of Z". We can then assign the same numbers to 
the current processing sequence and go back to pick the next virgin cell to begin a 
new processing sequence.

(iii) The newly generated cell C(Z)=Z'" is found to have -1 as its group number. 

This indicates that C\Z) has appeared before in the present sequence. Therefore,
there is a periodic motion contained in the current sequence. In this case the processing

O»
sequence is again terminated. The whole sequence of cells is then assigned group 
number which is one larger than the number of groups which have already been 
determined. The periodicity of the sequence can now be calculated easily. Let 
C(Z) reappear in the (j+l)th position of the sequence, i.e., C(Z)=C(Z), j<i. The 
periodicity of the motion is thus i-j, and all the cells in the sequence will have the 
same periodicity number. Once these numbers have been assigned, we go back and 
pick up another virgin cell to begin a new processing sequence.

Using these processing sequences starting with virgin cells, the whole phase 
space is covered and the global characteristic is determined in terms of the group 
number and periodicity number. Given a set of parameters, even if we do not know 
of any coexisting solutions, or any global characteristic, the whole phase space can 
be uncovered in a fast and efficient way.

In our program implementation, since we deal only with a two dimensional 
phase space, a two dimensional array has been used. For example, if 100x100 cells 
are used to cover the phase space, the array will have the same dimension. Using 
the position of the element in the array, the coordinates of the centre of the cell are 
calculated and put into the numerical integration routine and run for one forcing 
cycle. The result is then checked and the position of the cell which contains this
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point is found and hence the position of the element in the array. The procedure is 
then repeated and a group number is assigned to the elements of the array. To reduce 
the number of arrays required, the decimal part of the number can be used to denote 
the periodicity number and the integer part for the group number.

While the Simple Cell Mapping technique is easy to implement as well as 
efficient, it does has a disadvantage. Once a cell is mapped outside the region of 
interest, it is considered to map onto the sink cell and no information will be availiable 
as to its final behaviour. It can either go to infinity or to an attractor outside the 
region. Therefore, the region under investigation must contain at least one attractor 
so that the corresponding domain of attraction can be located. Now, suppose we 
want to investigate part of a region in detail with an attractor outside this region; 
using a grid of starts technique we can fire off as many points as required and record 
all of their final motions. However, using the Simple Cell Mapping technique this 
is impossible because all the cells will eventually be mapped outside the region and 
considered to be mapped onto the same sink cell. Therefore this method is suitable 
only to investigate the global phase space rather than the global behaviour of a local 
region.

Using the Simple Cell Mapping method we have made extensive studies into 
the global behaviour of the ship-capsize model. It will be seen in a later chapter 
that as this dynamical system evolves, complicated phenomena such as fractal basin 
boundaries appear and the Simple Cell Mapping technique contributes signigicantly 
to the understanding of this type of behaviour.
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5 Steady state solution path-following technique

From an engineering point of view, one of the most useful ways to look at the 
behaviour of a dynamical system is by way of the control phase space diagram. For 
example, given the damping and stiffness, at what forcing parameter will a structure 
undergo resonant vibrations? This type of question can only be answered by a 
thorough parametric study.

In the past engineers have used linear theory and analytical techniques to obtain 
approximate solutionsof nonlinear systems However, large scale compliant structures 
such as an oil platform have inherent large amplitude vibrations so that nonlinear 

effects can no longer be ignored. Typically, a nonlinear equation has no analytical 
solution. The behaviour of the system can only be obtained by a numerical technique. 
A parametric study would then involve varying a control parameter, such as the 
damping, stiffness or forcing amplitude and obtaining the steady state solutions. The 
control phase space diagram can be constructed when the effect of the variation of 
each parameter is obtained. One can see that even for a simple system, parametric 
studies are computationally very expensive. Therefore, engineers tend to extrapolate 
the effect of a control parameter or operate within the range which is thought most 
likely to be encountered. This is perhaps very dangerous as we have observed in 
the examples shown in Chapter 4.

This deficiency has led us to look at the way in which mathematicians and 
theoretical dynamists deal with this type of problem. The introduction of a Poincare 
map and two-dimensional linear mapping theory are just two examples of this cross 
pollination between engineers and theoreticians. In this chapter, we shall introduce 
a steady state solution path-following74,75 technique so that for a given range of a 
single control parameter, the steady state solutions and their stability can be obtained 
with great computation efficiency.

5.1 Formulation of residual map

Consider a dynamical system defined by a Poincar6 map P\ if P(Up) = Up is a 

fixed point of the system, then

P(Up) - U p = 0 (5.1)
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We can formulate this problem as a zero point problem by defining the residual map 
Q as

Q(Ui) = P(Ui) - I (U i) (5.2)

where I is the identity map, i.e.,

W )  =  u t

Then if Up is the fixed point, we have

Q(Up) = P(Up) - I (U p)

=  0

Hence, we shall be looking for a solution such that the residual Q becomes 0.

This zero point problem can be solved using the Newton Raphson method. For 
a one-dimensional system this iterative scheme is given by the equation

/(*,)
f i x , )- ^ 7  (5.3)

Let

A = (5.4)

where A is the correction needed for the next trial solution . Then from equation 
(5 .2 ) we have

0 W i ) ^ W , ) - /  (5.5)

where /  is now the identity matrix and we need the first directive of P.

Consider a two-dimensional phase space with a point (iq, u2) mapped to (vlf v2)
as shown in Figure (35a). Then

Vi = />!(«!, iq)

v2 = P2(u1,u2)
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This is an implicit functional relationship. In our case, the two functions, Px (i=l,2), 
can only be found numerically by time integration. To obtain the derivative of P, 
we consider two adjacent maps as shown in Figure (35b). Hence

Or

(5.6)

Definition16. If f(u0 + h ) - f (u 0) = Mh + e(h)> where M is a bounded linear operator

and 11 e (h )| | /| | h 11 —> 0 as \ \ h 11 —»0, the function/is called Frechet-differentiable 
at the point u0 and we define f ( u 0) = M .

Therefore the derivative P '(£/,) can be linearly approximated by the matrix Pxy

To obtain the coefficients of Py, a small increment h is taken in the direction x such 
that

Similarly, an increment in the direction y gives the coefficients Pn and P22- We are 
now ready to apply the Newton Raphson method to find a fixed point.

Substituting equations (5.4) (5.5) and (5.2) into equation (5.3) we obtain

6ul = h 8^2 = 0

8v
8vi = F  uh =>Pn = —

8v2 — P2\h => P2l — ^ (5.7)

Qi + QiAj = o (5.8)

where
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After solving for A;, the trial solution (14) is then corrected by the amount A, and 

the iteration proceeds until Q~0. When the fixed point is found so that

then the fixed point’s stability can be examined by obtaining the eigenvalues of the 
matrix Pijt see Chapter 2, or from equation (5.5)

The position of the eigenvalues in the complex plane belonging to this two-dimensional 
matrix then determines the stability of the fixed point.

5.2 Path following algorithm

When a system of ordinary differential equations has only one control 
parameter, the steady state solution can be obtained using the residual map as defined 
above. We can proceed in the following manner: having found the periodic solution; 
let that be (C/0,C0), where UQ is a fixed point with the control parameter fixed at C0. 
We can take this as an initial estimate and increase the control parameter C0 to Cx. 
If Cl is close to C0, we have already a good estimate, and we then apply the Newton 
Raphson method again.

This method can be improved if we know how U0 changes when CQ is varied 
in the direction Cx. Furthermore, this improvement is absolutely necessary when we 
want to follow the solution path when it goes through a saddle node bifurcation, see 
Figure (36a). Therefore, we must formulate a path following strategy and this leads 
to a new formulation of the residual map.



We could do as follows: for a specific value of parameter, the periodic solution 
is found as described in the last section. Suppose we find (U0, C0). We then increase 
or decrease the parameter a little (of the order h) and keeping the parameter fixed 
at the new value, a new periodic solution is obtained. Say (C/^Cj). The vector 
tp=(Uu CX)-{UQ, C0) then provides an estimate of the direction of the solution path. 
tp is then converted into unit vector and a step /Zp is taken in the direction of tr  We 
then come to a point v=(Ux, C^+h^. If v turns out to be a point on the solution 
path, then the process is completed. If this is not the case, we must force the Newton 
Raphson iteration scheme to move in a direction orthogonal to tp. Using this method, 
we shall not have any difficulty passing through a saddle node bifurcation as tp has 
no component in the control parameter direction, see Figure (36b). By going orthgonal 
to fp, the control parameter becomes a variable within the Newton Raphson scheme 
and is no longer fixed, i.e. an increment h does not mean an increment in the control 
parameter. What is kept fixed is the linear combination of U and C. In order to 
satisify this condition, the zero point problem must be reformulated which amounts 
to a reformulation of the residual map.

Suppose with a step length /Zp, we have obtain a point v in the direction of tp 
from a given point (U0, C0). We want to find the periodic solution by going orthogonal 
to fp. These two vectors can be obtained conveniently by forming the cross product 
between tp and el as well as tp and e2. Here el and e2 are the base vectors of (x,jc)* 
Let these two vectors be f x and f 2 respectively. Then the new basic, i.e. a set of linear 
independent unit vectors defining the vector space, becomes tp). Therefore v 
will now be varied in the direction f x and/2 rather than (jc, x). Notice that the control 
parameter C is an independent variable, therefore the matrix is essentially 
unchanged: what has changed is the interpretation of the matrix Aj. The coefficients 
in Aj are now the amount that we must change in our original estimate in the direction 
f ,  i.e., we must resolve the corrections needed in x, x  and the control parameter, 
C, directions.

The steplength Zzp should be adjusted automatically in the following manner. 
Suppose i iterations are allowed for the convergence to the periodic solution using 
the Newton Raphson method. If exactly i iterations are needed, the steplength is 
reduced in the next step. If less than i-1 iterations, then the steplength is increased.
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Otherwise, stays the same. Furthermore, hp is controlled by lower and upper 
bound limits, i.e., h^  <hp < /z^. If Newton’s method does not converge in i steps, 
then /ip is again reduced.

Once we find the periodic solution, we can determine its stability by finding 
Py. This is done by running the iteration one more step but using (ex, e2) as the 
basis.

5.3 Validation of the path following algorithm

The periodic solution obtained from the path following technique can be checked 
by comparing the solution using time integration. The results have been found to 
be the same within seven significant figures. One of the important feature of the 
path following technique is that it can calculate the local linearized eigenvalues of 
the periodic solution. The accuracy of this feature is very important since it directly 
affects the result of the periodic solution as well as prediction of any imminent 
bifurcation. This again can be checked indirectly by comparing the numerically 
obtained Jacobian with the analytical solution.

Consider now a two-dimensional flow given by:

x = f(x ,y )

y = g (x ,y )

Expanding locally at any given point using Taylor series and neglecting any high 
order terms, we have:

x =L+Ax + By 

y =M + Cx +Dy

hence



If we look at the flow of a small triangle in time At as shown in Figure (37a), 

we can obtain the rate of change of its area in the following manner.

Original area =J L M = ̂ -8x8y
£

Final area = J 'U M '

= \ {(5x +A 8xAr) (5y + D 8yAr) -  (B&y da) (C&tAr)} 

= i  {1 + AD At2+D At + A At -  BC Af2} 8x8y

By dropping the second order terms, we have:

Final area =^Sx5y(l +AAt+DAt)

The rate of change of area is therefore:

darea _ Final area -  Original area 
dt Ar

= l&x8y(A+D)

.dx dy
= {area)^ Y y

Generalizing this to three dimensions we have:

dVolume . \d x  dy dz= (Volume) \ —  + zfL +
dt dy dz

where the term

dx dy dz 
dx + 3y + dz
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is the divergence of the three dimensional flow. The divergence of the escape 
equation can be calculated as follow:

which gives

x + fix + x -  x 2 = F sin cor 

x = y  

y  = - $ y  - x  + x 2+ F  sin cor 

z =t = 1

i - «

Hence the divergence is found to be

div = -p

Therefore the divergence in this case is independent of x and y or any control 
parameter except p, the damping. The volume of flow at any time t with respect to 
the flow at t = t0 can now be obtained by integration, i.e.,

dVolume ,
— —---- = -p  Volume

=> Volume = (yolume)0e~̂ t

Since all trajectories keep step in time, a disc of thickness 51 remains a disc of 

thickness 8t: therefore volumes can be interpreted as areas:

(New Volume) = (Old Volume) e~̂ ‘

or
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Areai+fit -  Area fit e ^ 1

Areai+i 
Areal 6

As we sample the flow using Poincar6 mapping technique, the integration can be 
performed over a length equal to the period of the forcing frequency. Hence the 
area ratio is given by

Area i+j 
Areai 6

2ft
where T  = —

co

Consider now the area ratio of a two-dimensional mapping defined by

y, + i = G(x,,y,)

Again, we can expand the functions and retain the linear terms at any point to obtain

Xi+1 = Z + aXj+6 y,

y,+1 = m + cxi + dyi

where

d*i + l , a*;+i

C dyi

c J y ±  (5 .9)
dx, dy,

Mapping of a triangle JLM shown in Figure (37b) leads to
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Areau i  =-{a&cid5yi -bSy,cSx^

= 2 &c$ y‘{a d ~ bc} 

= Areai{ad -be}

Areai+l
Arecii

= ad -b e

Comparing equation (5.9) with equation (5.6), we see that the term (ad-bc) is just 
the linearized Jacobian of the functions F and G, and a, b, c and d are the coefficients 
of Py. If this is evaluated at a fixed point the eigenvalues of the matrix

a b
-C d_

describe the stability of the fixed point. Furthermore, by letting

T - a  +d 

D -  a d -b c

The product of the eigenvalues can be expressed as

x,x2=i(r+Vr2-4D)i(r-Vr2-4D)

= i  {T2 -  (T2 -  AD)}

=D

We can now equate the area ratio of the map which we can obtained numerically, 
with the area ratio of the flow, which has been obtained analytically by integration 
over a period of time equal to the period of the forcing.

Areai+X -p- 
„ =e “= D = X X  Area,■
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Therefore, for a given value of (3 and co, the product of the eigenvalues of a fixed 

point is a constant. Furthermore

I f  Xx = a + i$  ^  = a  -  /13

'kx\ 2 = o? + $'

= (radius)2

Hence if the fixed point’s eigenvalues are complex, they describe a circle in the 
complex plane with a radius equal to

radius =

For p = 0.1 and CD = 0.85 the value of D is 0.4775 and the radius would be 0.691. 

This is confirmed by the path of the eigenvalues on the complex plane as shown in 
Figure (38) obtained numerically using the path following technique.

5.4 Application

The path following algorithm not only allows us to explore the control phase 
space of the ship capsize problem presented in Chapter 7. The residual map also 
helps us to locate the saddle point with ease such that the global characteristic of 
the state space can be investigated by tracing the inset of the saddle. One of the 
great advantages of the path following technique is that it can also calculate the local 
linearized eigenvalues automatically and any imminent bifurcation can be noticed in 
advance.

Some of the path following works are shown in Figure (39). This series of 
diagrams is one of many that we have done in order to construct the control phase 
space with the forcing frequency and forcing amplitude as the control parameters. 
For these diagrams, the computer is instructed to stop the algorithm once a flip 
bifurcation occurs, i.e., one of the eigenvalues becomes -1. The program then 
automatically increases the forcing amplitude slightly and runs until a steady state 
solution is obtained. Hence a period doubling cascade and the whole path of the
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saddle solutions are obtained. The two diagrams in the middle have in fact a casade 
of period doubling close to one end of the unstable path, but the ranges are just too 
small to be visible in this scale.

Notice the solution paths at co = 0.4 and CO = 0.5 are widely different and studies 

at finer increments of co are shown in Figure (40). It is precisely this capability of 
the path following technique to produce the whole solution path with ease that is so 
valuable in our work. Instead of taking weeks to get the same path it now takes 
only hours. In Chapter 7, we shall show that this technique has hdp*i\xs to locate 
special features like the remerging Feigenbaum tree as well as conduction of part 
of the control phase space.
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6 Predicting an incipient jump to subharmonic 
resonance

When designing structures to withstand dynamic loadings such as wind or wave 
action, the major concern is to avoid resonance. To simplify design, engineers often 
use linear dynamical theory to ensure that fundamental resonance can be avoided. 
However structures of compliant type such as those designed to operate in the 
North-Sea have inherent large amplitude vibration so that their behaviour is nonlinear 
in nature. This nonlinearity means that coexisting solutions and subharmonic 
resonances are possible. The high amplitude subharmonic response is especially 
dangerous so that any method to predict this type of behaviour must be considered 
valuable to engineers. We explore in this chapter some possible prediction techniques 
for a jump to subharmonic resonance. These techniques have been shown to work 
extremely well under a variety of computational situations, when applied to the 
simulation of an oscillating articulated mooring tower approaching the potentially 
dangerous subharmonic resonance.

Studies of the behaviour of compliant offshore structures are well suited to the 
Poincare mapping technique when one assumes that the exciting force is periodic. 
A steady state of stable, periodic oscillation will manifest itself as a fixed point on 
the displacement-velocity plane, or the phase plane. A jump from the fundamental 
response to subharmonic resonance corresponds to a flip bifurcation in dynamical 
systems theory. After the bifurcation there will be two fixed points in the phase 
plane. This type of bifurcation is easily modelled locally by a discrete two-dimensional 
linear map of the type discussed in Chapter 2. Our prediction techniques are based 
on the fact that when this steady state solution bifurcates from an n=l fundamental 
response, where n is the periodicity of the response, to a n= 2  subharmonic solution, 
it must do so via the flip bifurcation in accordance with the mapping theory. While 
we cannot construct a mapping equivalent for our flow problem, nevertheless, the 
transient response of the structure produced by numerical integration can be sampled 
using the Poincare mapping technique. Hence one can observe the local 
two-dimensional linear map’s eigenvalues going through the unit circle and passing
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-1 in the complex plane as the bifurcation occurs. By monitoring the eigenvalues, 
we can predict the imminent bifurcation as well as the critical control parameters by 
extrapolation.

In practice, the only information available from a dynamical system is its time 
history. Therefore we must look for a way in which the information needed for 
analysis can be extracted from the transient response rather than the steady state 
solution. In a practical situation, any dynamic loading is more likely to be irregular 
in nature and the structure is less likely to have any chance to settle into a steady 
state oscillation. In our investigations we have attempted to create this effect by 
including a random slam load on top of a regular sine wave. Therefore any 
equilibrium state will be perturbed to produce a transient motion. This transient 
motion is then analysised quantitatively to produce a prediction. A further 
complication in a real life situation is the possibility of an ever changing dynamic 
loading, typically in the form of a gradual increase in the forcing amplitude, i.e., an 
evolving state. Therefore, we should also take into account this type of situation.

6.1 The articulated mooring tower

The articulated mooring tower is essentially an inverted pendulum, pinned to 
the sea bed and standing vertically in still water due to its own buoyancy. It is used 
for loading oil products to tankers from the deep offshore installations, as sketched 
in Figure (41). A massive tanker moored to such a tower is essentially a fixed object 
during the tower’s oscillation. Periodic slackening of its mooring line generates a 
discontinuity of stiffness providing the necessary ingredient for the existence of 
subharmonic resonance typical of a nonlinear system. Notice that we shall only 
consider the case of just-tight mooring. The more typical tensioned and slack moorings 
bring with them greater complexity, and will be ignored in the present investigation. 
The restoring force on the tower during oscillation is thus due to ‘buoyancy plus 
mooring line’ in one direction, and just buoyancy in the other. In each half of the 
phase plane separated by the stiffness discontinuity, the behaviour is linear, hence 
we shall refer to our mathematical model as the bilinear oscillator. Comprehensive 
studies of the bilinear oscillator leading to the discovery of continuous coexisting
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small amplitude solutions under all subharmonic resonances as well as chaotic 
non-periodic motions can be found in references listed67,77,78. Analytical studies of 
Shaw and Holmes79,80,81 on the bilinear and impact oscillator should also be mentioned.

It has been shown that the bilinear oscillator can be modelled in a 
non-dimensionalised form as:

X + 2—X +KX  =-^-sinx
n  n

where a dot denotes differentiation with respect to time (x), X  represents displacement, 
£ is the damping factor, rj is the frequency ratio, K{ is used to denote whichever of
Klt for positive displacement, or K2, for negative displacement, is appropriate for the
domain under consideration and:

Kx = (1 + Va)/4ari2 

AT2 = (l+Va)/4Tf

where a  = fyk^ is the stiffness ratio while kx and k2 are the stiffnesses for positive 

and negative displacement respectively.

For each domain, the solution of the non-dimensionalized equation of motion 
can be written in the form

X = X a+Xb (6.1)

where X& and Xb are the complementary and the particular solutions, respectively. 
The particular solution is of the form

Xb = M sin x+N  cos x (6.2)

where

K -  1
M = —-------- ^ ---------- -

ti2[ ( ^ - 1 ) 2 + (2C/ti)21

and
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N =
~2Cjr\ 

ri2[(Ar, — l )2 + (2 C/TJ)2!

(6.3)

The complementary function Xk can be written as

Xa = e~^(A  sin codT+B cos cô x) 

where the damped circular frequency, appropriate to either domain, is

cô = VK-(C/Tl fl

and the coefficients A and B, dependent on the initial conditions (X0, X 0, x), are 

reset at every switchover from one domain to the other.

Substituting equation (6.3) and (6.2) into (6.1) and assuming the initial conditions 
to be (X0, X 0, x) , the two coefficients can be evaluated as

A = e^{(X 0 - M sinx - N  cos x) sin co/c

1 . C f
+— [Xo+-*o + (od 0 ri N - - M

„ ■n .

sinx- M +—N  
. 11 J

cosx] cosco^x}

B = e ^ { ( X 0 -  M sinx - N  cos x) sin co/c

f  r ^
/ - X  

*n
[x„+^x„+cô  ri V /

sinx- c
\

M +—N
V n )

COS x] COS COjX}

The digital computer program was written to detect the stable steady-state solutions 
of the bilinear oscillator given the initial conditions (X0, X 0, x), the frequency ratio 
T|, the damping ratio £, and the stiffness ratio a. In this particular study, the following 
parameters will be kept constant at; a = 10 ,£ = 0 .1, while rj will be the control 
parameter that will be varied.
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The program uses the exact solution X(x) for each half of the phase space, and 
evaluates this at very small increments of time. It then determines accurately the 
state at which the switch from one stiffness to the other occurs by solving a 
transcendental equation numerically. In doing so, it initializes a new set of initial 
conditions for the next half of the phase space. This process is repeated until a 
periodic solution is detected.

In the case of an evolving sea-state, the parameter rj is put as a function of the 
non-dimensionalised time x in the form

Ti=Ti0 + rT

where r is the evolution rate and T|0 is the initial frequency ratio.

As we sample the transient periodically, any excitation introduced will be at 
the beginning of a cycle. This will be in the form of a sudden increase in the velocity. 
A random number generator is used to produce the effect of an excitation with 
irregular amplitude as well as the time when this excitation occurs.

A typical resonance response curve for this dynamical system with the above 
control parameters is shown in Figure (42). We shall now focus our attention on 
the transition from the fundamental response to the subharmonic resonance via the 
flip bifurcation in the region where the control parameter r\ is approximately equal 
to 1.5.

6.2 Poincare maps and mapping techniques

Due to the periodicity of the forcing, transient responses of the bilinear oscillator 
are sampled using the Poincare mapping technique and analysed using 
two-dimensional linear mapping theory. Making use of the fact that when a flip 
bifurcation occurs, one of the corresponding local linearized eigenvalues will go 

-1, the problem presents itself as follows; for a given set of control parameters, 
find the eigenvalues from its transient response.

While our flow problem has no explicit mapping equivalent, our sampling 
method produces a sequence of points (Poincar6 points) in the (x,x) phase plane 
which will converge to a fixed point corresponding to a periodic steady state if the
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system is stable, or diverge if the system is unstable. The relationship between two 
successive Poincare points may be governed by complex nonlinear behaviour, but 
close to the fixed point we can approximate the dynamics by a two-dimensional 
linear map of the form:

Xi+i = <*Xi+by;

yu i = cxi + dyi (6-4)

where xx and are coordinates in the phase plane such that the fixed point is centred 
at the origin. We shall not repeat here the stability criteria of a two-dimensional 
map as discussed in Chapter 2. The problem here is to calculate the four coefficients; 
a, b, c and d such that the eigenvalues of the Jacobian matrix:

H =
fa b^

can be found.

We have assumed that the sampled points are described by equation (6.4). 
Therefore, using three successive mapping points from a transient trajectory, the four 
coefficients of the linear matrix can be found by solving a set of simultaneous 
equations:

•*i+i =«•*,•+*y,• 

y,+i = cx,+dyt 

xi*2 = “xu , + b y ^ 1 

yn-2=cxu i +dyu i

whereXi(i=l,2,3...) are known from the transient trajectory using numerical integration 
technique. Noticed that the origin of the coordinate system must always be moved 
so that it coincides with the fixed point. This is done here by first obtaining the 
steady state Poincare point before any perturbation is given. After the elements of 
the linear matrix have been found, the eigenvalues and eigenvectors can be obtained. 
This method involves three Poincare points, hence we shall refer to this technique 
of tracking the transient as the three-point method.
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The three-point method is a somewhat theoretical approach since it is unusual 
to know, a priori, the exact location of the fixed point. We can go around this 
problem by using one extra Poincare point. Assuming the steady state Poincare point 
is (xe,ye)> then the coordinate system can be displaced so that the point (xe,ye) becomes 
the origin. Since Jte and ye are unknowns, we need to introduce two more equations 
into the system of simultaneous equations as shown below:

*i+i - x .= a (x t - x j + b i y . - y , )  

yui-y. = C<X -x.)+d(yi-y.)

~x.)+b(yu l - y . )  

y.+i-y. = c(*i+1 -x .)+ d(y i+i- y . )

X i^ -x ,= a (x i+2- x t) + b(yU2-y , )  

yi* 3 - y .  = c(Xi+2 - x ,)  + d(yU2-  y.)

This technique of approximation, which we shall refer to as the four-point method, 
would be used for instance when considering the transient motion of the articulated 
mooring tower under an evolving sea-state. In this situation, there is no steady state 
although the system will oscillate very close to a corresponding locus.

After evaluating the linear map we can determine the nature of the stability of 
the system by calculating the eigenvalues of the Jacobian matrix, H. The eigenvalues 
can be conveniendy found in terms of the trace and determinant of H given respectively 
by:

T = a+ d

and

D = a d -b e

so that

\ 2 = (T±'1t 2-4D)/2
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Now suppose that under the action of a changing sea-state, the coefficients of 
the linear map in equation (6.4) vary so that the eigenvalues describe a path in the 
complex plane. If the eigenvalues are both real, one of them can cross the unit circle 
at -1, producing the flip bifurcation or a jump to subharmonic resonance of order 2. 
The other possible routes to instability will not concern us here82.

As the dynamical system tends to exhibit its bifurcational behaviour on the 
eigenvector associated with the critical eigenvalue, i.e., the eigenvalue with the largest 
absolute value, it seems reasonable to further simplify our approach and reduce the 
system to one dimension that also preserves all the qualitative properties of the two 
dimensional map. This can be achieved through the center manifold idea60, rather 
like the principle of eliminating any passive coordinates. The reason why 
multidimensional dissipative systems become effectively one-dimensional is due to 
the difference in the rate of convergence in different directions. The direction of 
the slowest convergence defines a one-dimensional line which will contain the 
attractor. Physically, this suggests that the transient response of the system in the 
two-dimensional phase space is being rapidly sucked close to the critical eigenvector, 
i.e., the center manifold, which is one-dimensional. After this, the convergence is 
slowed down. In this way, we can view the transient as predominantly 
one-dimensional.

However, one must realize that when the control parameter is varied, the 
eigenvalues of the two-dimensional linear map can start off as being a pair of complex 
conjugates and then change into to a pair of real values. In Figure (43), the Poincare 
points are joined together by a straight line to show the trajectory. It can be observed 
that these trajectories change gradually from a spiral to an oscillatory fashon when 
the control parameter approaches the bifurcation point. In fact one can also notice 
this characteristic from their time histories. Figure (44) compares the difference 
between a spiraling and an oscillating trajectory. Notice that the time history is 
obtained from the Poincare points and not the trace for a complete cycle. The time 
history on the top diagram shows that each cycle took three steps corresponding to 
a triangular spiraling orbit shown on the right. In the bottom diagram, each cycle 
took only two steps corresponding to an oscillatory orbit. If we look at the time 
history of a complete cycle rather than using the Poincare points, this characteristic 
will not be observable.
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From a computational point of view, this rapid convergence creates problems- 
When the Poincar6 points are oscillating close to the centre manifold, or the critical 
eigenvector, the equations for the solution of the two-dimensional linear map becomes 
singular. So whenever the transient comes near the centre manifold, the system of 
simultaneous equation becomes ill-conditioned. However, if we approximate the 
behaviour of the Poincare map to be linear and one-dimensional, we can expect the 
critical eigenvalue calculated using the transient response to vary and then settle into 
a steady state when the oscillations occur near the centre manifold. Hence, we can 
say:

*,+i = v ,

We require | X |j< 1 for stability, and a sequence of values for X1 using successive

Poincar6 points can be found. We shall refer to this technique of approximation as 
the ‘centre manifold’ method. This technique is shown to work extremely well in 
getting a steady value of the critical eigenvalue as summarized in Figure (45).

To eliminate any doubt as to whether the Jacobian matrix H calculated using 
the three or four-point method does correspond to our flow problem, a simple test 
is devised. For a value of the control parameter we can calculate the coefficients 
of the matrix and obtain the equation of the eigenvector. Since any initial start on 
the eigenvector will oscillate along that vector only, we can then use the eigenvectors 
to calculate two initial conditions on both the eigenvectors and look at the transient 
trajectory that is produced. Figure (46) shows our results: the oscillation remained 
essentially on a line, revealing the eigenvector and implying that our two-dimensional 
discrete model provides a good simplification of our non-linear flow problem close 
to the fixed point.

6.3 Predicting subharmonic resonance

Figure (47) shows both the three-point and the centre manifold methods for 
two chosen values of the control parameter, rj. The three-point method gives solutions 
for both eigenvalues. When the control parameter is close to the flip bifurcation 
point (this is indicated by the eigenvalue getting closer to -1) the estimates can be 
seen to diverge. This is because the difference between the two eigenvalues becomes 
large and the trajectory is rapidly attracted to the centre manifold so that
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ill-conditioning of the equations occur as explained earlier. When this problem 
occurs, it is possible to use the centre manifold method to estimate the critical 
eigenvalue as shown in the figure. It can be observed clearly that the approximation 
of the critical eigenvalue settles down into a steady value as predicted.

A peculiarity of the equations used in the three-point method is that, while 7^

diverges as expected, the critical eigenvalue [restabilizes after initial divergence to 
those obtained using the centre manifold method. In fact, a similar problem is also 
encountered when using the four-point method. Figure (48) shows the estimate of 
the eigenvalues using the four-point method with the same control parameters. Again 
X2  diverges as expected, and Xl is restablized after the divergence.

Let us now consider the bilinear oscillator subjected to a sequence of random 
impulsive loads with variable amplitude and at random times. Using the three and 
four-point methods we can expect that far away from fixed point it will be possible 
to detect easily both of the eigenvalues. While relatively close to the fixed point it 
will be more difficult to detect the non-critical eigenvalue, as discussed above. 
However, it may still be possible to obtain an approximation of the eigenvalues using 
mapping points which are not close to the centre manifold, as we can see in Figure 
(49).

Using either the three or four-point method it is thus possible to compute 
eigenvalues for increasing increments of the control parameter as the dynamical 
system approaches the bifurcation. Bifurcation from the fundamental n=l path to 
the subharmonic n=2 paths at T| = Tjc is shown in the top diagram of Figure (50). 
This bifurcation can be observed equivalently by the movement of the critical 
eigenvalue on the T-D plane as shown in the bottom diagram of Figure(50). 
Variation of the eigenvalues with the control parameter, rj, in the middle diagram 
shows that when the eigenvalues become real the dynamical system moves quickly 
towards the flip bifurcation at T|c = 1.5486.

To simulate a practical situation, it is necessary to consider an evolving system 
in which the frequency, t|, becomes a function of time. To analyse such a situation, 
the four-point method must be used since there is now no information regarding the 
steady state solution. In fact, there is strictly no steady state solution under an 
evolving state. Figure (51) shows the results using this method with two different
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evolution rates, r, as indicated. The top diagram shows the impulsive load introduced 
in a deterministic manner. Using the transient produced after each impulsive load, 
the four-point method seems to produce a satisfactory result in calculating the critical 
eigenvalue. It can be observed that the path of the critical eigenvalues cuts the 
A*!= —1 line at 11=1.5486, exactly the same as the result we have observed earlier.

The bottom diagram is perhaps a more realistic case where an impulsive load 
is generated at random in terms of both amplitude and frequency. Although the 
calculated eigenvalues are more irregular, the result for both evolution rate gives the 
same ri value.

From our investigation, it can be seen that given such information as the 
movement of the eigenvalues in the complex plane, it is possible to predict at what 
control parameter the bilinear oscillator will bifurcate from a fundamental to a 
subharmonic response. Hence, if one can extract the relevant information from the 
transient response of a "structure", for example; obtaining the Poincare sampling 
points, it is possible to predict the incipent bifurcation.

The techniques introduced in this chapter form the early stage of research into 
the application of dynamical system theory to the problems encountered in modem 
compliant offshore structures. They are intended to provide a means of extracting 
useful information so that the onset of potentially dangerous oscillation can be 
predicted and even avoided. Obviously in a complex real life situation, more 
sophisticated methods should be employed. Nevertheless, these theoretical studies 
clearly can be useful when, for example, guiding laboratory or computer simulations.
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7 Chaotic dynamic of ship rolling response under 
beam sea

In Canada during the seventies, it was reported that several fishing vessels had 
capsized unexpectedly in sea conditions that were not thought to be particularly 
hazardous. Artec Canada Ltd. were consulted, and asked by the Canadian Government 
to prepare a report on the dynamic stability characteristics of typical hull shapes, to 
see if advanced computer simulations could help in the formulation of new design 
regulations for these small vessels. Two 150 ton fishing boats of different hull forms 
were studied83, with ‘hard chine’ and ‘round bilge’ characteristics respectively.

The AQWA suite of hydrodynamic programmes employed were those developed 
by Atkins R&D of the United Kingdom for the offshore energy resources industry. 
These treat each boat as a rigid body with its full six degrees of mechanical freedom. 
Typical forms of hydrodynamic analysis being developed by the Atkins group can 
be seen in the work of Rainey84.

While the physical aspect such as the hull shape is important in the design of 
a vessel to withstand capsize, the dynamic phenomenon which triggers the capsize 
has not yet been fully investigated. In order to understand the basic underlying 
principles, we shall start by formulating the simplest possible model so that it would 
give us a better insight into the problem and from then on a more sophisticated model 
can be developed.

In the simplest possible way, the capsize of a ship in lateral ocean waves can 
be modelled by an equation85'87 of the form:

mx +bx+ GZ = FsinCDt

where x  is a measure of the roll angle. The constant mass here is taken to include 

the added mass in roll, b is an equivalent linear damping coefficient usually evaluated 
empirically in still water conditions, and GZ is the restoring force provided by the 
stiffness of the vessel: in an ideal situation the GZ curve will be a symmetrical
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function of the roll angle but in reality a vessel is usually biased in some way so 
that it has a propensity to capsize in one particular direction. This bias term, B , is 
incorporated into the GZ curve such that:

GZ=B+g(x)

This bias could possibly be due to a shifted or unevenly distributed cargo, 
environmental loading, or perhaps even damage.

Excitation of the vessel by wave action is clearly irregular or stochastic in 
nature. However, an alternative approach is by way of the so called design wave 
method. In this method, a regular or sinusoidal wave having an amplitude F assumed 
to be the worst possible occurrence in 100 years of sea-state is employed. This type 
of analysis coincides with our simplistic approach which takes the excitation as purely 
sinusoidal. As the fishing vessels capsized in sea conditions which at the time were 
not thought to be rough or hazardous, the forcing amplitude will here be increased 
slowly from a small value until criticality so as to observe the dynamical behaviour 
of the system.

The governing potential energy function, V, for typical unbiased and biased 
systems, found by integrating the stiffness curve GZ, has been schematically drawn 
in Figure (52). In this figure a stable equilibrium point is envisaged as a ball shown 
blacked-in resting in a potential well, and similarly with a white ball on the hill-top 
depicting an unstable point. Also shown in the figure is the (x, x) phase portrait 
for the undamped unforced counterpart to this problem. In this simplistic situation, 
capsize of the vessel can be thought of as the ball being forced by the excitation to 
oscillate, such that it surpasses the unstable position and rolls out of the potential 
well to infinity.

To examine a probable mechanism which triggers the capsize, the biased system’s 
GZ curve local to the capsize region is approximated by a quadratic expression. The 
main reason for this approximation is computational expedience since many thousands 
of integrations will be performed in the computer simulation. After a rescaling of 
the time and roll angle, we shall focus our attention on an equation in the form:

x  + $x + x  -  x 2 = F sin cor
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which we shall refer to as Thompson’s single potential well model.

The global behaviour of Thompson’s capsize model without forcing for a lightly 
damped system is sketched in Figure (53). The catchment region is the white area 
where all motions flow onto the equilibrium point as time evolves. If we now 
consider the system to be excited by a small amount of external force, then the 
equilibrium point becomes a periodic solution and the saddle point now becomes a 
saddle cycle. In this case, where the forcing is non-zero, the dynamical behaviour 
is examined via the Poincare sampling technique and so the phase portrait shown in 
the figure is now not that for a flow but a map. It should be noted that, because of 
the need for continuity, for arbitrary small forcing F, the qualitative structure of the 
phase portrait of the map must be the same as that of the flow.

7.1 Pilot studies of the ship capsize model

For a given value of damping, in our model, at what value of forcing will the 
ship capsize and furthermore by what mechanism? To answer these questions, we 
shall keep the damping a constant and put the forcing amplitude F as a slowly varying 
function of time. Physically, this represents a changing or evolving sea-state and 
the slowly evolving forcing also serves as a reasonable indicator for the situation in 
which the exciting force is kept constant.

Investigations using this technique are shown in Figure (54) with the linear 
damping, p, constant at 0.1. This diagram shows the time histories of the roll motion 
of the vessel at various values of the forcing frequency, co. Notice that, following 
the rescaling procedure the point at which x  = 1 is when capsize occurs.

From Figure (54), it can be observed that below co = 0.83, capsize happens well 

before x  reaches 1. The phenomenon occurs as a jump in the response of the system 
and there is no warning of the impending disaster. Above 0) = 0.83, this jump is 
restabilized at a higher amplitude and the response again increases steadily until 
another phenomenon occurs. This time, capsize happens after an irregular rolling 
motion has developed and again there is no warning. Although the amplitude of the 
rolling motion is higher, it is still below x = 1. Thus any attempt to predict capsize 
based on the increasing amplitude would surely overestimate the time to capsize by 
a considerable amount.
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To understand these phenomena, the resonance response diagram of the 
dynamical system must be investigated. Here, the path of the fixed point in the 
phase plane, corresponding to a periodic solution at a fiy^alue of the forcing amplitude 
is followed with increasing forcing amplitude until the ship is capsized. Some typical 
examples are given in Figure (55) where the displacement of the Poincare points are 
plotted against the forcing F. (Note: the displacement of a Poincar6 point is not the 
same as the maximum amplitude of the response).

From this figure, it is clear that capsize can be caused by one of two mechanisms. 
If the forcing frequency, co, is at or below 0.8, the jump to capsize is due to a fold 
catastrophe where there ceases to be a local attractor or stable solution. At higher 
values of forcing frequency, a stable region has emerged. The jump phenomenon 
due to the fold catastrophe is restablized because of the presence of this stable 
solution. Further increase in the forcing amplitude leads to a cascade of period 
doubling and eventually a chaotic attractor emerges. However, the chaotic attractor 
disappears quickly, i.e. the ship capsizes, without any indication whatsoever. In the 
case where co = 0.8, the chaotic attractor coexists with the stable n=l periodic solution. 
When the chaotic attractor is destroyed the motion is restablized onto the periodic 
solution. Other features we have observed in this stage is the pulling apart of the 
solution path so that the hysteresis feature disappeared at CD = 0.95. This explains the 
disappearance of the jump phenomenon on the last two diagrams of Figure (54) 
where co=0.93 and 0.94 respectively. Also, it is not true that below the critical 
forcing amplitude where capsize occurs, any perturbation given to the system will 
restablize to the steady state periodic solution. We have observed that even a small 
perturbation can lead to capsize when F is well below critical as we shall see in 
later sections.

7.2 Predicting Escape using analytical and statistical methods

As our simple mathematical model for the capsize of a ship can be visualized 
as a ball rolling out of, or escaping from the potential well, we shall refer to capsize 
as escape from now on.

Our attention will for the moment focus on the parameters where co = 0.85 and 

(3 = 0.1. At these values of parameters the system exhibits all the interesting 
phenomena, namely the fold catastrophe and chaotic attractor just before capsize or
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escape occurs. We shall not concern ourself when the escape is caused by the fold 
catastrophe where no local attractor exists, since this type of dynamical behaviour 
can be predicted using the local linearized map of the dynamical system and research 
has been conducted by our colleague L.N. Virgin60. Our main concern here will be 
to find out the mechanism which triggers the capsize after a chaotic attractor is 
developed.

Figure (56) shows the path of the fixed points (displacement of the steady state 
Poincare points) with increasing forcing amplitude together with the unstable fixed 
points or direct resonant saddles. At these values of parameters, escape occurs at 
F = 0.109...: the cascade of period doubling leading to a chaotic attractor is not 
observable at this scale. Further enlargement of the cascade is shown in Figure (57). 
Here, the unmistakeable hallmark of chaotic attractors, namely, period doubling and 
periodic windows can be observed clearly. To further substantiate our claim that 
this is indeed a chaotic attractor, the Poincare sections will be plotted at different 
phase angles, <j>, to examine how its topological structure varies with changing phase 
angle. Figure (58) displays a sheared Van der Pol plane showing 80 Poincare sections 
at 4.5 degree interval. It can be seen from the figure that the attractor is a two band 
or period two chaotic attractor, (i.e. any initial start on one band of the attractor will 
return to the same band after two forcing cycles). The typical folding and mixing 
actions can be observed clearly. If we follow the progress of any one point for a 
duration of two forcing cycles, we find that the trajectory will form a Mobius band. 
This is in fact not accidental but a feature of a flow problem. Since the inset of the 
period two inverting saddle forms a virtual separatrix between the two band chaotic 
attractor, and its local two-dimensional linearised map has a pair of negative 
eigenvalues, each point will be mapped across the inset and outset as shown 
schematically in Figure (59a). However, in a flow problem we cannot have crossing 
trajectories, so the three dimensional phase space must be twisted in such a way that 
the flow is able to cross the inset and outset without the trajectories actually crossing 
each other. This is shown schematically in Figure (59b), which is in fact a Mobius 
band.
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7.2.1 Blue Sky Catastrophe and Melnikov’s method

Let us now investigate how a chaotic attractor can disappear suddenly. Returning 
to Chapter 1 for the bifurcation diagram classified by Thompson et al, Figure (7) 
shows clearly that the only possible way for a chaotic attractor to disappear is via 
the chaotic Blue Sky Catastrophe24,88. It is called Blue Sky Catastrophe simply 
because the original attractor (not necessarily chaotic) suddenly disappears into the 
blue. The simplest example which occurs in a flow problem has been discussed in 
Chapter 1 and illustrated in Figure (6): this shows schematically a sequence of phase 
portraits leading to the bifurcation. Below the critical value there exists a limit cycle, 
the shaded region is the catchment region for this periodic solution. The inset of 
the saddle is the separatrix. As the control is varied, the saddle moves closer to the 
limit cycle until they touch and form a homoclinic orbit. This homoclinic connection 
may be though of as a limit cycle of infinite period; by increasing the control further, 
the limit cycle has ceased to exit since the inset is no longer a separatrix and all 
motion goes to the remote attractor.

In a one dimensional map such as the quadratic map studied by Grebogi51, the 
separatrix is the saddle itself, therefore the Blue Sky Catastrophe occurs when the 
saddle collides with the attractor. This is in fact what happens in Grebogi’s interior 
and boundary crises where a chaotic attractor collides with a saddle. However, in 
a phase space of more than one dimension, the basin boundary is the inset, not just 
the saddle itself. Thus a Blue Sky Catastrophe can happen as an attractor touches 
the inset without touching the saddle itself.

To understand this type of bifurcation, a good example can be found in 
Abraham’s paper24. In his paper, he demonstrates that the Birkhoff-Shaw strange 
attractor is destroyed when the inset of the saddle cycle touches the chaotic attractor. 
Since in this case, the inset also touches the outset of the saddle cycle, this bifurcation 
coincides with the homoclinic tangency of the invariant manifolds.

Tangency giving rise to transverse intersections between manifolds can occur 
between the inset and outset of two different saddles or the same saddle (as the case 
above), and is known as heteroclinic and homoclinic tangency respectively. Carles 
Simo89 also distinguishes between inner and outer heteroclinic tangency. This will 
become clear later in our investigations. After the tangency, there begins an extensive
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and complicated interweaving between the inset and outset, giving rise to the famous 
homoclinic or heteroclinic tangle. Because of the tangle, points which are originally 
inside the catchment area bounded by the inset are no longer guaranteed to map onto 
the steady state periodic or chaotic solution. The basin boundary has changed from 
smooth to being fractal52,90-92. Points which are trapped by the tangle would be 
mapped chaotically in the phase space before they can emerge from the tangle, thus 
the term ‘chaotic transients’. The long term behaviour can no longer be predicted 
in a short time.

An initial approach here is then to determine whether the disappearance of our 
chaotic attractor is due to the homoclinic tangency of the global (hilltop) saddle. To 
this end, we use the Melnikov method. In simple terms, Melnikov’s method provides 
an analytic expression for the parameter values at which homoclinic tangency occurs,
i.e., when the outset and the inset of the saddle first touch. If the controlling parameter 
is varied still further, a homoclinic tangle ensues in which the inset and the outset 
must now intersect an infinite number of times due to recurrence.

Using the Melnikov’s93 method, an analytical expression for the critical value 
of the parameters in which homoclinic tangency occurs is given by the relationship:

_ (3 sinh(Ttco)
571C02

for the global saddle. When co = 1.0, the critical value in which homoclinic tangency 

occurs is found to be Fc = 0.0735. This compares favourably with the computational 
evidence in Figure (60), where F = 0.074 must be just after the tangency has occurred. 
The shaded region in this diagram depicts the area of the phase plane which leads 
to escape. However we find that the homoclinic tangency of the global saddle at 
these control parameters does not coincide with the escape where F =0.203052...

A summary of the values of forcing F at which various bifurcations occur 
between O) = 0.5 and co= 1.8 is given in Figure (61). If we look at the position of 
the Melnikov curve (M) in relation to the period doubling (D) and subsequent escape 
(E), it appears that the homoclinic tangency of the global saddle does not trigger the 
escape.
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7.2.2 Predicting Escape using Chaotic Transients

When the chaotic attractor is destroyed, it is replaced by chaotic transients53. 
An orbit which originally lies on the attractor does not move off to a remote attractor 
instantly but is attracted towards the vicinity of the chaotic attractor. After bouncing 
around in a chaotic way, such an orbit then rather suddenly moves off towards the 
distant attractor. This phenomenon can be observed in Figure (62) where at 
F =0.109046 the chaotic attractor still exists. However, at F =0.109047 the same 
initial conditions give rise to a chaotic transient which resembles the original attractor 
but moves off to infinity after a while. The length of the chaotic transients vary, 
depending on the initial conditions as well as the control parameters. This shows 
clearly that it is very difficult to determine if a particular initial condition would lead 
to escape if it is not run for a sufficiently long period of time. The unpredictable 
length of chaotic transients can be highlighted by Figure (63).

In this diagram, we show seven different initial conditions all taken from the 
attractor at F =0.1090. The bottom diagram shows that no escape occurs. As the 
forcing is increased, the length of chaotic transient varies and depends only on the 
initial conditions. This is of significant importance to engineers who build complex 
numerical models, and because of computational expedience only do a small number 
of simulation cycles using previously located steady state solutions as the initial 
conditions for a new set of parameters. They could then pick up a long transient 
and since this type of transient resembles a stable solution, they would surely 
overestimate the safety margin, perhaps even by a considerable amount.

The length of a chaotic transient depends sensitively on the initial conditions. 
However Grebogi94 on studying a one dimensional map has shown that the transient 
life time has an exponential probability distribution:

Exp
M

where E is the length of chaotic transient, measured here in forcing cycles. M is 

the expected (mean) value of E.
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He showed that the mean lifetime, M , of the chaotic transients is related to the 

control parameter in the following relationship:

where |1 is a small change from the bifurcation or the critical value of control 

parameter where the chaotic attractor is destroyed, i.e., \i — F - F E. The parameter 
y is termed the critical exponent.

The critical exponent calculated by Grebogi was 1/2 and hence a plot of 1/M2 

against \i should reveal a straight line such that linear extrapolation could be used 
to predict the critical value. Unfortunately, for the problem in hand, the results are 
less than convincing, see Figure (64). This can be due to the following factors: 
firstly, a critical exponent of 1/2 implies that to observe transients longer than 100 
cycles requires the control parameter to be within 0.01% of the critical bifurcation 
value. However, if we look at the probability density function in the accompanying 
diagram of Figure (64), the probability density function becomes very flat for larger 
values of M, that is to say we need to consider a greater number of transients than 
is practical. Secondly, Grebogi*s calculation was based on a one dimensional map 
and therefore we could not expect the same degree of correlation in our flow problem.

Another study using 300 steady state Poincare points on the chaotic attractor 
at F=0.109 as initial conditions is shown in Figure (65). The top right hand diagram 
shows M plotted directly against F, with M clearly going to infinity at about 0.109. 
To give some idea of the relative F values involved, this diagram is preceded at the 
top left by a sketch of the earlier period doubling cascade on the same F axis, and 
we see that chaotic transients with means of 10 to 20 forcing cycles persist for quite 
an appreciable F  interval beyond FE.

By not assuming the critical exponent as 7/2, we have plotted in the lower 
right-hand diagram M"1 against F, from which we conclude that F E is very close 
indeed to 0.109. Finally, to determine the scaling critical exponent y, the lower 
left-hand diagram plots ln(M) against ln(F-0.109) and the fitted straight line yields 
the value of y=0.87, compares with Grebogi’s value of y=0.5.
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7.3 Fractal basin boundaries

To understand the numerically determined bifurcations in the (F, co) control 
space, it is convenient to consider the steady states of the system under slowly 
incremented F at a series of constant co values as shown in Figure (66). For co > g / ,  
there exists a monotonic trace of fundamental(n=1) oscillations originating at 
x = y = F = 0 and terminating in a Feigenbaum cascade (with first and second period 
doubling at F c andF° say). This leads to a chaotic folding-band attractor, see Figure 
(58), and finally escape is triggered by the blue sky disappearance of this attractor 
at Fe as illustrated in the right-hand insert (d) of the figure. The fundamental solution 
has a cusp point at P, so for co < a /  the trace of n=l cycles exhibits a resonant 
hysteresis in the regime FB <F <FA between two cyclic folds at FA and FB, as in 
the left-hand inserts (a-c).

The value of F E decreases steadily with decreasing co, and at co2 it becomes 

less than FA. The escape is now associated with the simple cyclic fold at FA, although 
the coexisting end of the trace is still stable up to FE where a blue sky event carries 
the system back to the non-resonant state. It can be seen that as co is decreased past 
co2 towards 0.6, the values of FB ,F C ,F D and,FE all seems to approach one another, 
but we have not explored this regime in detail at this stage.

Because the folds at A and B evolve from the cusp at P, we expect the jumps 
from the fold A to always re-stabilize on the coexisting trace for co2 < co < c / ,  rather 
than to over-shoot and escape. Thus escape is at FA for co < coQ and at F E for co > coG 
with the minimum F necessary to escape given by FQ.

We have also drawn on this figure the Melnikov curve, thus FM denotes the

appearance of a homoclinic tangency between the invariant manifolds of the saddle 
cycle close to the x  = 1 hill-top. This homoclinic tangency signals the appearance 
of a fractal basin boundary defined by the hill-top saddle inset, between containment 
and escape. Notice that this tangency is essentially unrelated to the eventual escape, 
Fm offering no useful estimate of any of the other curves in the figure. This is in 
contrast to the Birkhoff-Shaw chaotic attractor mention above where the homoclinic 
tangency triggers the blue sky event.
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Although the homoclinic tangle of the global saddle is unrelated to the eventual 
escape, it plays an important part in the global topology of the two-dimensional phase 
projection as well as the creation of the chaotic attractor as we shall see. Once the 
tangle occurs, the catchment region has a very complicated appearance. Figure (67) 
shows a small catchment region around the chaotic attractor using a grid of 100x100 
starts. Each dot denotes escape within 7.1 cycles with control parameters: 
co = 0.85, p = 0.1,F =0.109. The intricate nature of the catchment region can be 
realized by enlarging the little picture ‘behind’ this diagram as shown in Figure (68). 
This diagram shows the length of transients before escape occurs across the region 
where x  = 0. The length of the white region represents the length of the transient. 
It can be observed clearly that by increasing the number of forcing cycles and the 
resolution of the grid of starts, we can expect that more dots will appear in the white 
area of the catchment region and hence more complication.

To understand the formation of the so called fractal basin boundary, let us look 
at what happen when the invariant manifolds of a saddle cross. The inset and outset 
can originate from the same saddle point (homoclinic tangle), or from different saddle 
(;heteroclinic tangle). Figure (69) is an illustration of a homoclinic tangle when the 
inset and outset cross at the point / /, a homoclinic point. Consider mapping this 
point forward, this point must again map onto the inset (H+) by recurrence. However 
since H also lies on the outset, the outset must also go through H+. To preserve the 
orientation, the outset must cut through the inset by doubling back in the manner as 
shown. The two complete segments joining H and H+ is called Birkhoff s signature10: 
more complicated signatures are possible and can be found in Abraham and Shaw’s 
book. By mapping forward again, more and more homoclinic points can be observed 
and more densely the closer the distance to the saddle. By mapping backward in 
time, the same thing happens. In other words, there are infinitely many, infinitely 
long sequences of homoclinic points implied by a single one. A collection of all 
homoclinic points is the homoclinic orbit with infinite periodicity. Once a homoclinic 
tangle occurs, the catchment region formerly defined by the inset becomes exceedingly 
complex. Furthermore some areas within the original catchment region can now be 
mapped outside and never return, thus leading to fractal basin boundary.
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The exceedingly complicated catchment region can be traced in the following 
manner. Starting near the saddle cycle on the outgoing eigenvector, a point is chosen 
and is mapped forward once. Since these two points are still very close together, 
we can approximate the path between these two points by a straight line and divide 
the line into a ladder of points. By mapping this ladder of starting points forward 
the outset would be filled with points and has the appearance of a continuous curve. 
The same procedure can then applied to the inset but this time we have to map the 
points on the incoming vector backward in time. This method is easy to implement 
in computational terms: however we do encounter some difficulties in our problem. 
Because of our single potential well characteristic, any point mapped outside the 
catchment region is quickly mapped to infinity, these point are thus lost and a 
continuous curve becomes broken. Therefore we have to keep increasing the number 
of starting points in order to fill the gap.

Using the above method, a homoclinic tangle of the escape equation is shown 
in Figure (70). The non-uniform spread of points are due in part to the choice of 
starting points. Although this method is successful in tracing the tangle, when the 
tangle is as complicated as shown in the figure, it is not possible to determine which 
part of the region will map onto the attractor and which part will lead to eventual 
escape. A simpler picture without the tangled outset but with the same control 
parameters is shown in Figure (71). The white region is the stable region where any 
point will eventually be mapped on to the chaotic attractor. The insert is a grid of 
starts approach and it can be seen that as the resolution is increased, more white 
region is eroded by the black. In between, thin whiskers of white region also appear. 
This brute force approach is very effective in establishing the complicated catchment 
region. The result of another study is shown in Figure (72). This is an enlargement 
of a region close to one band of the chaotic attractor with the same control parameters 
as above but with a different phase angle at <|> = 180°. This picture is composed of 
a quarter of a million coloured squares centred on the grid points, the colours represent 
how many forcing cycles were substained before escape. The black central region 
denotes points on the starting grid that have not escaped before 25 forcing periods. 
The white points forming an arc within the black zone represent the chaotic attractor, 
and the black region represents the basin of attraction of this stable attractor. We 
have only followed each trajectory for 25 forcing periods for obvious reason of 
computational economy.
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As can be observed from the complexity of the colouring, the boundary of this 
basin has a fractal nature, making practical prediction of whether or not a given start 
will lead to escape quite impossible in the more highly tangled regions. It should 
be noted that a simple cyclic attractor can also exhibit a fractal basin boundary, the 
type of boundary being essentially unrelated to the type of attractor within it. In 
fact, for some (D values, we can see from the Melnikov curve that homoclinic tangency 
occurs when the attractor is a simple fundamental (n=l) solution.

After the occurrence of homoclinic tangency, the tangle becomes progressively 
more and more complicated as the control parameter is varied. As the tangle develope , 
more and more of the catchment region is eroded away. We have traced the 
development of the catchment region with equal increments of the forcing until just 
before escape using Simple Cell to Cell mapping as shown in Figure (73). Just 
before escape occurs, the stable region is so small that the resolution used can no 
longer give us a well defined curve. Notice the catchment region at F = 0.0872; 
although the Blue Sky event occurs at F > 0.109, the stable region has already been 
so badly eroded that practically it can be considered unsafe. This rapid erosion of 
the stable region can be observed again in Figure (74). Here, the stable solution is 
not a chaotic attractor. The escape sequence in the last diagram shows how a point 
seemingly trapped by the tangle is mapped outside the previously stable region. In 
fact, a look at the full three dimensional phase space generated by a plot of the 
catchment regions at different phase angles shown in Figure (75) revealed that every 
fractal layer is an image of the previous one. Thus, for every forcing cycle, a point 
in this tangled catchment region jumps across one layer until it leaves the original 
catchment region and shoots to infinity.

Another phenomenon which facilitates the rapid erosion of the catchment region, 
first identified by Grebogi92, is the sudden changes in the accessible orbit due to the 
appearance of a saddle node bifurcation. This can be observed as a sudden inwards 
jump of the boundary and the bifurcation suddenly creates a catchment region of its 
own, coexisting with the original catchment region of the periodic solution. However 
this coexisting solution is soon destroyed together with the catchment region. Such 
a sequence of events occurs in our system in association with the n=3 saddle-node
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bifurcation. Figure (76) shows the difference in appearance in the catchment region 
before and after the appearance of the n=3 periodic solution. Clearly, this is yet 
another significant way in which the catchment region can be eroded.

7.4 The Dollar sign map

The importance of homoclinic tangles lies in the Smale-Birkhoff homoclinic 
theorem, which stated that transverse homoclinic intersections imply the existence 
of horseshoes29,95. The proof of this theorem is basically a precise specification of 
the mapping action associated with tangles, and can be found in Guckenheimer and 
Holmes. Further examples of tangles can be found in Hayashi96. Because of the 
Smale-Birkhoff theorem, one could expect complex behaviour like the existence of 
horseshoes whenever the inset and outset of a saddle have transverse homoclinic 
intersections. In fact Moon97 has suggested the occurrence of homoclinic orbits as 
a precursor to chaos. ( However we did locate a chaotic attractor before the global 
saddle had its homoclinic tangency at low values of co.) Therefore homoclinic 
tangency is not a sufficient condition for the appearance of a chaotic attractor.

As a further indication of the importance of horseshoes and transverse homoclinic 
intersections, a theorem of Katok98 should be mentioned. This involves the concept 
of topological entropy, which is a mathematical formulation of the notion of 
exponential separation of nearby initial conditions. Katok showed that a large class 
of Poincard mappings with positive topological entropy must have transverse 
homoclinic points. In other words, the exponential spreading of nearby starts is 
linked to the existence of transverse homoclinic trajectories and horseshoes. However, 
a horseshoe may correspond to either a chaotic attractor or a pre-chaotic behaviour 
in which aperiodic final motions exist but are observed with probability zero. Thus 
folding and mixing can only be observed in transients. The condition that a folding 
action could lead to a chaotic attractor is that observed trajectories which fall off the 
invariant set /  in Smale’s95 construction must somehow be re-inserted into the square

From the above theorems, it is clear that a homoclinic tangle does not necessarily 
mean the existence of a chaotic attractor. However it does imply a fractal basin 
boundary as shown in the last section as well as chaotic transients. On the other 
hand, the existence of a chaotic attractor implies a homoclinic tangle. Thus the
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connection between chaotic behaviour and homoclinic tangles depends on whether 
trajectories that fall off the invariant manifolds (the horseshoe created by the 
homoclinic tangle), can be re-inserted into the invariant set.

Before we go any further, we shall follow Hayashi’s" example and call any 
saddle point produced by a saddle-node collision as a direct saddle and label it as 
‘Dn’. The superscript will indicate the periodicity of the saddle. Similarly a saddle 
produced by a flip bifurcation will be denoted by T ’, because of the nature of its 
mapping action, it will be called an inverting saddle. All stable periodic solutions 
will be denoted by ‘Sn\

While a homoclinic tangle of the global saddle, (D1), gives rise to a very 
complicated basin boundary, we shall now consider the implication of an inverting 
saddle having transverse homoclinic intersections.

The term ’dollar sign map’ was first introduced by Rossler100-102. This term 
was used because of the topological nature of the map. Figure (77a) shows a 
homoclinic tangle of an inverting saddle from the escape equation. Unfortunately, 
the outset is so compressed that the layered structure is impossible to observe. 
However a topological equivalent structure is drawn in Figure (77b), making it clear 
why it is called a dollar sign map. Notice that the outset of 74 and the period 4 
chaotic attractor coincide with each other.

The interesting property of the dollar sign map is that it possesses not one but 
two ordinary horseshoe maps in the sense of Smale in its second iterate. This is 
because the inverting saddle has a pair of eigenvalues with negative sign. Each 
horseshoe uses the other as a sink so that the second iterate always re-inserts the 
trajectory back into the original closure of the outset Thus, this characteristic is 
synonymous with the ‘cap-shaped’ map described by Rossler with its reinjection 
principle and Carles Simo’s feedback property. This is with marked contrast with 
the homoclinic tangle formed by the global saddle in which there is only one horseshoe 
map. As the eigenvalues are both positive, no reinjection is possible. After a period 
of transients any point will be mapped either to an attractor within the fractal basin 
boundary or to the other side of the boundary and never return. Therefore, when 
the invariant manifolds of a direct saddle cross, we would not expect the formation
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of a chaotic attractor just the appearance of fractal basin boundary. However, because 
of the reinjecting property, we can expect very different behaviour when an inverting 
saddle has a transverse homoclinic intersection.

Let us now look at the characteristics of a tangle. Once the invariant manifolds 
of a saddle cross, an infinite number of [crossings occur. Since they all traverse at 
differing rates, those lines coming closer to the saddle being punctuated more densely 
there, the family is bound to comprise an infinite number of cases in which the 
self-intersection occurs in a periodic point. Therefore, each (transversal) homoclinic 
point implies an infinite number of periodic trajectories of different periodicity in its 
neighbourhood. Smale’s unravelling of the tangle also shows that there are also an 
uncountable number of nonperiodic trajectories present. However, the definition of 
chaotic behaviour given by May and Yorke suggest precisely the same things; namely, 
infinite number of periodic solutions (fixed points) of repelling type; in between, 
there are uncountably many nonperiodic (wandering) solutions. Qualitatively, a 
chaotic attractor is characterized by its stretching, folding and mixing actions. All 
these characteristics can be accounted for when the invariant manifolds of an inverting 
saddle cross. Since the absolute value of one of the eigenvalues is larger than 1 
while the other is smaller than one, trajectories are thus stretched along the repelling 
eigenvector and compressed orthogonal to the attracting eigenvector. The negative 
eigenvalues mean that all trajectories will be re-inserted into the invariant set and 
hence the mixing and folding actions appear. From these evidences one can conclude 
that chaotic motions are produced whenever the invariant manifolds of an inverting 
saddle cross. Furthermore, a chaotic attractor is in fact the outset of an inverting 
saddle when its invariant manifolds form a homoclinic tangle.

In our investigation, we shall assume a chaotic attractor will form when the 
above conditions are satisfied. Therefore we would expect that before a chaotic 
attractor appears, the corresponding inverting saddle’s invariant manifolds do not 
cross, and right after the attractor is formed, homoclinic tangling occurs: while at 
the bifurcation point we have homoclinic tangency. To sum up, in order to have a 
n-piece chaotic attractor, the inverting saddle with period n (i.e., /") must be 
homoclinically tangled. From now on we shall refer the n-piece chaotic attractor 
as having period n. The loss of stability of a period 2(n+1) chaotic attractor to a period 
T  chaotic attractor will be discussed in the next section.
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Figure (78) is a period doubling cascade with the control parameters as shown 
in the diagram. Notice that the data is sampled at 2 times the forcing period so that 
only the band with positive displacement is plotted. Therefore the chaotic attractor 
at F = 0.20249 is actually a period 8 chaotic attractor. Bifurcation of the chaotic 
attractor with period 8 to period 4 is at F = 0.202532. By plotting the invariant 
manifolds of the period 8 inverting saddle before and after this value we can test 
the validity of the above assumption. Figure (79) shows this result: the top diagram 
shows the invariant manifolds of the inverting saddle (/8) at F  = 0.202530 and the 
bottom diagram shows the same invariant manifolds at F = 0.202534. It is clear that 
before the bifurcation occurs, i.e., before the period 8 chaotic attractor changed into 
a period 4 chaotic attractor, the invariant manifolds of / 4 do not touch. After the 
bifurcation, the invariant manifolds have crossed.

Therefore we conclude that a chaotic attractor is the closure of a homoclinically 
tangled outset of an inverting saddle. We also expect that chaotic attractors with 
different periods formed under this condition are topologically equivalent. Hence 
there must exist a scaling factor just like Feigenbaum’s38 universal number. If this 
is true, it also implies that this type of chaotic attractor is universal. Figure (80) is 
a series of period doubling cascades; each window is enlarged as shown and the 
bifurcation points indicated have been further enlarged so that a good approximation 
can be determined. The results are tabulated below:

F„ = 0.202532 -  0.2024653 = 6.670* 10(_5)

FI6 = 0.2024653 -  0.2024504 = 1.490* 10("5)

F32 = 0.2024504 -  0.202447214 = 3.186* 10(_6)

Fm = 0.202447214 -  0.202446532 = 6.820* 10(' 7)

F128 = 0.202446532 -  0.202446386 = 1.460* 10(' 7)



It can be observed that the number approaches the same Feigenbaum constant, 
8 = 4.6692016... as the period of the chaotic attractor increases. This suggests rather 
surprisingly that period doubling of the periodic solution has a intimate relationship 
with the period doubling of the chaotic attractors.

7.5 The effect of Heteroclinic Tangency and Stability Transfer

Looking back to the Blue Sky event at the end of the period doubling cascade, 
we have determined that escape is triggered when the chaotic attractor touches the 
basin boundary. Since the invariant manifolds of D 1 have already intersected before 
escape occurs, this can not be a homoclinic event. However, as the chaotic attractor 
is the outset of the period 2 (noting that the chaotic attractor has two bands) inverting 
saddle; it means that this is in fact a heteroclinic event. In this case, the inset of D 1 
touches the outset of I 2. Since the chaotic attractor or the outset of I 2 touches the 
boundary of another attractor causing escape; (here, the "other attractor" being at 
infinity) we can say that we have a stability transfer.

Notice that as the invariant manifolds of D 1 cross, the inset of any periodic

saddle point must have a heteroclinic connection with the outset of D 1. Stability 
transfer will not appear in this case because the attractor has not touched the inset 
of D \  Therefore, to distinguish the two cases, we shall follow Carles Simo’s example 
and call the former case with stability transfer an outer heteroclinic tangle, and the 
latter case an inner heteroclinic tangle.

We have observed that when an inverting saddle forms a homoclinic tangle, its 
outset changes into a chaotic attractor. But how does a higher period chaotic attractor 
lose its stability to a lower period chaotic attractor? We suspect the above mechanism 
applies, i.e., an outer heteroclinic tangency occurs. Thus the sequence of events can 
be deduced as follows: the inset of I 2 touches the outset of / 2 , since the closure

y» + l
of the outset of /  is the chaotic attractor, the chaotic attractor is destroyed. This 
is the case of an outer heteroclinic tangency. As the chaotic attractor is destroyed, 
the invariant manifolds of 12 develop into a homoclinic tangle, thus forming the 
chaotic attractor with the same period as the inverting saddle and hence a stability 
transfer occurs. Since the destruction of the period 2n+1 chaotic attractor and the 
creation of the period T  chaotic attractor happens simultaneously, we also expect 
the outer heteroclinic tangency and the homoclinic tangency to happen simultaneously.
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This phenomenon can be demonstrated again in Figure (79). Clearly, it can be 
observed that when 74 has a homoclinic tangency, it also means that the inset of / 4 
touches the period 8 chaotic attractor. Since the closure of the outset of I s is the 
period 8 chaotic attractor, an outer heteroclinic tangency occurs and the stability of 
the period 8 chaotic attractor is transferred to the period 4 chaotic attractor. As the 
two events happen simultaneously we can only conclude that the closure of the outset 
of I s is a subset of the closure of the outset of I4. In fact this explains why the two 
types of tangency can happen simultaneously.

Consider again the ultimate destruction of the chaotic attractor at CO = 0.85. The 

system jumps to infinity at FE, just above 0.109. We have in fact found that the 
attractor collides with D 6 as shown in Figure (81). This directly unstable n=6 
subharmonic is the saddle of a very recent saddle-node that generates over a very 
short F interval a complete n=6 cascade: notice that the figure corresponds to sampling 
at 2iT (at phase <J> = 180°), so that only half of the full picture is observed. At the 
end of the n=6 cascade, when the n=6 chaotic attractor collides with D 6 at F = 0.1077, 
the system jumps back to the main sequence S4 as indicated by J.

The final collision at FE is shown in Figure (82) in the phase projection (x,y),

with sampling again at 2iT and phase <J> = 180°. The path of three points of D6, in 
equal F steps, is shown relative to one band of the chaotic attractor at F =0.109, 
this representation being useful because the chaotic attractor is not moving 
significantly over the F range involved. Notice that the apparent crossing of the path 
and the attractor is illusionary, because the attractor had not yet formed at the lower 
F values.

This type of destruction of the chaotic attractor seems to be of different type 
to that discussed earlier concerning the outer heteroclinic tangency type of bifurcation. 
However, as pointed out by Grebogi et al92, the period 6 direct saddle at this point 
lies on the basin boundary of the global saddle D 1 and therefore we can consider 
the chaotic attractor to be touching the basin boundary.
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7.6 Mathematical constraint on the Escape equation

No analysis will be completed without the use of analytical tools. It can be 
seen later that some interesting properties emerge due to mathematical constraint 
imposed on our dynamical system.

Consider again the escape equation which has been reduced to the standard
form:

x  + px + x -  x 2 = F sin cor

we shall write

y =x

(j) = cor (mod 2 n )

T = 2tc/co

and can observe that the driven oscillator has a three dimensional phase space, R 3

spanned by x, y and t. Due to the periodicity this can be alternatively viewed 
toroidally using x, y and (j) where the phase angle <}> is a cyclic coordinate with 
0 < <j> < 2n  The oscillator can, moreover, be written formally as a set of three 
autonomous first-order nonlinear ordinary differential equations

x = y

y = -x  +jc2-(3 y +Fsin<|>

(j) = co

with the three control parameters (F co p). We have in fact set P=0.1 throughout our 
numerical studies, corresponding to a damping ratio £=0.05, leaving the two primary 
controls F and co.

The divergence of the trajectories flowing in the three-dimensional phase space 
is governed by



so we have a constant exponential contraction of phase volume V, according to

v=-pv

V(t) = V(0)e~*

Our numerical studies make continuous use of the Poincare section defined by

t = tp + it (i=l,2,..... )

(|) = <iv = <MP

and we shall be concerned with the Poincare map P(typ) that is generated by the 

flow,

P®p) m p\y { tp)[ -> [x(tp + T),y(tp + T)]

As indicated, the mapping depends on the chosen phase <J>P, and for most of our

studies we use <J)p = 0. This map takes us iteratively from a point (Jt,,y,) to a new 
point (xt+i,y,+i) according to an implied functional relationship

:y,+i =#(•*,>}’,)

The functions G and H are of course not known analytically, but can always be 
evaluated numerically for any (x„y,) by making a Runge-Kutta numerical time 
intergation of the governing differential equation through one forcing period of 
duration T.

Now since there is no stretching action along the time axis, the constant 
exponential contraction of volume for the flow ensure that for the map an area A in 
the Poincare section contracts according to the relation

4 +i=«hb4

which implies that the Jacobian determinant D of the map is a constant, since
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dG dG
dx dy
dH dH
dx dy,

So any fixed point of the map, corresponding to a fundamental n=l oscillation with 
period T, will have mapping eigenvalues X,- (i-1,2) constrained by the condition

X,X2 = D =e~*T = e~ta*"‘

In a similar way, the eigenvalues Xf* of the n-map P* corresponding to a subharmonic 

of any order n (with period nT) are constrained by the equation

X?°X4“)=e_"pr

These constraints place strong restrictions on the sequences of folds (X = +l) 
and flips (X = -1) that can be generated by our escape equation. They also exclude 
the possibility of a Neimark bifurcation ( the mapping equivalent of the Hopf 
bifurcation for a flow ) in which a pair of complex conjugate eigenvalues leaves the 
stable unit disc away from the real axis.

7.6.lRe-mergingFeigenbaum trees

The consequence of mathematical constraint on the eigenvalues leads to the 
formation of re-emerging Feigenbaum trees103, and degenerated period doubling. To 
look at how the underlying mathematical constraint affects our dynamical system, 
we shall concentrate on a typical response curve with hysteresis, i.e. two cyclic folds, 
as well as a period doubling cascade. With © just less than ©p the behaviour is thus 
as sketched in Figure (83). This schematic diagram relates to the phenomena at 
© = 0.85 and p = 0.1 and shows the paths represented by the stroboscopically sampled 
Xi=x(iT) under the variation of F. To understand the stability transitions of the 
fundamental n=l path in this constant © (and constant T) cross-section, we recall 
that the product of the mapping eigenvalues is a constant. The eigenvalues are 
therefore either real with geometric mean
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or complex and constrained to lie on a circle of radius p centred on the origin of 

the Argand diagram.

From 5°, the path S 1 starts off as an attracting focus, becomes a directly attracting

node at a where the complex eigenvalues become real and positive, and folds at A 
as Xi penetrates the unit circle at +1. From fold A to fold B we have the directly 
unstable saddle D* (where the R for resonant serves to distinguish this from the 
hill-top saddle D 1), and the primary n=l path restablizes at fold B as Xx re-enters 
the unit circle at +1. Then becomes complex at b, passing completely around the 
circle of radius p to give an inversely attracting node with real and negative mapping 
eigenvalues between c and C. At C, X* passes out of the unit disc at -1, and we 
have a super-critical flip bifurcation into a stable n=2 subharmonic as shown. This 
is followed by a supercritical flip from n=2 to n=4, and a complete period-doubling 
cascade leading to a two-band chaotic attractor, which quickly becomes unstable at 
a blue sky instability at E leaving no attractor and an inevitable jump to escape.

The unstable n=l solution meanwhile continues to the fold G where it turns 
back to become the hill-top saddle cycle D l. Before doing so, however, it is clear 
from the constraints on X* that we must have a reversed flip at F, since the eigenvalues 
must yet again go through the unit disc thereby pass through -1, changing from 
negative eigenvalues to positive eigenvalues and emerge from the unit disc again 
through +1. This is confirmed by our numerical studies. There is, indeed, a complete 
reversed period-doubling cascade and chaos as illustrated schematically in the diagram. 
Figure (84) is the result of our numerical studies showing the solution path and the 
changing eigenvalues for the whole path. It can be noticed that the reversed flip F 
is however very close to G, so that the stable n=l regime F-f-g-G is in reality very 
short at these control parameters. Path D 1 finally returns to the hill-top equilibrium 
D°.

7.6.2 Response surface of escape equation

The response surface, deduced from extensive numerical studies is sketched in 
Figure (85), a schematic diagram in which the ’response amplitude’ might loosely 
be thought of as the maximum value of the displacement, xM, during a steady state 
oscillation. The surface represents the steady-state solutions, with xM and the forcing
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frequency in the base plane, with the second control F plotted vertically for ease of 
visualization. The damping is held constant at P = 0.1 throughout as before.
Bifurcations on the response surface can be projected back onto the (F, co) control 
plane to give the final bifurcation diagram.

The main n=l (fundamental solution) surface cuts the F = 0  base plane in two 

straight lines, xM = 0 corresponding to the system resting in the stable equilibrium 
S° and xM -  1 corresponding to the system resting in the unstable hill-top state D°.

To explore the surface, it is convenient both computationally and descriptively 
to focus attention on the xM(F) paths at prescribed co values. At the highest value 
of forcing frequency represented in the diagram, for which co is approximately 2.5, 
the two equilibria are joined by a simple path of n=l solutions: it can be observed 
that the solution paths of S l and D l grow, merge, and annihilate one another at the 
cyclic fold at G. Passing from S 1 to D 1 through this fold, one of the mapping 
eigenvalues, Xj say, passes through +1, so that after G the n=l solution is directly 
unstable with both eigenvalues positive and 1 < Xx < <», 0 < Xs < 1. The physical 
system starting at 5° under slowly increasing F is thus stable up to the fold G, from 
which a fast dynamic jump carries the system out of the well with x  tending to 
infinity. So at high co the fold line, G-G in the control space is the escape boundary. 
The numerical solution path at co = 2.3 is shown in the bottom diagram of Figure 
(86).

This simple folding response is preserved under decreasing co until at co*

(approximately 2.2) a flip bifurcation into an n=2 subharmonic is encountered. Thus 
at the value of co drawn between co* and co* the n=l path is cut by a closed n=2 
curve after which the n=l solution restablized as indicated, before finally losing its 
stability at fold G, this is demonstrated in the second diagram of Figure (86). Between 
the two opposing flips the n=l solution is inversely unstable with both mapping 
eigenvalues real and negative, one inside the unit circle and the other outside, i.e. 
an inverting saddle where -<*> < Xx < -1 , -1 < X2 < 0. These flips project into the 
boundary F-R-C in the control space. For the value of co illustrated, the n=2 solution 
is everywhere stable, so our physical evolving system driven from S° would experience 
a brief regime of stable n=2 subharmonic oscillation between the two supercritical 
flips, before escape from the fold at G.
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As co is decreased, the n=2 solution next exhibits a pair of opposing supercritical 

flips into an n=4 solution, giving the second flip boundary D-D. The period-doubling 
scenario is repeated at diminishing scales, so that at co = 2, between co* and co*, there 
is an opposing pair of complete period-doubling cascades leading to a pair of chaotic 
attractors, separated by a region of no attractor, implying inevitable escape. This 
behaviour can be observed in the first diagram of Figure (86). On further reduction 
of co to co* (approximately 0.9) the n=l solution exhibits a cusp at P, generating a 
pair of folds on the early part of the xM(F) curve. This corresponds to the well 
known hysteresis in nonlinear resonance, which here is of the softening variety, the 
softening for x > 0 being more powerful than the hardening for x < 0: this resonance 
response aspect is highlighted by the sketched constant F lines on the n=l surface.

Since the folds A and B are bom at the cusp point P, they share initially the 
same basin of attraction, so the jump from A under a controlled physical increase 
of F will restablize on the attracting n=l focus as indicated by the arrow E. So from 
the pulling apart of the two period-doubling cascades at co just less than co* down 
to coe (less than co*) the escape is triggered by the cascade-chaos-Blue-Sky scenario 
denoted by C (flip from n=l to n=2), D (flip from n=2 to n=4) and finally E (escape).
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Conclusion

One of the most interesting questions in chaotic dynamics is what constitutes a 
chaotic attractor? We have observed typically the appearance of chaotic attractors 
at the end of a period doubling cascade, but what determines that it is not a periodic 
attractor with a very high periodicity. The key to this question is the creation of 
inverting saddles during the course of a cascade of period doubling. When the 
invariant manifolds of an inverting saddle cross each other, the unstable manifold or 
more precisely the closure of the unstable manifold, i.e. the outset, becomes the 
chaotic attractor. This could possibly first occur at the Feigenbaum’s limit point 
with an inverting saddle having a high periodicity. After this point, a cascade of 
destruction and creation of chaotic attractor occurs. A chaotic attractor with a period 
of 2n+1 will be destroyed by a chaotic attractor with a period of 2“ due to an outer 
heteroclinic tangency, simultaneously creating a chaotic attractor of period 2". In 
between, we could expect windows of coexisting steady periodic solutions because 
of the property of the ‘horseshoe’, namely, infinitely many periodic orbits and 
uncountably many aperiodic orbits. The reason that we cannot observe all of them 
is because some of the windows where they exist are small compared with the main 
period doubling event. The divergence action due to the unstable manifold and the 
attracting action due to the stable manifold constitute the stretching, folding and 
mixing actions. Together, they make a ‘chaotic’ attractor chaotic.

We also propose in Chapter 7 that if chaotic attractors are formed when the 
invariant manifolds of an inverting saddle cross, there is no reason why one chaotic 
attractor is different from another: hence they must be topologically the same. By 
topological, we mean that the geometric structure of all the chaotic attractors should 
belong to one master structure. The ‘appearance’ of a chaotic attractor is affected 
by the eigenvalues of the inverting saddle as well as the Birkhoff signature. Note 
that for a one dimensional discrete map, a saddle has no separatrix and hence we 
can only view it as a degenerate problem rather than a generic one.

While chaotic behaviour has not been considered dangerous by engineers, ( 
dangerous in the sense that a high amplitude vibration can cause the collapse of a 
structure ), nevertheless the research into chaotic phenomena has given us insight 
into problems such as fractal basin boundaries. To most engineers, a structure must
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be designed within a safety margin. To dynamicists, this safety margin is the 
catchment region for a steady state solution which is acceptable in application. This 
would include the amplitude of vibrations and even the frequency during the vibrations, 
when fatigue and resonance are taken into account. If this stable region can be 
eroded so suddenly and unpredictably, this must be considered dangerous.

This unpredictability of the catchment region first started when the invariant 
manifolds of the global saddle crossed. This generates chaotic transients where 
chaotic-like behaviour is observed before the dynamical system is settled into a steady 
state or a remote attractor. This global saddle produces chaotic-like behaviour as 
well as separating different steady state solutions. We can thus classify it as a chaotic 
saddle. The problems of tangles and fractal basin boundaries are immensely 
complicated, partly because they are computationally expensive to explore and further 
research is in progress to unravel this complexity.

On a more practical note, the erosion of the catchment region is now under 
further research in the form of integrity curves so as to provide the design engineer 
with an indication of when the catchment region would become critical. This would 
serve as a lower bound type design curve in the design exercise.

While a tremendous amount of research has been conducted by the dynamical 
research group in the Civil Engineering Department of University College London, 
it is just the end of the beginning. We are confident that more fruitful and exciting 
results for both the engineers and scientists will emerge in the not so distant future.
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S T A B L E

Figure 4 . Liapunov stability for an equilibrium state.



. Figure 5. Dynam ics near a  focal point with varying characteristic ex p on en ts.
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Figure 6. Schematic diagram showing the  various s ta g es  
a Blue Sky Catastrophe.
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STABILITY TRANSITIONS IN THE COMPLEX PLANE

LOSS OF S T A B I L I T Y  OF A 

CYCLE
LOSS OF S TABI LI TY OF AN 

EQUILIBRIUM S T A T E

CYCLIC FOLDFOLD

S t a b l e  uni t  d i s kS t a b l e  h a l f -  p l a n e

FLIP

HOPF N E I M A R K

LIAPUNOV CHARACTERISTIC  
E XP ONENTS

POINCARE C H A R A C T E R I S T I C  
MULTI PLI ERS

Figure 9 .  Stability boundary on the com plex plane of a  flow and a  m ap.
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Figure 1 0 .

Stability criteria in the trace-determ inant plane.
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P a t h  o f  f i s a d  p a i n t s

p * 2«*
Alt i t a r o t i o n s  si 
|wst  below t h e  
u n s t a b l e  p a t h :

p .  2 s

0*2 0-2

0-10*1

F O L D

0-2■0-2

All  i t e r a t i o n s  

s t a r t  a t  s c  - 0 - 2 9

Figure 1 2 . S ad d le-n od e bifurcation of a map.
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Figure 13. Flip bifurcation of a  map.
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V

Folding and stretching action

Mixing action

Figure 1 4 .

Schematic diagram illustrating the effect of Homoclinic Tangle 
leading to horseshoe like dynamics
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Figure 15. Two dimensional cylindrical model of the
Birkhoff-Shaw Strange Attractor

x s  0-7y ♦ 10 x ( 0«1 - y 2 ) 

y s - x  ♦ 0-25 sin 1-57 t

!9 20 21 22

Cross-sec t ions  
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(b)

O u t s e t

Inset

F ig u re  2 2 . (a) Schematic phase portrait showing the invariant manifolds of a typical saddle
point enclosing the catchment region of a steady state solution.
(b) Location of a possible saddle point when using the interactive graphical 
technique.
(c) Poincar6 points stepping along the inset and outset of a saddle using the ladder 
method.
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x + kx + x 3 = B cos r 

it =0.1 5 = 0 . 3

F ig u r e  2 3 . Catchment region of Ueda’s equation showing smooth basin boundary.
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D U F F I N GP H A S E  S P A C E  P R O J E C T I O N

T R A N S I E N T S  TO C

POINCARE POINTS

X «2mT
F O R C I N G :  I L c e s T

r?x+2n C * +x  +  < k 3 = F 0c o s t  

r) = 1.6 C = 0.1 a =0.05 F0 = 2.5

D U F F I N GVAN D E R  P O L  P L A N E  

E X A C T  EQ U ATION

T R A N S I E N T S  TO C

-2

F ig u re  2 5 . Transient trajectory on the phase space projection and on the Van Der Pol plane
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a :  005

stable

unstable

-3

0-5 1-0 1-5 2-0

F ig u re  2 6 . Amplitude response diagram of Duffing’s equation at resonance with different 
damping ratios.
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-10 0 10

F ig u r e  27 . Six phase portraits of the smoothed variational equation of Duffing’s equation on 
the Van der Pol plane during a transition through resonance.
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UNIT_____________ USE__________________ SYMBOL_________ EQUATION_______
P o ten tiom eter M ultip lica tion  of

a v a riab le  by a *nput (7 ) 0utput Output*Kx
p o s itiv e  constant KX where O ^ K ^  1
c o e ff ic ie n t <1

In v e rto r Sign reversing Inout {> Output Output* -  Input
W W—X

Sumner Summation of 
member of v a riab le s  
including  m ultip
l ic a t io n  by 'gains* 
1 or 10

in p u ts
x —
Y ------
z---- > Output

w

Output* -'Sum of Inpu ts ' 
W—(X-Y+10Z)

Summer
In te g ra to r

M u ltip lie r

kSHL
In te g ra to r  In te g ra tio n  of a

v a riab le  with re sp ec t 
to  the computer x
independent v a r ia b le  
'tim e t*

Summation with 
In te g ra tio n

Inputs 
X —  
Y —  
Z -----

Inputs
X ------
Y ------

I jC .

Output
W

Output
w

Output
W

O utput*-/ in p u t dt 
o

t
W—/  X d t 

o
I n i t i a l  value of 
output * WQ

W—J(X-10V+Z)dt 
o

Output*product of 
in p u ts

W-XY

Figure 28 . Analogue computer components* symbols and operations.
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-1 /3Ampl i t ude * B
U eda  e q u a t i o n .  k«0*2

A n a l o g u e  catchment  s tudies • d ig i ta l
•  ana logue  
O Ueda2-0

VO

- 1 / 3
1-0 2*0

F ig u r e , 2 9 . Resonance response diagram for Ueda’s version of Duffing’s equation using 
digital and analogue simulations.



1*3 U 1 38
poincare 
■ pointsmall 

amp ,

1*50K 2

MAVA&HI 
■ U EDA158

Figure 30. Catchment reg ion s w ith in  the h y s te r e s is  loop of  
Ueda's equation as in d ica ted  in  Figure 29. 
Analogue s im u la tion s are based on a grid  o f  
s t a r t s .
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*77777777777?

b)

x
0-5

a25

0-25 r

n *3*95

71*3 95

3-95 10 L 05
O saddle « n«1  » n » 4  ▲ s ta r t in g  values

(a) Schematic diagram of the mooring tower.
(b) Stiffness curve illustrating discontinuity at the origin.
(c) Two time histories of displacement using different initial conditions.
(d) Corresponding phase diagrams.
(e) Amplitude response diagram in the neighbourhood of competing n=l and 
n=4 response.
(f) Catchment regions for the two co-existing solutions.
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F ig u r e  32 Catchment regions for the n=l and n=4 solutions for the bilinear oscillator.
(a) Inset tracing using ladder method.
(b) Digital simulations base on grid of start technique.
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n«1

-10

10050

n »1

/̂ \ / \ / \ / \ / \ / \ / -2 5

-20---20

secs

-2

(a) Schematic diagram.
(b) Nonlinear restoring force of the catenary mooring chains.
(c) Maximum amplitudes of motion, displacement and velocity of the Poincar6 
points as a function of forcing period illustrating hysteresis.
(d) Two stable steady-state solutions with different initial conditions.
(e) Catchment regions for a wave-period of T=19.7 seconds.
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through subhannonic resonance.
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Figure 35a _ i _

U,

u.

Figure 35b

ZJ + W

5V,

Poincare map of a point in two-dimensional phase space.
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Stable solution path

Saddle node bifurcation point

Search with constant C,

no solutionUnstable solution path

Figure 36a

Search perpendicular to t

always a solution.

Figure 36b

Schematic diagrams of path following technique.
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Im

Re

0.0 0.691

x + p x  + x -  x 2 =  F s i n  uot

-1.5
-1.5 1.5

Escape equation p = 0.1

F ig u re  3 8 . Path of eigenvalues in the complex plane.
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x + jJx + x -  x ^ .F s in c o t Escape equation (5 = 0.1

co = 0.4

co = 0.6

0.6

© = 0.7

- 0.6
0.0 0.4

F ig u re  3 9 . Solutions obtained using path following technique, a.
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x  + + x  -  x 2 =  F s i n  uot CO = 0.3

Escape equation P = 0.1

co = 0.35

co = 0.4

0.4

co = 0.45

-0.4
0.0 0.3

F ig u re  40 . Solutions obtained using path following technique, b.
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n = 2

n =1

n = 3

’ . 0® S.0®

P

n = 2

n = 1
n=2
n=3
n=4

t-

Bi f u r c a t i o n  f r o m n = 1 t o n = 2

-r f c

Bilinear Oscillator: oc=10 £=0.1

Figure 42. Resonance response diagram of the Bilinear 
Oscillator.
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Bilinear Oscillator: a=10 £=0.1

XI 0~2

MPULSE

688see388288188

X10“3

"T] = 1*546
-6 7 7 .3 9

-677 .81

XIB-2

- 1.88

R e s u l t s  for  
Xp known or 
u n k n o w n

8

S t e p s

23

CENTRE MANIFOLD METHOD

(xP-x!)UI
X,=

( X p - X | ),

FC

Figure 45. Summary o f the Centre Manifold technique

- 168 -



X1B-3
-677 .88 ,

e i g e n v e c t o r s

-6 7 7 .5 0 .

Tj = 1.546

M .795 -  2.404^ 
0.3842 0.1435H =
v

^  = -0.953 

2  ̂= -0.698

Figure 46. Numerically ca lcu la te d  e ig en v ecto r .

FC
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T H R E E - P O I N T  M E T H O D  FOR L I N E A R  M A P P I N G

M A T R I X  ( c o m p a r e d  w i t h  C.M. r e s u l t s  )

T\ = 1-5425 7] = 1*5480

v\^^MAAAAA/w w w v s

-1 .00

-.50

- 1.00

S t e p s S t e p s
-.90-.80

S t a b i l i z e d  
s o l u t i o n  under • 

\  C.M. p o i n t s

- 1.0020 20

Bilinear Oscillator: a=10 £=0.1 FC

Figure 47. T hree-point method for lin e a r  mapping matrix,
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F O U R - P O I N T  METHOD FOR LI N EAR M APPI N G

MATRIX AND EQUI LI BRIUM F I X E D  POINT

7) = 1*542 5 7) = 1*5480
- .5 8 - .5 0

— ' A j

2020
S t e p s   S t e p s

- . 8 0 - .9 0

-.901 2020

Figure 48. Four-point method for lin e a r  mapping m atrix and 
equilibrium  f ix e d  p o in t .
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R A N D O M  L O A D I N G  f or  T) = 1*546
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400 "  B 0 0 800 T6 0 0  2 0 0
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- .7 5

200 I ll ' l l  Ivtillift IIH
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METHOD
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-1. JnifTTirir-nr

200

4 POINT 
METHOD

200

S t e p s

I m p u ls e s  r a n d o m  in m a g n i t u d e  a n d  t i m i n g  

D i s p l a y e d  m a g n i t u d e s  are  pur ely  s c h e m a t i c

Bilinear Oscillator: a=10 £=0.1 FC

Figure 49. Im pulsive and random loading on th e  B ilin ea r  
O s c il la to r .
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Bilinear Oscillator: a=10 £=0.1

F O U R - P O I N T  M E T H O D  F O R  AN E V O L V I N G  S Y S T E M  W I T H  f ]  s  *n ♦  f  T1 *0

r = 5*10
-6

1*5486

1*5486
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1*54 86

X,

- 0*9

. 1.0

D cterm inist

Im p u lse s

N-M
nnr1

r n

R andom  

I m p u ls e s

1*550 1*546 1*550

Figure 51. Four-point method for an evo lv in g  system .
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Figure 53. Schematic diagram i l lu s t r a t in g  th e  catchment 
region  o f th e  Escape equation.

5? + j3x*x-x2= Fsinoot
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Figure 55. Chaotic escape from a w ell p = o. 1, AF = 0.001
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Three dim ensional view o f a tw isted  invariant m anifolds: 
the dotted  l in e  shows a ty p ic a l tra jec to ry

Figure 59. Schematic diagram o f a Mobius band showing the  
apparent cr o ss in g  of tr a je c to r ie s .
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Figure 62. Time histories before and after the Blue Sky 
Catastrophe showing the effect of chaotic 
transients.
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Figure 68. F racta l escape tim e w ith in  a sm all reg ion  o f  
th e  catchment a re a .

Run:  FRACTALNEG
( Appended to A: 206 which  see for d a t a )
FC

- 191 -



Figure 69. Schematic diagram o f a tran sverse hom oclinic  
c r o s s in g .

- 192 -



H
om

oc
lin

ic
 

ta
ng

le
 

of 
es

ca
pe

 
eq

ua
ti

on

m

or> I00

I

- 193 -

Fi
gu

re
 

70
. 

H
om

oc
lin

ic
 

ta
ng

le
 

of 
th

e 
Es

ca
pe

 
eq

ua
ti

on
 

ob
ta

in
ed

 
by 

th
e 

la
dd

er
 

te
ch

n
iq

u
e.



Fi
gu

re
 

71
. 

C
at

ch
m

en
t 

re
gi

on
 

de
fin

ed
 

by 
ho

m
oc

lin
ic

 
ta

n
gl

e 
in

se
t.

A: 205

8 JO B 3 H S I H M /
:w.v.

m m m r

. v . v . v . v . v . v X
X v X * X * X C T I i l

v'

• • y .y .v .%

wX*X'X'>X*X%*r&; .v .v

'±rr>}»><!
■ . v . v . y . v  —

v / / / X v X v X v ! v

<?:❖**' ’ *' *  ---
■•v.<yM>*

Run : FRACTAL BAS I N ( Dot  a ♦ s ca les  as  A: 194) FC

- 194 -

(X 
m

ap
pi

ng
 

se
qu

en
ce

 
di

ve
rg

es
 

to 
in

fi
ni

ty
 

( x 
of 

Ct̂
 

is 
gr

ea
te

r 
th

an
 

20
) 

p 
m

ap
pi

ng
 

se
qu

en
ce

 
co

nv
er

ge
s 

to 
th

e 
ch

ao
ti

c 
at

tr
ac

to
r



Fi
gu
re
 

72.
 

Hi
gh
 

re
so
lu
ti
on
 

gr
id
-o
f-
st
ar
t 

ap
pr
oa
ch
 

sh
ow

in
g 

the
 

fr
ac
ta
l 

ba
si
n 

bo
un

da
ry

.
s a \ o f i a  6 u x o j i o f  u  a u o / a q  a d v a s g

4-
02 — ̂ o  o  co O' co in  rh  CO O] —1 CN) CN) CN) CN) CN) CN) CN) »—• •—< «—t t -h  *—i —» t



Figure 73. Catchment region  o f th e  Escape equation a t
various fo rc in g  freq u en cies obtained by Simple 
C ell Mapping techn ique.
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Figure 74. Using Simple C ell Mapping technique to  show the  
development o f  th e  hom oclinic ta n g le .
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Figure 75 Using Simple C ell Mapping technique to  show 
fr a c ta l basin  boundaries a t various phase 
an g les.
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Figure 79. Transverse hom oclinic tangency o f an in v er tin g  
saddle lead ing  to  a D ollar Sign Map.
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so lu tio n  path w ith the movement o f i t s  
corresponding e ig en v a lu es.
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Figure 84. Numerical so lu t io n  path and i t s  corresponding  
e ig en v a lu es .
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Figure 86. Numerical evidence of a remerging Feigenbaum 
tr e e  and degenerated period-doubling.
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