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Abstract

For engineers, the two most important aspects of dynamical analysis are high
amplitude resonance vibrations and structural stability, i.e. whether a steady state
solution is stable under small perturbations.

For the former case, a novel and simple method based on Poincaré mapping
technique has been devised to predict an imminent flip bifurcation. This bifurcation
represents the beginning of the second order subharmonic response.

For the latter case, we discovered that while classical quantitative analytical
techniques work well in establishing the ‘local’ structural stability of a steady state
solution, the global geometric structure of the catchment region can alter dramatically
such that even an initial condition close to the steady state can diverge from it rather
than being attracted. This phenomenon known as fractal basin boundary occurs when
the invariant manifolds of the saddle separating the steady state solution from any
remote attractor cross. The critical point in which the invariant manifolds just touch
can be accurately predict by the Melinkov’s method. Because of the complicated
interwoven nature of the invariant manifolds, it is called a tangle. If the invariant
manifolds are originated from the same saddle, the crossing is known as a homoclinic
tangle, if originated from different saddle, a heteroclinic tangle. The critical point
is then known as homoclinic or heteroclinic tangency.

Tangles aealso intimately related to chaotic behaviour. The creation and
destruction of chaotic attractors have been observed through a series of homoclinic
and heteroclinic tangency. In fact, after the invariant manifolds of an inverting saddle
cross, the unstable manifold becomes the chaotic attractor. This leads us to believe
that all chaotic attractors are topologically the same.
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Preface

Over the past decade, physicists, biologists, astronomers and economists have
found a new way of understanding the growth of complexity in nature. This new
science, called chaos offers a new way of seeing order and pattern where formerly
only randomness or unpredictability was observed.

Chaos in engineering is a relatively new subject, probably because engineers
are more interested in steady state behaviour and large amplitude resonance
phenomena. Even when they find some "noisy" behaviour, they would most probably
attribute it to some form of numerical error. In 1985, JM.T. Thompson and R.
Ghafarri of University College London, London University were researching into the
dynamical behaviour of a mooring tower used in the North Sea. Because of the
discontinuity in the restoring force, non-linear dynamical behaviours were found.
Typically, a fundamental resonance response curve coexists with a high amplitude
subharmonic solution. Coexisting solutions serve as a warning to engineers whose
usual practice is to use an existing steady state solution as the initial state when the
control parameter is changed, thus probably missing the high amplitude solution.

Most important of all, when the mathematical model of this mooring tower was
modified to take into account the condition in which one restoring force was infinitely
stronger than the other, a persistent gap was observed between periodic solutions
where no steady state solution could be established. They used different numerical
methods to solve their mathematical model and observed the same behaviour. Instead
of attributing these to numerical errors or even instability, they used the Poincaré
mapping technique to look at the phase space of this system and to their amazement,
instead of a random behaviour, they discovered a well structured pattern of dots in
the phase space. While they could not predict the movement of any one dot after
each cycle, they certainly knew that it would stay within the structure. This was the
hallmark of chaotic dynamics. After their report of chaos in engineering structures,
more engineers have reported the discovery of chaotic behaviour.

This thesis is a continuation of the work since the discoveries of chaotic behaviour
exhibit by the mooring tower. Tremendous progress has been made since then.
These include research into fractal basin boundaries, tangles and Melinkov’s theory.



The thesis will be divided into three parts. The first part will be a discussion of
basic theory of bifurcation and chaotic dynamics. The second part will be theory
and techniques developed and used in the course of the research. The third part is
the applications, where practical problems are developed into mathematical models
and extensive investigations have been conducted.



1 Dynamics of Flow

All bodies possessing mass and elasticity are capable of vibration. Thus most
engineering structures experience vibrations and their design generally requires
consideration of their oscillatory behaviours.

Oscillatory systems can be broadly characterized as linear or nonlinear. For
linear systems the principle of superposition holds, and mathematical techniques
available for their treatment are well developed'?. In contrast, techniques for the
analysis of nonlinear systems are less well known, and difficult to apply. Moreover,
techniques like perturbation method and harmonic balance give only approximate
solutions®®. As most real-world dynamical problems and engineering structures
confronting the analyst are nonlinear, mathematical models very often can only be
investigated by numerical simulations. With the wide availability of powerful
computers, the qualitative topological approach has now been recognized as an
essential tool to the understanding and interpretation of the results produced by
numerical techniques. Furthermore, this new approach has given us new insight into
the mechanisms in which instabilities occur and from which method of prevention
can be devised. Introduction to geometric theory for ordinary differential equations
can be found in Jordan and Smith’, Abraham and Shaw®'°, Thompson and Stewart",
and Arnold".

The approach we shall adopt in tackling engineering dynamical systems can be
broken down into the following steps:

1) Construction of a mathematical model.
2) Direct numerical integration to obtain general information.

3) Topological techniques to classify equilibrium or fixed points and identify
instability phenomena.

4.) Quantify the characteristic of an imminent bifurcation.

Qualitative theory will centre mainly on the identification and study of fixed
or equilibrium points. Elementary fixed points include the stable ‘centre’ and ‘sink’
and the unstable ‘source’ and ‘saddle point’. We shall see later that a ‘centre’



represents a pathological condition between stability and instability which is not
‘generic’ and hence ‘structurally unstable’. Here the essential meaning of stability
can be defined as: if any small perturbation close to a fixed point remains close to
the fixed point at all time, the fixed point is stable.

We begin in this Chapter a brief examination of dynamical systems theory.
Terminology used throughout this thesis will also be defined. Although there is a
relatively complete quantitative and analytical theory for linear differential equations,
a study of many nonlinear equations involves transformation into a linearized form:
hence a brief review of linear oscillators will serve well to illustrate some fundamental
concepts and features of the phase plane.

1.1 Autonomous systems

The second order differential equation of general type

X =f(x,%,1) (1.1)

can be interpreted as an equation of motion for a mechanical system. Here x represents
displacement of a particle of unit mass, X its velocity, X its acceleration and f the
applied force, so that equation (1.1) express Newton’s law of motion for the particle:

acceleration = force per unit mass.

A mechanical system is in equilibrium if its state does not change with time.
This implies that an equilibrium state corresponds to a constant solution of equation
(1.1).

We distinguish between two types of equation:
(i) the autonomous type in which f does not depend explicitly on ¢.

(>ii) the non-autonomous or forced equation where ¢ appears explicitly in the
function f.

A typical autonomous equation of motion is the linear oscillator expressed in
the standard form

X+bx+cx=0 (1.2)
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where b characterizes the damping and c the stiffness. Plotting the acceleration x

against the displacement x as shown in Figure (1b), we have for light damping the

familiar damped oscillatory motions typical of a pendulum vibrating with small
amplitude in air. The only equilibrium state is the state of rest, i.e., (x,x)=(0,0)
and if the damping b is zero, this is called a centre. Since any damping introduced
will destroy the topology of the phase space trajectories, this is structurally unstable,
as can be seen by comparing Figure (1a) and Figure (1b).

Stable equilibrium states are not the only attractors that can arise in a
two-dimensional phase space. A second type of attractor is the stable limit cycle,
namely a steady closed oscillation that attracts all adjacent motions. In order to
construct this mechanical oscillator, we must first ensure that for small amplitude
oscillations the damping is negative so that amplitude will increase. However, large
amplitude oscillations are contained by introducing a positive damping. In effect, a
nonlinear damping term is necessary. We consider, then, the oscillator

X—ci+di’+kx=0

and typical trajectories are shown in Figure (2). For given initial conditions (X , x)
with small amplitude, we can linearize the above equation and drop the dx* term.
We then have an unstable focus due to negative damping. Here trajectories spiral
outwards away from the centre point repellor. For large amplitudes, the nonlinear
term dominates, ensuring that all motions of the system tend towards a stable
steady-state oscillation, the limit cycle. In fact, this is the only possible attractor
and the whole phase space is its domain of attraction. One can see immediately in
this simple example the importance of taking into account nonlinear effects when
large amplitude oscillations are possible.

The nature of the solution for the linear oscillator modelled by equation (1.2)
can be classified by looking at the characteristic equation. Assuming the solution
x =Ae", and substituting this relation into equation (1.2) gives

A2 +bA+c)Ae™ =0

For a non-trivial solution we must have
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A +bA+c=0
The roots of this characteristic equation can be obtained from

_-b+V(p?-4c)

2

—b —\(b*—4c)
2

M

A=
These roots can be real or complex depending on the discriminant D, where
D =b*-4c

and hence it is this parameter that determines the type of motions.

If D is positive, we have two distinct real roots and the assumed solution is
therefore

Y

x=Ae " +Ae (1.3)

where A, and A, are arbitrary integration constants to be found from the initial
conditions. If D is negative, we have a pair of complex conjugate roots A, ,=R *1i,
giving solutions of the form

x=e®sinlt (1.4)

Furthermore from equation (1.3) and (1.4), it can be seen that if the roots are
real we have a monotonic convergence or divergence of the trajectories. If the roots
are complex then we have trajectories which spiral towards an attractor or away from
a repellor. Also, a real and positive eigenvalue or a complex eigenvalue with a
positive real part means that the equilibrium solution is unstable. Therefore the

eigenvalues characterized stability'*"*

of the equilibrium point and they are sometimes
refered to as Liapunov exponents’. This is summarized in Figure (3) which shows
sketches of the phase portraits next to the corresponding (R, I) Argand diagrams.

For thorough stability we must have » >0 and ¢ > 0.
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1.2 Structural stability and hyperbolicity

We can now define more precisely the meaning of stability. Although an
equilibrium is identified by the condition that the vector field vanishes at a point, a
full-phase-space picture of different types of equilibria emerges only by considering
the structure of trajectories nearby. For a nonlinear dynamical system the basic types
of equilibrium can be identified by a local linearized version of the dynamics near
the point of equilibrium. That is, the nonlinear equations are replaced by approximate
linear equations; this approximation if)h(mly correct in a small region of phase space
surrounding the equilibrium point and,the equilibrium is not critical.

Consider an n-dimensional system of first-order differential equations, where x

is an n-dimensional vector and F is a real n-dimensional vector function:
x=F()

and suppose that the point P°=(x") is an equilibrium state characterized by:
F(x®)=0

This equilibrium point is stable if every nearby solution stays nearby for all future
time. If the equilibrium configuration is represented by the point P®in the space
of the variables x, it is clear that a perturbation can be represented by a point P in
the neighbourhood of P®. We will say that P® is Liapunov stable' if, for every
neighbourhood U of P* in this phase space, there exists a smaller neighbourhood U,
of P® contained in U, such that every solution starting in U, will remain in U for all
t>0.

If all solutions tend to the equilibrium as t tends to infinity, then P* is said to
be asymptotically stable. Conversely, if it is possible to find any local perturbation
that moves the system away from rest, P® is called an unstable equilibrium point.
Hence while a centre is stable it is not asymptotically stable or structurally stable.
These three different qualities of equilibria are illustrated in Figure (4).

Consider again our n-dimensional system of first-order differential equations,
according to our definition, we must superimpose a disturbance & to x°, obtaining
the perturbed equation:
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E=F(x"+&)

Next, F(x +E) can be expanded in a Taylor series around x™ so that:
&=F(xE)+Fx(xE)§+%Fn(xE)§2+

where for example F(xF)E is the Jacobian of F evaluated at the rest state.

Since stability can be detected by examining a small neighbourhood of the
equilibrium point, so & can be assumed small, and its successive powers &%,E, ....
can normally be neglected. On the other hand F(x®) is zero for equilibrium, and the
following linear variational equation can be written:

E=F,(")%

The solution &(z) = {&,(z), ...,£,(¢)} must tend to vanish when t goes to infinity,

if the equilibrium state is to be asymptotically stable. The condition for this is that
the real parts of all the eigenvalues of H = F, (x¥) must be negative.

Hence the topological condition has been converted into an algebraic condition.
To examine the stability of a normal equilibrium point we have now merely to solve
the characteristic equation, and to examine the real parts of its roots. An equilibrium
point whose local linearization involves only eigenvalues with non-zero real parts is
called hyperbolic. Here we can define the index of an equilibrium point as the
number of eigenvalue with positive real part, as illustrated for example by Abraham
and Shaw'®. If this index is equal to zero, then in the linear approximation the
equilibrium is stable. Increasing values of the index correspond to increasing degrees
of instability near the equilibrium point; we might therefore refer to this integer as
the instability index.

Once the instability index of an equilibrium point is determined by counting
the signs of the real parts of the eigenvalues, additional information can be found in
the imaginary parts of the eigenvalues. If the ordinary differential equations are
written, as we have assumed, for real quantities, the local linearizations must have
only real coefficients, and so complex eigenvalues occur only in conjugate pairs.
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Figure (5) shows a sequence of different dynamics, each having an equilibrium point
with complex conjugate eigenvalues. The clockwise angular speed on each trajectory
in each system is the same, because the imaginary parts of the eigenvalues are the
same; but the trajectories wind down rapidly, slowly, or not at all depending on the
real part of the eigenvalues. In either of the first two cases, small changes in the
dynamics can change the rate of decay but not the qualitative picture: trajectories of
a perturbed system still spiral inwards. In the third case where the fix point is a
centre, any perturbation of the dynamics will break the closed loops and cause
trajectories all to spiral inwards or all to spirals outwards from the equilibrium. In
the qualitative viewpoint, we can regard the non-hyperbolic equilibria, such as the
centre in plane phase space, as having atypical structures nearby. Since we consider
not just families of trajectories but families of nearby dynamical systems and the
nearby systems might include all imaginable small perturbations of the dynamic laws
and equations; they might also include all approximations that could be used in
constructing a mathematical model. To obtain among all these a non-hyperbolic
equilibria is hence atypical. Therefore, only the hyperbolic fixed points are generic.
The two inward spiralling dynamics can also be qualitatively represented by any
sufficiently good approximations. Thus the dynamics near a hyperbolic equilibrium
point are structurally stable, while the non-hyperbolic equilibrium point is not
structurally stable. For this reason, we believe that local linearization is a valid
approximation for hyperbolic fixed points in any number of dimensions.

1.3 Local bifurcation

It is imperative to talk about instabilities with bifurcations. Very often, a loss
of stability corresponds to a bifurcation when a control parameter is varied. In the
geometric view point, we can define a bifurcation as any point in the control phase
space which gives rise to a structurally unstable vector field. In particular, local
bifurcation can be characterized near a single point in phase space: hence equilibrium
point bifurcations are clearly included. We shall see later that using Poincaré mapping,
the bifurcation of periodic orbits can also be characterized at a point and so can be
classified as local bifurcations.

Local bifurcations can be studied by their normal form which is a low-order
approximation of the original vector field. Typically, if
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S, x, (1) =0

where | represents a single control parameter, then x (L) are paths of equilibrium

points in control phase space. Linearization of the vector field at each x,(i) give us
the eigenvalues. Any value of |, where the linearization has eigenvalues with zero
real part is non-hyperbolic and hence a possible bifurcation point. Finally, we can
compute the lowest order terms of the nonlinear function f to obtain the local form
of bifurcation. Various forms of local bifurcation exist depending on the way in
which the eigenvalues traverse the Argand plane.

If a dynamical system is dependent on a control parameter p then by varying

H, the eigenvalues A; will describe some paths in the complex plane. Suppose that
at L=}, the eigenvalues are all in the negative half plane, so that the system is
asymptotically stable, and let p increases. If the eigenvalues are assumed to cross
the imaginary axis transversely, it is easy to see that the simplest ways in which a
system can lose its stability are either a real eigenvalue crossing the imaginary axis
or a pair of complex conjugate eigenvalues crossing the imaginary axis. The first
case involves essentially one eigenvalue, and is therefore the simplest transition that
can occur. The second, in which two eigenvalues cross the stability boundary as a
pair, involves two eigenvalues, but there are strong simplifications because they are
complex conjugate. In the presence of the necessary nonlinear coefficients these
two transitions give rise to the only two typical bifurcations of equilibria that can
be observed under the influence of a single control parameter. The first manifests
itself as the Fold bifurcation'’, associated with an inherent stiffness dropping to zero,

while the second gives the Hopf bifurcation'®"

, associated with an inherent damping
changing from positive to negative. In either case, the phase portrait is structurally

unstable at the point of bifurcation.

1.4 Global bifurcation

As we define bifurcations in a geometrical view point, a new class of bifurcation
should be incorporated into our definition. These are the global bifurcations which
sometime do not manifest themselves as a transfer of stability from one attractor to
another like the Hopf or fold bifurcation. Bifurcations of the global type involve a
qualitative change in the topology of the invariant manifolds, i.e., the inset and outset
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of a saddle. One obvious example is the homoclinic connection in the Lorenz***

system and the boat capsize problem which we shall discuss in a later chapter.
Homoclinic tangency occurs when the inset and outset of a saddle touch. This
qualitative change can dramatically affect the basin structure of the phase portrait
without changing the attractor. Therefore, this special bifurcation can not be observed
in the control phase diagram. However, this is especially dangerous as the basin of
attraction is quickly eroded after tangency so that instability occurs when a small
finite perturbation is given®.

One example of global bifurcation which leads to a destruction of an attractor
is the heteroclinic tangency. Here tangency occurs between the inset and outset of
different saddles. This bifurcation again can be observed in the boat capsize problem.

As a further example, consider the Blue Sky Catastrophe? in which a homoclinic
connection results in a limit cycle disappearing into the blue. This is schematically
illustrated in Figure (6). In the leftmost portrait, the inset of the saddle point at the
top is a separatrix between two basins. Below this separatrix, all points generate
trajectories which eventually settle onto the limit cycle. Above the seperatrix any
point will generate trajectories which moves away to a remote attractor. As the
control parameter is varied, the inset moves closer to the limit cycle and they eventually
coincide at u°. The homoclinic orbit now has an infinite period and as the parameter
is increased further, the relative position of the inset and outset has interchanged so
that all points generate trajectories which diverge to the remote attractor. The inset
has ceased to be a separator and the limit cycle has vanished into the blue.

We must note here that this dynamical system has only a two dimensional phase
space so that homoclinic connection generates a closed orbit. In a three dimensional
case as we shall consider, the inset can cross without forming a closed orbit and an
attractor can be destroyed when the inset touches it. Also, Blue Sky catastrophe is
a discontinuous bifurcation and in the terminology of Shilnikov® this is a dangerous
boundary.

A sub-class of the global bifurcations is the local/global bifurcations whereby
a local bifurcation, for example a fold catastrophe, triggers a sudden discontinuous
transition. This transition is determined by the global structure of invariant manifolds.
One such example is the intermittency explosion to a chaotic attractor which occurs
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typically in the periodic window during a cascade of period doubling bifurcations.
Before the transition to chaos, we can expect the global structure of the phase space
will give rise to chaotic transients. (This will become clear in Chapter 3.)

A complete classification by Thompson et al'*® of bifurcation arranged according
to their topological dimension and incorporating various terminologies is shown in
Figure (7). In summary, there are two basic types of bifurcation, one is the local
type where bifurcation occurs distinctly in the control phase diagram and usually a
normal form analysis can be performed. While the point at which homoclinic tangency
occurs can sometimes be obtained analytically using for example the Melinkov’s
method, global bifurcation involves a study of the phase space itself. Any global
bifurcation is determined only by the geometrical or topological configuration of the
invariant manifolds. Hence global bifurcations have no algebraic solution.

1.5 Non-autonomous System

A typical non-autonomous system is the periodically forced linear oscillator
given by the differential equation

mx +f(x,x)=F sin 0%

F is the forcing amplitude and o is the forcing frequency. By defining T= w; the

ratio of the forcing frequency to the natural frequency of the undamped, undriven
oscillator as m; and the ratio of the actual damping to critical damping as {; the
magnitude of the forcing, along with the stiffness can be incorporated as a scaling
factor into the definition of x, and we have for a linear oscillator

%% + 218k +x =sin7

where a dot denotes differentiation with respect to the new scaled time t. The

solution for a driven linear oscillator can be obtained analytically as the sum of its
complementary and particular solution. The complementary solution can be written
as

x, =exp(-Ltm)[A sin(,T+ p))

where
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O)d=% N(1 -8

and A and p are just integration constants which can be found from the initial
conditions. The particular integral of this equation, which represents the final
steady-state, can be written as

1
X = sin(tT—Vy)
* N[ -m)?+2noR
where
_2ng
tany = To i

The complete general solution is then just the sum of these two contributions, i.e.,

x(W)=x,+x,

It can be seen that for a positive damped system, the complementary function gives
only the transient response and exponentia  decay. The system will eventually
achieve dynamical equilibrium, i.e., a periodic solution giving by the particular
integral. Even for a linear system, there is no Liapunov exponent as such that can
be used to define stability so that it is difficult to classify bifurcation. This is where
the Poincaré mapping comes in and opens a new horizon to dynamical systems
theory.

Poincaré mapping is a standard technique in dealing with the three dimensional
phase space (x,x,t) of our periodically driven oscillator. In effect, the trajectories
in the three-dimensional phase space are projected on to the (x,x) plane, thereby
reducing the dimension of the phase space by one. Furthermore, trajectories are
sampled stroboscopically in step with the forcing frequency, wy, i.e., whenever ¢ is
a multiple of T =2m/w, as shown in Figure (8). From a three-dimensional flow
problem, we have now derived a two dimensional discrete system. While this discrete
dynamical system often can not be defined analytically from a flow problem, all

-19-



mapping points can be obtained numerically. In particular, a periodic solution now
becomes a fixed point and a local normal form analysis can be performed and
bifurcations classified. This in fact will be the topic treated in Chapter 2.
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2 Discrete Dynamics

In this Chapter, we shall concentrate on the study of mapping as dynamical
systems. As we have observed in Chapter 1, a three-dimensional flow problem can
be sampled to become a two-dimensional mapping problem. Therefore, stability
properties of a map as well as its local bifurcation forms are directly related to the
original flow problem. The main advantage of using a mapping is that the original
periodic solution is transformed into a fixed point so that a local analysis can be
performed with ease. As will be seen in later Chapters, our numerical analysis is
based entirely on two dimensional mapping theory. The robustness of our techniques
demonstrates the fact that this is an indispensible tool for understanding the behaviour
of dynamical systems. As this powerful method is not widely used in engineering,

we site here in the reference list a few foundation references %%,

The first to introduce this point mapping idea is probably Poincaré, and studies
are later made by Birkhoff, Arnold and Smale. In recent years the theoretical aspects
of discrete time systems as well as their applications to problems in mechanics are
investigated by many; for example by Hsu*, Thompson® and Ueda®.

For our investigations, we take a non-linear differential equation of the form
X+f0,x)+gx)=e(r)

where e(t) is periodic of period T. A dot refers to differentiation with respect to ¢.

By setting X =y, this equation becomes

x=y

y=-flx,y)y —g(x)+e()
or in general

1=X(x,y,t)

y=Yx,y,1) 2.1)
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where X(x,y,t) and Y(x,y,t) are both periodic in ¢ with period T. Let x(t) and y(t) be
the solution of equation (2.1) which starts from a point P, in the (x, y) plane. The
coordinates of P, are then given by x(0), y(0). We focus our attention towards the
location of the point P, at the instant t=mT, m being 0, 1, 2,.... Let us call the
transformation P, — P, the mapping F and express this as P,=FP,. If a solution x(#),
y(®) has period T, then the point P, is a fixed point of the mapping F. If x(t), y(t)
is a subharmonic of order n, (n=2, 3, 4,....), i.e. a solution of period nT, but not of
period T, then the points Py, P,,....,P,, are called periodic points. They are all fixed
points of the nth iterate, F*, of the mapping F. Thus, in order to study the behaviour
of the solutions of equation (2.1) as curves in the (x, y, t) space, it is now only
necessary to study the successive mapping of a initial point on the (x, y) plane, or
in short, the transformation of the xy plane into itself.

2.1 Stability of two dimensional map

Once a fixed point is found, its stability can be investigated by looking at its
local linear normal form. Consider now a two-dimensional map given by the equations

X a=F(x,y)
Yin=Gx,y) (2.2)

This map can be considered as the Poincaré map of a three dimensional flow, in
which case the functions can only be obtained numerically. If (x*, y*) is a fixed
point, so that

*E=F (xE’ yE)
¥ =Gu",y") (2.3)
we can examine this fixed point’s stability by considering a small perturbation. Let
X; =X £+ &
Y=y +n,

so that
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Xi 1 =xE+E.n'+l =F(xE+§i’yE+ni)
Yin =)’E+n.’+1 =G(xE+§,-,yE+ﬂ.-)

Expanding the functions F and G in Taylor series at the fixed point, and using
equation (2.3), we have

1
& =F&+Fn, +5(Fn§?+2F,,§m; +F,,TI?)+
1
nirl= Gxéi + Gyni +5 (Gnglz + 2ny§|nz + G”nlz) +..... (2.4)

where all the derivatives of F and G are evaluated at the fixed point (x*, yE).

Assuming & and 7 are small, we can neglect the nonlinear terms and retain

only the first derivatives. Denoting them as a, b, ¢, and d we can obtain the variational

equation as

&1 =ak+bm,

M =CG+dn, 2.5)
or in matrix notation

G =HE, (2.6)

Let A, and A, be the eigenvalues of the matrix H, which are both real and distinct.
Then it is always possible to perform a transformation of coordinates’, so that equation
(2.5) becomes

Ui =Ml

Vi =Av; 2.7)

Now, the coupled equations become independent, and the stability question is solved
immediately. The system is asymptotically stable if —1 <A, , <1, but unstable if
either A, or A, are greater than 1 in absolute value. If one of the eigenvalues has
modulus equal to 1 and the other is less than one then the linear approximation is
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not sufficient to establish its stability. We should note here that while the eigenvalues
of a flow are called Liapunov characteristic exponents; eigenvalues of a map are
known also as Poincaré characteristic multipliers.

If A, and A, are complex conjugate eigenvalues, where

it is again possible to perform a transformation of coordinates so that equation (2.5)
becomes

Ui,y = o —Pv;

Vi1 =By, +ay, (2.8)
By introducing polar coordinates and letting

u;=r;cosf,

v, =r,8in0; (2.9)
we can rewrite the eigenvalues in the exponential form
A =a+ip=pe”
A=a-if=pe™

so that
a=lp(ei°+e'i¢)
2
1 e e
B=7p(e*-e™ (2.10)

Using equation (2.8) we have (i, vy) = (r,,0,), so that when i=0 we have

r,cos 6, = prycos(d+0,)

r,sin 0, = pr, sin(¢ + 6,)
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and when i=1
r,c0s 0, = p’r,cos(2 + 6,)

r,5in @, = p*r, sin(2 + 6,)
Hence, in general,

r, = ptr, @.11)

0, =0,+k0 2.12)

Or by substituting equation (2.12) into equation (2.11) gives

ro=rgpt (2.13)
Since 1, is just the radial distance from the fixed point, the fixed point is only
asymptotically stable when p < 1. In this case, trajectories spiral in towards the fixed
point while when p > 1 trajectories sprial outwards and the fixed point is unstable.
Again if p=1 the linear approximation can no longer establish the fixed point’s
stability.

Looking at the eigenvalues, one can see immediately that the stability criterion
is best discussed in the complex plane. In fact, if both the eigenvalues are within
the unit circle of the complex plane, the fixed point is asymptotically stable; if either
one of the eigenvalues is outside the unit circle, the fixed point is unstable. Hence,
the stability boundary on the complex plane is the unit circle itself. This contrasts
markedly with the flow problem where the stable region is the negative half plane.
This is worth emphasising because while our mapping problem is derived from a
flow using the Poincaré mapping technique, we must treat the problem as a map
rather than a flow. A comparision between the stability boundary of a flow to that
of a map on the complex plane is shown in Figure (9).

Like the flow problems we discussed in Chapter 1, a discrete dynamical system
loses its stability when the stability boundary is crossed. Depending on the way
the eigenvalues pass this boundary, different types of bifurcation can occur. This is
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summarized in Figure (9) as well. Before we go on to discuss bifurcational behaviour,
it is instructive to discuss stability in terms of the invariants of the matrix H. The
eigenvalues of this matrix are given by

A*—(a +d)A+(ad —bc)=0
and writing
atd=traceof H=T
ad - bc = determinant of H = D

we can express the eigenvalues in term of these invariants, as
1
7&1,2=5[Ti\/(T2—4D)]

The stability boundaries in the (T, D) plane are sketched in Figure (10). The parabola
is defined by the equation

T*-4D =0
On the right of the parabola is the region where
T>-4D <0

indicating the eigenvalues are complex. On the left of the parabola the opposite is
true so that all eigenvalues are real. The three straight lines LN, LM and MN are
the boundaries where the eigenvalues are critical. Values outside these boundaries
indicate instabilities.

The two dimensional mapping problem derived from a flow as in this case
using the Poincaré mapping technique is a special class of general two dimensional
map. This is because trajectories in a flow are continuous and can not cross each
other so that eigenvalues of different sign are inadmissable. Therefore if one
eigenvalue is positive/negative the other one must also be positive/negative. In terms
of the stability boundary in the trace-determinant plane, it is only necessary to consider
the positive right hand half plane. Furthermore, for a dissipative system, thef Jacobian
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of the matrix H i.e. ad-bc, is always positive and less than one so that the Neimark

bifurcation is glot possible. This in turn leads to the conclusion that any local
e

instability will,due either to a flip or a fold bifurcation.

2.2 Bifurcations of two dimensional map

To analyse the fold and flip bifurcations, it is only necessary to consider the
map to be essentially one dimensional. This is because at the bifurcation point, only
one eigenvalue is critical. Such a reduction is based on the Centre Manifold theorem.
A geometrical interpretation of this theorem is that trajectories are attracted towards
the centre manifold, ( i.e. the critical eigenvector ) rapidly and then converge to or
diverge from the fixed points. Therefore, this theorem allows us to view this
eigenvector as a local approximation of the higher dimensional map.

Let us imagine that we shall neglect all the mapping points until they have
converged onto the centre manifold. The centre manifold is thus one dimensional
for a two dimensional map. Or one can also imagine that a perturbation is given to
the fixed point in a way that the displacement is along the critical eigenvector only.
If x =x* is a fixed point of the map x;,, =F(x,), so that

xE=F ()

we can examine the fixed point’s stability using a perturbation technique as before.
Therefore, we superimpose a small disturbance to the fixed point x%,

x=x"+& (2.14)
so that
E E
X=X+, =Fx)=F(x +§)

and again, assuming that ' has a power series expansion, we may write equation
(2.14) as

x£+§.~+1=F(XE)+Ff§,-+%Ff,§?+.....
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where FE = F (xF), etc.

We can now denote the coefficients of the series as C, D, E,... and using the
fact that x® = F(xF), the mapping becomes

2, 3
&, =CE+DE+E +.....
Again assuming &, ., is small, we retain only the linear term of the expansion so that

v =CE @15)

By recurrent, we can put equation (2.15) in terms of the initial point &, as

&= Ci&o
Accordingly, the fixed point is linearly stable only if -1 < C < 1.

If C lies between O and 1, any perturbation decays monotonically, while if C
is greater than 1, they grow monotonically. This is called divergence. If C lies
between -1 and 0, disturbances decay in an oscillatory manner with &’s sign alternating
between postive and negative. While if C is less than -1, any disturbance will grow

oscillatorily. This is called flipping. Figure (11) are two examples of a two dimensional

map approaching a fold and a flip bifurcation. Of special interest is the way in
which the map converges rapidly onto the centre manifold indicated by the thick
line.

We are now in a position to discuss the fold and flip bifurcations of the two
dimensional map. Bearing in mind that we shall only consider the one dimensional
centre manifold.

Consider now the response of a map with a control parameter P, so that
y=F(x,P)

As the control parameter is varied, various fixed points will trace out paths in the
(x, P) phase-control space, and it is the bifurcation of these path that we would like
to address.
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In order to study the singularity at the bifurcation point P = P*, it is useful to

expand F as a Taylor series in both the variable x and the change in P from its
critical value, i.e., p =P —P*, as follows

y=B+Cx+Dx*+Ex’+...
+p(B,+Cx +Dx*+Ex’+...)

+D B+ Cx +DX*+EX* +...)+.... (2.16)

2.3 Folds and saddle-node bifurcation

To examine a fold in the fixed points, we measure x from the fixed critical
point itself. In other words, the critical point is positioned at the origin. Since x=p=0
is a fixed point, we must have, from equation (2.16), B=0. This point is also critical;
therefore C must be equal to 1. Because the path is a path for a fixed point we can
set y=x and consider the typical case in which D and B, are non-zero. Then the
local first-order approximation for the path is

Dx*+B,p=0

Hence the local form of a fold bifurcation is a parabola, an example of which
is shown in Figure (12). Here, the lower branch of the parabola represents a stable
path while the upper branch is unstable. The left hand diagram shows that any
iteration starting with a negative value of p diverges monotonically to infinity. While
for positive p, all iterations converge to the stable branch. On the right hand diagram,
any iterations start under the unstable path converge to the stable path while iterations
starting above the unstable path diverge to infinity. Hence the unstable path is a
separatrix between the catchment regions of the attracting path and the attractor at
infinity.

The stability coefficient corresponding to C along the path can be found by
differentiating the function F(x, p) to give F,, where

F,=C+2Dx+3Ex’+...+C,p+....

giving the first order solution
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F,=1+2Dx

Hence, as x changes from negative to positive, the coefficient changes from less than
1 which is stable, to greater than 1 which is unstable as x changes sign along the
path.

Other normal forms of saddle node bifurcations can be obtained using various
constraints but will not be discussed here as they are not typical with only one control

parameter. Interesting readers could consult the literatures listed in the reference
list** which give an excellent and thorough treatment on this topic.

2.4 The flip bifurcation

The flip bifurcation is characterised by the coefficient C=-1. This time, we
shall measure x from the path so that

B=B,=B,=...=0

Refering to equation (2.16), for a most typical loss of stability with increasing p, we
can set C, non-zero and negative.

Since the oscillatory response indicates an n=2 path will bifurcate from the
primary n=1 path, we can focus our attentation on the second iterate

z=F*(x)=T(x)
Therefore, at the origin (0, 0), i.e. the critical point, we have
T,=(F,)

At this point, the map F is at incipient flip with F,=-1, so that the map T is at
incipient divergence, since T,=1. However, the second iterate of an n=1 fixed point
is still the same fixed point, i.e., y=x implies z=x, we can therefore expect the n=2
solutions to include the primary n=1 path. In fact the primary path becomes an
unstable path.

The first few terms of the Taylor series expansion of the map F? are
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z=C(Cx +Dx*+Ex*+Cxp)+D(Cx +Dx*+Cp) + E(Cx)’ + C,p(Cx)

For an n=2 solution, z=x, and since C=-1, the z cancels with the C*x so the first
order n=2 solution will be given by

Ex’+D**+C,px =0
At the critical point, i.e., the origin, x=0 or
C,p +x*(E+D*»=0

Notice that the continuous existence of the primary path excludes the possibility
of a n=2 saddle-node bifurcation. With C, negative, a supercritical flip bifurcation
occurs with (E + D?) positive and a subcritical flip bifurcation with (E + D?) negative.

Numerical examples of both type of bifurcations are shown in Figure (13).
Convergence or divergence along the paths are as indicated by the arrows. Refering
to Chapter 1, the subcritical bifurcation is thus classified as a dangerous bifurcation
as there is no indication of the imminent catastrophe.

For a simple three dimensional flow problem, we may hope that most attractors
and bifurcations will give rise to either a fold or flip bifurcation. However at certain
value of the control parameter, a sudden onset of chaotic motions may occur and
this will be the topic of Chapter 3.
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3 Chaotic Dynamics

Dynamical systems with irregular, nonperiodic, ‘chaotic’ time evolutions are
frequently encountered in physics, chemistry, and biology. One famous example is
the rising of smoke in still air from a cigarette. Random oscillations appear at a
certain height in the smoke column, and they are so complicated as to apparently
defy understanding. Although the time evolution obeys strict deterministic laws, this
system seems to behave according to its own free will. Physicists, chemists, biologists,
and also mathematicians have tried to understand this situation. In fact a great deal
of excitement in nonlinear dynamics today is centred around the hope that this
transition from ordered to disordered flow may be explained or modelled with
relatively simple mathematical equations. It is the recognition that chaotic dynamics
are inherent in all of nonlinear physical phenomena that has created a sense of
revolution in physics today. The constituents of a strange or chaotic attractor involve
two apparently paradoxical phenomena. Namely, it has a steady attracting set but
not an attracting fixed point, and within this attracting set, neighbouring orbits separate
or diverge exponentially fast.

The long held belief that given an initial condition, we know what a deterministic
system will do far into the future, has now proved to be false. Because even with
the simplest conceivable equation of motions, almost any non-linear system will
exhibit chaotic behaviour; and given any infinitesimally different starting conditions
they often end up with widely different outcomes.

Since the pioneering works of Lorenz, later strengthened by Ruelle and Takens,
the concept of strange attractor or chaos has provided a new way of thinking about
the aperiodic behaviours observed in dissipative dynamical systems as well as in
experiments. The sensitivity to small deviation has important consequences from a
physical point of view, since due to some initial uncertainties, the information about
the original state of the system is lost in a finite amount of time and so the system
is effectively unpredictable. While chaotic dynamics exhibit random like phenomena.
the discovery of an underlying order holds out the promise of being able to predict
certain properties of noisy behaviour.
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We must distinguish here between the so-called random and chaotic motions.
The former is reserved for problems in which we truly do not know the input forces
or we only know some statistical measures of the parameters. The term chaotic is
reserved for those deterministic problems for which there are no random or
unpredictable inputs or parameters.

3.1 Criteria for chaotic vibrations

The search for theoretical criteria to determine under what set of conditions a
given dynamical system will become chaotic has tended to be ad hoc. The strategy
thus far has been for theorists to find criteria for specific mathematical models and
then use these models as analogs or paradigms to infer when more general or complex
physical systems will become unpredictable. An example is the period-doubling
bifurcation sequence discussed by May®’ and Feigenbaum®,

Their investigations concern the bifurcational behaviour of the one dimensional
map given by:

X, =Ax,(1-x,) (3.1)

They discovered solutions whose periods double as the parameter A is varied.
One of the important properties of equation (3.1) that Feigenbaum discovered was
that the sequence of critical control parameters A,, at which the period of the orbit
doubles satisfied the relation
2‘m +1- )"m

1
lim ————=< =4, .
lim === W5 0=4.6692

This important discovery gave experimenters a specific criterion to determine
if a system was about to become chaotic by simply observing the pre-chaotic periodic
behaviour. The importance of Feigenbaum’s work was that he showed how all
period doubling behaviour satisfies the above relationship. Thus, for a mapping
relationship parameterized by a control A, the sequence of critical values, A,,, of this
parameter at which the orbit’s period doubles satisfies the same relationship as that
for the quadratic map. Thus, the period-doubling phenomenon has been called
universal and 8 has been called a universal constant, now known as the Feigenbaum
number.
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Another theoretical technique that has led to specific criteria for chaotic vibrations
is a method based on the search for horseshoe maps and homoclinic orbits in
mathematical models of dynamical systems.

In 1899 Poincaré” remarked on the complexity of the behaviour of dynamical
systems having what he called a homoclinic point. Using his mapping technique,
he realized that for phase space with more than two dimensions, invariant manifolds
can cross without actually coinciding. Once the invariant manifolds cross, then they
must intersect each other an infinite number of times due to recurrence. The
consequence of these transverse intersections (homoclinic points or heteroclinic points)
is a complex recurring structure called a tangle.

A tangle due to the intersection of the invariant manifolds of two different
saddles is called a heteroclinic tangle. When the invariant manifolds belong to the
same saddle point, it is called a homoclinic tangle. Each intersection point is called
a heteroclinic or homoclinic point. A tangle contains an infinite number of secondary
intersection points and was described in detail by Birkhoff”.

Perhaps the most important concept of chaos is best illustrated by Smale’s
construction of a horseshoe map. Basically, this involves mapping a square onto
itself. The dynamics behind this mapping is such that the square is stretched in the
vertical direction and compressed in the horizontal direction. It is then folded or
bent into a horseshoe like shape and placed over the original square. Overlapping
regions are then retained and the rest are considered lost. By continuing this process,
original neighbouring cluster of points gets dispersed to all sectors of the square.
This is the same as a loss of information as to where a point originally started from.
Smale was able to demonstrate some remarkable properties of this mapping. Namely:
infinitely many periodic orbits, (all unstable), uncountably many aperiodic orbits and
at least one point in the cantor set whose orbit comes arbitrari!j close to every point
in the set, i.e. the set is transitive. These properties are in fact identical to those
found by Birkhoff when he looked at the problem of a tangle. Furthermore these
properties are precisely those that describe chaotic motions and can be found in all
known chaotic attractors of dissipative dynamical systems. Smale’s horseshoe-type
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dynamic is in particular related to the homoclinic trajectory of an inverting saddle
because of the necessity of mapping back onto itself. All these theoretical aspects
will be demonstrated in our application described in Chapter 7.

The appearance of horseshoe-like dynamics is directly related to the occurrence
of homoclinic orbits. To see why homoclinic orbits lead to horseshoe maps, we
recall that for a dissipative system, areas are mapped into smaller areas. However,
near the unstable manifold ( i.e. the outset of a saddle ), the areas are also stretched.
Since the total area must decrease, the areas must also contract more than they stretch.
This is schematically illustrated in Figure (14). It can be observed that areas near
homoclinic points also get folded. It is believed by some mathematicians that
horseshoe maps are fundamental to most chaotic differential and difference equation
models of dynamical systems. This idea is the centre piece of a method developed
to find a criterion for when chaotic vibrations are possible in a dynamical system.

The Melnikov method is used to measure the distance between unstable and
stable manifolds, ( i.e. the inset of a saddle ) when that distance is small. Hence it
is possible to calculate the critical control parameter in which homoclinic tangency
occurs. However, homoclinic orbit is only a necessary but not sufficient condition
for chaotic vibrations to occur as we shall demonstrate in Chapter 7.

Folding and mixing actions are well known criteria for chaos. These actions
can be graphically illustrated by the Poincaré maps or phase plane portraits. For
low dimensional dynamical systems, this qualitative technique has become the de
facto standard to present a chaotic attractor. To demonstrate the folding and mixing
actions of a chaotic attractor, we shall briefly discuss our earlier work on the
Birkhoff-Shaw chaotic attractor.

This chaotic attractor was reported by Shaw* working on a variation of the
Van der Pol equation. The dynamical system investigated by Shaw is described by
the equations

% =0.7y +10x(0.1 - y?
y =-x+0.25sin(1.57¢)
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To obtain a Poincaré section of the chaotic attractor, an arbitrarily chosen initial
condition was computed over many forcing cycles until the transient died away.
Thereafter, from this single trajectory, the next 1000 return points were recorded,
i.e., the coordinates (x, y) after every forcing cycle. This produces a Poincaré section
of the chaotic attractor at ¢ =0 where ¢ is the phase angle. If we now perform
numerical integrations on these 1000 points in 10 degree steps for a whole forcing
cycle, a sequence of 36 successive Poincaré sections can be obtained as shown in
Figure (15). This can be described as a cylindrical model of the Birkhoff-Shaw
chaotic attractor in full three-dimensional phase space.

At the ‘front’ section corresponding to ¢ =0, we have labelled 41 points which

approximately spread evenly on the attractor at this phase angle. By integrating
these initial conditions forward for exactly one forcing cycle, these points reach the
‘back’ of the ‘cylinder’. Using these numbers for identification, it can be observed
that after one forcing cycle, these points have already been ‘mixed’ together so that
it is impossible to identify the number sequence. This mixing action can easily be
demonstrated by unwrapping the cylindrical model to obtain the projection of the
trajectories onto a two-dimensional phase space as shown in Figure (16). On the
right hand diagram, the trajectories are obtained by numerical integrations and their
position are now a function of the phase angle, ¢, and the angle 6 with respect to
the x axis. Although not very obvious because of the heavy ink, the trajectories did
cross if examined closely. The reason for this mixing action to happen is because
part of the chaotic attractor folded onto itself as demonstrated in the series of Poincaré
sections shown in the middle of Figure (16). The solid dots on the left hand diagram
mark the apparently completed folding of the ‘wing’ (DE and AF) and immediately
thereafter, this part of the chaotic attractor begins to stretch and a new ‘beak’ starts
to emerge. Eventually, the beak becomes the wing and the whole cycle repeats ad
infinitum so that a complete mixing of any sequence of initial conditions is possible.
Obviously this gives rise to the exponential divergence and unpredictability of nearby
starts.

3.2 Quantifying Chaos

Chaos has been discovered both in the laboratory and in the mathematical
models that describe a wide variety of systems. In common usage, chaos is taken
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to mean a state in which chance prevails. To the nonlinear dynamicist, the word
‘chaos’ has a more precise and rather different meaning. A chaotic system is one
in which long term prediction of the system’s state is impossible because the
omnipresent uncertainty in demanding its initial state grows exponentially fast in
time. The rapid loss of predictive power is due to the property that orbits (trajectories)
that arise from nearby initial conditions diverge exponentially fast on the average.
Nearby orbits correspond to almost identically prepared systems, so that systems
whose differences we may not be able to resolve initially soon behave quite differently.
In non-chaotic systems, nearby orbits either converge exponentially fast or at worst
exhibit a slower than exponential divergence: long term prediction is at least
theoretically possible.

Rates of orbit divergence or convergence, called Lyapunov exponents**?

, are
clearly of fundamental importance in studying chaos. Positive Lyapunov exponents
indicate orbit divergence and chaos, and set the time scale on which state prediction
is possible. Negative Lyapunov exponents set the time scale on which transients or

perturbations of the system’s state will decay.

The exponential divergence of adjacent starts can be demonstrated by a
divergence study on the chaotic attractor originated from our investigations of the
impact oscillator. This system is a limiting case of the bilinear oscillator described
in Chapter 6. Results of such a study are shown in Figure (17). Here, starting at
a point (x;,X,) and then a point (x,+ 107 ,x,+ 10™). We have observed the distance
R between two subsequent motions for four different choices of (x, ,%,) on the located
steady state chaotic attractor. For each of these four choices we have taken r=3, 5,
7 and plotted -log R against the number of cycles completed. Here R is taken as
the shortest distance between the two adjacent starts after each cycle, hence:

R =VAx* + Ax?

The noisy straight lines on these logarithmic plots confirm that the adjacent
solutions diverge exponentially before becoming completely uncorrelated. The slope
of these noisy lines are then averaged to produce the Liapunov exponent, 0.16, which
is positive, indicating a chaotic response.
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In fact, this was only an ad hoc approach. The divergence of chaotic orbits
can only be locally exponential. Since if a system is bounded, the distance between
two adjacent starts cannot go to infinity as suggested. Thus to define a measure of
this divergence of orbits, we must average the exponential growth at many points
along a trajectory. Wolf**** suggested that one began with a reference trajectory and
a point on a nearby trajectory and measured their rate of divergence. When this
became too large, one should look for a new ‘nearby’ trajectory. However, our ad
hoc approach served as an easy and computational inexpensive effort to identify a
chaotic phenomenon.

Both ‘chaotic’ and ‘strange attractor’ have been used to describe the nonperiodic,
random like motions. Whereas chaotic is meant to convey a loss of information or
loss of predictability, the term strange is meant to describe the unfamiliar geometric
structure on which the motion moves in phase space. We have described a quantitative
measure of the chaotic or informational loss aspect of these motions using Lyapunov
exponents. We shall now describe a quantitative measure of the strangeness of the
attractor. This measure is called the fractal dimension.

To understand the term ‘fractal’, the simplest example will be the Cantor Set
discovered by George Cantor in 1883. An example of the construction of a Cantor
Set begins with a line segment with unit length. This line is subdivided into three
sections. By removing the middle segment of points, the total number of segments
is increased to two and the total length is reduced to 2/3. This process is continued
for the remaining line segments and so on. At each stage one discards the middle
segments of points creating twice as many line segments but reducing the total length
by 2/3. In the limit, the total length approaches zero but we are left with a set with
an infinite number of points. Since a line is one dimensional and a point has zero
dimension, this set of points has thus a ‘fractal’ dimension between zero and one,
i.e., a fractional dimension. The property of this set of points is that when one keeps
enlarging any part of the line segment, the same structure will be repeated ad infinitum
which is just the same geometric structure that occurs in a chaotic attractor. Thus
we can expect that a chaotic attractor has fractional dimension®.

Various mathematical techniques have been used to calculate the fractal
dimension of strange attractors such as the capacity dimension®, point-wise
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dimension*’, correlation dimension*® and information dimension*. The practical use
of all the dimensions in measuring and characterizing chaotic vibrations has yet to
be settled. In many cases, it is sufficient to establish that the dimension is not integer
or that the attractor is indeed strange.

In addition to the application of fractal ideas to a description of the chaotic
attractor itself, boundaries between competing attractors, not necessary chaotic, may
also have fractal properties. This so called fractal basin boundary has been discovered
in the ship-capsize problem and will be discussed in Chapter 7.

Fractal dimensions and Lyapunov exponents have been widely used by scientists
working with numerical models. For experimentalists, a spectral analysis is by far
the most popular measure, because the idea of decomposing a nonperiodic signal
into a set of sinusoidal or harmonic signals is widely known especially among
engineers. The assumption made in this method is that the periodic or nonperiodic
output can be represented as a synthesis of sine or cosine waves:

f@) = %nfrF((o)e"“"d(o (3.2)

where
[0 . .
e’ =coswt +1 sin @t

In general, the function F () is a complex function of ® and to represent certain

classes of output f(z), the integration of equation (3.2) must be performed along a
path I in the complex ® plane. Numerical calculation of F (), given f(¢), can often
be very time consuming even on a fast computer. However, a more efficient algorithm
called the fast Fourier transform (FFT) can be used. Given a set of data sampled at
discrete even time intervals, the discrete time FFT is defined by the formula

T(J)= %f(l)e_zﬁ(l_l)(]_l)w
i=1

where I and J are integers.
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When an output signal is periodic or quasiperiodic, the power spectrum will
show a set of narrow spikes indicating that the signal can be represented by a discrete
set of harmonic functions. Near the onset of chaos, a continuous distribution of
frequency appears and in the fully chaotic regime, the continuous spectrum may
dominate the discrete spikes. Illustrated in Figure (18) is a typical power spectrum
of a steady-state chaotic motions, showing a white noise type power spectrum which
confirmed the existence of chaotic motion.

Quantitative measures of chaotic dynamics are essential tools when qualitative
techniques such as the Poincaré map is impossible. This is especially true for systems
with extreme frequencies (10°—10°) (as in laser systems) in which Poincaré maps
may be difficult or impossible to capture. In addition, there are systems with many
degree of freedom where the Poincaré map will not reveal the fractal structure of
the attractor section: or the damping may be so low that the Poincaré map shows no
structure but looks like a cloud of points. However the above three techniques will
provide us with hard evidence on the existence of chaotic dynamics.

3.3 Bifurcation of Chaotic Attractors

We have seen in Chapter 2 that periodic attractors can bifurcate via the fold or
the flip bifurcation. These two bifurcations are of the ‘local’ type. A chaotic attractor
can suddenly be destroyed via the Chaotic Blue Sky catastrophe when it is tangent
to the invariant manifolds so that this is classified as a global bifurcation. We shall
now discuss a type of bifurcation of chaotic attractors which has a local character
but involves invariant manifolds nevertheless. Therefore we can classify it as a
local-global bifurcation after Thompson and Stewart'’.

In Chapter 1, Figure (7), we have shown a table for the bifurcation of attractors.
For a chaotic attractor, there are the intermittency and chaotic explosion that we have
not discussed. In fact these two types of chaotic bifurcations are of the local-global
type and they often appear as a pair in a periodic window within a chaotic regime.

In the case of intermittency, bursts of chaotic or noisy motions occur between
periods of regular motions. Such behaviour was even observed by Reynolds in pipe
flow preturbulence experiments in 1883. Hence such a dynamical system is close
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to a periodic motion but experiences short bursts of chaotic transients. An explanation
of this behaviour has been proposed by Manneville and Pomeau® in terms of one
dimensional maps.

From their numerical experiments, they investigated the statistical behaviour on
the duration of the periodic motions between each burst of chaotic transients. They
found that the mean time interval of periodic motions was proportional to the control
parameter and established the relationship:

1
T~m (3.3)

where A is a control parameter and A, is the critical value at which chaotic motion

occurs. As A—A, increases, the chaotic time interval increases and the periodic
interval decreases. To measure A,, one must measure two average times T, and T,
at corresponding values of the control parameter, that is A; and A,. This should
determine the proportionality constant in equation (3.3) as well as A.. Once A, is
obtained, one should then measure other values of (T,A) to validate the scaling
relationship of equation (3.3).

In Figure (19), part of the bifurcation diagram of the quadratic map is greatly
enlarged along the parameter axis to show a period three window. The abrupt
appearance of the period three solution near C=1.75 is due to a saddle-node bifurcation.
To the left of this control parameter, we can see a higher concentration of points
near the impending period three orbit which indicate the appearance of intermittency.

At the end of this period three window, just past c=1.79, it can be observed
that the three bands of a ‘period three’ chaotic attractor bifurcate to another chaotic
attractor and fill the entire interval. This is the chaotic explosion or in Grebogi’s™
terminology, an interior crisis. In this one dimensional case, the bifurcation is caused
by the unstable saddle, generated by the saddle node bifurcation, touching the chaotic
attractor. The path of the saddle is represented schematically by the dash line.
However, in phase space of more than one dimension, this explosion can happen as

a chaotic attractor touches the inset without touching the saddle itself.
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The mechanism for chaotic explosion is similar to the Chaotic Blue Sky
Catastrophe: however there is no jump to a remote attractor in this case. We can
infer that there must exist a chaotic attractor which is non-attracting before the
periodic attractor vanishes. Therefore, chaotic transients must exist prior to this
transition and in fact this phenomenon also applies to the intermittency explosion.
Because of the existence of chaotic transients, typically the result of intersecting
invariant manifolds, we can expect that a local bifurcation will trigger a global
transition to chaos. Hence the name local-global bifurcation.
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4 Qualitative analysis of dynamical systems

In the theory of nonlinear oscillations, dealing with strongly nonlinear systems
is always a very difficult task especially when the global behaviour of the systems
becomes important. This chapter presents several efficient and practical ways of
examining the global behaviour of nonlinear dynamical systems. Global bifurcations
are associated with a profound change in the topological configuration of the invariant
manifolds of a saddle point. A variety of types of global bifurcation exists, depending
on the particular topological configuration of invariant manifolds involved. In general,
any topological change in the configuration of invariant manifolds can be expected
to cause some qualitative change in behaviour. In some cases, like the homoclinic
connection in the Lorenz® system, this change dramatically affects the basin structure
of the phase portrait without changing the attractors. Other global bifurcations create
or destroy attractors, for example a heteroclinic connection. With such change, the
domain of attraction or catchment region corresponding to different attractors can be
drastically altered (fractal basin boundaries™
solutions) or even suddenly disappear (Blue Sky Catastrophe™).

), reduced (competing coexisting

To an engineer, the main motivation to examine the global phase space is
whether these catchment regions of various coexisting attractors change when a
control parameter is varied. Catchment regions are always separated by the stable
manifold or inset of a saddle: therefore the latter is sometimes called a basin boundary.
To understand these phenomena, it is inevitable that the global phase space must be
thoroughly explored.

One common but important feature when modelling nonlinear dynamical systems
is the possibility of multiple coexisting solutions. One obvious example is the bending
over of the resonance response curve associated with a softening or hardening spring.
This folding of the resonance response curve results in the familiar hysteresis due
to two fold bifurcations as well as the coexisting high and low amplitude solutions
seperated by unstable saddle point. The final or steady state solution thus depends
crucially on the chosen initial conditions given to the system. As the control parameter
is varied, the area of the catchment region changed so that there is no guarantee that
a chosen initial condition can always settle onto the same steady state solution. This
dependence on initial conditions has practical importance to engineers. As will be
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seen later in this chapter, a high amplitude subharmonic resonance can easily be
missed due to a coexisting fundamental response This is in contrast to a damped
linear dynamical problem where a unique solution means that the whole phase space
of initial conditions acts as a basin of attraction.

During the course of the research, various methods have been developed to
investigate the global behaviour of dynamical systems. In this chapter we shall
discuss these methods using various mathematical example as well as practical model
of engineering problems.

Mathematical examples will be of the form:

£+ +B(x)=F()
F(t)=F(+T)

The three dimensional phase space for this equation is defined by (x,x,¢), and the

Poincaré section is defined by the (x,x) plane at ¢ equal to multiples of the forcing
period. Notice that when a system is autonomous, i.. time invariant, it is possible
to obtain a picture of the phase portrait of the flow, by considering an ensemble of
trajectories. Trajectories in flow phase portraits are effectively governed by the
position of the attractor. For example we can observe trajectories defining the
catchment regions of two coexisting limit cycles separated by an unstable saddle
cycle as shown in Figure (20). This simplifies the task of evaluating the set of initial
conditions. For a forced (nonautonomous) system as we shall consider here, the
phase portrait is a collection of Poincaré sections so that we can only observe a series
of dots approaching the attractor and no information is available between each step.
Thus to obtain the catchment regions we need to consider every point of the phase
space and it is this seemingly impossible task that we would like to address.

4.1 Interactive Graphical technique

As we have mentioned earlier, global bifurcation is directly linked to the changes
in the topological configuration of the invariant manifolds. Furthermore the catchment
regions are: separated by the inset of a saddle. Therefore it is obvious that the first
step should be taken to locate the saddle point so that inset of the saddle can be
traced and hence the global structure of the phase space can be obtained. However,
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this is not an easy task since the saddle is an unstable point. One of the techniques
we have developed to locate a saddle point is based on its linear mapping characteristic.
As we sample a three-dimensional flow problem using a Poincaré mapping technique,
we reduce the dimension of the system by one so that all the equilibrium solutions
become points in the two dimensional section. Close to an equilibrium point the
trajectories of the mapping (Poincaré) points resemble a linear system. These
trajectories can be represented pictorially by a straight line joining two consecutive
Poincaré points. The characteristics of the trajectories are governed by the saddle’s
local eigenvalues. Figure (21) shows some typical trajectories of a two dimensional
linear map with different eigenvalues. In the same way, we can identify a typical
equilibrium point for a nonlinear system by these characteristics if we are close
enough to the solution.

To locate a saddle point through an interactive graphical technique, the unforced,
i.e. autonomous, counterpart of the forced equation under consideration can be used
to analytically determine the coordinates of the saddle equilibrium point. For small
forcing we can expect that the location of the corresponding unstable cycle will
remain nearby. A set of starts in the form of a circle encompassing the estimated
saddle point is then initiated. The system is then run forwards and backwards in
time for one forcing cycle. For each start, a line is drawn joining the Poincaré points
and a series of vectors is established. Since an inset or outset will separate vectors
pointing in opposite directions, as shown in Figure (22b), an estimate can be made
of the location of the saddle by guessing the intersection point of the inset and outset.
This operation is then repeated with a sequence of progressively smaller circles so
that each estimate will be improved until the required accuracy is reached.

Having approximately located the saddle point, this point can be used as an
initial condition such that by running time backwards and forwards, the inset and
outset can be traced out in the phase projection. However, we found that the sequence
of Poincaré points along the inset always has a very large step size, so that we cannot
obtain a well defined curve. The only way to obtain a pseudo-continuous curve
which represents the locus of this separatrix is to consider a number of initial conditions
close to the saddle point and use the so called ladder method.
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The estimated saddle point is first used as an initial condition to run backward
in time for one cycle; as the initial point is very close to the saddle, after one cycle,
the two points obtained are still very close together so that we can approximate this
section of the inset as a straight line. By subdividing this line into ‘rungs’ and
iterating each rung backwards in time systematically, an almost continuous curve
can be achieved. Figure (22c) illustrates this procedure schematically, where the
points Py,P,.P,..... and Q,, Q,, Q,.... represent Poincaré points along the inset and
outset respectively. P, and Q, are chosen to be very close to the saddle point and
the sections corresponding to one iteration of the map are denoted B,, B,..... etc.
along the inset (A,, A,,.... along the outset).

Hence by using an interactive graphical routine to locate a saddle point and
applying the ladder method we are able to trace the path of an inset to determine
the domain of attraction for a particular periodic solution. We shall see an illustration
of this technique later with a practical application concerning the oscillations of an
articulated mooring tower. The ladder method has also been used in more detailed
studies in the ship-capsize problem where the basin boundary seperating two attractors
become extremely complicated and is indeed fractal in nature.

4.2 Grid of starts technique

The grid of starts technique is the easiest to implement computationally. As
we have mentioned earlier, in order to investigate the global bifurcational behaviour,
we need either to locate the saddle and trace the inset or examine every point or
state in the Poincaré section. The second method is rather impossible, since there
are infinite number of point in the section. However, in practice the phase space
can be divided into a grid covering the region that is of interest and we can record
the final steady state of every point on the grid. By using different symbol to
distinguish between different steady state attributedto each point on the grid, the
catchment regions and the global characteristics can be obtained. This method is
computationally very demanding and the resolution depends on the grid size so that
when a system becomes complicated with, for example the occurence of fractal basin
boundaries, this method becomes impractical.
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The importance of grid of starts technique however should not be undermined
by its expensive computational time. Consider the case when homoclinic intersection
occurs. This special type of global bifurcation involves crossing of the invariant
manifolds giving rise to fractal basin boundaries. Once this occurs, the catchment
regions are so fragmented that a small perturbation can lead to dramatically different
coexisting attractors. The advantage of grid of starts technique is that it can zoom
into specific region and made a high resolution study as will be seen in later chapter.

Figure (23) is the catchment regions of the Duffing’s equation presented earlier
with k=0.1 obtained by Ueda**® with a smooth boundary. This is produced by the
grid of starts technique. After the appearance of homoclinic tangency at k=0.05 the
smooth boundary has become fractal and this is highlighted in Figure (24) by enlarging
different area of the original phase space.

Later in this chapter we shall introduce a method which is similiar to the grid
of starts technique but which eliminates the need to obtain the steady state solution
of every point on the grid.

4.3 Variational equation and the Van der Pol plane

The first mathematical example is a nondimensionalised form of Duffing’s
equation, namely:

g

E+22%+x +wc’=Focoslz 4.1)
n n

in which the parameter 1 is chosen to be the control variable and the remaining

values are fixed as the constants,

(=01 a=005 F,=25.

This equation has been extensively studied in the mathematical literature and also,
has been used to model large amplitude vibrations of a buckled beam, the behaviour

of elastic strings, and large forced motions of a pendulum'*,

Solutions of this seemingly simple equation are still not completely understood
with new phenomena which govern the behaviour of the response still coming to
light. Subharmonic resonances and regimes of chaotic motions have been identified.
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But here we shall restrict our attention to the area in which there is a jump to
resonance along the fundamental solution as the parameter 1 is varied. This equation,
can be solved immediately by numerical method but instead we shall derive a
variational equation using a method which assumes a slowly varying amplitude and
phase of the harmonic solution (Hayashi'®). If we assume that the solution of the
system is close to a harmonic response then we may let

x()=u()cost—v(t)sint 4.2)

The amplitude of the nonsinusoidal response can be usefully and appropriately
defined by

A=VW?+vd 4.3)

and a corresponding phase,
¢ =—tan" v/u 4.4)

Effectively we are looking at transient motions close to the periodic steady state.
The new coordinates (#, v) now define the Van der Pol plane in which the primary
rotation of the solution has been eliminated. Solution curves are plotted now in the
(u, v) plane where trajectories do not cross; the (#, v) plane being termed the Van
der Pol plane (Thompson®). If the Duffing equation was solved numerically and
trajectories plotted as usual on the (x,x) plane then trajectories cross and mingle
causing the phase portrait to be unclear. This is of course due to the fact that the
original system has a full three dimensional phase space spanned by (x,x) and time.
Here the (u, v) axes rotate with respect to the (x, y) axes so most of the cross overs
on the two-dimensional phase are eliminated. Now provided that the response of
the system is predominantly harmonic then under our assumptions, the transformation
‘unscrews’ the fibre of trajectories at the corresponding rate of rotation. This can
be seen in Figure (25).

For our nonlinear oscillator described by Duffing’s equation in the range of
parameters under discussion, we can finally make an approximation by averaging
the exact equation in u,v and ¢ following the methods of Krylov and Bogoliubov as

-48-



given, for example, by Hale®, assuming that the new variables u and v are slowly
varing functions of time. We may ignore terms involving #,V and any cross product
terms. Using this form of solution we differentiate to yield

y=x=(@-v)cost—(u+v)sint

y=X=—(u—-2v)cost+(—2u +v)sint 4.5)

and
3_3 2 2 3. 2. 2.
X —4u(u +v )cost—4v(u +v)sint (4.6)

Substitution of the equation from (4.2) to (4.6) into equation (4.1) and matching the
coefficients of cos t and sin t, yields the approximating system

. _L 2_ _ __3_ 2 2
u —an((n v —20nu 4ocv(u +v ))
S W e 3 2, 2
v——2T12 M —Du +2§nv—zau(u +vI)+F, 4.7

One immediate advantage of this new system 1is that it is autonomous so that
the phase space is now only two dimensional. Therefore we can obtain the catchment
regions by considering an ensemble of trajectories. Trajectories in the new (u, v)
coordinates system will not cross and the cusping feature of the exact trajectories
will also be eliminated as shown in Figure (25). Since these cusp like features and
subharmnonic responses are smoothed out by the approximate system, equation (4.7)
is referred to as the smoothed variational equation. A complete amplitude response
diagram can be obtained for Duffing’s equation for various levels of damping, as
shown in Figure (26). We note that the bending over of the response curve which
creates two alternative stable states depend on the damping level as well as the
restoring function. The point at which this system jumps to a remote state is of
course due to a fold bifurcation with the unstable path denoted here by a dotted line.
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With £ =0.1 hysteresis occurs for values of 1 between approximately 1.45 and

1.73. The final steady state motion of the system depends entirely upon the initial
conditions. The system’s phase portraits in the Van der Pol plane are plotted for
six values of N in Figure (27).

In these diagrams, initial conditions are given equally spaced around a circle
and then the smoothed variational equation is solved using a Runge-Kutta integration
routine. The points marked along the trajectories represent Poincaré points taken at
multiples of the period of the forcing. The flow in these diagrams can be interpreted
in polar coordinates as the continuous adjustment by the system of its amplitude A
and phase ¢. The catchment regions for the two competing stable steady state
oscillations, represented in this Van der Pol plane as two sinks, are bounded by the
separatrix passing through the unstable saddle solution; one of the domains of attraction
is shown dotted whilst the other is left blank. As the variable 1M is reduced the
catchment region for the small amplitude solution decreases until it vanishes at just
below 1.452, after which all trajectories are attracted towards the large amplitude
resonant motion. The disappearance of this small amplitude solution is due to a fold
bifurcation of the response curve at the point Q. By examining the beat frequency
of the transient responses it is possible to make predictions of this incipent folding
action as Q is approached. (Bishop and Franciosi*’, Thompson and Virgin®).

4.4 Analogue computer simulation

The analogue computer is a device that is naturally suited for the study of the
dynamical behaviour of oscillating systems. This computer essentially comprises a
set of units able to perform certain mathematical operations, which when properly
coupled together, may be used to solve differential equations or, systems of differential
equations. These basic units and the mathematical relationships obeyed by their
input-output variables are shown in Figure (28). All variables are represented by
voltages; system inputs are represented by voltages, as well as system outputs or
responses.

The behaviour of the system may be observed and recorded using oscilloscopes
and electromechanical recorders. The accuracy of the analogue computer however
is limited by the precision of the components in the machine, and the ability to
measure the voltage accurately.
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The advantages of using analogue computer simulation are the speed and the
ease in programming. Essentially, this involves connecting various units using a
piece of wire. Its flexibility is due to the development of a wide range of easily
applicable nonlinear function-generating components. Thus in many cases an analogue
simulation of a nonlinear problem may be the most practical and economical approach.
Indeed, Ueda’s work on nonlinear dynamical systems has been assisted by a hybrid
of a large analogue and digital computer.

For problems involving the use of the analogue computer, it is necessary to
scale properly the system variables (or inputs) so that the voltages that represent the
variables do not exceed the full dynamic range of the components in the computer.

6162 and the time scale

Here, the ‘normalized variable’ magnitude scaling technique
factor method®* have been applied throughout. A thorough algebraic presentation

of the scaling technique can be found in Ghaffari®.

Our analogue computations were performed on an EAI-1000 Analogue computer
supplemented by an external wave generator. The resulting system allows quick
approximate results to be obtained under, for example, different values of initial
conditions.

The example we have used in our studies is again a version of Duffing’s equation
with no linear stiffness; namely

i+kx+x>=Bcost

This equation has been considered by Hayashi'® and extensively studied by Ueda®.
For variation of the two parameters k and B a wealth of nonlinear behaviour has
been charted by Ueda, including coexisting periodic and chaotic solutions. In the
absence of a natural, linear frequency the usual resonance response diagram can be
drawn by plotting B™"”, a measure of the forcing-frequency/system-frequency ratio,
against B™” multiplied by the amplitude which in turn gives an appropriate
amplitude/static-response measure.

With the coefficient of damping held constant at k=0.2 the familiar form of an
engineering resonance response curve is shown in Figure (29) obtained by digital
time simulations and confirmed by analogue studies. If the variable B is increased,
ie. B™ is decreased, a jump to resonance can be initiated. The hysteresis implied

-51-



by this jump leads to two alternative harmonic solutions onto which the system may
settle, depending upon the initial conditions. The region of initial conditions on the
(x,X) plane which results in motion decaying onto the small amplitude solution has
been obtained by analogue computer simulations using a grid of starts. To illustrate
how this area of attraction diminishes as (x,X) is decreased, this grid of starts method
was carried out for seven values of B within the hysteresis loop. The results are
displayed in Figure (30). The catchment region for the small amplitude solution is
represented by a square while the catchment region for the large amplitude solution
is left blank. As the control parameter is decreased to the fold point, just below
1.34, the shaded area diminishes indicating the respective dominance of the two
relevant modes. To confirm our analogue study, also included in this Figure is a
diagram obtained by Ueda when B=0.3 (B™"*=1.49) which compares favourably
with our own result shown here in the Figure where (B~ = 1.50).

The Poincaré points (shown in small squares) and trajectories of the stable
steady state oscillations are also given in the diagrams of Figure (30). It should be
remembered though that the phase portrait shown here is really a two dimensional
projection of the solution from the three dimensional phase space. In the diagram
by Ueda, the saddle point, denoted by the number 1 lies on the unstable path,
correspondingly indicated by the dashed line in Figure (29).

We have detailed several ways in which the domains of attraction for competing
harmonic solutions can be evaluated. In the next section we shall see how these and
further methods may be applied to mathematical models in the field of offshore
mechanics.

4.5 Examples in Offshore Mechanics

In this section we shall present some examples in offshore engineering when
nonlinearity in the restoring force leads to coexisting fundamental and subharmonic
solutions with a sensitivity to initial conditions. The major practical implication for
engineers is the possibility of relatively large amplitude subharmonic oscillations of
compliant and offshore structures in parameter regions well away from the natural
frequency in what might otherwise be considered ‘safe’ conditions.
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4.5.1 Subharmonic resonance of an articulated mooring tower

The first example involved an articulated mooring tower used in the North Sea
to load oil into tankers. This mooring tower has a discontinuity in the restoring
force such that it’s behaviour is essentially nonlinear in nature. This dynamical
system is defined mathematically as follows:

X+2£X +KX =—l;sin1:
n n

where a dot denotes differentiation with respect to time (), X represents displacement,
€ is the damping factor, M is the frequency ratio, K; is used to denote whichever of
K, for positive displacement, or K,, for negative displacement, is appropriate for the
domain under consideration and:

K, = (1 +oy4om?

K,= (1 +oy4n?

where o = ky/k, is the stiffness ratio while &, and k, are the stiffnesses for positive

and negative displacement respectively.

A detailed description of this dynamical system will be presented in a later
chapter.

Because of the underlying nonlinearity, the existence of coexisting subharmonic
solutions is possible. This has been extensively charted by Thompson®” for a range
of the control parameter . We shall concentrate here on the parameter range such
that the n=1 fundamental solution coexists with the larger amplitude n=4 subharmonic,
which occurs well away from the fundamental resonance at 1=1. An enlargement
of this region on the amplitude response diagram is shown in Figure (31e). The
dangerous implications for design engineers is clearly seen in this figure, in which
the subharmonic solution can have a maximum displacement considerably greater
than that of the harmonic solution.

To illustrate the differences in the two alternative solutions we detail here some
results where the control parameter is fixed at 1 =3.95.
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Figure (31c) shows a study of the transient decay of the system as a time history
of the displacement, while the corresponding phase projection is given in Figure
(31d). Two alternative starts are used, S;, converging onto the smaller amplitude
n=1 solution, and S, decaying onto the larger n=4 subharmonic. If the system is
allowed to oscillate at the lower amplitude state then as 1M is slowly varied, some
transients will decay onto this harmonic solution. However given a different initial
condition, for example caused by some sudden external loading, the higher amplitude
state can be achieved. To safeguard against this, we must chart the catchment regions
for the n=4 subharmonic solution. The problem now centres on the location of the
separatrices which form the boundaries of the domains of attraction, Figure (31f),
and the determination of the stability of the system under normal environmental
conditions.

In order to uncover the catchment regions, the location of the period four saddle
was first obtained by graphical technique and then the ladder method was applied
to trace out the inset of this saddle. Figure (32a) shows this result displaying both
the inset and outset to each of the four saddle points (since we are sampling at every
forcing cycle instead of every fourth forcing cycle). In this Figure each dot represents
a Poincaré point but it should be remembered that the collection of points which
form a curve will be from a set of different starts (rungs) and not a single start.
From these data, one can immediately access the probability of the mooring tower
attaining subharmonic oscillations under environment loading.

Alternatively, a grid of starts could be used to evaluate the catchment regions.
Such a task was also completed for the same parameters and included here is the
equivalent diagram for comparison with Figure (32b). Starting conditions leading
to the small amplitude n=1 solution are indicated by the hatched region, which is
composed of small crosses showing each trial. Starting conditions leading to the
large amplitude resonant n=4 solution are indicated by the blank region, trials in this
region having been made on the same resolution as the crosses.

4.5.2 Surge motion of a moored semi-submersible platform

A second brief example from the field of offshore mechanics concerns the surge
motions of a floating semi-submersible platform chained to the sea bed by catenary
mooring lines. These chains exert a nonlinear restoring force on the structure shown
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schematically in Figure (33a). Here the stiffness function K(X) and the local restoring
force k(x), are obtained by curve-fitting design data using third order polynomials,
as shown in Figure (33b): note the analogy to a hardening spring restoring force.
The simplified equation of motion used to model this system is of the form:

nix +bx +k(x)=F, sin(%)
Again, this problem has been the subject of a detailed parametric study and the
relevant coefficient values can be found in Bishop and Virgin®. We shall focus our
attention on a region of parameter values where it has been shown that stable,
coexisting n=1 and n=2 motions persist. Figure (33c) shows the maximum amplitudes
and the position of the Poincaré points as a function of the wave period, while Figure
(33d) shows the time series and the corresponding phase portraits of the two competing
steady states when 7=19.7 seconds.

For fixed values of the forcing wave period the catchment regions enclosing
these alternative solutions can be mapped out as shown in Figure (33e) by tracing
the inset of the saddle points. A sweep through resonance given in Figure (34)
shows the relative dominance of the two modes. This clearly bears some resemblance
to the catchment regions for Duffing’s equation as illustrated in Figure (24). Again
the subharmonic oscillation has the greater amplitude so that care must be taken
when investigating this, or any other nonlinear system. Of special concern is that
we are considering here regions of wave period that might very well coincide with
design wave conditions away from the fundamental resonance at approximately
T=44.9 seconds, and yet still achieving dangerously large amplitude motions.

4.6 Simple cell mapping technique

So far we have met several methods which can explore the phase space so that
the global behaviour of the dynamical system can be explored. However, it is also
true that they are quite tedious to implement. Like the graphical technique and the
smoothed Van del Pol plane, they are only practical for simple systems. When we
deal with problems like fractal basin boundaries, the only real possibility is the grid
of starts technique. However even for a really coarse grid with 100x100 starts, we
had 10,000 points, and for each starting point, 50 forcing cycles are required so that
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we can be reasonably sure that it has attained a steady state. Then the total number
of forcing cycles needed to be simulated will be 500,000. This is tremendously
expensive even with a high speed super computer such as the Cray. It is with this
in mind that we have employed the simple cell mapping technique.

Using the grid of starts technique, we have to follow the trajectory of each
intial condition until a steady state is reached. Thus, on the two dimensional phase
projection, we can observe a series of dots or Poincaré points moving across the
plane until the Poincaré point is repeating in a cycle, i.e. a periodic solution. Obviously,
if we want to uncover the catchment regions, we can cover this phase space with as
many points as possible and strike a balance between computational efficiency and
resolution. However, we have no information about points which do not fall on this
grid so that the final result on the catchment regions will still be an approximation,
although all the computed points are exact within the numerical accuracy of the
computer and the integration routine employed.

Since it is impossible to define each and every point of the phase space on the
grid and then obtain the final steady state of each point as accurately as possible,
we divide the two dimensional phase space into cells, each cell being a square instead
of a point. This square covers an area of the phase space, and we assumed that
every point within this cell would have the same steady state behaviour. Then the
Poincaré map will map one cell into another cell rather than from one point to another
point. Again, a steady state periodic solution will be obtained when a cell is repeatedly

mapped onto itself. The advantage of this method can be easily understood. When one
trajectory is defined on this phase plane leading to a steady state, whenever we
encounter a cell which lies on this trajectory, we know immediately the final steady
state of this cell and it is not necessary to apply the Poincaré map again. Therefore
each cell need only be mapped one step forward and the final steady state can be
determined. Using the same resolution as the grid of starts technique mentioned
above, we are 50 times faster than the grid of starts technique and consequently we
can afford to increase the resolution by defining a smaller cell.

This simple cell mapping technique is similiar to Hsu’s cell-to-cell and
generalized theory of cell to cell mapping but is simplified to enhance efficiency.
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While the generalized theory can deal with more complicated global behaviour, it
sacrifices . computational speed by incoporating probability techniques which defeat
the origin aim of improving efficiency.

4.7 Computational algorithm of simple cell mapping technique

In this section we describe the basic idea of the algorithm which allows us to
determine the periodic cells and their domain of attraction in a very effective manner.
We shall use the same terminlogy as Hsu so that the interested reader can get to
»,69-73
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grip with Hsu generalised theory much more easily.

Periodic motions and periodic cells. Let C” denote the cell mapping C applied

n times to form a sequence of K distinct cells Z(j), j=1,2,...K which satisfy

Zn+1)=C"ZQ1)),n=1,2,...K -1

Z(1)=Cc*@))

This is said to form a periodic motion of period K. Hence each of the sequence’s
elements Z(j) is a periodic cell of period K or simply a P-K cell. A P-1 cell thus
have the same period of the forcing frequency.

Sink cell and regular cell. When a cell is mapped outside the region of interest,
say to a remote attractor, the sequence of mapping is stopped and the cells are said
to map to a sink cell. This is arbitrarilyssigned as a P-1 cell. Cells within the region
of interest are called regular cells.

The evolution of the system starting with any regular cell Z can lead only to
three possibilities:

(1) Cell Z is itself a periodic cell of a periodic motion. The evolution of
the system is simply a periodic solution.

(ii))  Cell Z is mapped onto the sink cell after r-steps. Then this sequence
of cells belongs to the domain of attraction of a remote attractor.

@iii)) Cell Z is mapped into a periodic cell of a certajn period after r-steps.
Thereafter, the evolution is locked into that periodic motion. Then this sequence of
cells belongs to the domain of attraction of that periodic motion.
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In order to differentiate different domains of attraction, it is useful to introduce
two numbers to delineate the properties of each cell. They are the group number
G(2) to distinguish coexisting attractors and the periodicity number P(Z) to identify
the period of the attractor. To each periodic motion obtained, a group number is
assigned to every periodic cell of that periodic motion and also to every cell in the
domain of attraction. A periodicity number equal to this period is assigned to all
the cells in this group. Hence, the problem presents itself as to determine these two
numbers for every regular cell when a cell mapping is given.

The algorithm involves processing the cell by applying the mapping
systematically. For example, for a two dimensional problem, we can use a two
dimensional array where each element’s position in the array reflectsthe coordinates
of the centre of the cell on the phase plane. During this process, we must also be
able to distinguish three kinds of cells. The first ones are those which have not been
processed, they can be called virgin cells. The group number of these cells can be
conveniently set to 0. Therefore a virgin cell Z is characterized by having G(Z)=0.
The second kind of cells are those which are under processing but the steady state
solution has not been identified either as a sink cell or a periodic cell. These cells
can be characterized as having a group number of -1. The third kind are those whose
group and periodicity numbers have been assigned. Thus G(Z) is characterized by
a positive integer. Hence, the group number is serving as a flag in computational
terms.

Starting with a cell Z, we have a sequence of cells produced by the mapping;
in our problem, this sequence of cells is derived from numerical integration of the
original differential equation. We have:

Z->5C2Z)-»CHZ)>...oC"2)

For each mapping sequence, there are three possibilities for each cell which is under
processing:

1) The newly generated element C'(Z)=Z’ is such that its group number
G(C'(Z))=0 indicating that the cell C(Z) is a virgin cell. In this case we continue
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to apply the mapping and locate the next cell C*'(Z) in the sequence. Before doing
that, we must now set G(C'(Z))=-1 in order to indicate that C'(Z) is no longer a virgin
cell but one which has been processed.

(ii) The newly generated cell C'(Z)=Z" is found to have a positive integer as its
group number G(Z”). This indicatesthat Z’ has already been processed in a previous
sequence. Since the current processing sequence has been mapped onto a cell with
known final motion this sequence of processing can be stopped. Obviously all the
cells of the present processing sequence will have the same group number as well
as the periodicity number as that of Z”. We can then assign the same numbers to
the current processing sequence and go back to pick the next virgin cell to begin a
new processing sequence.

(iii)  The newly generated cell C'(Z)=Z"" is found to have -1 as its group number.
This indicates that C'(Z) has appeared before in the present sequence. Therefore,
there is a periodic motion contained in the current sequence. In this case the procgfsing
sequence is again terminated. The whole sequence of cells is then assigned group
number which is one larger than the number of groups which have already been
determined. The periodicity of the sequence can now be calculated easily. Let
C(Z) reappear in the (j+1)th position of the sequence, i.e., C(Z)=C(Z), j<i. The
periodicity of the motion is thus i-j, and all the cells in the sequence will have the
same periodicity number. Once these numbers have been assigned, we go back and
pick up another virgin cell to begin a new processing sequence.

Using these processing sequences starting with virgin cells, the whole phase
space is covered and the global characteristic is determined in terms of the group
number and periodicity number. Given a set of parameters, even if we do not know
of any coexisting solutions, or any global characteristic, the whole phase space can
be uncovered in a fast and efficient way.

In our program implementation, since we deal only with a two dimensional
phase space, a two dimensional array has been used. For example, if 100x100 cells
are used to cover the phase space, the array will have the same dimension. Using
the position of the element in the array, the coordinates of the centre of the cell are
calculated and put into the numerical integration routine and run for one forcing
cycle. The result is then checked and the position of the cell which contains this
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point is found and hence the position of the element in the array. The procedure is
then repeated and a group number is assigned to the elements of the array. To reduce
the number of arrays required, the decimal part of the number can be used to denote
the periodicity number and the integer part for the group number.

While the Simple Cell Mapping technique is easy to implement as well as
efficient, it does has a disadvantage. Once a cell is mapped outside the region of
interest, it is considered to map onto the sink cell and no information will be availiable
as to its final behaviour. It can either go to infinity or to an attractor outside the
region. Therefore, the region under investigation must contain at least one attractor
so that the corresponding domain of attraction can be located. Now, suppose we
want to investigate part of a region in detail with an attractor outside this region;
using a grid of starts technique we can fire off as many points as required and record
all of their final motions. However, using the Simple Cell Mapping technique this
is impossible because all the cells will eventually be mapped outside the region and
considered to be mapped onto the same sink cell. Therefore this method is suitable
only to investigate the global phase space rather than the global behaviour of a local
region.

Using the Simple Cell Mapping method we have made extensive studies into
the global behaviour of the ship-capsize model. It will be seen in a later chapter
that as this dynamical system evolves, complicated phenomena such as fractal basin
boundaries appear and the Simple Cell Mapping technique contributes signigicantly
to the understanding of this type of behaviour.



5 Steady state solution path-following technique

From an engineering point of view, one of the most useful ways to look at the
behaviour of a dynamical system is by way of the control phase space diagram. For
example, given the damping and stiffness, at what forcing parameter will a structure
undergo resonant vibrations? This type of question can only be answered by a
thorough parametric study.

In the past engineers have used linear theory and analytical techniques to obtain
approximate solutionsof nonlinear systems However, large scale compliant structures
such as an oil platform have inherent large amplitude vibrations so that nonlinear
effects can no longer be ignored. Typically, a nonlinear e@ua'ﬁoﬂ has no analytical
solution. The behaviour of the system can only be obtained by a numerical technique.
A parametric study would then involve varying a control parameter, such as the
damping, stiffness or forcing amplitude and obtaining the steady state solutions. The
control phase space diagram can be constructed when the effect of the variation of
each parameter is obtained. One can see that even for a simple system, parametric
studies are computationally very expensive. Therefore, engineers tend to extrapolate
the effect of a control parameter or operate within the range which is thought most
likely to be encountered. This is perhaps very dangerous as we have observed in
the examples shown in Chapter 4.

This deficiency has led us to look at the way in which mathematicians and
theoretical dynamists deal with this type of problem. The introduction of a Poincaré
map and two-dimensional linear mapping theory are just two examples of this cross
pollination between engineers and theoreticians. In this chapter, we shall introduce
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a steady state solution path-following™" technique so that for a given range of a

single control parameter, the steady state solutions and their stability can be obtained
with great computation efficiency.

5.1 Formulation of residual map

Consider a dynamical system defined by a Poincaré map P; if P(U,)=U, is a

fixed point of the system, then

P(U,)-U,=0 5.1)
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We can formulate this problem as a zero point problem by defining the residual map

0 as
QW) =PU)-1(U) (5.2)
where I is the identity map, i.e.,
I(U)=U;
'fhen if U, is the fixed point, we have
QWU,)=PU,)-1U,)
=0
Hence, we shall be looking for a solution such that the residual Q becomes 0.

This zero point problem can be solved using the Newton Raphson method. For
a one-dimensional system this iterative scheme is given by the equation

O fe)
B =5 T e0 (53)
Let
A=(x,,,~x,) (5.4)

where A is the correction needed for the next trial solution . Then from equation
(5.2) we have

Q' U)=PU)-1 (5.5)
where 7 is now the identity matrix and we need the first directive of P.

Consider a two-dimensional phase space with a point (4;, u,) mapped to (v, v,)
as shown in Figure (35a). Then

v, =Py (uy, u,)

Vv, = P,(uy, u,)
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This is an implicit functional relationship. In our case, the two functions, P; (i=1,2),
can only be found numerically by time integration. To obtain the derivative of P,
we consider two adjacent maps as shown in Figure (35b). Hence

oP, oP,

ov, = F ou, + %, Su, = P,,0u, + P,,0u,
oP. oP.

ov, = a_u: Su, + a_u: Su, = P,,du, + P,,8u,

ov P, P,)\(ou
1 - 11 12 1 ( 5 6)
&, \Py Pyp)\Ou,
Definition™. If f(u,+h)— f(uo) = Mh +e(h), where M is a bounded linear operator

and||{e()||/|thl| =0 as ||h]| — O, the function fis called Fréchet-differentiable
at the point ¥, and we define f'(u)) =M.

Therefore the derivative P’(U;) can be linearly approximated by the matrix P;.

To obtain the coefficients of Py, a small increment 4 is taken in the direction x such
that

ov
wv,=P,h =P,= 71
ov.
Sv,=P,h =P, =73 (5.7)

Similarly, an increment in the direction y gives the coefficients P,, and P,,. We are
now ready to apply the Newton Raphson method to find a fixed point.

Substituting equations (5.4) (5.5) and (5.2) into equation (5.3) we obtain
0;+0;4;=0 (5.8)

where
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and

an(Pu"l Pn)
iT\Pp,  P,-1

After solving for A;, the trial solution (i) is then corrected by the amount A; and

the iteration proceeds until Q;=0. When the fixed point is found so that
U, =Pu)

then the fixed point’s stability can be examined by obtaining the eigenvalues of the
matrix Py, see Chapter 2, or from equation (5.5)

The position of the eigenvalues in the complex plane belonging to this two-dimensional
matrix then determines the stability of the fixed point.

5.2 Path following algorithm

When a system of ordinary differential equations has only one control
parameter, the steady state solution can be obtained using the residual map as defined
above. We can proceed in the following manner: having found the periodic solution;
let that be (U,,C,), where U, is a fixed point with the control parameter fixed at C,.
We can take this as an initial estimate and increase the control parameter C, to C;.
If C, is close to C,, we have already a good estimate, and we then apply the Newton
Raphson method again.

This method can be improved if we know how U, changes when C, is varied
in the direction C;. Furthermore, this improvement is absolutely necessary when we
want to follow the solution path when it goes through a saddle node bifurcation, see
Figure (36a). Therefore, we must formulate a path following strategy and this leads
to a new formulation of the residual map.



We could do as follows: for a specific value of parameter, the periodic solution
is found as described in the last section. Suppose we find (U,, Cy). We then increase
or decrease the parameter a little (of the order h) and keeping the parameter fixed
at the new value, a new periodic solution is obtained. Say (U,,C,). The vector
t,=(U;, C)-(Up, Cy) then provides an estimate of the direction of the solution path.
t, is then converted into unit vector and a step A, is taken in the direction of 7, We
then come to a point v=(U,, Cy)+ht,. If v turns out to be a point on the solution
path, then the process is completed. If this is not the case, we must force the Newton
Raphson iteration scheme to move in a direction orthogonal to #,. Using this method,
we shall not have any difficulty passing through a saddle node bifurcation as #, has
no component in the control parameter direction, see Figure (36b). By going orthgonal
to 1,, the control parameter becomes a variable within the Newton Raphson scheme
and is no longer fixed, i.e. an increment 4 does not mean an increment in the control
parameter. What is kept fixed is the linear combination of U and C. In order to
satisify this condition, the zero point problem must be reformulated which amounts
to a reformulation of the residual map.

Suppose with a step length k,, we have obtain a point v in the direction of z,
from a given point (U,, C,). We want to find the periodic solution by going orthogonal
to t,. These two vectors can be obtained conveniently by forming the cross product
between #, and ¢, as well as 7, and e,. Here e, and e, are the base vectors of (x, x).
Let these two vectorsbe f; and f, respectively. Then the new basic, i.e. a set of linear
independent unit vectors defining the vector space, becomes (f;, f,,¢,). Therefore v
will now be varied in the direction f; and f, rather than (x,x). Notice that the control
parameter C is an independent variable, therefore the matrix Q; is essentially
unchanged: what has changed is the interpretation of the matrix A;. The coefficients
in A; are now the amount that we must change in our original estimate in the direction
[, 1.e., we must resolve the corrections needed in x, X and the control parameter,
C, directions.

The steplength &, should be adjusted automatically in the following manner.
Suppose i iterations are allowed for the convergence to the periodic solution using
the Newton Raphson method. If exactly i iterations are needed, the steplength is
reduced in the next step. If less than i-1 iterations, then the steplength is increased.

-65-



Otherwise, h, stays the same. Furthermore, k, is controlled by lower and upper
bound limits, i.€., Ay, < h, < hy,,. If Newton’s method does not converge in i steps,
then k, is again reduced.

Once we find the periodic solution, we can determine its stability by finding
P;. This is done by running the iteration one more step but using (e, , e,) as the
basis.

5.3 Validation of the path following algorithm

The periodic solution obtained from the path following technique can be checked
by comparing the solution using time integration. The results have been found to
be the same within seven significant figures. One of the important feature of the
path following technique is that it can calculate the local linearized eigenvalues of
the periodic solution. The accuracy of this feature is very important since it directly
affects the result of the periodic solution as well as prediction of any imminent
bifurcation. This again can be checked indirectly by comparing the numerically
obtained Jacobian with the analytical solution.

Consider now a two-dimensional flow given by:
x=fx,y)
y=8g&,y)

Expanding locally at any given point using Taylor series and neglecting any high
order terms, we have:

x=L+Ax+By
y=M+Cx +Dy
hence
% _
ox
2
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If we look at the flow of a small triangle in time At as shown in Figure (37a),

we can obtain the rate of change of its area in the following manner.
.. 1
Original area=JLM =58x8y

Final area =J’L’M’

= % {(dx + AdxAr) By + DdyAr) — (BOyAr) (CdxAr)}

1
=§{1 +ADA* + D At + AAt — BC Ar%} 6x By
By dropping the second order terms, we have:
1
Final area =§6x8y(1 +AAt+DA?)

The rate of change of area is therefore:

darea _Final area—Original area
or At

=%8x8y(A +D)
_ ot Qz}
= (area){ ™ + 3

Generalizing this to three dimensions we have:

dVolume _ at dy a_z}
TR (Volume) { . + 3y + %
where the term
or oy oz
ox dy oz
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is the divergence of the three dimensional flow. The divergence of the escape
equation can be calculated as follow:

£+Px+x —x*=F sinot
xX=y
. 2 .
y=—PBy—-x+x°+F sinwt

z=t=1

which gives

Hence the divergence is found to be
div=-

Therefore the divergence in this case is independent of x and y or any control
parameter except B, the damping. The volume of flow at any time t with respect to
the flow at ¢t =¢, can now be obtained by integration, i.e.,

oVolume

Y —BVolume

= Volume = (Volume),e™

Since all trajectories keep step in time, a disc of thickness &¢ remains a disc of

thickness O¢: therefore volumes can be interpreted as areas:

(New Volume)=(0ld Volume)e™

or
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Area;, 8t = Areadte™

Area; .,
pladhtedh 2 WP
Area;

As we sample the flow using Poincaré mapping technique, the integration can be
performed over a length equal to the period of the forcing frequency. Hence the
area ratio is given by

Area; ,, gt

Areaq;

where T=—

Consider now the area ratio of a two-dimensional mapping defined by
Xa=FQ,y)
Yia =G0, y)
Again, we can expand the functions and retain the linear terms at any point to obtain
X =l+ax;+by,

Y =m+cx;+dy;

where
a___axin b=axi+l
axi ay,
0Y; 41 9Y; 41
= d= .
™ 3y, (59)

Mapping of a triangle JLM shown in Figure (37b) leads to
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Area;, = % {adx,ddy, — bdy,cdx}

=2 858y,{ad ~be}

=Area,{ad —bc}

Area;
*l = ad - be

Area;

Comparing equation (5.9) with equation (5.6), we see that the term (ad-bc) is just
the linearized Jacobian of the functions F and G, and a, b, ¢ and d are the coefficients
of Py. If this is evaluated at a fixed point the eigenvalues of the matrix

]
cd
describe the stability of the fixed point. Furthermore, by letting

T=a+d
D =ad -bc

The product of the eigenvalues can be expressed as
7&1?\2=%(T+VT2—4D)%(T —VT2—4D)

=1{T2-(T2-4D)}
4
=D

We can now equate the area ratio of the map which we can obtained numerically,
with the area ratio of the flow, which has been obtained analytically by integration
over a period of time equal to the period of the forcing.

Area;,, -B

2=
=D =
Area,- ¢ 7"1)\’1
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Therefore, for a given value of B and , the product of the eigenvalues of a fixed

point is a constant. Furthermore

If A=a+ip AL=a-i
)"1}'z=a2+B2
= (radius )’

Hence if the fixed point’s eigenvalues are complex, they describe a circle in the
complex plane with a radius equal to

radius = \fD—

p=
= Ve °

For B=0.1 and ®=0.85 the value of D is 0.4775 and the radius would be 0.691.

This is confirmed by the path of the eigenvalues on the complex plane as shown in
Figure (38) obtained numerically using the path following technique.

5.4 Application

The path following algorithm not only allows us to explore the control phase
space of the ship capsize problem presented in Chapter 7. The residual map also
helps us to locate the saddle point with ease such that the global characteristic of
the state space can be investigated by tracing the inset of the saddle. One of the
great advantages of the path following technique is that it can also calculate the local
linearized eigenvalues automatically and any imminent bifurcation can be noticed in
advance.

Some of the path following works are shown in Figure (39). This series of
diagrams is one of many that we have done in order to construct the control phase
space with the forcing frequency and forcing amplitude as the control parameters.
For these diagrams, the computer is instructed to stop the algorithm once a flip
bifurcation occurs, i.e., one of the eigenvalues becomes -1. The program then
automatically increases the forcing amplitude slightly and runs until a steady state
solution is obtained. Hence a period doubling cascade and the whole path of the
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saddle solutions are obtained. The two diagrams in the middle have in fact a casade
of period doubling close to one end of the unstable path, but the ranges are just too
small to be visible in this scale.

Notice the solution paths at ®=0.4 and ®=0.5 are widely different and studies
at finer increments of @ are shown in Figure (40). It is precisely this capability of
the path following technique to produce the whole solution path with ease that is so
valuable in our work. Instead of taking weeks to get the same path it now takes
only hours. In Chapter 7, we shall show that this technique has ée%:w/us to locate
special features like the remerging Feigenbaum tree as well as contruction of part
of the control phase space.
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6 Predicting an incipient jump to subharmonic

resonance

When designing structures to withstand dynamic loadings such as wind or wave
action, the major concern is to avoid resonance. To simplify design, engineers often
use linear dynamical theory to ensure that fundamental resonance can be avoided.
However structures of compliant type such as those designed to operate in the
North-Sea have inherent large amplitude vibration so that their behaviour is nonlinear
in nature. This nonlinearity means that coexisting solutions and subharmonic
resonances are possible. The high amplitude subharmonic response is especially
dangerous so that any method to predict this type of behaviour must be considered
valuable to engineers. We explore in this chapter some possible prediction techniques
for a jump to subharmonic resonance. These techniques have been shown to work
extremely well under a variety of computational situations, when applied to the
simulation of an oscillating articulated mooring tower approaching the potentially
dangerous subharmonic resonance.

Studies of the behaviour of compliant offshore structures are well suited to the
Poincaré mapping technique when one assumes that the exciting force is periodic.
A steady state of stable, periodic oscillation will manifest itself as a fixed point on
the displacement-velocity plane, or the phase plane. A jump from the fundamental
response to subharmonic resonance corresponds to a flip bifurcation in dynamical
systems theory. After the bifurcation there will be two fixed points in the phase
plane. This type of bifurcation is easily modelled locally by a discrete two-dimensional
linear map of the type discussed in Chapter 2. Our prediction techniques are based
on the fact that when this steady state solution bifurcates from an n=1 fundamental
response, where n is the periodicity of the response, to a n=2 subharmonic solution,
it must do so via the flip bifurcation inaccordance with the mapping theory. While
we cannot construct a mapping equivalent for our flow problem, nevertheless, the
transient response of the structure produced by numerical integration can be sampled
using the Poincaré mapping technique. Hence one can observe the local
two-dimensional linear map’s eigenvalues going through the unit circle and passing
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-1 in the complex plane as the bifurcation occurs. By monitoring the eigenvalues,
we can predict the imminent bifurcation as well as the critical control parameters by
extrapolation.

In practice, the only information available from a dynamical system is its time
history. Therefore we must look for a way in which the information needed for
analysis can be extracted from the transient response rather than the steady state
solution. In a practical situation, any dynamic loading is more likely to be irregular
in nature and the structure is less likely to have any chance to settle into a steady
state oscillation. In our investigations we have attempted to create this effect by
including a random slam load on top of a regular sine wave. Therefore any
equilibrium state will be perturbed to produce a transient motion. This transient
motion is then analysised quantitatively to produce a prediction. A further
complication in a real life situation is the possibility of an ever changing dynamic
loading, typically in the form of a gradual increase in the forcing amplitude, i.e., an
evolving state. Therefore, we should also take into account this type of situation.

6.1 The articulated mooring tower

The articulated mooring tower is essentially an inverted pendulum, pinned to
the sea bed and standing vertically in still water due to its own buoyancy. Itis used
for loading oil products to tankers from the deep offshore installations, as sketched
in Figure (41). A massive tanker moored to such a tower is essentially a fixed object
during the tower’s oscillation. Periodic slackening of its mooring line generates a
discontinuity of stiffness providing the necessary ingredient for the existence of
subharmonic resonance typical of a nonlinear system. Notice that we shall only
consider the case of just-tight mooring. The more typical tensioned and slack moorings
bring with them greater complexity, and will be ignored in the present investigation.
The restoring force on the tower during oscillation is thus due to ‘buoyancy plus
mooring line’ in one direction, and just buoyancy in the other. In each half of the
phase plane separated by the stiffness discontinuity, the behaviour is linear, hence
we shall refer to our mathematical model as the bilinear oscillator. Comprehensive
studies of the bilinear oscillator leading to the discovery of continuous coexisting
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small amplitude solutions under all subharmonic resonances as well as chaotic

non-periodic motions can be found in references listed®””’”’®. Analytical studies of

79,80,81

Shaw and Holmes on the bilinear and impact oscillator should also be mentioned.

It has been shown that the bilinear oscillator can be modelled in a
non-dimensionalised form as:

X+2£X’ +KX =-1—2sin’t
n n

where a dot denotes differentiation with respect to time (), X represents displacement,
€ is the damping factor, m is the frequency ratio, K; is used to denote whichever of
K, for positive displacement, or K,, for negative displacement, is appropriate for the
domain under consideration and:

K, = (1 +oydom®

K,=(1+Voy/4n?
where a.=ky/k, is the stiffness ratio while k, and k, are the stiffnesses for positive
and negative displacement respectively.

For each domain, the solution of the non-dimensionalized equation of motion
can be written in the form

X=X,+X, (6.1)

where X, and X, are the complementary and the particular solutions, respectively.
The particular solution is of the form

X, =M sint+N cost (6.2)
where
Ki - 1
M=— 2
N’[(K; - 1)*+ (2¢m)7
and
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_ —20m
K - 1>+ )]

The complementary function X, can be written as
X, = e (A sin w,T+ B cos »,T) 6.3)

where the damped circular frequency, appropriate to either domain, is

o, =VI[K;- (C/n)2]

and the coefficients A and B, dependent on the initial conditions (X,, X,, T), are

reset at every switchover from one domain to the other.

Substituting equation (6.3) and (6.2) into (6.1) and assuming the initial conditions
to be (X,, X,, 1), the two coefficients can be evaluated as

A =e""{(X,— M sinT—N cosT)sin,T
+i[XO+£X0+(N —EM)
(O n n

sinT— (M +%N) cos T] cos w, T}

B = ew“{(Xo—M sint—N cosT)sin ®,T
—i[X0+5—XO+(N—§M)
Wy n n

sintT - (M +%N) cos 1] cos w,T}

The digital computer program was written to detect the stable steady-state solutions
of the bilinear oscillator given the initial conditions (X,, X,, 1), the frequency ratio
M, the damping ratio {, and the stiffness ratio . In this particular study, the following
parameters will be kept constant at; oo=10,{=0.1, while i1 will be the control
parameter that will be varied.
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The program uses the exact solution X(t) for each half of the phase space, and
evaluates this at very small increments of time. It then determines accurately the
state at which the switch from one stiffness to the other occurs by solving a
transcendental equation numerically. In doing so, it initializes a new set of initial
conditions for the next half of the phase space. This process is repeated until a
periodic solution is detected.

In the case of an evolving sea-state, the parameter 1 is put as a function of the
non-dimensionalised time 7T in the form

nN=n,+r1
where r is the evolution rate and m, is the initial frequency ratio.

As we sample the transient periodically, any excitation introduced will be at
the beginning of a cycle. This will be in the form of a sudden increase in the velocity.
A random number generator is used to produce the effect of an excitation with
irregular amplitude as well as the time when this excitation occurs.

A typical resonance response curve for this dynamical system with the above
control parameters is shown in Figure (42). We shall now focus our attention on
the transition from the fundamental response to the subharmonic resonance via the
flip bifurcation in the region where the control parameter M is approximately equal
to 1.5.

6.2 Poincaré maps and mapping techniques

Due to the periodicity of the forcing, transient responses of the bilinear oscillator
are sampled using the Poincaré mapping technique and analysed using
two-dimensional linear mapping theory. Making use of the fact that when a flip
bifurcation occurs, one of the corresponding local linearized eigenvalues will go

through. -1, the problem presents itself as follows; for a given set of control parameters,
find the eigenvalues from its transient response.

While our flow problem has no explicit mapping equivalent, our sampling
method produces a sequence of points (Poincaré points) in the (x,X) phase plane
which will converge to a fixed point corresponding to a periodic steady state if the
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system is stable, or diverge if the system is unstable. The relationship between two
successive Poincaré points may be governed by complex nonlinear behaviour, but
close to the fixed point we can approximate the dynamics by a two-dimensional
linear map of the form:

X =ax;+by;

Yis =cx;+dy; 6.4)

where x; and y, are coordinates in the phase plane such that the fixed point is centred
at the origin. We shall not repeat here the stability criteria of a two-dimensional
map as discussed in Chapter 2. The problem here is to calculate the four coefficients;
a, b, ¢ and d such that the eigenvalues of the Jacobian matrix:

n-(0 !}

We have assumed that the sampled points are described by equation (6.4).

can be found.

Therefore, using three successive mapping points from a transient trajectory, the four
coefficients of the linear matrix can be found by solving a set of simultaneous
equations:

X =ax;+by;

Yin=cx;+ay;

xi+2=axi+l+byi+1

Yisa=CXppy+dy;py
where x; (i=1,2,3...) are known from the transient trajectory using numerical integration
technique. Noticed that the origin of the coordinate system must always be moved
so that it coincides with the fixed point. This is done here by first obtaining the
steady state Poincaré point before any perturbation is given. After the elements of
the linear matrix have been found, the eigenvalues and eigenvectors can be obtained.

This method involves three Poincaré points, hence we shall refer to this technique
of tracking the transient as the three-point method.
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The three-point method is a somewhat theoretical approach since it is unusual
to know, a priori, the exact location of the fixed point. We can go around this
problem by using one extra Poincaré point. Assuming the steady state Poincaré point
is (x,.y.), then the coordinate system can be displaced so that the point (x,,y.) becomes
the origin. Since x, and y, are unknowns, we need to introduce two more equations
into the system of simultaneous equations as shown below:

xi+l _xe =a(xi —x¢)+b(yi —ye)

Yim—Y.=cx—x)+d(y:—-y.)

Xipo—X, =A% —X)+b(¥; 1Y)

Yivz—Ye=C& 1 —X)+d(¥; 01 —Y.)

'xi+3_x¢ =a(xi+2_x¢)+b(yi+2_y¢)
Yies—Ye =€ 2—x)+d ;12— Y.)

This technique of approximation, which we shall refer to as the four-point method,
would be used for instance when considering the transient motion of the articulated
mooring tower under an evolving sea-state. In this situation, there is no steady state
although the system will oscillate very close to a corresponding locus.

After evaluating the linear map we can determine the nature of the stability of
the system by calculating the eigenvalues of the Jacobian matrix, H. The eigenvalues
can be conveniently found in terms of the trace and determinant of H given respectively
by:

T=a+d
and
D =ad -bc
so that

A,= (T +\NT*-4D)2
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Now suppose that under the action of a changing sea-state, the coefficients of
the linear map in equation (6.4) vary so that the eigenvalues describe a path in the
complex plane. If the eigenvalues are both real, one of them can cross the unit circle
at -1, producing the flip bifurcation or a jump to subharmonic resonance of order 2.
The other possible routes to instability will not concern us here®.

As the dynamical system tends to exhibit its bifurcational behaviour on the
eigenvector associated with the critical eigenvalue, i.e., the eigenvalue with the largest
absolute value, it seems reasonable to further simplify our approach and reduce the
system to one dimension that also preserves all the qualitative properties of the two
dimensional map. This can be achieved through the center manifold idea®, rather
like the principle of eliminating any passive coordinates. The reason why
multidimensional dissipative systems become effectively one-dimensional is due to
the difference in the rate of convergence in different directions. The direction of
the slowest convergence defines a one-dimensional line which will contain the
attractor. Physically, this suggests that the transient response of the system in the
two-dimensional phase space is being rapidly sucked close to the critical eigenvector,
i.e., the center manifold, which is one-dimensional. After this, the convergence is
slowed down. In this way, we can view the transient as predominantly
one-dimensional.

However, one must realize that when the control parameter is varied, the
eigenvalues of the two-dimensional linear map can start off as being a pair of complex
conjugates and then change into to a pair of real values. In Figure (43), the Poincaré
points are joined together by a straight line to show the trajectory. It can be observed
that these trajectories change gradually from a spiral to an oscillatory fashon when
the control parameter approaches the bifurcation point. In fact one can also notice
this characteristic from their time histories. Figure (44) compares the difference
between a spiraling and an oscillating trajectory. Notice that the time history is
obtained from the Poincaré points and not the trace for a complete cycle. The time
history on the top diagram shows that each cycle took three steps corresponding to
a triangular spiraling orbit shown on the right. In the bottom diagram, each cycle
took only two steps corresponding to an oscillatory orbit. If we look at the time
history of a complete cycle rather than using the Poincaré points, this characteristic
will not be observable.
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From a computational point of view, this rapid convergence creates problems.
When the Poincaré points are oscillating close to the centre manifold, or the critical
eigenvector, the equations for the solution of the two-dimensional linear map becomes
singular. So whenever the transient comes near the centre manifold, the system of
simultaneous equation becomes ill-conditioned. However, if we approximate the
behaviour of the Poincaré map to be linear and one-dimensional, we can expect the
critical eigenvalue calculated using the transient response to vary and then settle into
a steady state when the oscillations occur near the centre manifold. Hence, we can
say:

X1 =X,

}

We require | A |;< 1 for stability, and a sequence of values for A, using successive

Poincaré points can be found. We shall refer to this technique of approximation as
the ‘centre manifold’ method. This technique is shown to work extremely well in
getting a steady value of the critical eigenvalue as summarized in Figure (45).

To eliminate any doubt as to whether the Jacobian matrix H calculated using
the three or four-point method does correspond to our flow problem, a simple test
is devised. For a value of the control parameter we can calculate the coefficients
of the matrix and obtain the equation of the eigenvector. Since any initial start on
the eigenvector will oscillate along that vector only, we can then use the eigenvectors
to calculate two initial conditions on both the eigenvectors and look at the transient
trajectory that is produced. Figure (46) shows our results: the oscillation remained
essentially on a line, revealing the eigenvector and implying that our two-dimensional
discrete model provides a good simplification of our non-linear flow problem close
to the fixed point.

6.3 Predicting subharmonic resonance

Figure (47) shows both the three-point and the centre manifold methods for
two chosen values of the control parameter, . The three-point method gives solutions
for both eigenvalues. When the control parameter is close to the flip bifurcation
point (this is indicated by the eigenvalue getting closer to -1) the estimates can be
seen to diverge. This is because the difference between the two eigenvalues becomes
large and the trajectory is rapidly attracted to the centre manifold so that
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ill-conditioning of the equations occur as explained earlier. When this problem
occurs, it is possible to use the centre manifold method to estimate the critical
eigenvalue as shown in the figure. It can be observed clearly that the approximation
of the critical eigenvalue settles down into a steady value as predicted.

A peculiarity of the equations used in the three-point method is that, while A,

diverges as expected, the critical eigenvalue Testabilizes after initial divergence to
those obtained using the centre manifold method. In fact, a similar problem is also
encountered when using the four-point method. Figure (48) shows the estimate of
the eigenvalues using the four-point method with the same control parameters. Again
A, diverges as expected, and A, is restablized after the divergence.

Let us now consider the bilinear oscillator subjected to a sequence of random
impulsive loads with variable amplitude and at random times. Using the three and
four-point methods we can expect that far away from fixed point it will be possible
to detect easily both of the eigenvalues. While relatively close to the fixed point it
will be more difficult to detect the non-critical eigenvalue, A, as discussed above.
However, it may still be possible to obtain an approximation of the eigenvalues using
mapping points which are not close to the centre manifold, as we can see in Figure
(49).

Using either the three or four-point method it is thus possible to compute
eigenvalues for increasing increments of the control parameter as the dynamical
system approaches the bifurcation. Bifurcation from the fundamental n=1 path to
the subharmonic n=2 paths at N =7° is shown in the top diagram of Figure (50).
This bifurcation can be observed equivalently by the movement of the critical
eigenvalue A, on the T-D plane as shown in the bottom diagram of Figure(50).
Variation of the eigenvalues with the control parameter, 1, in the middle diagram
shows that when the eigenvalues become real the dynamical system moves quickly
towards the flip bifurcation at n° = 1.5486.

To simulate a practical situation, it is necessary to consider an evolving system
in which the frequency, 1, becomes a function of time. To analyse such a situation,
the four-point method must be used since there is now no information regarding the
steady state solution. In fact, there is strictly no steady state solution under an
evolving state. Figure (51) shows the results using this method with two different
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evolution rates, r, as indicated. The top diagram shows the impulsive load introduced
in a deterministic manner. Using the transient produced after each impulsive load,
the four-point method seems to produce a satisfactory result in calculating the critical
eigenvalue. It can be observed that the path of the critical eigenvalues cuts the
A, =-1 line at N=1.5486, exactly the same as the result we have observed earlier.

The bottom diagram is perhaps a more realistic case where an impulsive load
is generated at random in terms of both amplitude and frequency. Although the
calculated eigenvalues are more irregular, the result for both evolution rate gives the
same 1 value.

From our investigation, it can be seen that given such information as the
movement of the eigenvalues in the complex plane, it is possible to predict at what
control parameter the bilinear oscillator will bifurcate from a fundamental to a
subharmonic response. Hence, if one can extract the relevant information from the
transient response of a "structure”, for example; obtaining the Poincaré sampling
points, it is possible to predict the incipent bifurcation.

The techniques introduced in this chapter form the early stage of research into
the application of dynamical system theory to the problems encountered in modern
compliant offshore structures. They are intended to provide a means of extracting
useful information so that the onset of potentially dangerous oscillation can be
predicted and even avoided. Obviously in a complex real life situation, more
sophisticated methods should be employed. Nevertheless, these theoretical studies
clearly can be useful when, for example, guiding laboratory or computer simulations.
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7 Chaotic dynamic of ship rolling response under

beam sea

In Canada during the seventies, it was reported that several fishing vessels had
capsized unexpectedly in sea conditions that were not thought to be particularly
hazardous. Artec Canada Ltd. were consulted, and asked by the Canadian Government
to prepare a report on the dynamic stability characteristics of typical hull shapes, to
see if advanced computer simulations could help in the formulation of new design
regulations for these small vessels. Two 150 ton fishing boats of different hull forms
were studied®, with ‘hard chine’ and ‘round bilge’ characteristics respectively.

The AQWA suite of hydrodynamic programmes employed were those developed
by Atkins R&D of the United Kingdom for the offshore energy resources industry.
These treat each boat as a rigid body with its full six degrees of mechanical freedom.
Typical forms of hydrodynamic analysis being developed by the Atkins group can
be seen in the work of Rainey™.

While the physical aspect such as the hull shape is important in the design of
a vessel to withstand capsize, the dynamic phenomenon which triggers the capsize
has not yet been fully investigated. In order to understand the basic underlying
principles, we shall start by formulating the simplest possible model so that it would
give us a better insight into the problem and from then on a more sophisticated model
can be developed.

In the simplest possible way, the capsize of a ship in lateral ocean waves can

85-87

be modelled by an equation™"" of the form:

mx +bx +GZ =Fsinwt

where x is a measure of the roll angle. The constant mass here is taken to include

the added mass in roll, b is an equivalent linear damping coefficient usually evaluated
empirically in still water conditions, and GZ is the restoring force provided by the
stiffness of the vessel: in an ideal situation the GZ curve will be a symmetrical
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function of the roll angle but in reality a vessel is usually biased in some way so
that it has a propensity to capsize in one particular direction. This bias term, B, is
incorporated into the GZ curve such that:

GZ =B +g(x)

This bias could possibly be due to a shifted or unevenly distributed cargo,
environmental loading, or perhaps even damage.

Excitation of the vessel by wave action is clearly irregular or stochastic in
nature. However, an alternative approach is by way of the so called design wave
method. In this method, a regular or sinusoidal wave having an amplitude F assumed
to be the worst possible occurrence in 100 years of sea-state is employed. This type
of analysis coincides with our simplistic approach which takes the excitation as purely
sinusoidal. As the fishing vessels capsized in sea conditions which at the time were
not thought to be rough or hazardous, the forcing amplitude will here be increased
slowly from a small value until criticality so as to observe the dynamical behaviour
of the system.

The governing potential energy function, V, for typical unbiased and biased
systems, found by integrating the stiffness curve GZ, has been schematically drawn
in Figure (52). In this figure a stable equilibrium point is envisaged as a ball shown
blacked-in resting in a potential well, and similarly with a white ball on the hill-top
depicting an unstable point. Also shown in the figure is the (x, X) phase portrait
for the undamped unforced counterpart to this problem. In this simplistic situation,
capsize of the vessel can be thought of as the ball being forced by the excitation to
oscillate, such that it surpasses the unstable position and rolls out of the potential
well to infinity.

To examine a probable mechanism which triggers the capsize, the biased system’s
GZ curve local to the capsize region is approximated by a quadratic expression. The
main reason for this approximation is computational expedience since many thousands
of integrations will be performed in the computer simulation. After a rescaling of
the time and roll angle, we shall focus our attention on an equation in the form:

X +Pi+x-x*=Fsinot
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which we shall refer to as Thompson’s single potential well model.

The global behaviour of Thompson’s capsize model without forcing for a lightly
damped system is sketched in Figure (53). The catchment region is the white area
where all motions flow onto the equilibrium point as time evolves. If we now
consider the system to be excited by a small amount of external force, then the
equilibrium point becomes a periodic solution and the saddle point now becomes a
saddle cycle. In this case, where the forcing is non-zero, the dynamical behaviour
is examined via the Poincaré sampling technique and so the phase portrait shown in
the figure is now not that for a flow but a map. It should be noted that, because of
the need for continuity, for arbitrary small forcing F, the qualitative structure of the
phase portrait of the map must be the same as that of the flow.

7.1 Pilot studies of the ship capsize model

For a given value of damping, in our model, at what value of forcing will the
ship capsize and furthermore by what mechanism? To answer these questions, we
shall keep the damping a constant and put the forcing amplitude F as a slowly varying
function of time. Physically, this represents a changing or evolving sea-state and
the slowly evolving forcing also serves as a reasonable indicator for the situation in
which the exciting force is kept constant.

Investigations using this technique are shown in Figure (54) with the linear
damping, B, constant at 0.1. This diagram shows the time histories of the roll motion
of the vessel at various values of the forcing frequency, . Notice that, following
the rescaling procedure the point at which x =1 is when capsize occurs.

From Figure (54), it can be observed that below ® = 0.83, capsize happens well

before x reaches 1. The phenomenon occurs as a jump in the response of the system
and there is no warning of the impending disaster. Above ®=0.83, this jump is
restabilized at a higher amplitude and the response again increases steadily until
another phenomenon occurs. This time, capsize happens after an irregular rolling
motion has developed and again there is no warning. Although the amplitude of the
rolling motion is higher, it is still below x =1. Thus any attempt to predict capsize
based on the increasing amplitude would surely overestimate the time to capsize by
a considerable amount.
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To understand these phenomena, the resonance response diagram of the
dynamical system must be investigated. Here, the path of the fixed point in the
phase plane, corresponding to a periodic solution at a ﬁxe/%’alue of the forcing amplitude
is followed with increasing forcing amplitude until the ship is capsized. Some typical
examples are given in Figure (55) where the displacement of the Poincaré points are
plotted against the forcing F. (Note: the displacement of a Poincaré point is not the
same as the maximum amplitude of the response).

From this figure, it is clear that capsize can be caused by one of two mechanisms.
If the forcing frequency, , is at or below 0.8, the jump to capsize is due to a fold
catastrophe where there ceases to be a local attractor or stable solution. At higher
values of forcing frequency, a stable region has emerged. The jump phenomenon
due to the fold catastrophe is restablized because of the presence of this stable
solution. Further increase in the forcing amplitude leads to a cascade of period
doubling and eventually a chaotic attractor emerges. However, the chaotic attractor
disappears quickly, i.e. the ship capsizes, without any indication whatsoever. In the
case where @ = 0.8, the chaotic attractor coexists with the stable n=1 periodic solution.
When the chaotic attractor is destroyed the motion is restablized onto the periodic
solution. Other features we have observed in this stage is the pulling apart of the
solution path so that the hysteresis feature disappeared at = 0.95. This explains the
disappearance of the jump phenomenon on the last two diagrams of Figure (54)
where ®=0.93 and 0.94 respectively. Also, it is not true that below the critical
forcing amplitude where capsize occurs, any perturbation given to the system will
restablize to the steady state periodic solution. We have observed that even a small
perturbation can lead to capsize when F is well below critical as we shall see in
later sections.

7.2 Predicting Escape using analytical and statistical methods

As our simple mathematical model for the capsize of a ship can be visualized
as a ball rolling out of, or escaping from the potential well, we shall refer to capsize
as escape from now on.

Our attention will for the moment focus on the parameters where ®=0.85 and

B=0.1. At these values of parameters the system exhibits all the interesting
phenomena, namely the fold catastrophe and chaotic attractor just before capsize or
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escape occurs. We shall not concern ourself when the escape is caused by the fold
catastrophe where no local attractor exists, since this type of dynamical behaviour
can be predicted using the local linearized map of the dynamical system and research
has been conducted by our colleague L.N. Virgin®. Our main concern here will be
to find out the mechanism which triggers the capsize after a chaotic attractor is
developed.

Figure (56) shows the path of the fixed points (displacement of the steady state
Poincaré points) with increasing forcing amplitude together with the unstable fixed
points or direct resonant saddles. At these values of parameters, escape occurs at
F =0.109...: the cascade of period doubling leading to a chaotic attractor is not
observable at this scale. Further enlargement of the cascade is shown in Figure (57).
Here, the unmistakeable hallmark of chaotic attractors, namely, period doubling and
periodic windows can be observed clearly. To further substantiate our claim that
this is indeed a chaotic attractor, the Poincaré sections will be plotted at different
phase angles, ¢, to examine how its topological structure varies with changing phase
angle. Figure (58) displays a sheared Van der Pol plane showing 80 Poincaré sections
at 4.5 degree interval. It can be seen from the figure that the attractor is a two band
or period two chaotic attractor, (i.e. any initial start on one band of the attractor will
return to the same band after two forcing cycles). The typical folding and mixing
actions can be observed clearly. If we follow the progress of any one point for a
duration of two forcing cycles, we find that the trajectory will form a Mobius band.
This is in fact not accidental but a feature of a flow problem. Since the inset of the
period two inverting saddle forms a virtual separatrix between the two band chaotic
attractor, and its local two-dimensional linearised map has a pair of negative
eigenvalues, each point will be mapped across the inset and outset as shown
schematically in Figure (59a). However, in a flow problem we cannot have crossing
trajectories, so the three dimensional phase space must be twisted in such a way that
the flow is able to cross the inset and outset without the trajectories actually crossing
each other. This is shown schematically in Figure (59b), which is in fact a M&bius
band.
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7.2.1 Blue Sky Catastrophe and Melnikov’s method

Let us now investigate how a chaotic attractor can disappear suddenly. Returning
to Chapter 1 for the bifurcation diagram classified by Thompson et al, Figure (7)
shows clearly that the only possible way for a chaotic attractor to disappear is via
the chaotic Blue Sky Catastrophe®®. It is called Blue Sky Catastrophe simply
because the original attractor (not necessarily chaotic) suddenly disappears into the
blue. The simplest example which occurs in a flow problem has been discussed in
Chapter 1 and illustrated in Figure (6): this shows schematically a sequence of phase
portraits leading to the bifurcation. Below the critical value there exists a limit cycle,
the shaded region is the catchment region for this periodic solution. The inset of
the saddle is the separatrix. As the control is varied, the saddle moves closer to the
limit cycle until they touch and form a homoclinic orbit. This homoclinic connection
may be though of as a limit cycle of infinite period; by increasing the control further,
the limit cycle has ceased to exit since the inset is no longer a separatrix and all
motion goes to the remote attractor.

In a one dimensional map such as the quadratic map studied by Grebogi’’, the
separatrix is the saddle itself, therefore the Blue Sky Catastrophe occurs when the
saddle collides with the attractor. This is in fact what happens in Grebogi’s interior
and boundary crises where a chaotic attractor collides with a saddle. However, in
a phase space of more than one dimension, the basin boundary is the inset, not just
the saddle itself. Thus a Blue Sky Catastrophe can happen as an attractor touches
the inset without touching the saddle itself.

To understand this type of bifurcation, a good example can be found in
Abraham’s paper”. In his paper, he demonstrates that the Birkhoff-Shaw strange
attractor is destroyed when the inset of the saddle cycle touches the chaotic attractor.
Since in this case, the inset also touches the outset of the saddle cycle, this bifurcation
coincides with the homoclinic tangency of the invariant manifolds.

Tangency giving rise to transverse intersections between manifolds can occur
between the inset and outset of two different saddles or the same saddle (as the case
above), and is known as heteroclinic and homoclinic tangency respectively. Carles
Simé® also distinguishes between inner and outer heteroclinic tangency. This will
become clear later in our investigations. After the tangency, there begins an extensive
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and complicated interweaving between the inset and outset, giving rise to the famous
homoclinic or heteroclinic tangle. Because of the tangle, points which are originally
inside the catchment area bounded by the inset are no longer guaranteed to map onto
the steady state periodic or chaotic solution. The basin boundary has changed from
smooth to being fractal®*®®, Points which are trapped by the tangle would be
mapped chaotically in the phase space before they can emerge from the tangle, thus
the term ‘chaotic transients’. The long term behaviour can no longer be predicted
in a short time.

An initial approach here is then to determine whether the disappearance of our
chaotic attractor is due to the homoclinic tangency of the global (hilltop) saddle. To
this end, we use the Melnikov method. In simple terms, Melnikov’s method provides
an analytic expression for the parameter values at which homoclinic tangency occurs,
i.e., when the outset and the inset of the saddle first touch. If the controlling parameter
is varied still further, a homoclinic tangle ensues in which the inset and the outset
must now intersect an infinite number of times due to recurrence.

Using the Melnikov’s”™ method, an analytical expression for the critical value
of the parameters in which homoclinic tangency occurs is given by the relationship:

P B sinh(w)

¢ S’

for the global saddle. When w = 1.0, the critical value in which homoclinic tangency
occurs is found to be F, =0.0735. This compares favourably with the computational
evidence in Figure (60), where F = (0.074 must be just after the tangency has occurred.
The shaded region in this diagram depicts the area of the phase plane which leads
to escape. However we find that the homoclinic tangency of the global saddle at
these control parameters does not coincide with the escape where F =(.203052...

A summary of the values of forcing F at which various bifurcations occur
between w=0.5 and w= 1.8 is given in Figure (61). If we look at the position of
the Melnikov curve (M) in relation to the period doubling (D) and subsequent escape
(E), it appears that the homoclinic tangency of the global saddle does not trigger the
escape.
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7.2.2 Predicting Escape using Chaotic Transients

When the chaotic attractor is destroyed, it is replaced by chaotic transients™.
An orbit which originally lies on the attractor does not move off to a remote attractor
instantly but is attracted towards the vicinity of the chaotic attractor. After bouncing
around in a chaotic way, such an orbit then rather suddenly moves off towards the
distant attractor. This phenomenon can be observed in Figure (62) where at
F =0.109046 the chaotic attractor still exists. However, at F =0.109047 the same
initial conditions give rise to a chaotic transient which resembles the original attractor
but moves off to infinity after a while. The length of the chaotic transients vary,
depending on the initial conditions as well as the control parameters. This shows
clearly that it is very difficult to determine if a particular initial condition would lead
to escape if it is not run for a sufficiently long period of time. The unpredictable
length of chaotic transients can be highlighted by Figure (63).

In this diagram, we show seven different initial conditions all taken from the
attractor at F =0.1090. The bottom diagram shows that no escape occurs. As the
forcing is increased, the length of chaotic transient varies and depends only on the
initial conditions. This is of significant importance to engineers who build complex
numerical models, and because of computational expedience only do a small number
of simulation cycles using previously located steady state solutions as the initial
conditions for a new set of parameters. They could then pick up a long transient
and since this type of transient resembles a stable solution, they would surely
overestimate the safety margin, perhaps even by a considerable amount.

The length of a chaotic transient depends sensitively on the initial conditions.
However Grebogi®* on studying a one dimensional map has shown that the transient
life time has an exponential probability distribution:

Exp(-E/M)

oE) ="

where E is the length of chaotic transient, measured here in forcing cycles. M is

the expected (mean) value of E.
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He showed that the mean lifetime, M, of the chaotic transients is related to the

control parameter in the following relationship:
Mol

where p is a small change from the bifurcation or the critical value of control

parameter where the chaotic attractor is destroyed, i.e., p=F —F®. The parameter
v is termed the critical exponent.

The critical exponent calculated by Grebogi was 1/2 and hence a plot of 1/M?

against | should reveal a straight line such that linear extrapolation could be used
to predict the critical value. Unfortunately, for the problem in hand, the results are
less than convincing, see Figure (64). This can be due to the following factors:
firstly, a critical exponent of 1/2 implies that to observe transients longer than 100
cycles requires the control parameter to be within 0.01% of the critical bifurcation
value. However, if we look at the probability density function in the accompanying
diagram of Figure (64), the probability density function becomes very flat for larger
values of M, that is to say we need to consider a greater number of transients than
is practical. Secondly, Grebogi’s calculation was based on a one dimensional map
and therefore we could not expect the same degree of correlation in our flow problem.

Another study using 300 steady state Poincaré points on the chaotic attractor
at F=0.109 as initial conditions is shown in Figure (65). The top right hand diagram
shows M plotted directly against F, with M clearly going to infinity at about 0.109.
To give some idea of the relative F values involved, this diagram is preceded at the
top left by a sketch of the earlier period doubling cascade on the same F axis, and
we see that chaotic transients with means of 10 to 20 forcing cycles persist for quite
an appreciable F interval beyond F-.

By not assuming the critical exponent as 1/2, we have plotted in the lower
right-hand diagram M ™ against F, from which we conclude that F* is very close
indeed to 0.109. Finally, to determine the scaling critical exponent ¥, the lower
left-hand diagram plots In(M) against In(F-0.109) and the fitted straight line yields
the value of y=0.87, compares with Grebogi’s value of y=0.5.
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7.3 Fractal basin boundaries

To understand the numerically determined bifurcations in the (F,®) control
space, it is convenient to consider the steady states of the system under slowly
incremented F at a series of constant @ values as shown in Figure (66). For ® > o,
there exists a monotonic trace of fundamentef(n=1) oscillations originating at
x =y =F =0 and terminating in a Feigenbaum cascade (with first and second period
doubling at F¢ and F° say). This leads to a chaotic folding-band attractor, see Figure
(58), and finally escape is triggered by the blue sky disappearance of this attractor
at FE as illustrated in the right-hand insert (d) of the figure. The fundamental solution
has a cusp point at P, so for @ <@’ the trace of n=1 cycles exhibits a resonant
hysteresis in the regime F? < F < F* between two cyclic folds at F* and F®, as in
the left-hand inserts (a-c).

The value of F decreases steadily with decreasing ®, and at w? it becomes

less than F*. The escape is now associated with the simple cyclic fold at F*, although
the coexisting end of the trace is still stable up to F¥ where a blue sky event carries
the system back to the non-resonant state. It can be seen that as w is decreased past
o? towards 0.6, the values of F® ,F¢ ,F? and, FE all seems to approach one another,
but we have not explored this regime in detail at this stage.

Because the folds at A and B evolve from the cusp at P, we expect the jumps
from the fold A to always re-stabilize on the coexisting trace for ®% < ® < @”, rather
than to over-shoot and escape. Thus escape is at F* for @ < @? and at F¥ for 0 > ©?
with the minimum F necessary to escape given by F2.

We have also drawn on this figure the Melnikov curve, thus F denotes the

appearance of a homoclinic tangency between the invariant manifolds of the saddle
cycle close to the x =1 hill-top. This homoclinic tangency signals the appearance
of a fractal basin boundary defined by the hill-top saddle inset, between containment
and escape. Notice that this tangency is essentially unrelated to the eventual escape,
F™ offering no useful estimate of any of the other curves in the figure. This is in
contrast to the Birkhoff-Shaw chaotic attractor mention above where the homoclinic
tangency triggers the blue sky event.
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Although the homoclinic tangle of the global saddle is unrelated to the eventual
escape, it plays an important part in the global topology of the two-dimensional phase
projection as well as the creation of the chaotic attractor as we shall see. Once the
tangle occurs, the catchment region has a very complicated appearance. Figure (67)
shows a small catchment region around the chaotic attractor using a grid of 100x100
starts. Each dot denotes escape within 7.1 cycles with control parameters:
®=0.85,=0.1,F =0.109. The intricate nature of the catchment region can be
realized by enlarging the little picture ‘behind’ this diagram as shown in Figure (68).
This diagram shows the length of transients before escape occurs across the region
where x =0. The length of the white region represents the length of the transient.
It can be observed clearly that by increasing the number of forcing cycles and the
resolution of the grid of starts, we can expect that more dots will appear in the white
area of the catchment region and hence more complication.

To understand the formation of the so called fractal basin boundary, let us look
at what happen when the invariant manifolds of a saddle cross. The inset and outset
can originate from the same saddle point (homoclinic tangle), or from different saddle
(heteroclinic tangle). Figure (69) is an illustration of a homoclinic tangle when the
inset and outset cross at the point H, a homoclinic point. Consider mapping this
point forward, this point must again map onto the inset (H*) by recurrence. However
since H also lies on the outset, the outset must also go through H*. To preserve the
orientation, the outset must cut through the inset by doubling back in the manner as
shown. The two complete segments joining H and H* is called Birkhoff’s signature:
more complicated signatures are possible and can be found in Abraham and Shaw’s
book. By mapping forward again, more and more homoclinic points can be observed
and more densely the closer the distance to the saddle. By mapping backward in
time, the same thing happens. In other words, there are infinitely many, infinitely
long sequences of homoclinic points implied by a single one. A collection of all
homoclinic points is the homoclinic orbit with infinite periodicity. Once a homoclinic
tangle occurs, the catchment region formerly defined by the inset becomes exceedingly
complex. Furthermore some areas within the original catchment region can now be
mapped outside and never return, thus leading to fractal basin boundary.
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The exceedingly complicated catchment region can be traced in the following
manner. Starting near the saddle cycle on the outgoing eigenvector, a point is chosen
and is mapped forward once. Since these two points are still very close together,
we can approximate the path between these two points by a straight line and divide
the line into a ladder of points. By mapping this ladder of starting points forward
the outset would be filled with points and has the appearance of a continuous curve.
The same procedure can then applied to the inset but this time we have to map the
points on the incoming vector backward in time. This method is easy to implement
in computational terms: however we do encounter some difficulties in our problem.
Because of our single potential well characteristic, any point mapped outside the
catchment region is quickly mapped to infinity, these point are thus lost and a
continuous curve becomes broken. Therefore we have to keep increasing the number
of starting points in order to fill the gap.

Using the above method, a homoclinic tangle of the escape equation is shown
in Figure (70). The non-uniform spread of points are due in part to the choice of
starting points. Although this method is successful in tracing the tangle, when the
tangle is as complicated as shown in the figure, it is not possible to determine which
part of the region will map onto the attractor and which part will lead to eventual
escape. A simpler picture without the tangled outset but with the same control
parameters is shown in Figure (71). The white region is the stable region where any
point will eventually be mapped on to the chaotic attractor. The insert is a grid of
starts approach and it can be seen that as the resolution is increased, more white
region is eroded by the black. In between, thin whiskers of white region also appear.
This brute force approach is very effective in establishing the complicated catchment
region. The result of another study is shown in Figure (72). This is an enlargement
of a region close to one band of the chaotic attractor with the same control parameters
as above but with a different phase angle at ¢ = 180°. This picture is composed of
a quarter of a million coloured squares centred on the grid points, the colours represent
how many forcing cycles were substained before escape. The black central region
denotes points on the starting grid that have not escaped before 25 forcing periods.
The white points forming an arc within the black zone represent the chaotic attractor,
and the black region represents the basin of attraction of this stable attractor. We
have only followed each trajectory for 25 forcing periods for obvious reason of
computational economy.
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As can be observed from the complexity of the colouring, the boundary of this
basin has a fractal nature, making practical prediction of whether or not a given start
will lead to escape quite impossible in the more highly tangled regions. It should
be noted that a simple cyclic attractor can also exhibit a fractal basin boundary, the
type of boundary being essentially unrelated to the type of attractor within it. In
fact, for some ® values, we can see from the Melnikov curve that homoclinic tangency
occurs when the attractor is a simple fundamental (n=1) solution.

After the occurrence of homoclinic tangency, the tangle becomes progressively
more and more complicated as the control parameter is varied. As the tangle develope ,
more and more of the catchment region is eroded away. We have traced the
development of the catchment region with equal increments of the forcing until just
before escape using Simple Cell to Cell mapping as shown in Figure (73). Just
before escape occurs, the stable region is so small that the resolution used can no
longer give us a well defined curve. Notice the catchment region at F =0.0872;
although the Blue Sky event occurs at F > 0.109, the stable region has already been
so badly eroded that practically it can be considered unsafe. This rapid erosion of
the stable region can be observed again in Figure (74). Here, the stable solution is
not a chaotic attractor. The escape sequence in the last diagram shows how a point
seemingly trapped by the tangle is mapped outside the previously stable region. In
fact, a look at the full three dimensional phase space generated by a plot of the
catchment regions at different phase angles shown in Figure (75) revealed that every
fractal layer is an image of the previous one. Thus, for every forcing cycle, a point
in this tangled catchment region jumps across one layer until it leaves the original
catchment region and shoots to infinity.

Another phenomenon which facilitates the rapid erosion of the catchment region,
first identified by Grebogi®, is the sudden changes in the accessible orbit due to the
appearance of a saddle node bifurcation. This can be observed as a sudden inwards
jump of the boundary and the bifurcation suddenly creates a catchment region of its
own, coexisting with the original catchment region of the periodic solution. However
this coexisting solution is soon destroyed together with the catchment region. Such
a sequence of events occurs in our system in association with the n=3 saddle-node
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bifurcation. Figure (76) shows the difference in appearance in the catchment region
before and after the appearance of the n=3 periodic solution. Clearly, this is yet
another significant way in which the catchment region can be eroded.

7.4 The Dollar sign map

The importance of homoclinic tangles lies in the Smale-Birkhoff homoclinic
theorem, which stated that transverse homoclinic intersections imply the existence

of horseshoes®”

. The proof of this theorem is basically a precise specification of
the mapping action associated with tangles, and can be found in Guckenheimer and
Holmes. Further examples of tangles can be found in Hayashi®. Because of the
Smale-Birkhoff theorem, one could expect complex behaviour like the existence of
horseshoes whenever the inset and outset of a saddle have transverse homoclinic
intersections. In fact Moon” has suggested the occurrence of homoclinic orbits as
a precursor to chaos. ( However we did locate a chaotic attractor before the global
saddle had its homoclinic tangency at low values of w.) Therefore homoclinic

tangency is not a sufficient condition for the appearance of a chaotic attractor.

As a further indication of the importance of horseshoes and transverse homoclinic
intersections, a theorem of Katok® should be mentioned. This involves the concept
of topological entropy, which is a mathematical formulation of the notion of
exponential separation of nearby initial conditions. Katok showed that a large class
of Poincaré mappings with positive topological entropy must have transverse
homoclinic points. In other words, the exponential spreading of nearby starts is
linked to the existence of transverse homoclinic trajectories and horseshoes. However,
a horseshoe may correspond to either a chaotic attractor or a pre-chaotic behaviour
in which aperiodic final motions exist but are observed with probability zero. Thus
folding and mixing can only be observed in transients. The condition that a folding
action could lead to a chaotic attractor is that observed trajectories which fall off the
invariant set / in Smale’s®
S.

construction must somehow be re-inserted into the square

From the above theorems, it is clear that a homoclinic tangle does not necessarily
mean the existence of a chaotic attractor. However it does imply a fractal basin
boundary as shown in the last section as well as chaotic transients. On the other
hand, the existence of a chaotic attractor implies a homoclinic tangle. Thus the
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connection between chaotic behaviour and homoclinic tangles depends on whether
trajectories that fall off the invariant manifolds (the horseshoe created by the
homoclinic tangle), can be re-inserted into the invariant set.

Before we go any further, we shall follow Hayashi’s® example and call any
saddle point produced by a saddle-node collision as a direct saddle and label it as
‘D™. The superscript will indicate the periodicity of the saddle. Similarly a saddle
produced by a flip bifurcation will be denoted by ‘I, because of the nature of its
mapping action, it will be called an inverting saddle. All stable periodic solutions
will be denoted by ‘S™.

While a homoclinic tangle of the global saddle, (D'), gives rise to a very
complicated basin boundary, we shall now consider the implication of an inverting
saddle having transverse homoclinic intersections.

100102 This term

The term ’dollar sign map’ was first introduced by Rossler
was used because of the topological nature of the map. Figure (77a) shows a
homoclinic tangle of an inverting saddle from the escape equation. Unfortunately,
the outset is so compressed that the layered structure is impossible to observe.
However a topological equivalent structure is drawn in Figure (77b), making it clear
why it is called a dollar sign map. Notice that the outset of I* and the period 4

chaotic attractor coincide with each other.

The interesting property of the dollar sign map is that it possesses not one but
two ordinary horseshoe maps in the sense of Smale in its second iterate. This is
because the inverting saddle has a pair of eigenvalues with negative sign. Each
horseshoe uses the other as a sink so that the second iterate always re-inserts the
trajectory back into the original closure of the outset. Thus, this characteristic is
synonymous with the ‘cap-shaped’ map described by Rossler with its reinjection
principle and Carles Simo’s feedback property. This is with marked contrast with
the homoclinic tangle formed by the global saddle in which there is only one horseshoe
map. As the eigenvalues are both positive, no reinjection is possible. After a period
of transients any point will be mapped either to an attractor within the fractal basin
boundary or to the other side of the boundary and never return. Therefore, when
the invariant manifolds of a direct saddle cross, we would not expect the formation

98-



of a chaotic attractor just the appearance of fractal basin boundary. However, because
of the reinjecting property, we can expect very different behaviour when an inverting
saddle has a transverse homoclinic intersection.

Let us now look at the characteristics of a tangle. Once the invariant manifolds
of a saddle cross, an infinite number of icrossings occur. Since they all traverse at
differing rates, those lines coming closer to the saddle being punctuated more densely
there, the family is bound to comprise an infinite number of cases in which the
self-intersection occurs in a periodic point. Therefore, each (transversal) homoclinic
point implies an infinite number of periodic trajectories of different periodicity in its
neighbourhood. Smale’s unravelling of the tangle also shows that there are also an
uncountable number of nonperiodic trajectories present. However, the definition of
chaotic behaviour given by May and Yorke suggest precisely the same things; namely,
infinite number of periodic solutions (fixed points) of repelling type; in between,
there are uncountably many nonperiodic (wandering) solutions. Qualitatively, a
chaotic attractor is characterized by its stretching, folding and mixing actions. All
these characteristics can be accounted for when the invariant manifolds of an inverting
saddle cross. Since the absolute value of one of the eigenvalues is larger than 1
while the other is smaller than one, trajectories are thus stretched along the repelling
eigenvector and compressed orthogonal to the attracting eigenvector. The negative
eigenvalues mean that all trajectories will be re-inserted into the invariant set and
hence the mixing and folding actions appear. From these evidences one can conclude
that chaotic motions are produced whenever the invariant manifolds of an inverting
saddle cross. Furthermore, a chaotic attractor is in fact the outset of an inverting
saddle when its invariant manifolds form a homoclinic tangle.

In our investigation, we shall assume a chaotic attractor will form when the
above conditions are satisfied. Therefore we would expect that before a chaotic
attractor appears, the corresponding inverting saddle’s invariant manifolds do not
cross, and right after the attractor is formed, homoclinic tangling occurs: while at
the bifurcation point we have homoclinic tangency. To sum up, in order to have a
n-piece chaotic attractor, the inverting saddle with period n (i.e., /") must be
homoclinically tangled. From now on we shall refer the n-piece chaotic attractor
as having period n. The loss of stability of a period 2**" chaotic attractor to a period
2" chaotic attractor will be discussed in the next section.
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Figure (78) is a period doubling cascade with the control parameters as shown
in the diagram. Notice that the data is sampled at 2 times the forcing period so that
only the band with positive displacement is plotted. Therefore the chaotic attractor
at F =0.20249 is actually a period 8 chaotic attractor. Bifurcation of the chaotic
attractor with period 8 to period 4 is at F =0.202532. By plotting the invariant
manifolds of the period 8 inverting saddle before and after this value we can test
the validity of the above assumption. Figure (79) shows this result: the top diagram
shows the invariant manifolds of the inverting saddle (/%) at F =0.202530 and the
bottom diagram shows the same invariant manifolds at F =0.202534. It is clear that
before the bifurcation occurs, i.e., before the period 8 chaotic attractor changed into
a period 4 chaotic attractor, the invariant manifolds of I* do not touch. After the
bifurcation, the invariant manifolds have crossed.

Therefore we conclude that a chaotic attractor is the closure of a homoclinically
tangled outset of an inverting saddle. We also expect that chaotic attractors with
different periods formed under this condition are topologically equivalent. Hence
there must exist a scaling factor just like Feigenbaum’s®® universal number. If this
is true, it also implies that this type of chaotic attractor is universal. Figure (80) is
a series of period doubling cascades; each window is enlarged as shown and the
bifurcation points indicated have been further enlarged so that a good approximation

can be determined. The results are tabulated below:

Fy=0.202532 - 0.2024653 = 6.670x 10
F,s=0.2024653 - 0.2024504 = 1.490x 10
F,,=0.2024504 — 0.202447214 = 3.186x10®
Fg, =0.202447214 - 0.202446532 = 6.820x 10"

F,,, = 0.202446532 — 0.202446386 = 1.460x 10"

Fy Fig
— =4.4765.. —=4.6767..
Fig 32
Fy, Fe,
—=4.6715.. —=4.6712..
Fg, Fiys
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It can be observed that the number approaches the same Feigenbaum constant,
0=4.6692016... as the period of the chaotic attractor increases. This suggests rather
surprisingly that period doubling of the periodic solution has a intimate relationship
with the period doubling of the chaotic attractors.

7.5 The effect of Heteroclinic Tangency and Stability Transfer

Looking back to the Blue Sky event at the end of the period doubling cascade,
we have determined that escape is triggered when the chaotic attractor touches the
basin boundary. Since the invariant manifolds of D' have already intersected before
escape occurs, this can not be a homoclinic event. However, as the chaotic attractor
is the outset of the period 2 (noting that the chaotic attractor has two bands) inverting
saddle; it means that this is in fact a heteroclinic event. In this case, the inset of D'
touches the outset of 2. Since the chaotic attractor or the outset of I? touches the
boundary of another attractor causing escape; (here, the "other attractor” being at
infinity) we can say that we have a stability transfer.

Notice that as the invariant manifolds of D' cross, the inset of any periodic

saddle point must have a heteroclinic connection with the outset of D'. Stability
transfer will not appear in this case because the attractor has not touched the inset
of D!. Therefore, to distinguish the two cases, we shall follow Carles Simé’s example
and call the former case with stability transfer an outer heteroclinic tangle, and the
latter case an inner heteroclinic tangle.

We have observed that when an inverting saddle forms a homoclinic tangle, its
outset changes into a chaotic attractor. But how does a higher period chaotic attractor
lose its stability to a lower period chaotic attractor? We suspect the above mechanism
applies, i.e., an outer heteroclinic tangency occurs. Thus the sequence of events can
be deduced as follows: the inset of I touches the outset of 1 2“‘, since the closure
of the outset of I*" is the chaotic attractor, the chaotic attractor is destroyed. This
is the case of an outer heteroclinic tangency. As the chaotic attractor is destroyed,
the invariant manifolds of /% develop into a homoclinic tangle, thus forming the
chaotic attractor with the same period as the inverting saddle and hence a stability
transfer occurs. Since the destruction of the period 2**' chaotic attractor and the
creation of the period 2" chaotic attractor happens simultaneously, we also expect
the outer heteroclinic tangency and the homoclinic tangency to happen simultaneously.

-101-



This phenomenon can be demonstrated again in Figure (79). Clearly, it can be
observed that when 7* has a homoclinic tangency, it also means that the inset of / 4
touches the period 8 chaotic attractor. Since the closure of the outset of I° is the
period 8 chaotic attractor, an outer heteroclinic tangency occurs and the stability of
the period 8 chaotic attractor is transferred to the period 4 chaotic attractor. As the
two events happen simultaneously we can only conclude that the closure of the outset
of I® is a subset of the closure of the outset of I*. In fact this explains why the two
types of tangency can happen simultaneously.

Consider again the ultimate destruction of the chaotic attractor at @ = 0.85. The
system jumps to infinity at F~, just above 0.109. We have in fact found that the
attractor collides with D® as shown in Figure (81). This directly unstable n=6
subharmonic is the saddle of a very recent saddle-node that generates over a very
short F interval a complete n=6 cascade: notice that the figure corresponds to sampling
at 2iT (at phase ¢ = 180°), so that only half of the full picture is observed. At the
end of the n=6 cascade, when the n=6 chaotic attractor collides with D at F =0.1077,
the system jumps back to the main sequence S* as indicated by J.

The final collision at F* is shown in Figure (82) in the phase projection (x,y),
with sampling again at 2iT and phase ¢ = 180°. The path of three points of D¢, in
equal F steps, is shown relative to one band of the chaotic attractor at F =0.109,
this representation being useful because the chaotic attractor is not moving
significantly over the F range involved. Notice that the apparent crossing of the path

and the attractor is illusionary, because the attractor had not yet formed at the lower
F values.

This type of destruction of the chaotic attractor seems to be of different type
to that discussed earlier concerning the outer heteroclinic tangency type of bifurcation.
However, as pointed out by Grebogi et al®?, the period 6 direct saddle at this point
lies on the basin boundary of the global saddle D' and therefore we can consider
the chaotic attractor to be touching the basin boundary.
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7.6 Mathematical constraint on the Escape equation

No analysis will be completed without the use of analytical tools. It can be
seen later that some interesting properties emerge due to mathematical constraint
imposed on our dynamical system.

Consider again the escape equation which has been reduced to the standard
form:

Z+pk+x-x>=Fsinot
we shall write
y=x
¢=wr (mod2m)
T=2ww

and can observe that the driven oscillator has a three dimensional phase space, R*

spanned by x, y and . Due to the periodicity this can be alternatively viewed
toroidally using x, y and ¢ where the phase angle ¢ is a cyclic coordinate with
0<¢ <2n The oscillator can, moreover, be written formally as a set of three
autonomous first-order nonlinear ordinary differential equations

xX=y

y=—x+x>—PBy+Fsin¢

b=w
with the three control parameters (F @ ). We have in fact set f=0.1 throughout our

numerical studies, corresponding to a damping ratio {=0.05, leaving the two primary
controls F and o.

The divergence of the trajectories flowing in the three-dimensional phase space
is governed by
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so we have a constant exponential contraction of phase volume V, according to
V=—pv
V(t)=V(0)e™
Our numerical studies make continuous use of the Poincaré section defined by
t=t,+it (i=1.2,...)
o=¢,=x,

and we shall be concerned with the Poincaré map P(¢,) that is generated by the

flow,
P,):[x(),y@e ] - [x(@t,+T),y(,+T)

As indicated, the mapping depends on the chosen phase ¢,, and for most of our

studies we use ¢, =0. This map takes us iteratively from a point (x;,y;) to a new
point (x;,,¥;,1) according to an implied functional relationship

xi+l = G(xi’yi)

Yis1=HK, )

The functions G and H are of course not known analytically, but can always be
evaluated numerically for any (x;,y;) by making a Runge-Kutta numerical time
intergation of the governing differential equation through one forcing period of
duration T.

Now since there is no stretching action along the time axis, the constant
exponential contraction of volume for the flow ensure that for the map an area A in
the Poincaré section contracts according to the relation

_ BT
A 1=eTA

which implies that the Jacobian determinant D of the map is a constant, since
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So any fixed point of the map, corresponding to a fundamental n=1 oscillation with
period T, will have mapping eigenvalues A; (i=1,2) constrained by the condition

AMA,=D = e P = g P2

In a similar way, the eigenvalues A% of the n-map P" corresponding to a subharmonic

of any order n (with period nT) are constrained by the equation
}\'(1"))"(1")‘: e-nBT

These constraints place strong restrictions on the sequences of folds (A =+1)
and flips (A =-1) that can be generated by our escape equation. They also exclude
the possibility of a Neimark bifurcation ( the mapping equivalent of the Hopf
bifurcation for a flow ) in which a pair of complex conjugate eigenvalues leavesthe
stable unit disc away from the real axis.

7.6.JRe-mergingFeigenbaum trees

The consequence of mathematical constraint on the eigenvalues leads to the
formation of re-emerging Feigenbaum trees'®, and degenerated period doubling. To
look at how the underlying mathematical constraint affects our dynamical system,
we shall concentrate on a typical response curve with hysteresis, i.e. two cyclic folds,
as well as a period doubling cascade. With  just less than @” the behaviour is thus
as sketched in Figure (83). This schematic diagram relates to the phenomena at
®=0.85 and B =0.1 and shows the paths represented by the stroboscopically sampled
x; =x(iT) under the variation of F. To understand the stability transitions of the
fundamental n=1 path in this constant ® (and constant T) cross-section, we recall
that the product of the mapping eigenvalues is a constant. The eigenvalues are
therefore either real with geometric mean

Vi =" =p
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or complex and constrained to lie on a circle of radius p centred on the origin of

the Argand diagram.

From S°, the path S’ starts off as an attracting focus, becomes a directly attracting

node at a where the complex eigenvalues become real and positive, and folds at A
as A, penetrates the unit circle at +1. From fold A to fold B we have the directly
unstable saddle Dy (where the R for resonant serves to distinguish this from the
hill-top saddle D'), and the primary n=1 path restablizes at fold B as A, re-enters
the unit circle at +1. Then A, becomes complex at b, passing completely around the
circle of radius p to give an inversely attracting node with real and negative mapping
eigenvalues between ¢ and C. At C, A, passes out of the unit disc at -1, and we
have a super-critical flip bifurcation into a stable n=2 subharmonic as shown. This
is followed by a supercritical flip from n=2 to n=4, and a complete period-doubling
cascade leading to a two-band chaotic attractor, which quickly becomes unstable at
a blue sky instability at E leaving no attractor and an inevitable jump to escape.

The unstable n=1 solution meanwhile continues to the fold G where it turns
back to become the hill-top saddle cycle D'. Before doing so, however, it is clear
from the constraints on A; that we must have a reversed flip at F, since the eigenvalues
must yet again go through the unit disc thereby pass through -1, changing from
negative eigenvalues to positive eigenvalues and emerge from the unit disc again
through +1. This is confirmed by our numerical studies. There is, indeed, a complete
reversed period-doubling cascade and chaos as illustrated schematically in the diagram.
Figure (84) is the result of our numerical studies showing the solution path and the
changing eigenvalues for the whole path. It can be noticed that the reversed flip F
is however very close to G, so that the stable n=1 regime F-f-g-G is in reality very
short at these control parameters. Path D' finally returns to the hill-top equilibrium
D"

7.6.2 Response surface of escape equation

The response surface, deduced from extensive numerical studies is sketched in
Figure (85), a schematic diagram in which the ’response amplitude’ might loosely
be thought of as the maximum value of the displacement, x,,, during a steady state
oscillation. The surface represents the steady-state solutions, with x,, and the forcing
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frequency in the base plane, with the second control F plotted vertically for ease of
visualization. The damping is held constant at B = 0.1 throughout as meritisned before.
Bifurcations on the response surface can be projected back onto the (F,®) control
plane to give the final bifurcation diagram.

The main n=1 (fundamental solution) surface cuts the F =0 base plane in two

straight lines, x,, =0 corresponding to the system resting in the stable equilibrium
S° and x,, =1 corresponding to the system resting in the unstable hill-top state D°.

To explore the surface, it is convenient both computationally and descriptively
to focus attention on the x,,(F) paths at prescribed ® values. At the highest value
of forcing frequency represented in the diagram, for which ® is approximately 2.5,
the two equilibria are joined by a simple path of n=1 solutions: it can be observed
that the solution paths of S' and D' grow, merge, and annihilate one another at the
cyclic fold at G. Passing from S' to D' through this fold, one of the mapping
eigenvalues, A, say, passes through +1, so that after G the n=1 solution is directly
unstable with both eigenvalues positive and 1 <A, <ee, 0<A,<1. The physical
system starting at $° under slowly increasing F is thus stable up to the fold G, from
which a fast dynamic jump carries the system out of the well with x tending to
infinity. So at high o the fold line, G-G in the control space is the escape boundary.
The numerical solution path at ®=2.3 is shown in the bottom diagram of Figure
(86).

This simple folding response is preserved under decreasing ® until at ®

(approximately 2.2) a flip bifurcation into an n=2 subharmonic is encountered. Thus
at the value of @ drawn between @ and @® the n=1 path is cut by a closed n=2
curve after which the n=1 solution restablized as indicated, before finally losing its
stability at fold G, this is demonstrated in the second diagram of Figure (86). Between
the two opposing flips the n=1 solution is inversely unstable with both mapping
eigenvalues real and negative, one inside the unit circle and the other outside, i.e.
an inverting saddle where —o <A, <-1, -1<A,<0. These flips project into the
boundary F-R-C in the control space. For the value of o illustrated, the n=2 solution
is everywhere stable, so our physical evolving system driven from S ° would experience
a brief regime of stable n=2 subharmonic oscillation between the two supercritical
flips, before escape from the fold at G.
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As o is decreased, the n=2 solution next exhibits a pair of opposing supercritical

flips into an n=4 solution, giving the second flip boundary D-D. The period-doubling
scenario is repeated at diminishing scales, so that at ® =2, between @” and ", there
is an opposing pair of complete period-doubling cascades leading to a pair of chaotic
attractors, separated by a region of no attractor, implying inevitable escape. This
behaviour can be observed in the first diagram of Figure (86). On further reduction
of  to " (approximately 0.9) the n=1 solution exhibits a cusp at P, generating a
pair of folds on the early part of the x),(F) curve. This corresponds to the well
known hysteresis in nonlinear resonance, which here is of the softening variety, the
softening for x > 0 being more powerful than the hardening for x <0: this resonance
response aspect is highlighted by the sketched constant F lines on the n=1 surface.

Since the folds A and B are born at the cusp point P, they share initially the
same basin of attraction, so the jump from A under a controlled physical increase
of F will restablize on the attracting n=1 focus as indicated by the arrow E. So from
the pulling apart of the two period-doubling cascades at ® just less than ®® down
to @? (less than ") the escape is triggered by the cascade-chaos-Blue-Sky scenario
denoted by C (flip from n=1 to n=2), D (flip from n=2 to n=4) and finally E (escape).
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Conclusion

One of the most interesting questions in chaotic dynamics is what constitutes a
chaotic attractor? We have observed typically the appearance of chaotic attractors
at the end of a period doubling cascade, but what determines that it is not a periodic
attractor with a very high periodicity. The key to this question is the creation of
inverting saddles during the course of a cascade of period doubling. When the
invariant manifolds of an inverting saddle cross each other, the unstable manifold or
more precisely the closure of the unstable manifold, i.e. the outset, becomes the
chaotic attractor. This could possibly first occur at the Feigenbaum’s limit point
with an inverting saddle having a high periodicity. After this point, a cascade of
destruction and creation of chaotic attractor occurs. A chaotic attractor with a period
of 2™*! will be destroyed by a chaotic attractor with a period of 2" due to an outer
heteroclinic tangency, simultaneously creating a chaotic attractor of period 2". In
between, we could expect windows of coexisting steady periodic solutions because
of the property of the ‘horseshoe’, namely, infinitely many periodic orbits and
uncountably many aperiodic orbits. The reason that we cannot observe all of them
is because some of the windows where they exist are small compared with the main
period doubling event. The divergence action due to the unstable manifold and the
attracting action due to the stable manifold constitute the stretching, folding and
mixing actions. Together, they make a ‘chaotic’ attractor chaotic.

We also propose in Chapter 7 that if chaotic attractors are formed when the
invariant manifolds of an inverting saddle cross, there is no reason why one chaotic
attractor is different from another: hence they must be topologically the same. By
topological, we mean that the geometric structure of all the chaotic attractors should
belong to one master structure. The ‘appearance’ of a chaotic attractor is affected
by the eigenvalues of the inverting saddle as well as the Birkhoff signature. Note
that for a one dimensional discrete map, a saddle has no separatrix and hence we
can only view it as a degenerate problem rather than a generic one.

While chaotic behaviour has not been considered dangerous by engineers, (
dangerous in the sense that a high amplitude vibration can cause the collapse of a
structure ), nevertheless the research into chaotic phenomena has given us insight
into problems such as fractal basin boundaries. To most engineers, a structure must
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be designed within a safety margin. To dynamicists, this safety margin is the
catchment region for a steady state solution which is acceptable in application. This
would include the amplitude of vibrations and even the frequency during the vibrations,
when fatigue and resonance are taken into account. If this stable region can be
eroded so suddenly and unpredictably, this must be considered dangerous.

This unpredictability of the catchment region first started when the invariant
manifolds of the global saddle crossed. This generates chaotic transients where
chaotic-like behaviour is observed before the dynamical system is settled into a steady
state or a remote attractor. This global saddle produces chaotic-like behaviour as
well as separating different steady state solutions. We can thus classify it as a chaotic
saddle. The problems of tangles and fractal basin boundaries are immensely
complicated, partly because they are computationally expensive to explore and further
research is in progress to unravel this complexity.

On a more practical note, the erosion of the catchment region is now under
further research in the form of integrity curves so as to provide the design engineer
with an indication of when the catchment region would become critical. This would
serve as a lower bound type design curve in the design exercise.

While a tremendous amount of research has been conducted by the dynamical
research group in the Civil Engineering Department of University College London,
it is just the end of the beginning. We are confident that more fruitful and exciting
results for both the engineers and scientists will emerge in the not so distant future.
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Figure 1. Undamped and damped phase trajectories of a linear oscillator.
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STABILITY TRANSITIONS IN THE COMPLEX PLANE
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Figure 9. Stability boundary on the complex plane of a flow and a map.
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Figure 10.

Stability criteria in the trace-determinant plane.
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Figure 12. Saddle-node bifurcation of a map.
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Figure 14.

Schematic diagram illustrating the effect of Homoclinic Tangle
leading to horseshoe like dynamics
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Figure 15. Two dimensional cylindrical model of the
Birkhoff-Shaw Strange Attractor

% =07y « 10x(0-1 - y2)
y=-x + 0:25sin1-57¢

360 '_- — AI; e SNNWNE :;—-x-
: == |
2705 | | gg?% 21.
180 — Z ' &\\ 25
3 g 7 \%‘ \\\
| AN :
ol _— 12 %%? -—1-{'0——-—
crme, s

- 138 -



J0313DJ)}y 96uUDJ}S ay) uo Bu|)jias € JOPJO JO djUOWIDYQNS D aX|] SPUIM 21Nn}InJys yoaqg-Bum

Jay0 $21945 007 40) AjjD31100Yd 8 %03Q © JO UO|}DAId PuDd Buim © jo Bujpjoy .
9

Bujsapupm As0yd8foyy 3\Bujs v

— 081

—0L2

: ~09¢
e

O

10301}y 93ueNS MeUS-JJOyNIIg Y} JO [SPOWI [BILIPUIIAD pap[oju) ‘9T °anbTd

- 139 -



Q1= Sd31S -Q = 5d315

[N 1) ”e L ] " (1 '.-l LA 1] [ "' "” " '..‘
L 3 1 y - A Il A 1 A .. t 1 Il | 1 1 1 - s 'l ] ..
3 3
B il
AR
ro g
-8 O ]
L
2 s
- :
01x Sd31S 01 Sd31S
[ 1] ”we " ” [/ ...' L] we L LR X1 ...'
[ 'y A - L ) A 1 .- [ 4 L A ' I e i i A ..
3 g ~
- )
r = -
L83 S=J 8
| ® |
- 8 L=3 "
. = . - H - .. = ..
10 Sy=L | 0=p XV +oX0 =Y

(103[[19SQ 1oedW]) SAIPNIS RUIZIAAIP [erjuduodxy *LT 2InbT4

(3)3071-

(3)307-

- 140 -



0f) .
4OLlOVviylLlv I
ay) Bujuiyep \WUV L.
{sjyulod v & ,
fujddow) w“m\/wwwv :
SU0|}99s 1UIT W < T
3JDdUl0g .._.V «W
9

sopyd Apoais

S0 =1V
— + +
1109 ﬁ c E_
0=X'G==X )0
}4D1s paziuoJiyduhs-ap abuD) wosy JuIisuDs) Aduanbady ybiy +s

FC

G:0=8'G0:0=" 40 (%) uciinjos s ppan

AAMEAAAAM LALA

‘_- m
T

i

11001

g ;: MAMLRA

f

Uz

SOVHD 2iP3s Appajs H

LA
)

0=X%'0=X WOJ} JUdISUDI] lg

i.ﬂ

v

- 141 -

-t :
o _

v m . ¢
{Zi=g'1-0=4%)
wniydeds JooidA}

Jamod

SU0}323s UIZ=} 3y}l Yiim
K1ajow | x0sddDo 3zZIUOJIYdUAKS
sypad x aatylsod ayjy

2)}D}s 2)30Dyd ApDaj}s ayy uj
SOVHD 210}iS Apoa}s Bujuianaob
YOlIOVYylly 3ONVAHLS

: anbiun 0} sjusjsuopy]

1030111380
JD3UI|UON

1509G:f =X + XG0 + X

poo) 6uli13onq }p woag k#wkk

pasJoy s X

padwog \\

«

~d

(Slva3an=(s)13S

10308131y 93uRNS S,BP3) JO WNIPadg 19mo [eardL], 8T oanbTd



28’l 6L°t1 7 cL’)

Dl e “
,_r_“_.m_"uu_ “_-.___u ___ _____. il __._ ol __ L u
A u ;.est&EL:ﬁ ||||||||||| e
. _"_w__mmm__._ :"w_____E“m___m“m_m_m_m il
aggiing? i

.-.. .
TR I
i !

Hi
e
‘-

.a...n 1 e T ™ ) m . o9 ._
14 n- n— — -n— -— 1N ~ s e 3
___ ___._u.._ e _m __,_"u o m.

(]
ol
“n_ _._

8|
33° ke
o

9 _.— .m.. "o
: D
"..n._... e

. o—wmwm—_nnmu—— n———--.. _—u—--........-...-.
n o m.m—m-
- | 3;%

___ i

s__
Jithais
;& " IRUN

|
- .—-
.

_.--:t.-n -...m»

i _..,_ gt : | _ 4

il _. il

*deu
oT3eIpeny TRUOTSUBWTIP 9UC 9yl JO M3Ta psbrerug °6T 2anb1d

- 142 -



o>\|I

'$91040 Jrun] Sunadwod Jo suordal JuswydIe)

- 143 -

‘0z @anbtd



utod wnuqinbe ue 03 9s0[o dews resuy] [EUOISUSWIIP OM] B JO souoioafer],

Tz 2anbtd

191
(12

v

1 ey’

|en‘e e’
.we'- 'l

gg‘
..
ae
~
.

el ©
1

08y 2
wee I’ (L1, 18 ]
a.-nm
AW
/._. )
i
| 4
h 9
.”.-Mowll
1
908°0 deU°!

o2~ 908’ |

2 2 2

3AILISOd 3NTIVAN3OI3 ANOJ3S

FC

- 144 -



(b)

(c)

Figure 22. (a)Schematic phase portrait showing the invariant manifolds of a typical saddle

point enclosing the catchment region of a steady state solution.
(b) Location of a possible saddle point when using the interactive graphical
technique.

(c) Poincaré€ points stepping along the inset and outset of a saddle using the ladder
method.
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Figure 23. Catchmentregion of Ueda’s equation showing smooth basin boundary.
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PHASE SPACE PROJECTION Y | «= DUFFING
MNe2
TRANSIENTS TO C

® POINCARE POINTS

T =2nm1
-2-4 FORCING: F cosT

% + 200k +x +0x’ =F,cosT

n=16 {=01 a=005 F,=25

VAN DER POL PLANE Va-Tv] DUFFING
EXACT EQUATION Me2
TRANSIENTS TO €

1¢

~NF

Figure 25. Transient trajectory on the phase space projection and on the Van Der Pol plane.
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u€ + v fo=25
C =01
stable I
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10 15

Figure 26.

Amplitude response diagram of Duffing’s equation at resonance with different
damping ratios.
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-10 0 10

Figure 27 . Six phase portraits of the smoothed variational equation of Duffing’s equation on

the Van der Pol plane during a transition through resonance.
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UNIT USE SYMBOL EQUATION
Potentiometer Multiplication of
a variable by a ll_;(pL@__Q%{ut Output=Kx

positive constant
coefficient <1

where 0 <KL 1

Invertor Sign reversing m_D_gmm Output= - Input
X w W=-X
Summer Summation of OQutput= -'Sum of Inputs'
member of variables 'V _ : We=—(X-Y+10Z)
including multip- ;—;k At
lication by ‘gains'
1 or 10
t
Integrator Integration of a Output=-[ input dt
variable with respect (., Output o
to the computer X w t
independent variable o W[ X dt
‘time t' o
Initial value of
output = W,
Inputs t
Summer Summation with }‘ t We[(X-10V4Z)dt
Integrator Integration P4 w o
Ic.
-
Multiplier Inputs Output=product of
X:D._Q“_‘W‘ inputs
Y w W=XY
Figure 28. Analogue computer components’ symbols and operations.

- 151 -



‘ Amplitude x B™"

Ueda equation, ks 02
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Analogue catchment studies
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Figure, 29. Resonance response diagram for Ueda’s version of Duffing’s equation using

digital and analogue simulations.
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Catchment regions within the hysteresis loop of
Ueda’s equation as indicated in Figure 29.
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(a) Schematic diagram of the mooring tower.

(b) Stiffness curve illustrating discontinuity at the origin.

(c) Two time histories of displacement using different initial conditions.

(d) Corresponding phase diagrams.

(e) Amplitude response diagram in the neighbourhood of competing n=1 and
n=4 response.

(f) Catchment regions for the two co-existing solutions.
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(a) Schematic diagram.

(b) Nonlinear restoring force of the catenary mooring chains.

(c) Maximum amplitudes of motion, displacement and velocity of the Poincaré
points as a function of forcing period illustrating hysteresis.

(d) Two stable steady-state solutions with different initial conditions.

(e) Catchment regions for a wave-period of T=19.7 seconds.
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Figure 34. A closerlook at the relative dominance of catchment regions during a transition
through subharmonic resonance.
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Figure 35b

Poincare map of a point in two-dimensional phase space.
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Saddle node bifurcation point
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Schematic diagrams of path following technique.
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Figure 39. Solutions obtained using path following technique, a.

- 162 -

o
~



-n-c-iﬂ- LRI ------‘-d\d d-..d--- LIR BBJ -jqﬂ,- IR BREREARI viI083 0 -c-‘i-‘jjddn -G-jlﬂ- LER) q-##d-.--:-.iﬁdl- LR B AN | -d‘qﬂL
o - o b of
L 4 -+ + 4
o L o4 -_ - 5 F -
3 3 L % “l 4 - 4 “
s <+ ) L -+ A
- o S (] -+ AU. 3o (=] o
3 __ ES = - - = o
b m - m e __ ur m 4
L 4 + 3 L p
L - -+ -+ -
L <+ + - p
L a~° + -+ w. 4
9 - - ﬁ L
o - <+ 4 -
9 - - - -
1 oo + o+ -
r b o J' Jf -

-+ L -+ ".l .“
[ I T 1 - ]
- ——— L = —p— -
. 4 4 + 4
L - 4 + 4 J
L o <+ + + 4
o3 —_ C 2 4[ L od u
: a 1 I

o+ - + 4
o m - L‘ < -
L 3 + +- Dt e + .
. =1 -+ + R A 4 <
=3 u e Jl! J.l -
L -+ <+ <+ i
ﬁ W -~ -+ - -

<+ + -+ o
L m 4 -+ 4 -
5 - + + -
- E ‘j l1 lj -
- -+ |T - e

-
L -+ +4 <+ o
L 3 I I I ]
= 1 T I :
F %2} - - o< . .
o F - ul L o -
o I 1 I i
- N JI o L o -
be x Lo e -+ L
Lo + 41 4 .
b x =3 —— L= = -
1 b od L o I.T -y
- + 4 5 -
e I I Mﬂ ]
+ 4 4 N E

3 % + 4 -+ r
- - LI ke od J
o + ..T -+ .
lbbr.nhhhﬁ—-rh- -DhbnbbP--P l'hhbh- Pb-P—P-P P-b-bxrbL Ju T 2 4 4t Al -—-~\P L1l P\P-—hb-b!hbbh!.o?-n-b»rrbbh!-n. hP-.-\-nb-bP

0.4
0.4

03

Figure 40. Solutions obtained using path following technique, b.
- 163 -

0.0



13SS3A

*I9SsaA DHBurjzeold pue JI8MOJL
HUTIOOW ps3eINOTIIAV UR JO wWexbeTp OT3eWSYDS

1y sanbtg

- 164 -



n=
n= a=10
n=2
n=3
Q) SO®
P
n=2
t n=1
=2
n=3
=4
Bifurcation from n=1 to n=2
r
Bilinear Oscillator: oc=10 £=0.1
Figure 42. Resonance response diagram of the
Oscillator.
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Bilinear Oscillator : a=10 {=0.1

x1872
48.62 ——r————————————————r— —————r——
 Xe
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E \ ’ #
- T
1015 B T R R 388 T BT ces

x1e3
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Results for |
XE known or |
unknown
Steps
——

-§77.81 . N - T S s

4 . 23 58

x18-2

CENTRE MANIFOLD METHOD
E
\, = (XP‘XP )m
1= E
( Xp-Xp )i

FC

Figure 45. Summary of the Centre Manifold technique.
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Figure 46. Numerically calculated eigenvector.
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THREE-POINT METHOD FOR LINEAR MAPPING

MATRIX (compared with C.M, results)

M= 145425
-’Sn 5 Ban ZEN Znn 2En e ne ann Sun A mun e e aan aun o g —ose
L xz
I
-1 .09 — PEPEPET U U U I U U P "1 .en
—=— Steps
-.80 T ————r—r—r—r -.90

-.S8L..
(%]

Figure 47.

Three-point method for linear mapping matrix.

Bilinear Oscillator : 0=10 {=0.1
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FOUR-POINT METHOD FOR LINEAR MAPPING
MATRIX AND EQUILIBRIUM FIXED POINT

7 = 1-5425 7 = 15480
-.58 - - v—— v v -.58

| . . | p
N | Y

91
e D R
-]

-.80 — -.99

Figure 48. Four-point method for linear mapping matrix and
equilibrium fixed point.
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RANDOM LOADING for T = 1-546

200
3 POINT
METHOD
268
4 POINT
METHOD
: 1 -1.eef ARW R
188 288 (] 180 208
——
' Steps

Impulses random in magnitude and timing
Displayed magnitudes are purely schematic

FC
Bilinear Oscillator : a=10 {=0.1

Figure 49. Impulsive and random loading on the Bilinear
Oscillator.

- 172 -



89°1-

FC

¢
—l.
el ”OJI
a
— 1 I-
aqnm Bl 1-
spoyjaw f m
110 wolj ﬁm.- _
Aipwwng
. — 1
2 a2 _a Aod 4 A b b do bl b A 4 s A A A A A A 2 an-
¥3IMOL ONIYOOW Q3ILVINDILNY
. l=u NV 40 3ONVNOS3IY¥ OJINOWYVHENS
&\\....Nuc d
N N x

1'0=9 01=0 : IOJIOSQ JesulIg

*auetd
xaTdwoy 8Yy3 uo ssnieausbTe® SY3 JO JUBUSAOW °0¢G aanbtJg



Bilinear Oscillator : a=10 {=0.1

FOUR-POINT METHOD FOR AN EVOLVING SYSTEM WITH ’q = 1]0 +TT

-s -
r=5=10 r=1:10"
Determinist
Impulses
-1 F 15486
A X:
-0-9f /
-1-0 / /’\ . [~ Random
J ' (\ Impulses
shp 15406f
1542 n 1550 1:546 1\ . 1-550

Figure 51. Four-point method for an evolving systen.
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Figure 53. Schematic diagram illustrating the catchment
region of the Escape equation.
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Figure 58.

FOLDING MOBIUS BAND with 80 Poincaré Sections, every 45° of phase Y

Chaotic attractor shown in a sheared Van Der
Pol plane.

ESCAPE EQUATION SHEARED VAN DER POL PLANE

x(0)=0-120414869994 x(0)=-0-577998778433

Run: BANGLE. 4-RK(80s/c), SOmins, Last 160 of 200 cycles plotted
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Apparent crossing of trajectories in a two dimensional
projection.

Three dimensional view of a twisted invariant manifolds:
the dotted line shows a typical trajectory

Figure 59. Schematic diagram of a Mébius band showing the
apparent crossing of trajectories.
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Numerical evidence of homocl

Figure 60.

the Escape equation.

w=10
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F=0-074

escape equation

HOMOCLINIC TANGENCY

Run
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Figure 61. Two dimensional control space of the Escape
equation, (I).
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Figure 62. Time histories before and after the Blue Sky
Catastrophe showing the effect of chaotic

transients.
P =0-1 U)=0-85 x(0) =0-160040303704 x(0) =-0-570398353278
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Figure 66. Two dimensional control space of the Escape
Equation, (II).
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Figure 67. Fractal basin boundary after homoclinic tangency
using a grid-of-start approach.
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Figure 68. Fractal escape time within a small region of
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Figure 69. Schematic diagram of a transverse homoclinic
crossing.
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Figure 73. Catchment region of the Escape equation at
various forcing frequencies obtained by Simple
Cell Mapping technique.
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Coexisting n=1 (dots), n=3 (black) Chaotic attractor close to FE

Parameters: B=01 Ww=0-85 \P=180°, Equal Fintervals. Simple Cell-to-Cell

Window: -0-8(x<¢1-2, -0-8¢y (08 Cells: top pair 180x120, rest 200x160
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Figure 74. Using Simple Cell Mapping technique to show the
development of the homoclinic tangle.

 — ¥ T T -
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X .

Parameters: B=0-1 w=0-85 ¢=180" -0-8<x<12 -09(y(0-8
Attractors: n=1..... ® ;n=3..... ®

Escape sequence: 0—>»7->escape.
FC
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Figure 75. Using Simple Cell Mapping technique to show the
fractal basin boundaries at various phase
angles.

Parameters : B=0.1 ©=0.85 F=0.086
Black regions: n=1 periodic attractor.

-08>2>1.2 -1.0>%>1.0
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Before n=3 saddle -node
White : escape
Black : n=1 attractor

F=0.086

After n=3 saddle -node
White : escape

Black : n=1 attractor
Hatched: n=3 attractor

F=0.087

s,

After n=3 cascade
White : escape
Black : n=1 attractor

F=0.0895

Escape equation: B=0.1 ®=0.85 ¢ =180 Grid Size = 400X320 = 128,000 points
-0.8<x<1.2 -0.8<x<0.8

Figure 76. Using Simple Cell Mapping technique to show the
rapid erosion of the catchment region.
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Figure 77. Schematic and numerical evidence of a Dollar
Sign Map.
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Figure 79. Transverse homoclinic tangency of an inverting
saddle leading to a Dollar Sign Map.

Escape Equation, parameters: B=0.1 w=1.0
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Figure 84. Numerical solution path and its corresponding
eigenvalues.
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Figure 86. Numerical evidence of a remerging Feigenbaum
tree and degenerated period-doubling.
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