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ABSTRACT

This thesis describes an investigation into the analysis m ethods 
arising from identification aspects of the theory of dynamic systems with 
application to full-scale offshore m onitoring and m arine environm ental 
da ta  including target spectra. Based on the inpu t and o u tpu t of the 
dynamic system, the System Identification (SI) techniques are used first to 
identify the model type and then to estimate the model param eters. This 
w ork also gives an understand ing  of how  to obtain a m eaningful 
matching between the target (power spectra or time series data sets) and SI 
m odels w ith m inimal loss of information.

The SI techniques, namely, Autoregressive (AR), M oving Average 
(MA) and  Autoregressive M oving Average (ARMA) a lgorithm s are 
form ulated in the frequency dom ain and also in the time domain.

The above models can only be economically applicable provided the 
model order is low in the sense that it is computationally efficient and the 
lower order m odel can m ost appropriately  represent the offshore time 
series records or the target spectra. For this purpose, the orders of the 
above SI m odels are optim ally selected by Least Squares Error, Akaike 
Information Criterion and Minimum Description Length m ethods.

A novel model order reduction technique is established to obtain 
the reduced order ARMA model. At first estimations of higher order AR 
coefficients are determ ined using m odified Yule-Walker equations and 
then the first and  second order real m odes and their energies are 
determ ined. Considering only the higher energy modes, the AR part of 
the reduced order ARMA m odel is obtained. The MA part of the reduced 
order ARMA m odel is determ ined based on partial fraction and recursive 
methods. This model order reduction technique can remove the spurious 
noise m odes which are present in the time series data. Therefore, firstly 
using an initial optim al AR m odel and  then a m odel o rder reduction 
technique, the time series data or target spectrum  can be reduced to a few 
param eters which are the coefficients of the reduced order ARMA model.

The above un ivaria te  SI m odels and  m odel o rder reduction  
techniques are successfully  app lied  for m arine env ironm enta l and



structural m onitoring data, including ocean w aves, sem i-subm ersible 
heave motions, m onohull crane vessel motions and  theoretical (Pierson- 
Moskowitz and JONSWAP) spectra.

Univariate SI models are developed based on the assum ption that 
the offshore dynam ic systems are stationary random  processes. For 
nonstationary processes, such as, m easurem ents of combined sea waves 
and swells, or coupled responses of offshore structures w ith short period 
and  long period  m otions, the tim e series are  m odelled  by  the 
Autoregressive Integrated Moving Average algorithm s.

The multivariate autoregressive (MAR) algorithm  is developed to 
reduce the time series wave data sets into MAR m odel param eters. The 
MAR algorithms are described by feedback weighting coefficients matrices 
and the driving noise vector. These are obtained based on the estimation 
of the partial correlation of the time series data sets. Here the appropriate 
m odel order is selected based on auto  and cross correlations and 
m ultivariate Akaike inform ation criterion m ethods. These algorithm s 
are applied to estimate MAR power spectral density spectra and then phase 
and coherence spectra of two time series wave data  sets collected at a 
N orth Sea location. The estimation of MAR pow er spectral densities are 
com pared w ith  spectral estim ates com puted from  a two variable fast 
Fourier transform, which show good agreement.
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CHAPTER 1 
INTRODUCTION

1.1 General

In offshore engineering theoretical models are extensively used in 

the design of offshore structures. These theoretical models describe the 

marine environment and offshore structure, and are applied to predict the 

structure 's service life and response to extreme conditions. Often these 

theoretical models require validation to ensure that the engineers have 

high confidence in their design. One common design verification 

procedure is to carry out model scale tests. Model scale tests are also often 

useful for p rov id ing  add itional design  data. As a resu lt of the 

assum ptions m ade in the structural m odelling process and the natural 

variation of environm ental conditions, there is always an elem ent of 

uncertainty associated w ith the predicted response of the final design. 

Owing to these factors, m any offshore structures are equ ipped w ith 

structural monitoring systems which collect long term data on the marine 

environm ent and the structure 's response. Examples of typical data 

collected are wave elevations, fluid velocities and accelerations, w ind 

velocity and direction, structural accelerations and structural strains. 

These full scale data are useful for verification of the predicted response of 

the structure and for fu ture  im provem ents in designs. The task of 

establishing dynamic models from these full scale data is known as System 

Identification and it is this field that this thesis addresses. It should be 

noted that collecting, storing and handling vast volumes of such data in 

the m arine environm ent is an expensive and com plicated procedure.



Accordingly measurement programmes need to be properly planned.

The system  identification  m ethod  allow s one to b u ild  up 

m athem atical m odels of dynamic system s based on experim ental data 

obtained from such systems. Since dynamic systems are abundant in 

m any fields, system identification (SI) techniques (Eykhoff, 1974, Ljung, 

1987, and Soderstrom and Stoica, 1988) have w idespread applications. In 

the fields of Communications, Mechanical Engineering and Geophysical 

Engineering, SI techniques are used for spectral analysis (Kay, 1988, 

Priestley, 1981, 1988, Bendat and Piersol, 1980, 1986), adaptive filtering, 

fault detection, linear prediction (Karl, 1989, Franklin and Powell, 1980 and 

Safak, 1989) and m any o ther purposes. In System s and Control 

Engineering, SI techniques are used to obtain proper models for design of 

prediction algorithms, simulation, or synthesis of regulators. In business 

and economics, SI techniques are used to forecast in business inventories, 

goods production, etc. (Harvey, 1987, Nazem, 1988, Pankratz, 1983). Most 

of the SI modellings in business and earthquake engineering (Beck, 1979) 

are for nonstationary processes. SI techniques are also being successfully 

used in other fields such as Biology and Environm ental Science to 

develop models for in depth scientific understanding. More recently SI 

techniques are also being applied in Offshore fields (Samii and Vandiver 

1984, Mason and Ullmann, 1990, Broome and Pittaras, 1990, Jefferys and 

Goheen, 1990, Witz and M andal, 1991, M andal, W itz and Lyons, 1992, 

W orden et al, 1992). H ow ever, because of lim ita tions in  the 

understanding of the complex ocean phenomena, SI techniques have not 

been used extensively in this field compared with other fields. Proper SI 

modelling can not only solve mass data storage and handling problems, 

but also can detect structural failures and other unknow n phenom ena in 

the presence of noise in measured offshore dynamic systems.



1.2 System identification procedures

M easured data can be used to identify and establish proper models 

by SI techniques for solving many unknown phenom ena for which many 

laboratory experim ents could not appropriately  identify or solve the 

problems. SI algorithms are becoming pow erful tools for solving those 

unknow n/com plex  phenom ena in offshore fields. If the observed 

(offshore) time series data can be well-defined by some m athem atical 

rules, it is said to be a true system. But in practise, com paring certain 

aspects of the physical systems w ith its m athem atical description can 

never establish an exact or true relationship. However, m athem atical 

rules can establish as best as possible a representation to describe the 

physical system, from the point of view in usefulness rather than truth. 

Sometimes, owing to lack of m easured data, approxim ation of the system 

by SI methods could reasonably well describe the dynamic system.

The dynamic system can be defined by an Input-O utput system 

which is shown in Figure 1.1.

For constructing a m odel from the data, the SI procedure, in 

general, can be expressed in the steps given below.

a) Input-O utput data - The input-output data are required for a 

specifically designed experiment. Since collecting any offshore time series 

data on a long-term  basis is m ost expensive, one m ust have prio r 

knowledge (as much as possible) about w hat are the data to be m easured 

and w hen to measure. Therefore, the experiment design gives some 

choices so that the data become maximally informative. Several choices 

are available in experiment design . These are: which signals to measure,



w hen to measure them, which signals to m anipulate, how to manipulate 

them, and how to choose presam pling filters and how to polish them by 

rem oving trends.

b) Define some SI models which are to be used with the data and 

choose the most suitable one. This is the most difficult and im portant step 

of the SI procedure. If one does not know the physical background of the 

system as prior knowledge or information being available , standard linear 

m odels could be used (Ljung, 1987 and M arple, 1987). If the prior 

information which leads to the dynamic system is known, this m ay be a 

good starting point for choosing a suitable model. Some knowledge about 

the nature of relationships betw een the m easured signals can lead to 

appropriate selection of model structures. Fast Fourier transform  (FFT) 

analysis of the data (Newland, 1984) also can lead to a m eaningful 

selection of SI model order, based on the spectral shapes. This type of 

model set, whose parameters are viewed in order to adjust the fit to the 

data and do not reflect physical concepts, is called a black box. The black 

box type of models are used for adaptive prediction of the dynamic system. 

The model set with adjustable param eters for physical interpretation, 

called a grey box, is used for estim ation of param eters of the dynamic 

system.

c) The assessm ent of the m odel quality  depends on the 

perform ance of the model. One m ust identify the best m odel which 

provides the best representation or reproduction of m easured data.

d) Once a particular model is chosen based on certain criteria, it is to 

be confirmed that the estimated model is a realistic approxim ation of the 

actual system. This is known as validation of the model. So one has to 

test whether the estimated model is good enough for its purpose. Model



validation involves various procedures to assess how the model relates to 

observed data and to its intended use. The simplest test is to compare the 

estim ated pow er spectrum  w ith that obtained from the Fast Fourier 

Transform (FFT) analysis. The second test m ay be to compare the output 

time series of the SI model with the actual output. The output time series 

of the optim al SI model should give a fairly good match w ith the actual 

output. A nother way of validating the SI m odel is to estim ate the 

residuals of the model. The residuals estimation is based on the condition 

that the difference betw een the m odel ou tpu t and the actual output 

should be a white noise process. If the estimated residuals of the SI model 

is closer to white noise, the better the model is. One can plot the residuals 

and its FFT spectrum  and then look to see w hether they are similar to 

those of a white noise process. Other checks can be made by using various 

statistical tests. In most practical applications, we are more interested in 

estim ating the optim al SI m odel param eters rather than estim ating the 

noise or residual model.

The above procedures can be briefly described in the loop as shown 

in Figure 1.2.



1.3 Modelling

The m odels are principally  categorized in to  param etric  and 

nonparam etric types. Some of the features of both types are briefly 

discussed in this section and importance of parametric modelling in ocean 

engineering field is highlighted. The SI m odels, nam ely, AR, MA, 

ARMA and ARIMA algorithms can be used for param eter estim ation of 

univariate random  processes related to the ocean engineering field.

A SI m odel can be defined by any m athem atical representation 

w hich approxim ates the relation betw een the inpu t and  o u tp u t of a 

dynam ic system. The SI m odels can be classified into two principal 

categories.

a) Parametric models: These are a particular type of SI model

where the essential features of the input-output relations are described in 

the form of param etric polynomials. These param eters m ust be assigned 

values before the model is completely specified. Prior inform ation will 

assist to determ ine the assigned values. Various param etric  m odel 

structures are available (see Ljung, 1987 and Safak, 1989). In general the 

param eters m ust be estim ated from the input and ou tpu t of the dynamic 

system. As an example, time series data of a stochastic process could be 

expressed in the time domain by the difference equation as

p q
y, = -  2 a ky t. k + I b . w , . ,

k-i - o  (1 1 )

where a^ and bt are unknown parameters of the model to be estimated, w t 

is the white noise as input and yt is the t*h sample of the discrete stochastic

process as output.

Assum ing that the model is linear and tim e-invariant, equation (1.1)



can be expressed in polynomial form in terms of z-transform notation as

Y(z) = H(z) W (z) (1'2)
B(z-1)

Where H ( Z ) = A ^

The transfer function H(z) containing unknow n param eters A(z) and B(z) 

is to be estimated (see equation A13-5, Appendix-II).

b) Nonparametric models: These types of models have unknow n 

parts in the form of functions rather than param eters. In these types of 

system it is required to assume

i) Finite memory

ii) Time-invariant

iii) Linearity for simplification of the problem

For nonparam etric modelling, the system can be treated as a "black 

box", since its aim is to determine a function which relates the input to the 

ou tpu t w ithout recourse to any prior inform ation about the internal 

structure of the system. As an example, a tim e-invariant linear model 

w ith a single input and single ou tpu t (SISO) can be expressed by the 

impulse function, h(t), and its input-output relationship is
oo

y(t) = Jh(x) x(t -  t) dx

0 (1.3)

where x(t) is the input and y(t) is the output. Equation (1.3) can be written 

in z-transform as

Y(z) = H(z) X(z)
(1.4)

Here h(t) and H(z) are arbitrary transfer functions to be estimated from the



input and output of the dynamic system. Whereas the transfer functions 

in equation (1.1) and (1.2) are in the form of unknow n param eters. 

Therefore different identification procedures are required for each of the 

above cases. More details w ith examples on nonparam etric modelling are 

given in Ljung (1987), Chapter 6.

Classical m ethods of estim ating power spectral energy (PSE) from 

the time series data use discrete-time Fourier transform operations of the 

infinite autocorrelation sequence (ACS). This relationship betw een the 

PSE and ACS can be considered as a nonparametric description of second 

order statistics of the random  process. In the case of a parametric model, 

the PSE of the time series model is a function of model param eters which 

are to be estimated.

The major m otivation for use of param etric m odels of stochastic 

processes is the apparent higher spectral resolution achievable w ith these 

m odels than that achievable by classical approaches. The param etric 

approach could give users choices in ability to fit an assum ed model with 

few param eters. Depending on the order selection and estim ation of 

m odel param eters, the model will yield the least squares error which 

could be minim ized by optimal selection of model order. The SI models, 

namely AR, MA and ARMA algorithms are formulated (see Chapter 3) to 

determ ine the spectral estimates of the stationary m arine environm ental 

and  offshore m onitoring data. Similarly for nonstationary  dynam ic 

offshore processes, ARIMA algorithm s are form ulated for param eter 

estimation as described in Chapter 5.



1.4 The application of system identification to offshore 
engineering problems

Most of the offshore engineering problems may be approxim ately 

solved using conventional analytical and em pirical m ethods. M any 

complicated offshore phenom ena, owing to lack of in-depth knowledge, 

are analysed based on empirical methods. From the design point of view, 

safety factors selected sometimes seem to be higher than required, making 

the design m ore costly. Structural fatigue, structural dam ping  and 

external loading on structures in offshore environm ent are very different 

from the conventional land-based structural problems for which theories 

are well established. Even though the offshore dynamic problem s are 

solved generally based on linear assum ptions and m odified land-based 

structural theories, in actual fact there are m any unknow n phenom ena 

happening in the offshore environm ent for which present theories m ay 

not be of sufficiently useful. It is for these reasons that m any offshore 

platform s have been equipped  w ith structural m onitoring system s to 

observe full scale dynam ic responses which eventually will yield data 

w hich can be used for im provem ent in designs, m anufacturing and 

operations of offshore structures. These full scale structural m onitoring 

data need to be properly analysed. Using the conventional approaches, 

these analysed data m ay som etim es result in m isleading inform ation 

owing to unknown phenom ena included in the data.

The data obtained from offshore structural m onitoring systems can 

be analysed in m any ways depending on the user's interest. It can be 

categorised into three prim ary uses. The first is that the data may be used 

in long term statistical models where there is little theoretical basis for



establishing extrem e events (Patel and W itz, 1991). The structural 

m onitoring data also provides a cum ulative loading history which is 

im portan t in establishing the service life of the structure and related 

inspection intervals. A th ird  approach is to analyse the structural 

m onitoring data by applying system identification techniques which relate 

the structure 's response and environm ental excitation. The structural 

m odels identified  from  m easured data  using SI algorithm s m ay be 

com pared w ith the theoretical models used in the design process. This 

leads to the estimation of appropriate filter parameters.

Most of the offshore time series recordings collected are in their raw  

form. The time series raw  data can be plotted and visually inspected for 

quality of the data. Any abnormal data recorded in the time series can be 

easily noticed. An alternative way in which one can detect the bad data is 

by using a residual plot (Ljung, 1987, Chapter 16.5). These data may not 

provide a good identification of the dynamic system. Based on the study 

by W itz and M andal (1991), it is show n that the SI techniques can be 

applied to remove the disturbances or noise modes present in offshore 

time series data. Much better identification can be obtained if the data is 

preprocessed prior to identification. The preprocessing m ay involve 

rem oval of mean and erroneous large peaks, filtering, sam pling interval 

selection and synchronization of input and output.

The dynamic characteristics of any offshore system are complicated, 

and can be m odelled by SI techniques. Removal of the mean, simplifies 

solution of the problem. Sometimes there may be erroneous large peaks 

at several points in the time series data owing to various reasons, such as 

radio or electrical interference and tem porary sensor failure. These errors 

certainly disturb the identification which m ay cause m isleading results. 

Large erroneous peaks should be removed prior to identification.

Selection of sampling interval also plays an im portant role in the SI



param eter estimation. The sam pling interval is directly related to the 

frequency resolution of the time series data through the cut-off frequency 

(Nyquist frequency, fN). The frequencies beyond fN are folded back and 

superim posed over the lower frequencies in the spectrum. This process is 

called aliasing. To avoid aliasing, data should be filtered using an anti­

aliasing filter which is a low-pass filter w ith cut-off frequency, fN. In 

general, in offshore dynamic systems, the phenom ena are described up to 

a certain frequency which may be much smaller than fN. If this is the case, 

one need not use a high sam pling rate. For high sam pling rates, the SI 

algorithm will only identify the high frequency part of the dynamic system 

(Ljung and Soderstorm, 1983). Sometimes one may need a high-pass filter 

to eliminate the very low-frequency drifts in the time series data.

The last step in the preprocessing of data is the synchronization of 

the input and output. If data are not recorded in a synchronous way, it can 

be tackled by properly selecting the time delay between input and output 

during  the identification. How ever, it is often difficult to select an 

appropria te  tim e delay which m ust be obtained by trial and error. 

Therefore, it is better to use synchronized data w ithout a time delay.



1.5 Review of previous work

1.5.1 Univariate SI models and applications

C adzow  (1980) presented  a m ethod for generating an ARMA 

spectral estimate of wide sense stationary time series data. The method is 

based on a set of error equations which are dependent on the ARMA 

model parameters. The deviation of these error equations w ith respect to 

the ARMA model parameters leads to the ARMA spectral estimates. Even 

though the m ethod developed by Cadzow  gives high perform ance as 

com pared to the m axim um  entropy m ethod (Burg, 1975) w here much 

higher order estimates needed to reproduce the actual spectral estimates, 

an im proved and more efficient ARMA spectral estim ate m odel can be 

formulated as described in Chapter 3.

G enerally, the num erical generation  of sea w ave records is 

com puted  based on the superposition  of several harm onic waves. 

Although this approach is simple, it requires a large num ber of harmonic 

com ponents and considerable com puter time. The first to apply linear 

prediction theory were Spanos and  H ansen  (1981). This w as an 

autoregressive (AR) algorithm for digital sim ulation of sea waves and can 

be used as an alternative, efficient m ethod. They used the Pierson- 

Moskowitz spectrum as the target spectrum  which can be obtained as the 

ou tpu t of the AR model. Time series w aves w ere determ ined as the 

output of the recursive digital filter to a white noise input. Even though 

AR spectral estim ates fluctuated, in an average sense the AR model 

approx im ated  reliab ly  the P ierson-M oskow itz  spectrum . It was



em phasized that the numerical studies were considered as prelim inary 

and the prim e aim of attention was to the potential usefulness of AR 

algorithm for ocean engineering applications.

Based on studies of linear prediction theory applied to sea wave 

estimation by Spanos and Hansen (1981), ARMA algorithms were applied 

to similar studies by Spanos (1983). It was shown that one should carefully 

select the sam pling interval for developing an AR approxim ation of a 

Pierson-Moskowitz spectrum. Spanos also suggested that a quite high 

order AR modelling should be used to ensure proper matching. This is 

not always true. For least squares error converging w ith increasing model 

orders, one can always select a high model order. O therw ise for proper 

matching one should follow m odel order selection m ethods as described 

in Chapter 3. Spanos assum ed ARMA algorithm s w ere of the form of 

single degree-of-freedom linear spring-mass-damper system. Accordingly 

Spanos h^d investigated the use of a least squares approxim ation of 

ARMA m odelling of Pierson-M oskowitz spectrum . Even though the 

ARMA spectrum  appeared  very sim ilar to the Pierson-M oskow itz 

spectrum and gave im proved results w ith higher order ARMA models, 

the matching inequality remained.

Later on, much im proved ARMA m odelling of Pierson-M oskowitz 

spectrum was carried out by Spanos and Mignolet (1986). It was shown 

that the fluctuations in the AR spectrum  were associated w ith  the 

presence of poles of the transfer function in the vicinity of the unit circle. 

They had shown how the initial AR approximation could lead to efficient 

ARMA models of the Pierson-M oskowitz spectrum . Using the Taylor 

approximation of exponential terms of the Pierson-M oskowitz spectrum, 

the AR spectral estim ates reduced sharp fluctuations bu t could not



eliminate them. They used two alternative procedures to obtain ARMA 

coefficients:

a) Auto/cross Correlation Matching (ACM) w here an ARMA 

representation of the AR filter can be obtained by matching the output 

auto-correlations with input-output cross-correlations.

b) Power Order Matching (POM) the ARMA model equivalent to 

the AR model. Here, by equating like powers of z (where the SI models 

are defined by z-transform ), the coefficients of the ARMA m odels are 

obtained from the known initial AR coefficients.

M ignolet and Spanos (1987) presen ted  a unified approach in 

determining ARMA algorithms for sim ulating a random  process based on 

the target spectrum. The ARMA algorithms were obtained by relying on a 

prior AR approxim ation of the target spectrum. AR to ARMA procedures 

w ere fo rm ulated  by m inim izing the frequency dom ain error. For 

determining ARMA param eters two approaches, namely, ACM and POM 

w ere stud ied  in detail. It was show n that there are com putational 

advantages of the POM procedure over the ACM procedure in terms of the 

size of the system of linear equations.

A fin ite-order stationary  ARMA m odel was obtained from  an 

infinite-order AR model by equivalence relation as described by Li, Zhu 

and Dickinson (1989). In practice, it is not possible to obtain the 

param eters  of an in fin ite  o rd e r AR m odel. T herefore, som e 

approximations have to be m ade by using a higher order AR model. Li et 

al p resen ted  a com parison s tu d y  for tw o m ethods of estim ating  

ARMA(p,q) param eters p and q . One m ethod was derived directly from 

the equivalence relation (Graupe, Krause and Moore, 1975). The other



one was derived by Li and Dickinson (1986, 1988) based on an iterated least 

square regression approach, where the ARMA param eters p and q are 

determined by first obtaining a p+q order AR model and then solving a set 

of linear equations similar to the method by Graupe et al.

Rosen and Porat (1989) presented a class of estimators based on the 

sam ple covariances for the time series data w ith missing observations. 

They proposed an algorithm which is based on nonlinear least squares fit 

of the sample covariances determ ined from the time series data  to the 

covariances of the assumed ARMA model. W hile collecting time series 

data, the pattern of missing data can be quite arbitrary. As cases of special 

interest, Rosen and Porat considered two patterns: (a) random  Bernoulli 

pa ttern  - the data m issing is of a fixed probability  and m isses are 

independent and (b) deterministic periodic pattern  - missing data points 

are repeated periodically. The ARMA algorithm  presented by them  is 

asymptotically optimal, i.e., the error variance tends to the smallest value 

when the amount of data tends to infinity.

Cadzow (1982) attem pted to establish the fundam ental approach to 

the generation of rational modelling of w ide sense stationary time series 

data. Rational modelling was carried out based on the m odified Yule- 

Walker (MYW) equations which characterize the autocorrelation sequence 

of the rational time series data. By taking an overdeterm ined m odel 

param eter approach, a procedure for reduction in data-induced m odel 

param eters was obtained and then im provem ent in the m odelling  

perform ance was carried out. Furtherm ore, adapting a singular value 

decomposition representation of the MYW equations to this procedure, a 

desired rational model order determ ination m ethod was achieved. This 

approach yields low order high quality spectral estimates using short data



lengths.

Beex and Scharf (1981) proposed  a system atic procedure to 

covariance sequence approxim ation for param etric spectrum  modelling. 

This approach was represented by the approxim ation of a covariance 

sequence of a wide sense stationary process in a modal decomposition. For 

the special class of processes with m odal decomposition, there is a random 

synthesis algorithm that may be used for time series data reduction. They 

used the first order mode decomposition technique.

Friedlander and Porat (1984) m ade some clarifications and put in 

proper perspective the various issues related to the MYW method. While 

reviewing the different versions of the MYW m ethod, they exposed the 

common framework of the stochastic process leading to MYW equations 

and fitting a rational model to a noisy im pulse response of a linear time- 

invariant system. They also em phasized  the im portance of using a 

combination of an overestimated order m odel and an overdeterm ined set 

of equations. They used a procedure for removing spurious noise modes 

based on the modal decomposition of the sample covariance sequence as 

proposed by Beex and Scharf (1981). The concept of modal energy is 

defined to select the signal related models and to discard the noise modes. 

They also reviewed the singular value decomposition m ethod for solving 

MYW equations. The estimation of MA spectral param eters seems to be 

the more difficult part of the ARMA spectral estim ation problem. Even 

though this paper described m any techniques for evaluating MA spectral 

param eters, none of them guarantee the positive definiteness of the MA 

correlation sequence, which sometimes estimates negative spectra.

Samii and V andiver (1984) presen ted  a num erically  efficient



technique for time dom ain sim ulation of w ater particle velocities and 

accelerations corresponding to a target w ave spectrum . The ARMA 

algorithms were applied for estimating time series data on wave velocities 

and accelerations. They used theoretical Bretschneider wave spectra for 

ARMA spectral estimation. Based on available significant wave height 

and zero upcrossing period, the peak frequency and corresponding peak 

pow er spectral energy of the Bretschneider velocity spectrum  can be 

obtained. The output of the ARMA m odel was processed by a series of 

numerical convolutions. Each convolution accounts for a horizontal or 

vertical shift to a different spatial location. Num erical differentiation of 

the vertical velocity yields acceleration at each point. Horizontal velocities 

and accelerations w ere determ ined  by using  a H ilbert transform . 

Simulation steps were discussed and presented in a block diagram.

Samaras, Shinozuka and Tsurui (1985) developed a technique to 

generate the sam pling functions of a Gaussian vector process using an 

ARMA model. They used a two-stage least squares m ethod to determine 

the coefficient matrices of the ARMA m odels. The num erical example 

showed that the sampling functions generated by the m ethod developed 

by them reproduced the target correlations extremely well. This was 

observed between the analytical target auto and cross correlations and the 

corresponding correlations obtained from the generated sample functions. 

But they did not carry out optim al selection of m odel orders which is 

im portant for better estimation of ARMA representation.

Popescu and Demetriu (1990) had show n that the nonstationary 

analysis technique and representation of the quasi-stationary data blocks of 

earthquake ground motions through param etric ARMA m odels provide 

an efficient and flexible description of the observed m otion by a few



parameters. The problem of nonstationary time series data was solved by 

segm enting the original data into d ifferent data  blocks w hich were 

considered to be quasi-stationary. U sing evaluation by the Akaike  

information criterion, an ARMA m odel was fitted  for each quasi- 

stationary data block. The original data and predicted data obtained from 

ARMA models in a case study were com pared by evaluating a num ber of 

statistical characteristics such as cum ulative energy, cum ulative root- 

m ean-square acceleration, short-tim e energy, short-tim e autocorrelation, 

and short-time spectrum distributions. It was shown that there is a good 

acceptance match for all above statistical distributions.

In general many authors developed ARMA process based on the 

initial higher order AR approxim ation. Spanos and  M ignolet (1990) 

introduced a new concept as an alternative approach of estimating ARMA 

process from the initial MA approximation, where the time series data are 

poles dominated. The MA param eters were obtained first relying on the 

m axim ization of an energy-like quantity , then the ARMA algorithm s 

were derived from the initial MA approxim ation. This was achieved by 

relying on the minimization of frequency dom ain errors. It was observed 

that the initial higher order AR approxim ation som etim es creates a 

sensitiveness for proper representation of ARMA process estim ation. 

Spanos and Mignolet emphasized that the MA to ARMA approxim ation 

technique can be used as an a lternative approach of AR to ARMA 

modeling of the stochastic process. It was observed that the MA to ARMA 

of order (p, q) approximation sometimes shows very good results for the 

model orders q ^ p .

Li and Ko (1988) applied autoregressive, m oving average and 

autoregressive moving average models to structural failure detection and



monitoring for offshore applications. Li and Ko used the Green's function 

of the time series and the impulse response function of a vibrating system 

for formulation in terms of AR and MA param eters while MA parameters 

were checked by the inverse function of the time series for the control of 

num erical convergency. The ARMA(2n,2n-l) was developed under the 

strategy of modelling as described by Pandit and W u (1983). The variation 

of the absolute value of the modal characteristic roots could be used as the 

index for judgem ent of the degree of relative damage. The location of 

damage was judged by comparing of the variations of dispersions of the 

major m odes detected by different accelerometers. Later on Li (1991) 

conducted a series of progressive tests in sea trials of ships to obtain the 

response signals of structural vibration aboard ship and process the 

random  time series data by a linear difference stochastic m odelling 

(ARMA) technique to study the estim ation of system dam ping ratios of 

the ship hull-girders in response to random  environm ent. For solving 

the dynamic equation of m ulti-degree systems of ship structures, one can 

choose reasonable values of m odal dam ping  ratios w hich can be 

determ ined using ARMA(2n,2n-l) model.

M ourjopoulos and Paraskevas (1991) carried out all-pole (i.e., 

autoregressive) and all-zero (i.e., m oving average) model approximations 

of transfer functions w ith  application  to acoustic signals. W hile 

exam ining the above m odelling, two m ain problem s associated w ith 

transfer functions are apparent. These are their high arithmetic order, and 

their sensitivity and dependence on specific source placement. An all-pole 

transfer function m odel o rder was optim ized using an inform ation 

criterion (Akaike, 1974) method. It was shown that in a time series digital 

acoustic signals, the optimal order of an all-pole model increases w ith an 

increase of data points (two to the pow er of an integer number). It was



found that all-pole models present significant advantages over all-zero 

m odels because of their lower order and lower sensitivity to source 

placem ent variation. An all-zero model can yield an exact m odel of a 

spectrum  w ith in  an approxim ation error. H ow ever it generates a 

mismatched time domain model owing to sensitivity to changes in source 

placem ent. The sensitivity of an all-zero m odel to source placem ent 

variations can be explained by the nature of acoustic signals. Transfer 

function zeros resu lt from local cancellations of m u lti-path  sound 

components which are easily disturbed by changes in source positions.

Kaplan, Jiang and Dello-Stritto (1981) described a sequential 

estimation technique of system identification for determ ining coefficients 

of Morrison equation which is used to describe the hydrodynam ic loading 

on slender offshore structures. The m ethod of system identification was 

applied to estim ate the state-space variables and param eters in a noisy 

nonlinear dynamic system. The least squares estim ate of state variables 

was obtained from m inim izing the integral of w eighted m ean square 

errors. They also studied on-line filtering action and compared measured 

forces, velocities, etc. w ith estim ated values in the time domain. The 

unknown force coefficients estimated by the SI technique were found to be 

reasonably constant and the estim ated force time histories generally 

exhibited Morrison's equation model results.

M ethods re levan t to iden tification  of linear and  nonlinear 

behaviour of structures subjected to environm ental loadings, such as 

ground m otion owing to earthquakes (seismic motion), w ind generated 

pressures and ocean wave forces were reviewed by Imai, Yun, M aruyama 

and Shinozuka (1989). The methods used were least squares, instrumental 

variables, maximum likelihood and extended Kalman filter. The dynamic



characteristics of the structural behaviour could be described by system 

identification models. Models commonly used in structural engineering 

are sta te-space and ARMAX (A uto-R egressive M oving A verage 

eXogeneous) m odels derived from the ord inary  differential equations 

describing equilibrium  of the structures. Num erical sim ulation studies 

were carried out for identification of the aerodynam ic coefficients of a 

suspension bridge under w ind forces, drag coefficients of an offshore 

structure under wave forces, and displacem ent and stiffness ratio of a 

building structure subjected to seismic excitation. N um erical results 

show ed that the instrum ental variab les and  m axim um  likelihood 

m ethods provide good estimates for a linear system and the extended 

Kalman filtering technique gives excellent estim ates for non-linear 

system.

Jefferys and Goheen (1990) carried ou t studies on param etric  

modelling of marine dynamic systems, such as the dynamics of a floating 

body in waves, and the surge radiation forces of a tension leg platform  

(TLP). They used two m ethods to estim ate the transfer functions. The 

first one is the indirect frequency response curve fitting m ethod which 

produces reliable transfer function models. This m ethod optimizes in the 

square norm  sense in the frequency dom ain. The second m ethod 

involves three stages: production of input-output tim e-dom ain series by 

inverse Fourier transform ation; identification of ARMA discrete time 

models by SI, and then a transform ation back to continuous time by a 

mapping from z-plane to s-plane. Both the above m ethods were shown to 

work on frequency response data derived from a known transfer function.

Mason and Ullmann (1990) carried ou t an experim ental study on 

evaluation of structural dam ping in a major diagonal m em ber of an



offshore steel jacket in the fabrication yard. The response histories 

(displacem ent and acceleration) of the diagonal m em ber in air w ere 

m easured and then the system identification technique, namely, output 

error algorithm which is not restricted to single degree-of-freedom system 

was applied. It was shown that the response histories reconstructed from 

system  param eters identified by the o u tp u t error m ethod w ere often 

visually indistinguishable from the corresponding recorded data.

An advanced statistical m ethod was applied to analyze the wave 

induced forces acting on the free-to-surge vertical cylinder (Sajonia and 

Niedzwecki, 1990). The experim ental data  were used to develop an 

autoregressive wave force m odel w hich is capable of accounting for 

localized flow history effects. It was noticed that a high frequency force 

component which was not accounted for in the M orrison equation was 

quantified using the AR model. The AR m odel w ith higher order can 

im prove the force p red ic tion  for the above experim ent. U sing 

experimental data and Morrison equation resulted in a root mean square 

error of 24% and multiple correlation coefficient of 0.71. The AR model 

reduced the root mean squares error from 24% to 9% and increased the 

multiple correlation coefficient from 0.71 to 0.83, and accounts for the high 

frequency components. The research study carried out showed significant 

im p ro v em en ts  in h y d ro d y n am ic  force p red ic tio n  th ro u g h  the 

developm ent of a w ave force m odel w hich w as expressed by an 

autoregressive algorithm.

Broome and Pitteras (1990a) carried out w ork on adaptive ship 

motion prediction which is based on m athem atical models generated in 

real time by using system identification techniques. They used ARMAX 

algorithm  w ith the option of obtaining ARMA and AR param eters



estimation. Using a recursive least squares algorithm, the unknow n SI 

param eters were determ ined based on the input-ou tpu t m easurem ents 

and then the one-step-ahead predictor was estimated. To determine the 

appropriate model order they used a loss function which is described in 

the form of a least squares error variation w ith model orders. At first an 

AR(5) m odel was chosen as the least squares error d id  not decrease 

appreciably for model orders greater than 5. A low order ARMA(2,4) was 

also chosen which could represent ship m otion fairly well. The best 

approach chosen was based on the search of ARMA models from (2,1) to 

(2,15) which showed that the optimal AIC was at the ARMA(2,14) model. 

Later on an AR(20) model was used for ship motion prediction based on 

the study carried out by Broome and Pitteras (1990b). The m ethod used 

here could not perform well for the large am plitude ship roll motions 

which needed to be investigated. H ow ever prediction theory used by 

them can be applied for short time prediction of ship motions.

Based on studies by Spanos and Hansen (1981) and Spanos (1983), it 

was observed that the AR spectrum fluctuation are in the peak frequency 

region of the theoretical ocean wave spectrum . And even by selecting 

higher model orders, the AR spectral shape rem ains sharply deviated 

from theoretical ocean wave spectrum  near the peak frequency region. 

This instability problem was studied by M edina and Sanchez-Carratala 

(1991) to represent a robust AR algorithm  of the theoretical JONSWAP 

ocean wave spectrum. They also introduced a reasonable criterion for 

qualifying the goodness of fitting a proposed ARMA m odel to a target 

ocean wave spectrum. After establishing this criterion and considering 

m ost existing techniques to define ARMA m odels, a new robust AR 

representation could be obtained. An extra white noise was added with a 

variance of 0.0025m0 (where m Q is the zeroth spectral moment) to the AR



model to generate a robust AR representation of the JONSWAP spectrum.

A broad perspective review on spectrum  analysis of discrete time 

series was carried out by Kay and M arple (1981). Many new techniques 

were developed in the sixties, seventies and early eighties. These include 

the classical periodogram , classical Blackman-Tukey, autoregressive 

(maximum entropy), m oving average, ARMA, m axim um  likelihood, 

Prony and Pisarenko methods. These were all presented in a unified 

fram ew ork and w ith com m on nom enclatures. All m ethods were 

tabulated for comparative studies including their type of model structures, 

key references, appropriate equations for com putation of each spectral 

estimate, advantages and disadvantages.

Very recently Pires et al (1992) carried out a comprehensive study on 

adaptive AR m odelling of m easured sea w aves off the Portuguese 

continental coast and Azores islands with water depth ranging from 40 to 

100m. They dem onstrated that the adaptive AR m odelling perform ed 

better in high seas than in calm seas. One justification could be the 

existence of a certain level of noise originated in the measuring, recording 

and digitizing equipment. The dom ination of noise in calm sea waves 

may sometimes lead to erroneous results.



1.5.2 Determination of optimal model orders

A nderson (1963) discussed the determ ination  of the order of 

dependence in a Gaussian autoregressive process explicitly as a m ultiple 

decision problem. A sequence of tests of the models w as carried out 

starting from highest order to the lowest order. This procedure can be 

applied to a real problem provided one specifies the level of significance of 

the test for each order of the model. As it is difficult to choose the levels of 

significance, the essential problem of optim al model order determ ination 

rem ains. The loss function of the decision procedure defined by the 

probability of making incorrect decisions leads to a situation where the 

order of the true structure will always be infinite.

Akaike (1969) first introduced a criterion which is called the Final 

Prediction Error (FPE). The appropriate AR m odel order was selected 

based on the FPE method, where the average error variance is minimized. 

Here the average error variance is the m ean of the sum of squared errors 

between the target and AR process. For the AR process, the FPE is defined 

as

. M + (p  4-1)
F P E (p ) =  & --------- --------- ( 1 5 )

K 1 M -(p  + l) K }

where M is the total number of samples, p is the model order, and £i is the 

average of the sum of errors between observed and estim ated data. The 

appropriate AR model order, p is selected for which the FPE is minimum. 

If the random  process purely consist of zeros, the model orders are fairly 

well selected by FPE method. However offshore dynam ic systems are



random  in nature and mostly consist of poles and zeros. Therefore one 

should define criteria for model order selection for specific applications.

Akaike (1974) reviewed statistical hypothesis testing in time series 

analysis. It was noticed that the hypothesis testing procedure was not 

adequately defined as the procedure for statistical m odel identification. 

The problem of determining a finite order model structure can be solved 

by approximation of the true structure by the model. Based on reviewing 

the classical m axim um  likelihood  estim ation  p ro ced u re , Akaike 

introduced a new estimate which is called after his nam e as the Akaike 

Information Criterion (AIC) estimate. It is defined as

AIC = - 2 Log [Maximum likelihood] + 2 [Number of adjusted parameters]

(1.6)

For analysis of any random  process, the exact definition of likelihood 

function is generally too complicated for practical use. Therefore some 

approximation is made based on the Gaussian distributed random  process. 

Instead of maximum likelihood, the mean log-likelihood was chosen for 

the criterion of fit of a statistical model. From the above relation, a more 

applicable simplified AIC is defined by Marple (1987) as

AIC = M Ln [ei]+ 2 p (1.7)

This provides a versatile procedure for statistical m odel identification. 

The ambiguities inherent in the application of conventional hypothesis 

testing procedure for statistical m odel identification resulted  in very 

lim ited practical utility. Since the procedure based on the AIC estimate 

can be im plem ented w ithout the aid of subjective judgem ent, m any 

statistical identification procedures w ith the AIC estim ate could be made



practical. It m ust be noted that the AIC m ethod can not be compared with 

a hypothesis testing method unless the latter is specified with the required 

levels of significance.

Parzen (1974) described som e of the im portan t concepts and 

techniques which may help to provide a solution of the stationary time 

series problem. A comparative study betw een the m easured signal plus 

noise and the ARMA representation was carried out. He review ed 

prediction theory and developed criteria of closeness of AR, MA and 

ARMA models to the 'true' models. The central role of the infinite AR 

transfer function was developed and  then tested w ith  tim e series 

modelling. He also introduced a criterion for selecting model orders and it 

is termed as Criterion Autoregressive Transfer (CAT)

CAT(p) = ^ - - - J -

(1.8)
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This criterion will determine a finite AR model order which is optimal.

Many researchers had noticed that the order selected by AIC is too 

low for non-autoregressive processes. Kashyap (1980) had found that the 

AIC is not statistically consistent. The resu lt w as a tendency to 

overestimate the order as the data record length increases which was also 

noticed by Mourjopoulos and Paraskevas (1991). Because of inconsistency 

of the AIC estimation, Rissanen (1983) developed a variant information 

theoretical criterion to the AIC which is called M inimum Description 

Length (MDL). Rissanen introduced the MDL principle for minimization



of the num ber of binary digits required to represent the observed data. 

This m ethod gives an optimum length relative to a class of parametrically 

given distributions. It permits estimation of the num ber of parameters in 

statistical models, their values and the m odel structure. Rissanen also 

described a procedure for truncating the real valued Maximum Likelihood 

estim ates to an optim um  precision for the final criterion. The MDL 

criterion had been shown to lead to strongly consistent estimates of the 

model parameters and their numbers in AR and ARMA processes.

Jones (1974) carried out a study on identification of model orders 

and AR spectrum  estimation. While selecting model order, Jones used 

the AIC m ethod. He extended the AIC m ethod from univariate AR 

process to multivariate AR processes. The comparative study between AR 

spectrum  estimation and classical spectrum  estim ation was shown to be 

consistent in respect of the model order selection. He tested the above 

from the analysis of the large am ount of digital data from the biological 

[two channels of electroencephalographic (EEG) data  from a hum an 

newborn] and physical sciences [meteorology, i.e., w ind data at two 

stations]. It showed that the AIC m ethod worked very well for model 

order estim ation, and the m ultivariate  AR m odel order estim ation 

proposed by him showed consistently good results.



1.5.3 Multivariate SI processes

M orf and  Kailath (1975) in troduced some new  algorithm s for 

recursive estim ation algorithms for linear systems based on the Kalman 

(1960) filter technique. The solution of a m atrix can be obtained using 

square-root algorithms in the least squares sense. They first presented an 

instantaneous derivation of a form of the previously know n covariance 

square-root array algorithms. Then it was shown how  the assum ption of 

constant m odel param eters could be used to reduce the num ber of 

variables in the array algorithm . Finally updating  equations were 

obtained by explicitly specifying the orthogonal transform ations used in 

the array methods.

Based on the above technique for estim ation of the square-root 

m atrix, Morf, Vieira, Lee and Kailath (1978) applied this to stationary 

discrete time scalar processes. The autocorrelation of a stationary discrete 

tim e scalar process can be characterised by the partial autocorrelation 

function which is a sequence of values less than or equal to unity. They 

had  show n that the m atrix  covariance function of a m ultivaria te  

stationary process could be characterized by a sequence of m atrix partial 

correlations, which were obtained using techniques based on forw ard and 

backward prediction of the time series data sets, where singular values are 

less than or equal to unity in m agnitude. The squares of the singular 

values of a matrix, R are the eigenvalues of R R T. Morf et al. presented a 

procedure to estimate a sequence of matrix partial correlations directly 

from  the m ultivariate data. From these estimates M orf et al. uniquely 

determ ined m inim um  phase m ultivariate AR param eters and hence a 

unique power spectral estimate was obtained.



Strand (1977) described a m ultivariate complex maximum entropy 

(autoregressive) method for estimating spectral parameters. He extended 

this to generalize the univariate Burg reflection coefficient estim ation 

(Burg, 1975) process to m ultivariate complex time series. It was shown 

that least-squares estim ation of complex m atrix reflection coefficients 

using inverse-power weighting provides a sequence of positive definite 

power matrices. This yields a resulting positive definite autocovariance 

matrix. Based on the prelim inary num erical results obtained from  a 

m onochromatic signal w ith noise, it was noticed that superior spectral 

resolution can be expected from the extended multivariate Burg processes.

Jones (1978) reviewed the univariate algorithm s and discussed 

m ultivariate generalizations of autoregressive algorithms using residuals 

within the data span. The problems encountered in generalizing Burg's 

m axim um  en tropy  a lgorithm  to m u ltiv a ria te  tim e series w ere 

highlighted. Burg's algorithm did not generalize directly since the forward 

and backw ard  autoregression  m atrices are no t the sam e in the 

multivariate case, and the forward and backward one-step prediction error 

covariance matrices are different. Therefore this leads to different 

estimates of the power spectrum. This problem does not arise in case of 

univariate AR processes, w here only a single sequence of reflection 

coefficients exists. This fundamental difficulty was overcome by Morf et al 

(1978) where normalized partial correlations were directly obtained from 

the m ultivariate  data and then m ultivariate  transfer functions and 

prediction error covariance matrices were determined.

Lin (1987) proposed a multivariate ARMA model for prediction of a 

ship's response to random waves. Each degree of freedom of ship motions 

and each wave m easurem ent was considered as one of the inputs and



outputs of the ARMA filter. Using the laboratory test data, it was shown 

that the agreement between predicted and m easured response of the ship 

model was very good. The ARMA filter takes into account the directional 

response of the ship to the ocean waves. The directional effects of waves 

on pitch prediction were examined by a tri-variate ARMA model (which 

includes two sets of wave measurements and the pitch measurement) and 

a bi-variate ARMA model (which includes a wave m easurem ent and the 

pitch measurement). It was shown that the tri-variate ARMA model is 

superior to the bi-variate ARMA model for different prediction time steps. 

This demonstrated that the directional effects of waves are very important 

for ship motion prediction. The coupling effect on ship motion prediction 

was studied by a quad-variate ARMA model (pitch, heave and the two 

wave measurements). This showed further improvem ent in prediction of 

ship motions as compared to that of tri-variate ARMA modelling.



1.6 Objectives

Offshore structures are designed based on the selection and 

application of theoretical models representing marine extreme conditions. 

Owing to lim itations in assum ptions while m odelling a structure and 

variation of extreme m arine conditions, there is always an element of 

uncertainty associated with the predicted response of the final design. For 

these reasons, full scale real tim e long term  data on the m arine 

environm ent and the structure's response are m easured enabling future 

improvement in design. Collecting, storing and handling vast volumes of 

such data in the marine environm ent is not a simple process. Also there 

may be noise or disturbances collected along w ith actual response of the 

structure or environmental data which m ust be correctly dealt with.

The study presented herein has investigated the analysis methods 

arising from identification aspects of the theory of dynamic system. Using 

SI methods, parametric models of dynamic systems are determined based 

on input and ou tpu t of the stochastic processes. Full-scale offshore 

m onitoring data  or m arine environm ental data  can be substantially 

reduced to a few param eters of the SI m odels which can also further 

produce the estimated spectrum  of the stochastic process for immediate 

requirem ents. At the initial stage, the param etric m odels' orders are 

obtained based on auto correlation and or cross correlation, least squares 

error, Akaike inform ation criterion and m inim um  description length 

methods. Further reduction of the model orders can eliminate spurious 

noise or disturbances. Using SI techniques, the parametric models can also 

be applied to simulate time series data based on the target spectrum.

Sometimes nonstationary time series offshore data  which are a 

combination of high frequencies and low frequencies are observed. These



types of data can be modelled provided the nonstationary time series data 

are transform ed to stationary time series data by a differencing technique 

prior to modelling as demonstrated in Chapter 5.

The m ultivariate autoregressive (MAR) m odelling of ocean waves 

can provide not only the required pow er spectra but also the phase and 

coherence which lead to inform ation about w ave directionality. Using 

traditional FFT methods, one can estimate the pow er spectrum. However, 

there m ight be spikes due to disturbances which one m ay not be able to 

discard. Using MAR modelling the required spectra can be estim ated as 

shown in Chapter 6.



1.7 Summary of contribution

The principal aim of this research w ork has been to form ulate a 

practical approach which will allow the optimal estimates of param eters of 

structural m odels to be determ ined systematically from the time series 

recordings of ocean waves and offshore structural motions. This approach 

can be used for in situ data reduction, which can store m uch longer 

duration  inform ation of offshore dynam ic system s than the p resent 

methods of data storage.

The linear SI models are chosen here partly because they are simple 

and easily formulated, and partly because they are a natural starting point. 

Because the linear tim e-invariant discrete models are commonly used in 

dynam ic design, identification of these types of m odels is of practical 

importance in offshore dynamic systems. These can be used either in the 

response spectrum  approach or through the SI m odels and particular 

offshore time series records to estimate full response histories. The main 

aims of this work have been to investigate (a) how well the time-invariant 

linear discrete models fit with target spectra of ocean waves and offshore 

structural m otions in stationary and nonstationary cases, (b) how  the 

model orders can be reduced to obtain acceptable reduced order ARMA 

m odels, and (c) m ultivariate autoregressive m odels, and their practical 

applications.

Since the use of SI techniques as applied to ocean dynamic system is 

an unusual approach for offshore engineers and ocean scientists, an 

introduction has been included covering system identification procedures, 

param etric  and  non-param etric m odelling, application  problem s of 

offshore raw  data in Chapter 1. For on-line estimation, one has to use the



delay-tim e or recursive filtering technique. The study presented herein 

considers off-line estimation procedure as a num ber of data sets or blocks 

to be used for param eter estimation. The parametric modelling technique 

is suitable for off-line estimation.

The m ain previous works relevant to the study  presented herein 

are described in Chapter 1 (section 1.5). Most of this related w ork and 

theoretical developm ent took place in the electrical, system and control 

engineering fields. In the offshore field, very little related work has been 

carried out bu t that which has is reported here. The first part of the review 

of previous w ork m ainly concentrates on establishing the SI techniques, 

nam ely, autoregressive, m oving average and ARMA algorithm s which 

have been subsequently developed for offshore dynam ic systems. The 

Yule-Walker equations m ay be used to obtain the AR model. For rational 

m odelling, an extended version of Yule-Walker approach yields efficient 

ARMA models. Some of these algorithms are used in other fields. The 

second part describes the appropriate selection of the SI model order. This 

p a rt optim izes the m odel structure and m inim izes the com putational 

time and hence leads to a m ore efficient representation of the dynamic 

system. Finally m ultivariate autoregressive modelling is reviewed.

C hapter 2 gives an overview  of stochastic processes and linear 

systems leading to an inform ation criterion. This chapter describes how 

well the random  processes can be represented by the linear time-invariant 

discrete m odels and leads to the estim ation of pow er spectral energy. 

Random  processes are also show n to lead to the estim ation of an 

in form ation  criterion. The basic notations for the SI m odelling  

introduced in this chapter are used in later chapters.

In Chapter 3, the identification of the various suitable SI models for 

given target processes is carried out as highlighted by system identification



procedures (section 1.2). The SI m odels, namely, AR, MA and ARMA 

m odels are form ulated. A m eaningful AR pow er spectrum  can be 

obtained from the target (either power spectra or time series data) based on 

the appropria te  selection of model order. Because of some inherent 

properties of AR m odelling, the Pierson-M oskowitz w ave spectrum  is 

show n to need modification for better results. The estim ation of MA 

param eters is carried out from the perspective of Fourier approximation of 

a decomposition of the target spectrum. The ARMA modelling is carried 

out based on the initial AR param eters estim ation. Two approaches, 

nam ely, pow er order m atching and inverse AR m ethods are used for 

estimation of the ARMA parameters. A comparative study between those 

two approaches of the ARMA m odelling is carried out for theoretical 

wave spectra (PM and JONSWAP) and m easured ocean waves. These SI 

modellings are also applied to offshore structural motions.

Model order reduction techniques applied to the ARMA algorithm 

are described in Chapter 4. Firstly the initial higher model order is selected 

based on the AIC or MDL m ethod and then the AR coefficients are 

determ ined using the m odified Yule-Walker equations. Then the first 

and second order real modes are obtained from  the AR polynomial. A 

m ethod of calculating energy in each mode is described in Appendix-V. 

Each m odal energy contributed for the SI model is determ ined and then 

only higher energy modes which form the AR part of the reduced order 

ARMA m odel are considered. The m oving average part is calculated 

based on partial fraction and recursive m ethods. This reduced order 

ARMA m odelling is applied to ocean waves and offshore structural 

m otion.

Chapter 5 describes the application of SI modelling to nonstationary 

offshore dynamic systems. The nonstationary time series data set can be



m odelled using autoregressive in teg rated  m oving average (ARIMA) 

algorithms which are defined and form ulated depending the nature of the 

nonstationary process. Nonstationary generated ocean waves and offshore 

platform deck (Magnus) displacements are used for ARIMA modelling.

M ultivariate autoregressive m odelling and its application to ocean 

waves are presented in Chapter 6. The MAR model is form ulated based 

on the estim ation  of the residual variance m atrices and  partia l 

correlations of the m ultivariate processes. Here the appropriate model 

orders are selected based on auto and cross correlations and the 

m ultivariate AIC methods. These algorithm s are applied to estimate the 

power spectral energies and their phase and coherence spectra of two time 

series wave data sets collected at a N orth Sea location.

The last two chapters give an overall discussion and conclusions 

based on the various SI modellings and their applications to offshore 

dynamic systems.



1.8 Applications

As indicated in the foregoing sections the techniques developed and 

adapted in this study have been applied to a num ber of sources of real 

m arine environm ental and offshore structural m onitoring data. Some of 

this which has been made available is considered propriety. As a result 

full details of some of the sources can not be made available herein. The 

data has been made available from

Table 1.1 M easured time series data sets of offshore
dynamic systems and sources.

Source Location/
Offshore structures

Data set Date

Rijkswaterstaat,
N etherlands

N orth Sea waves 
from MPN platform

W aves 

M12 and M17
22- Jan- 1980

Indian Navy Sea waves from 
West Coast of India

W aves

K15
28- May- 1989

BP, UK Magnus Platform Deck Hor. 
Acceleration 22 -O c t-1987

Santa Fe Drilling 
Co, UK

Sem isubmersible

Rigl35

Heave
Acceleration

HA28

11- Aug- 1989

McDermott, UK DB50

Crane vessel A
Roll 23 - Oct- 1987

A non. Crane vessel B Pitch, Roll, 

Heave Acc.
12- Apr- 1992



CHAPTER 2

STOCHASTIC PROCESSES AND 
LINEAR SYSTEMS OF SPECTRAL 
ESTIMATION

2.1 Introduction

Power spectral estimation has generally been a traditional research 

area for statisticians (Anderson, 1971). Recently it has been extensively 

used for engineering applications (Bendat and Piersol, 1986, N ew land, 

1984, Witz and Mandal, 1991). Most of the statistical analyses are carried 

out based on restrictive assumptions about the nature of the data, that is, 

whether it is Gaussian distributed. The art of spectral estimation lies more 

on empirical relationship than on a theoretical one. Using a spectral 

analysis m ethod, any signal or time series random  process can be 

characterized in the frequency content. The strengths of the signal or time 

series in the frequency domain can be quantified by the pow er spectral 

energy estimation techniques.

Power spectral energy estim ation has traditionally been based on 

Fourier transform  techniques. A prim ary m otivation for this research 

study in alternative methods is to im prove perform ance w ith  m inim um  

loss of inform ation while expressing the spectral estim ates by a few 

param eters of the rational functions.

This chapter gives an overview  of linear system s (Sinha, 1991, 

H annan and Deistler, 1988, O ppenheim  and Schafer, 1975, 1989) and



stochastic processes leading to the estim ation of information criteria and

pow er spectral energy of dynam ic systems. M any of the notational

conventions in troduced  in this chapter are used  in later chapters.

Stochastic processes leading to the estimation of linear system parameters

and power spectral energy are presented in section-2.2. A linear system

(discrete or continuous) can be expressed by superposition of responses.

Suppose that there are two input signals to the response of a linear system,

then the system can be expressed by simply the sum of the separate system

responses to each individual input signal. The linear system is said to be

t im e-invariant  if the inputs and ou tpu ts are tim e independent, for 

example, an input xt produces y t and *t+t0 Pr°duces y t+ t0 ôr anY ^ me

shift t0. Since the present study is restricted to discrete system (as offshore

time series data are collected that way), linear tim e-invariant discrete

processes are presented in section-2.3. Section-2.4 describes the discrete

linear processes which can be analyzed by using the Fourier series

transform. While form ulating random  processes in the form of linear

systems, one has to verify or check the model quality. One such important

test is the stability criterion which is described in section-2.5.



2.2 Stochastic processes leading to information criteria and PSE 
estimation

The concepts of probability and stochastic process theory is briefed 

here for formal introduction of information criteria and power spectral 

energy estimation. This section is segmented into four subsections dealing 

w ith probability and random  variables, random  processes, power spectral 

energy estimation, and convergence of random  sequences.

2.2.1 Probability and random variables

Let X be a random  variable of some experimental outcome which 

cannot be exactly predicted in advance. Mathematically the properties of X 

are quantified by a distribution function, F(x), which is the probability that 

the random  variable X has a value less than or equal to x or Pr(X<x). F(x) 

is a n o n d e c re a s in g  fu n c tio n  w ith  l im itin g  v a lu e s  of 

F ( - ° ° ) = 0  and F(<») = 1. The probability density function (PDF), 

p(x) is expressed as

P(X) = dx
dF (x)

(2.1)

For discrete random  variables, X takes one of the finite num ber of 

values xv  x2, .... with corresponding probabilities p v  p2, .... which must 

satisfy the conditions

P i > 0  and X P i = l
i (2 .2)



Then the distribution function,

F(a) = P r[X < a ]= X p , (2.3a)
X j < a

If a < X < b then

Pr[a < X < b] = F(b) -  F(a) (2 3b)

which is a piecewise constant function w ith a jum p of height pi at Xi 

(Figure 2.1).

For continuous random  variable, the distribution function can be 

defined as

a

F(a) = Jp(x)dx
(2.4)

and p(x) must satisfy

p(x)>0 and J p ( x ) d x = l

(2.5a)

If a < X < b then
b

P r [a < X < b ]  = Jp (x )d x

(2.5b)

An im portant param eter of a random  variable is its expectation or 

mean value, denoted by E[x] which is given by

E[x] = X x iP i (discrete)
i

(2.6a)



E[x]= Jxp(x)dx (continuous)
(2.6b)

This is also called the first moment of x. The expectation of x squared is 

defined as

E[x2] = ^ (X i)2 ^  (discrete)
(2.7 a)

E[x2] = I x2 p(x) dx (continuous)
L  (2.7a)

This is also called the second moment of x.

The expectation of a function, g(x) of random  variable x can be 

directly calculated using the PDF of x as

E[g(x)] = Jg(x) p(x) dx (continuous)
(2.8a)

E[g(x)] = S &  Pi (discrete) (2.8b)

The variance, p of the random  variable is the m ean squared 

deviation of the random  variable from its mean.

var{x)= E[x2] - (E [x ] )2= p

The standard deviation, o of x is 

a -  V varfx) = -yjip (2.10)



The covariance is defined as the statistical correlation between one 

random  variable and another random  variable. If Xi and X2 are any pair 

of finite variance random  variables, the covariance of Xi and X2 can be 

expressed as

covl^Xj} = E[(X, -  E[X1])(X2 -  E[X2])]
= E[X1X2]-E [X 1]E[X2]

If Xi and X2 are said to be independent for a purely random  case (i.e., 

white noise) if

cov{XiX2} = 0

The uniform  distribution of a real variable x is quantified by a 

uniform PDF as

p(x) = -7—̂— for a < x < br  b -  a (2. 12)

The Gaussian or normal distribution of a real variable x with mean, 

x and variance p is characterised by a PDF given by

p (x)=  J — exp
V  2tuct

( x - x )
2a,

f o r  — o o <  x  <  0 0

(2.13)

Here it is assumed that the random  variable, Xi (for i = 0,1, 2, ... M -l) is 

statistically independent. A class of estim ators is know n as m aximum  

likelihood estimates [see Appendix-I] which are based on a consideration 

of the joint probability of M observed values as a function of the 

param eter to be estimated. The m axim um  likelihood estim ate is the 

value of the parameter for which the probability of the observed values is



a maximum. The maximum likelihood estimates m ethod can be used to 

determine the best estimate of the model parameters. Equation (2.13) can 

be used to estimate the information criterion of the random  process for 

appropriate SI model order selection.

Let Xj, x2, rep resen t the resu lts of M independen t

observations of a random  variable with PDF p(x). If the param eter family 

of the function is expressed by f(x|0) with a vector param eter 0 which is 

to be optimized, the average log-likelihood can be expressed as

M

M ^ Inf(Xi|0) (2-14)J-T'L i = l

As M tends to infinity, the above average tends, with probability one, to

MLL = J  p(x) In f(x|0) dx (2.15)

where MLL is the average or mean log-likelihood. From the efficiency 

point of view of the maximum likelihood estim ate, it m ust be highly 

sensitive to sm all deviations of f(x|0) from  p(x). W ith som e 

m odification of equation (2.15) and using inform ation theory, Akaike 

(1974, 1976) derived a final form of the information criterion, AIC as

AIC = -2 In [ maximum likelihood ] + 2 k (2.16)

w here k is the num ber of independently  adjusted param eters to be 

selected.



2.2.2 Random processes

A discrete random  process is a collection or ensemble of real or 

com plex discrete sequence $pf tim e series observed  values of any 

experim ent. M athem atically  it is just a collection {Xt, t e T )  of 

observations of a random  variable. Here T has the connotation of time, 

i.e., (Xt) is a continuous time process if T is an interval, say, [a, b]; or (Xt) is 

a discrete time process if T contain only integer values.

The present work is limited to discrete time processes, i.e., digitized 

tim e series records of ocean waves, offshore structural m otions, etc. 

Therefore, the random  process theory presented here is restricted  to 

discrete time processes. There are two ways to define the time series 

which can be modelled by discrete time processes:

a) Time series data which are only available in discrete form

b) Time series data which are produced by sampling continuous 

data

In the second case, one should be careful about the appropriate sampling 

rate to be chosen so that discrete time series data fairly represent the 

continuous data.

If T =[1,2, .... M], then the random  process is expressed as (Xt) = [Xi, 

X 2 , •••• XmL and its probabilistic behaviour is given by the joint 

distribution of the M random  variables involved.

Even though an offshore dynamic system is a stochastic process 

w ith  time, for calculation sim plicity one can define this process as 

stationary if its distribution does not vary with absolute time, i.e., for any 

[*()' *1/ *2/ — In]/ the distribution of the n vector random  variables



[Xt ,X t   X t ] is the same as that of [X t ,X t   X t + ]. This
1 2  n 1 0 2 0 D O

shows that the origin of time is irrelevant and the joint distribution of the 

random  variables depends only on tim e in terval separating  them. 

Therefore this process has well-defined m ean and covariance function. 

The process is said to be a wide-sense stationary (WSS) if its mean, a 

constant, and auto-correlation are independent of absolute time and the 

autocorrelation depends only on the relative time.

Let xt be a stationary random process. At time index x, the mean or 

expected value is defined as

x = E[xt] = E[xt+J
t+tJ (2.17)

The auto-correlation of the random  process at two different time 

indices t and t+x is expressed as

R xx(x )= E [x tx t+J
(2.18)

In engineering applications, the term  autocorrelation is norm ally 

defined as a relative quantity, called the normalized autocorrelation which 

lies between zero and unity. The autocovariance of the process is the auto­

correlation process w ith mean removed,

C ^ x )  = E[(xt -  x) (x*+x -  x’)]
= E[xtx*+X] -  E[xt] E[x*+X] 
= Rxx(x ) - x x

(2.19)



If the above process has zero m ean for all t, then the auto­

correlation and the auto-covariance are identical,

Cxx(x) = R10t(T)
(2.20)

The cross-correlation of two random  processes xt and yt can be 

defined as

R„(x) = E[x, y ,„] (2.21)

Similarly cross-covariance is defined as

Cxy(x) = E[(xt - x )  (yt+T- y ‘)l 

= E[x1y ;„ ] -E [x t]E[y;„] 
= Rxy( x ) - x y '

(2 .22)

If two random  processes are uncorrelated then

CxyC'O = 0  for all x
(2.23)

Some useful properties are

R . ( 0 ) i R .W  
R „(-x) = R^(x)

RJO<(0)Ryy(0)>|Rxy(x)|3

Rxy(-x) = R ;(x )

(2.24)



The above properties are valid for all integers t . From these 

properties one can verify that autocorrelation m ust be a maximum 

at t  = 0.

Based on equation (2.17), the random  process can be rew ritten after 

rem oving the mean ( x ) from the original process as

x = x -  x
1 (2.25)

Let a linear system be expressed as

X .  =  I m , ,
k=i (2.26)

P
To fit this model [ equation (2.26)] of order y [  where k= l, 2, ....p], one can

start w ith least squares m ethod which needs the m ean square of the

residuals (Resp) as

1 M p 2

M t=i (2.27)

ReSp is to be minimized with respect to unknow n param eters {al7 a2, 

ap} assum ing that x t = 0  fo r  t < 0 . To determ ine  these unknow n 

param eters, one has to use Yule-Walker equations, where equations (2.17) 

to (2.23) are needed. This relationship can be w ritten in Toeplitz matrix, 

TA, as

[TA].{ak} = {Ck} (2.28)



w here
cxx(o) cxxa>
Cxx(l) Cxx(0)

TA = cxx(2) cxxa>

Cxx(p -  1) 
C„(p -  2) 
C „ ( p - 3 )

C „ ( p - 1 )  Cxx( p - 2 )  ... Cxx(0)

and

c xx( l ) '
Cxx(2) 

(Ck) = - c - (3) •

[C xx(p)J

Based on residual estimates [equation (2.27)] and Yule-Walker equations, 

model order selection methods (AIC and MDL) are established as described 

in the later chapters.

2.2.3 Power spectral energy estimation using FFT

Fourier series techniques play an im portant role for the analysis of 

WSS processes, which leads to the so called pow er spectral theory of 

stationary processes.

The z-transform  of the auto correlation and cross correlation 

sequences which are determined from time series x and y are defined as



S»(z)=
T = -

Sxy(z)= £ K x y ^ )z _t
T = - o o

(2.29)

This leads to the definition of pow er spectral energy. The above 

equations are expressed in frequency scale

Here S(f) is a density function which represents the distribution of power 

w ith frequency, f and j is the square root of -1. The Fourier transform of 

the auto-correlation sequence is often referred  to as the W einer-  

Khintchine theorem. Owing to the properties of correlations, PSE m ust be 

a real and positive. For the autocorrelation to be strictly real valued,

Sxxtf) = T 5 X W  exp(-j27ifxT) (2.30)

Sxy(f) = T £ Rxy(x) exp(-j2jifxT) (2.31)

RxxC"̂ ) — Rxxfa) (2.32)

Then the PSE can be expressed as

S„(f) = 2T £  R ^ x )  cos(27tf-cT)
T=0

(2.33)



Sxx(-f) — Sxx(f) (2.34)

which means that it is a symmetric function.

Therefore, the time series can be expressed by its autocorrelations 

which can be used to determine power spectral energy. This relationship 

is also shown in Figure 2.2.

The discrete white noise process w ith zero mean can be defined in 

the form of autocorrelation function as

8(x) is the discrete impulse function. This says that a white noise process 

is uncorreleted with all time lags except at x = 0. Therefore the PSE of the 

white noise process becomes

RxxCO = px 8(x) (2.35)

w here

5(x) = 1 for x = 0

= 0 for x * 0 (2.36)

Sxx(f) — 2Tpx (2.37)

which is a constant for all frequencies. The reason for the name white  

noise is by analogy w ith white light which has an approxim ately flat 

frequency spectrum.



2.2.4 Convergence of stochastic processes

While investigating random  processes, one may wish to ask many 

questions such as w hether a given process is stationary , w hether 

param eter estimates converge to their true values w ith increasing data 

points, and so on. To answer the above questions, one has to study the 

convergence of sequences of random  processes.

Let {Xk} = Xj, X2,  be a non-random  sequence of real numbers.

Then one can say that {Xk} converges to X, i.e.

X , —̂ X as k —̂ 00
k

Lim Xk = X

(2.38)

The process {Xk} converges to some random  variable X if and only if {Xk} is

a Cauchy sequence, i.e, |Xn - X m| -»0  as n,m — . This means that for 

any small value e > 0 there exists n(e) such that |Xn -  Xm| < e for all n,m 

> n(e). Here the definition of a Cauchy sequence means only to the 

elements of the sequence themselves and it does not consider any possible 

limit points.

Some properties of the convergence of random  processes are 

highlighted in Appendix-I. For further details on convergence of random  

processes, one can refer to texts by Pollard (1984), and Hannan and Deistler 

(1988).



2.3 Linear time-invariant discrete processes

Linear tim e-invariant discrete processes form the m ost im portant 

class of random  processes such as time series of ocean waves, response of 

offshore structures etc. Here some basic concepts are described below 

which will be instrum ental in development of the SI models. The linear 

time-invariant discrete process can be expressed as

y t = X  hkx t_k for t = 0 ,1, % ...
k=~“ (2.39)

w here xt is the input, yt is the output and hk is the im pulse response or 

weighting function. The above process is said to be time-invariant if its 

response to a certain input does not depend on absolute time. And the 

above process is also linear in the sense that the ou tpu t response to a 

linear combination of inputs is the same linear combination of the output 

responses of the individual inputs.

The input-output relationship [ equation (2.39) ] w ith the transfer 

function can be expressed as

R .y(-c)= f > ( k ) R „ ( x - k )

R y * ( i ) =  i > ‘( - k ) R „ ( - c - k )
k = - « .

R,y(T)= X  h (x -m )  X h ‘( - k ) R „ ( m - k )
k—  (2.40)

Denoting the z-transform of the transfer function , h(k) as



H(z) = £ h ( k ) Z- k
k = -< »

(2.41)

the power spectral energies are obtained as

S ^ z )  = H(z) S^Cz)

Syx(z) = H * ( l / z ) S xx(z)

Syy(z) = H (z)H ‘( l / z  )Sxx(z)
(2.42)

If h(k) is real then

IT (1/z*) = H(l/z)
(2.43)

Using the concept of z-transform, equation (2.39) can be written as 

Y(z) = H(z) X(z)
(2.44)

where X(z) and Y(z) are the z transforms of the variables x and y.

The formation of equation (2.44) is described in Appendix-II. The 

transfer function, H(z) describes a complete characterization of the process. 

H ere xf- is assum ed to be a s ta tio n ary  random  sequence w ith 

autocorrelations, Rxx(x) an<̂  power spectral energy, Sxx(f) related as given 

by

R ^ t )  = E[x, x l x] = j  S(m)e“iorfrdco (2.45)



and

0 4 6 )

is the cut-off frequency which satisfies Nyquist relation as

T = ^
“ b

(2.47)

The output system yt is also a stationary random  sequence whose 

power spectral energy is

Syy(co) = H ,(ei“*r) S^to) H * (e ^ )

= Sx> ) |H ( e ^ ) f

(2.48)

Equations (2.46) and (2.48) are periodic functions of period, 2k / co.

As a simple case, assume that the input process xj- is a band-limited 

discrete white noise. The auto-correlation and power spectral energy of 

the input white noise process can be described as

Rxx(x) = 2cobI 8(t)
(2.49)

and

Sxx(co)=I
(2.50)



w here I and 5(x) are identity  m atrix and discrete im pulse function 

respectively. 8(x) is also known as the Kronecker delta. Therefore an 

approxim ate transfer function, H(ejTG)T) can be determ ined by several 

procedures based on the input and ou tpu t of any dynam ic system  of 

random  processes. For example, an im portant causal discrete linear time 

invarian t process can be described by a constant coefficient linear 

difference equation in which input (white noise), w t and output, y^ are

related as

p q
= - S a ky r. k + X b i w r - ,

k = l 1=0

(2.51)

Here the estimators aj, a2 , .... ap and bo, b j, .... bq characterise the linear

process.

The z-transform of the above equation can be w ritten as

Y(z) i + S akz - k

k = l

= W(z) X b. z"'
L;=0

(2.52)

Therefore the transfer function H(z) can expressed as

X b tz 1 
Y(z) (to

H(z) = W(z) >
i + X akz'

k=> (2.53)

Here both the polynomials can be factored into its roots (A^ and Bt) and 

can be expressed by



b o I l d - B . 2' 1)
H(z) = 1=1

n a - A kz-)
k = l

(2.54)

where bQ is a scaling factor which can be determ ined from the random  

process. The upper roots B ,̂ B2 , ... Bq are called the zeros of H(z) and the 

low er roots A \,  A2 , ... Ap are called the poles of H(z). For a stable 

m inim um  phase linear process, all the poles and zeros of the transfer 

function H(z) lies inside the unit z-plane circle, i.e.,

I A. I < 1 and Ib J  < 1
1 kl 1 1  (2.55)

The definition of the stability for linear systems is given in section 2.5. If 

any of the poles lies outside the unit circle in the z-plane, the system can 

be said to be anticausally stable.



2.4 Discrete-time Fourier series transform

The existence of the Fourier transform and its inverse for a given 

function x(t) can be determined by one sufficient condition

oo

J|x(t)|dt<°°

One can refer to Kay (1988) and Marple(1987) for details of less restrictive 

sufficient conditions for the existence of the Fourier transform.

Based on the usual definition of the Discrete Fourier Transform 

(DFT), X(f) of the discrete data samples, xt (total M points) can be expressed

as

M - l

t= 0

X(f) = £ x ,  (2.56)

Inverse of DFT is

M - l
j 2 n f t /M

I  M - l

x. = ™ £ X(f)ei:
M f-o (2.57)

Here the sampling period (T) is not taken care for proper units of spectral 

estimates. This can be m odified for the discrete-time Fourier series as 

given below.

M - l

X(f) = T ^ x , e ' |M/M for 0 < t < ( M - l ) (2.58)



-i M —1

=  Y x ( f ) e iM/M for 0 < f < (M -1 )
MT 7?

(2.59)
£=0

Therefore, pow er spectral energy of the discrete-tim e Fourier series is 

written as

S(f) = |X(f)|2 = T:
M - lI*.
t= 0 (2.60)

2.5 Stability of linear systems

A linear system is said to be stable if the output is bounded for all 

bounded inputs. The responses of the system will be bounded if and only 

if the roots of the AR polynom ial, the denom inator of the transfer 

function are less than one. In other words, a linear time-invariant discrete 

system is said to be stable in the bounded input and bounded output 

(BIBO) sense if all the roots of the AR polynomial have m agnitudes less 

than unity. Otherwise the system is unstable.

If we define the transfer function in the form of poles of the 

random  process, then the system is said to be stable and causal provided 

that the poles lie within the unit circle of the z-plane. This is also known 

as the m inim um-phase filter. If the system is anticausal and stable, the 

poles have to lie outside the unit circle.

To explain these two cases, consider a general AR process. A causal 

transfer function



-1
H ar(z) = 1 / A ( z) =

r

i + I a,.z - k

k = l

will lead to the parametric model

X, = - £ akx,-k + w ,
k = l

Similarly an anticausal transfer function

(2.61)

(2.62)

H aR(z*) = 1 /  A*(l /  z*) = 1 + S ak
- k

k = l

-1

yields the parametric model

p

> =  +  w <
k = l

(2.63)

(2.64)

Using equation (2.64) xt can be generated based on the future values xt+k.

The causal stable model given by equation (2.62) is said to be the forward 

prediction model, and the anticausal one given by equation (2.64) is called 

as the backward prediction model. The forw ard and backward prediction 

models are used later in m ultivariate AR param eter estimation. For the 

MA m odel stability , one can choose the transfer function as the 

m inim um -phase filter which will guarantee a stable and causal inverse 

filter. For more about the stability of the linear systems one can refer texts 

by Sinha (1991), and Soderstrom and Stoica (1989).



CHAPTER 3

PARAMETRIC MODELLING OF 
UNIVARIATE RANDOM PROCESSES

3.1 Identification of parametric models

W hile identifying a param etric model, one has to look into the 

random  process to see whether it should be identified by off-line or 

on-line techniques. On-line identification is needed if the purpose is to 

track param eters slowly varying in time. Whereas off-line identification is 

used batchwise where all recorded data is processed simultaneously. Even 

for on-line identification  of the process w ith  unknow n dynam ic 

properties, one should first use off-line identification in order to validate 

the model.

For identifying a particular model which is most suitable for the 

random  process under consideration one should follow the scheme as 

highlighted in Figure 1.2; i.e., an experim ent has to be designed (select 

inputs, outputs, sample interval, total num ber of sample, etc.); a model 

set and  m odel structure has to be chosen (choose lin ear/n o n lin ear 

characteristics of m odel, m odel o rder, param etriza tion , etc.); an 

identification criterion has to be selected (prediction error m ethods or 

correlation methods) and a procedure for validating the chosen model has 

to be devised.

W hen selecting an identification m ethod the pu rpose  of the



identification should be clear to users, since it may express both the type of 

model which is required and what accuracy is sought. A crude model can 

be adequate for the purpose of rough estimation, while high accuracy is 

needed  for better represen tation  of the processes such as m arine 

environm ents and structural motions, where theoretical m odels need to 

be verified.

The reliability of the optimal estimates of SI param eters depends on 

how accurately the SI model represents the "true7 system. Theoretical 

dynamic systems can be best described by the optim al estim ates of SI 

parameters (Ljung, 1987). However, in practical cases with the presence of 

noise, one has to draw  a line between the fitness of acceptability and the 

'true' system, i.e., a particular SI model can give a best fit which is very 

close to the 'true' system, but may not exactly describe the 'true ' system. 

Therefore, an optim al estim ate of the SI m odel can describe an 

approximation to the physical processes occurring in the real system.

Based on previous works on random  processes, the present study 

considers AR, MA and ARMA m odels of SI m ethods which are to be 

applied to the target (marine environm ental and structural m onitoring 

time series data). Since the stochastic processes in an ocean state have 

either poles or zeros or combination of both, the above three models can 

fairly represent the above process. In general, the above SI algorithms are 

described in Spanos (1983), Marple (1987) and Kay (1988). Here the above 

models are formulated and applied to stochastic data of the ocean state.



3.2 Description of system identification models

It is sometimes too difficult to select an appropriate SI model for 

spectral estimates of any random  process. Based on studies carried out by 

Spanos (1986), Lin (1987), Spanos and Mignolet (1987), Witz and Mandal 

(1991), M andal, Witz and Lyons (1992), and others, SI algorithms are 

applied to a random  process in ocean dynamic states. The study presented 

herein considers autoregressive, m oving average and  autoregressive 

moving average algorithm s which are form ulated leading to power 

spectral estimates as described below.

3.2.1 Autoregressive (AR) model

The time series {yr } is said to be an autoregressive process of the 

order p, AR(p), if it is generated from the relationship

p

I
k = l

y r = -  I a ky r_k + b0wr
(3.1a)

Here yr is the r^ 1 sample of the discrete stochastic process and wr is 

Gaussian white noise. Equation (3.1a) can be w ritten in polynomial form

as

Y r  = _a(z-1)_
. w.

(3.1b)



w here

a(z !) = 1 + a:z 1 + a2z 2 + a3z 3+ +apz p
p

auz - k

k = l

The AR(p) m odel is also called as an all-pole model and is 

illustrated in Figure 3.1.

The transfer function of the AR(p) process can be expressed as

=

1 + 1 akz - k

k=l (3.2)

and whose input is a white noise process w r . The seeding constant b0 can 

be obtained by using the equation

h2 -  _ L 
° 2co R 0 + k^k

k =1
(3.3)

The sampling period, T is generally defined by the cut-off frequency, cob/ 

through the Nyquist relationship

m    71

(3.4)

Therefore, the estimated power spectrum Syy(co) of yr can be written

as



Syy(C O ) =

_____
2

p

1+ IXeK
k = l

- i k  © T

(3.5)

The autocorrelation function of the ta rge t/observed  pow er 

spectrum is defined as

T

R x = Js(co).cos(^coT).dco
JZ
T

x = 0 > 2* 3......  (3.6a)

where, S(co) is the target/observed spectrum. In the absence of a target 

spectrum, if the available information is a finite set of time series data, i.e. 

{ 0 < yt < M}, then the true correlation coefficients R \  can be calculated 

from the relationships

M

Rj. = f(M.X) . I
i-x+i (3.6b)

where, f(M,X) = 1/(M  - X) for the unbiased sample correlations and 

f(M,X) = 1/M  for the biased sample correlations.

The error, s between the target spectrum , S(co), and the estim ated 

power spectrum of the AR output, Syy(co), is expressed as

b20 r" s (w) „ e = ~— . o—r^-dco
2(0 b S„(co)

(3.7)



Substituting Syy(co) [equation (3.5)] into the above equation gives

e = — — 'js(co) 
2cob JD -fl).

r
ave - ik o )T dco

k = l (3.8)

By m in im izing  e, the param eters ak are determ ined . Therefore, 

m inimisation of error, e brings the following im portant relationship

de _ _J_
daj -  0),
or

p

= 0
k=l

X a kR ii-ki -  - R i (3.9)

Equation (3.9) can be written in Toeplitz matrix form as given below

R, r 2 .
R p - ,

R. R» R, ••• r p-2
R 2 R, R„ ••• R p-3

i

•
•o J, R p - 2 r p - 3  • •• R„ lV

R1
R.
R

R
(3.10)

These are also known as Yule-W alker  equations. Using 

equations (3.3) and (3.10), i.e.; when the param eters alr a2, a3, ... a^ and b0 

are determined, then the time series yr can be generated digitally by using

the recursive equation (3.1). Here one has to obtain optim al spectral 

estimates for the values of ak and p such that the AIC or MDL between the

target and estimated spectra m ust be a minimum.



3.2.2 Moving average (MA) model

The time series {yr} is said to be an m oving average process of the 

order q, MA(q) if it is generated from the numerical scheme

q

y, = 5Xw.-i
' =-q (3.11)

Here yr is the rth sample of the discrete stochastic process and w r is the

Gaussian w hite noise. The MA(q) model is also called as an all-zero 

model and is shown in Figure 3.2.

In general, any weakly stationary process can be expressed as the 

output of an infinite (in practical applications a finite value of q is chosen) 

order digital filter whose transfer function is defined as

H m a ( z )  =  I v - '

l="q (3.12)

and whose input is a white noise process. As one is looking for the best fit 

of the target spectrum , S(co), the MA coefficients b t are calculated by 

m aking use of the Fourier coefficients of the square roots of the target 

spectrum as follows

b, = — j  Q(co) cos(iTco) dco 
^ o

where S(co) = Q(co).Q*(co)
(3.13)



If S(CO) is real then Q(co) = *yjS(co) . Therefore, the estim ated  

power spectrum Syy(co) of the MA process can be written as

S * (“ ) = H M,(e i- T) .H ^ ( e toT)
(3.14)

If the available information is in the form of time series, then the 

MA coefficients, b l can be estim ated from either of the following 

relations:

(a) Equating power spectra estim ated by the FFT [equation (2.29)] and 

equation (3.14) gives

R«(k) =
^ b X - k  for k = 0,1,2, ,q
v=k

R ^ t-k ) for k = - q , -  (q -1 ) ,....... ,-1
(3.15)

The above equations are valid for the general case. The present study 

estimates the SI coefficients in real form. Therefore, equations (3.15) 

can be solved to obtain the MA coefficients. However for higher 

order MA models, estimation of the MA coefficients using equations

(3.15) becomes more complicated. In this case an alternative method 

can be used as described in (b).

(b) By equating the AR(p) process w ith the MA(q) process, [equation 

(3.1a) with equation (3.11)] ak is expressed as the impulse response of

l /b ( z _1). This can can be written as

H U) = b(z_1) = —4 j -
a(z ') (3.16)



Therefore,

(3.17)

Hence H MA(z) can be obtained from the AR polynomial, a(z_1) [see

to zero for a lag greater than p, then the AR(p) process is a good 

approximation to the MA(q) process.

E quation  (3.11) can be used for sim ulating a tim e series by the 

weighted average of 2q+l white noise deviates which moves in time. The 

advantage of this model is that one does not require feedback values of 

time series. However in the case of equation (3.1) the AR process requires 

not only the feedback mechanism of the time series but also the initial yr_i 

values.

3.2.3 Autoregressive moving average (ARMA) model

Let the time series {yr ) be an A utoregressive M oving A verage 

(ARMA) process of the orders (p, q) w ith p ^ q .  It is defined by the 

difference equations

example 2 of Appendix II]. Now if the impulse response of l /b (z _1) decays

p q
y , = - £ akyr-k + £biW„ (3.18a)

k = l i= 0

Here yr is the rlh sample of the discrete stochastic process and wr is the 

Gaussian white noise process. The above equation (3.18a) can be expressed



in polynomial notation as

(3.18b)

w here

a(z 7) = l  + a:z 1 + a 2z 2 + a 3z 3+ +apz p
p

k = l

and

b(z_1) = b0 + b7z 1 + b2z 2 + b3z 3+ +bqz_q

= i b tz-
1=0

The ARMA(p,q) model is also known as a pole-zero model and is 

illustrated in Figure 3.3.

Now the ARMA(p,q) process can also be expressed as the output of a 

digital filter whose transfer function in terms of z-transform is defined as

q

^  ARMA (Z)ARMA P

1 + 5 X z"k
k = l (3.19)

and whose input is a discrete white noise process w r  

The estimated power spectrum Syy(co) is written as

S yy(co) = Ih ^  (ei0>T)|2
(3.20)



There are various procedures available to obtain the unknow n 

coefficients ak and b t [see G raupe et al (1975), Gersch and Yonemoto

(1977), Friedlander (1983)]. Based on applications [Samii and Vandiver 

(1984), Samras et al (1985), and others] of random  processes in m arine 

problem s, two alternative procedures to determ ine ak and b t are

described below.

3.2.3a Power order matching (POM)

This technique is to match the power of AR and ARMA algorithms. 

Equating the transfer functions of AR(m) [ replacing ak and b0 by &k and
A
b 0 in equation (3.1) ] and ARMA(p,q) models given by equations (3.2) and

(3.19) the following relationship can be expressed

b0(1+ X akz' k) = ( S b iz' 1) ^  + ]> X z' t)
k=l 1=0 t=l (3.21)

where, it is assumed that p + q < m and p > q .

N ow  equating the same pow er of z in the above relation, the 

following equations are obtained to determ ine the unknow n coefficients 

ak and bv
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0 0 . 0

a 2 * i
0 . 0
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(3.22)
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(3.23)

(3.24a)

(3.24b)

(3.25)

First, bj, b2, b3 ...bq are determined from equation (3.24b); thereafter al7 a2, 

a3, ... ak are calculated from equations (3.22) and (3.23).



3.2.3b Inverse AR filter using MYW equations

Multiplying both sides of the equation (3.18a) by yt.q_i and taking 

expected values, the correlation coefficients of the process yt is

R x = E{y.y,-J

and

R, =

Then we get

R<^ + a .R q«-i + a 2R<,«-2 + .........+ a pR ,.,_p = 0 for l < t S N - q

(3.26)

Equations (3.26) are often called the Modified Yule-Walker (MYW) 

equations. The simple ordinary Yule-Walker equations can be obtained 

w ith q equal to zero. If the observed or target spectrum , S(co), is given, 

then Rx can be determined from equation (3.6a) or equation (3.6b). Now 

the AR part of the ARMA algorithm  is obtained by solving the above 

MYW equations. There are various m ethods available to estimate the MA 

part of the ARMA algorithm . An efficient com putational m ethod is 

described below.

Based on the m odal decom position m ethod and combining all 

partial fractions to a common denom inator, the power spectrum  of the 

ARMA model can be described as



where, the causal part of the autocorrelation sequence is 

n(z-1) ~
T iF T  = S R ‘Z"( ' 1=1 (3.28)

and

n(z-1) = n.z-1 + n .z -2 + ... + n z _p
p (3.29)

Therefore n (z* l)/a (z 'l)  is a linear system whose im pulse response is

the one-sided covariance sequence.

The ARMA spectrum is defined as

c ( ) _ b(z).b(z~!)
77 Z a(z).a(z_1) (3.30)

Com paring equations (3.27) and (3.30), the MA part of the ARMA 

spectrum can be expressed using num erators as

b(z).b(z_1) = n(z).a(z_1) + R 0.a(z).a(z_1) + n(z_1).a(z) (331)

We define

ik >  = Z h iz~‘^  ’ i-o (3.32)

W here hi can be determined by a recursive filter technique. Here 

n ( z _l )  can be directly estim ated from  Rj u sing  the app rox im ate



relationship in the time-domain

h0 0 0 ... 0
h : h 0 0 ... 0
h 2 Iq h 0 ... 0

hp_1hp_2 h p_3... h 0 

^ N - l ^ N - 2 ^ N - 3 “ * ^ N - p
I

r*
P4
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n 2

n P r p

_ n N _

---
1

z
• 

P4•

(3.33)

Equation (3.33) is an over determined system. This system will not 

have a solution unless the Ri are associated with an ARMA process of 

order (p, p) or lower. Assuming this not to be the case, one can determine 

ni in the least squares sense using the singular value decom position 

(SVD) technique. Once ni are determ ined, the MA part of the ARMA 

m odel is calculated using equation (3.31). Hence the final ARMA 

spectrum  can be obtained from coefficients of a(z_1), n(z_1) and Ro- By 

factorisation of equation (3.31), it easy to obtain b(z_1). Hence the ARMA 

algorithm s are determined. The quality of the ARMA spectral estim ate 

described in the above two cases will depend on how accurately the initial 

higher order AR parameters are selected.



3.3 Univariate optimal model order selection

The m odified Yule-Walker m ethod requires a m axim um  of p+q 

(where p and q are the ARMA model orders) correlation coefficients for 

the solution of the well-determined set of equations of an ARMA process. 

F ried lander (1983) has dem onstra ted  the im provem ent in spectral 

estim ation accuracy w ith a larger num ber of equations and more 

correlation coefficients. However, there are high com putational costs 

associated w ith an overdeterm ined set of equations and higher order 

models. The question is how high a model order should one select so that 

the solution remains computationally feasible from the application point 

of view and the model can represent an acceptable target. There are 

various m ethods available by which one can select the optim al model 

order, i.e.,

a) Auto Correlation Matching (ACM) (Spanos, 1983)

b) Least Squares Error (LSE) (Kay, 1988)

c) Final Prediction Error (FPE) (Akaike, 1974)

d) Akaike Information Criterion (AIC) (Akaike, 1976)

e) Minimum Description Length (MDL) (Rissanen, 1983)

f) Criterion Autoregressive Transform (CAT) (Marple, 1987)

The LSE method is commonly used owing to its simplicity, but can 

not be applied to all random processes. If a process is purely convergent, 

the least squares error will decrease with increasing model order. Hence, 

using the LSE method, it is sometimes difficult to select the SI model order 

which is the optim al representation of the stochastic process. Other 

methods based on the AIC or MDL overcome this problem.



The optimal model order of the initial AR process can be selected by 

the AIC and MDL which are expressed as

AIC = M [ln(ER)] + 2p (3.34a)

MDL = M [ln(ER)] + p ln(M) (3.34b)

where M is the num ber of time series data points and ER is the average 

value of the sum of the squared error of the data or target spectrum  with 

estimated values from 1 to M. Another way of estimating ER is based on 

the estimation of variance of the initial higher order AR process using the 

forward linear prediction residual (FLPR) technique. The ARMA model is 

derived from the initial higher order AR model. The higher order AR 

m odel needs a finite order which can be determ ined  by the FLPR 

technique. The FLPR ( based on the AR process) is expressed as

p

e f(n) = x(n) + ]^a(k).x(n -  k)
k=1 (3.35)

where x(n) represents the discrete data and a(k) are the AR coefficients. 

This expression is identical to the AR algorithm except for the term on the 

left hand side of the equation which is not a driving white noise process. 

The FLPR from a finite discrete data set may, or may not, be a white noise 

process. While fitting an AR model to a finite data set, here we assume 

that the FLPR is a white noise process, so that it allows one to equate the 

AR param eters to the linear prediction coefficients. The sum  of the 

squares of the FLPR is estimated as



This ER is used in equations (3.34) to find the value of p that 

minimizes the AIC or MDL.

An approximate expression for the AIC as given in Friedlander and 

Porat (1984) is

AIC = N  log{(ERp )/(N-p)} + 2p. (3.37)

where, ERp is the sum of the squared error from p+1 to N  ( N > 2p). Here 

the MYW method is used for solving an overdeterm ined set of equations. 

Let the MYW be written as

Rq«  + aiR<,.,-i+a2Rq.t- 2+.......+apR,. ,-P = eq„  for l < x < ( N - q )

(3.38)

then ERp is estimated as the sum of the squares of eq+x- Here one has to 

find the value of p that minimizes AIC. If the autocovariance sequences 

of the stochastic process follow the convergence rule, then for higher 

values of p, the estimate will improve. However, if the autocovariance 

sequences first converge and then diverge one should select p for the 

autocovariance sequences just before divergence.



3.4 Applications of AR, MA and ARMA modelling

Sometimes a particular SI model becomes ill-conditioned owing to 

reasons such as not taking into account poles and zeros, optim al model 

orders and the num ber of Yule-Walker equations. Here the theoretical 

(Pierson-Moskowitz and JONSWAP) wave spectra are considered for AR, 

MA and ARMA algorithms of SI methods. M easured time series waves 

and  offshore structural m otions are then  considered for the above 

algorithm s. Subsequently a reduced m odel order technique is used for 

further reduction of data in the form of reduced ARMA model coefficients 

as described in Chapter 4.

3.4.1 Ocean waves

Ocean waves represent a random  process. In m any occasions and 

locations we may not have m easurem ents of the wave process, and so 

theoretical estimates are used for design purposes. These may be obtained 

from  spectral form ulation such as the Pierson-M oskowitz or JONSWAP 

ocean wave spectra. Here these theoretical w ave spectra are used to 

establish  system  identification algorithm s in  the form  of ra tional 

m odellings. Since m ost of the theoretical spectra represen t random  

processes which can be modelled by SI algorithms, it is simple to generate 

time series ocean waves using equations (3.1), (3.11) and (3.18).



3.4.1a Theoretical Pierson-Moskowitz power spectrum

The first systematic and reliable way of establishing an ocean wave 

spectrum  was carried out by Pierson and Moskowitz (1964) and is widely 

accepted for the waves of a fully developed sea. The Pierson-Moskowitz 

spectrum is defined as

S(co) = exp ( -  - ~ )
CO CD

(3.39)

w here, A = 0.0082 g2 

B = 0.74 (g/v)4

v = wind speed in m /sec at a height of 19.5m above mean water 
level

g = gravitational acceleration in m /sec2 

co = 2rcf

f = frequency in Hz

Spanos and Hansen (1981) have show n that the Pierson-M oskowitz 

spectrum could be approximated reliably by the AR process in an average 

sense, but the AR spectrum exhibits sharp fluctuations. These fluctuations 

could not be removed either by increasing the filter's orders or by selecting 

a larger num ber of equations in the Toeplitz m atrix [equations (3.10)]. 

W hile exam ining equation (3.39), it clearly shows that the Pierson- 

Moskowitz spectrum does possess a zero of infinite order at the frequency, 

co=0. Therefore, numerical difficulties exist in approximating the Pierson- 

Moskowitz spectrum by AR algorithms which are best suited for all pole- 

dom inated spectra. It is shown that an eight term Taylor expansion of the 

exponential term of equation (3.39) expresses an excellent approximation 

to the Pierson-Moskowitz spectrum  for a w ide range of w ind velocities



m ost commonly used by engineers. The Taylor expansion of equation

(3.39) is expressed as

.27. _   A.or_______________________________
^ r > 2  d 4 - p ^  t j 7  _ 8

co32 + Bco28 +  " ^ T ^ 24 +  -31-0)20 +  ~4j"0)16 +  “JT0)12 +  "gfO)8 +  "yj”0)4 +  -g|-

(3.40)

This equation has been successfully applied (Spanos, 1983) to represent a 

reliable AR process of the Pierson-Moskowitz spectrum. Here it reduces 

the order of the zero of the Pierson-M oskowitz spectrum  at co=0 from 

infinity to only 27. Figures 3.4 shows com parison betw een a Taylor 

approxim ated Pierson-Moskowitz spectrum and a true Pierson-Moskowitz 

spectrum  for various wind speeds. It is observed that there are very small 

varia tions at the low frequency region. This is ow ing to the 

approximation of the true Pierson-Moskowitz spectrum. Otherwise, there 

are hardly any differences. The Taylor approxim ated Pierson-Moskowitz 

spectrum  is an excellent fit with the MA(29) (the m odel order is chosen 

based on the autocorrelation of the process, Figure 3.5) spectrum as shown 

in Figure 3.6 as compared to the true Pierson-Moskowitz spectrum  (Figure 

3.7) where some differences are observed in the peak frequency region. 

This is owing to the presence of the zero of infinite order in the true 

Pierson-Moskowitz spectrum. Figures 3.8 shows the comparison between 

the P ierson-M oskow itz  sp ec tru m  an d  ARM A(20,20) spectrum . 

Im provem ent of m atching occurs owing to consideration of more time 

steps of the autocorrelation of the Pierson-Moskowitz spectrum  which is a 

convergent process.



3.4.1b Theoretical JONSWAP power spectrum

The JONSWAP (JOint N orth  Sea W Ave Project) spectrum  is 

established based on the N orth Sea wave m easurem ents and analysis 

carried out by Hasselmann et al (1973). This spectrum is defined as

S(co)= a g 2.co"5.exp { -  (cOp/co)4}.yr 

r= exp { -  (CO -  cop)2/(2 a 2cOp)}

(3.41)

The same Pierson-Moskowitz spectrum with a  = 0.0082, cop = 0.74 (g /v)4, 

a a = 0.07, Ob = 0.09 and y = 3.3 is compared w ith MA(29), ARMA(25,25) 

spectra (Figures 3.9 and 3.10) which show a very good fit.

3.4.1c Measured time series of ocean waves

A long term wave measurement programme was carried out by the

Indian Navy off the West Coast of India at 16m w ater depth as shown in

Figure 3.11. A set of 2048 m easured wave data points (K15) at 2Hz

sampling rate are used for wave power spectral estimation using AR, MA

and ARMA algorithms. The order of the model is determ ined based on

an autocorrelation process (Figure 3.12) and the LSE (Figure 3.13) method.

The ARMA(p,q) algorithms are determ ined based on the power of order

m atching m ethod. Equating transfer functions of initial AR(m) and

ARMA(p,q) algorithm s and considering the like pow ers of z [see 

equations (3.21) to (3.25)], the coefficients, b x and  ak are determ ined.

Based on the LSE and autocorrelation m ethods, the m odel orders are



selected. H ere the selected m odel orders are AR(40), MA(30) and 

ARMA(20,20). A comparison study on both IAR and POM m ethods 

(Figure 3.14) show that there are some differences. The advantage of POM 

m ethod over IAR m ethod is that knowing the initial AR process the 

ARMA coefficients are obtained  taking into account all energies 

contributed from initial AR estimates, whereas the approximate technique 

based on the MYW equations is applied to the IAR method. Comparative 

results of LSE of ARMA spectra between POM and IAR techniques for PM, 

JONSWAP and K15 v/aves are tabulated (Table 3.1), which also confirm 

that POM m ethod estimates less LSE as com pared to LSE by the IAR 

method. Both of the above ARMA spectral estimation techniques can be 

applied w ithout m uch loss of inform ation. Figure 3.15 show s good 

agreement between the SI models' spectra and the FFT spectrum. It is 

observed from the autocorrelation and LSE plots that this power spectrum 

is a pure convergent process. Therefore, by increasing the model orders, it 

yields improved results.

3.4.2 Semisubmersible (Santa Fe Rigl35) heave motion

Santa Fe Rigl35 is representative of sem isubm ersibles used for 

hydrocarbon exploration and production in the N orth Sea (Figure 3.16). 

Heave acceleration of semisubmersible (Santa Fe Rigl35) collected by the 

IDAS load and motion monitoring package developed by the Department 

of Mechanical Engineering, University College London is considered 

herein. A typical 2048 digital heave acceleration data set (SF28) collected at 

2.5 Hz interval (Figure 3.17a) is considered to estimate the power spectrum



using SI algorithms. Figure 3.17b shows the normalised autocorrelation of 

the initial AR algorithm  for the above data. This shows that the 

acceleration data are not purely convergent. Based on the autocorrelation 

process (Figure 3.17b), it is observed that the model order can be optimised 

at 98. The AR(98) m odel shows good m atching with the FFT spectrum 

(Figure 3.18). Here ARMA(50,50) and ARMA(49,49) spectral estimates 

show very little difference (Figures 3.19 and 3.20). The above two ARMA 

spectral estimates can be used for further reduction of ARMA model 

orders. The normalized variation of MA param eters (Figure 3.21) of the 

above data shows very low optimal model order as compared to AR and 

ARMA processes. Figures 3.22 and 3.23 show the comparison between MA 

spectra w ith 32 and 34 coefficients and the FFT heave acceleration 

spectrum which fits very well. This type of data in which mostly zeros are 

present in the SI algorithm  may require a higher order AR or ARMA 

model. Zeros of any random  process can best be fitted by a MA algorithm.

3.4.3 Monohull crane vessel motions

Two vessels, namely, Vessel-A and Vessel-B are considered here. 

The former is the DB50, the latter is not disclosed owing to reasons of 

confidentiality, but is also a monohull crane vessel.

3.4.3a Crane Vessel-A

As described above for the R igl35 heave m otions, sim ilar 

observations are noticed for the M cDerm ott's DB50 crane vessel roll



motions. A record of 2048 data points collected at a rate of 4 Hz is 

considered for this study. Based on the autocorrelation process 

(Figure 3.25), the initial higher AR model order is estim ated which is 

show n to be more than 200. The AR or ARMA algorithm  can not be 

properly applied for such a high model order owing to ill conditioning of 

Toeplitz m atrix values. However for such a case a very low order AR 

model can generally be fitted to the measured spectrum. Starting from the 

first order of the autoregressive process the AR(3) model seems to provide 

a very close fit to the above process as shown in Figure 3.26. The above 

data can easily be fitted with the MA algorithm which is shown in Figures 

3.27 and 3.28. Here the 2048 time series data points can be represented by 

only 30 parameters which are the coefficients of the MA(30) model.

3.4.3b Crane Vessel-B

A later version of the offshore m onitoring unit, IDAS (see 

section-3.4.2) was installed on monohull crane vessel-B in the N orth Sea 

in April 1992 and recorded the vessel's motions at different headings and 

sea conditions. Here one set of such a time series of 1024 data points in 

head seas is analysed. The sampling rate of the time series was 5 Hz. The 

m easured  data  consist of pitch, roll, strap  dow n vertical (heave) 

acceleration, longitudinal acceleration, transverse acceleration and sea 

wave elevation. Power spectra calculated using the FFT technique show 

that these are narrow banded spectra for which the autocorrelation lags are 

very high up to which the process is convergent. Since these time series 

are narrow  banded, a low order AR or ARMA m odel can be used to



represent the m easured spectra. The appropriate AR or ARMA model 

orders are selected based on the best estim ate to represent the power 

spectra.

First the sea wave data is m odelled using autocorrelation, LSE and 

AIC techniques. It shows that even though the actual model order seems 

to need to be very high the best fit betw een the m easured wave and 

estim ated AR spectra shows that model order of 24 seems to adequately 

represent the wave process. While examining the LSE there is not much 

variation between the AR(20) and AR(24) models (Figures 3.29a,b,c) which 

are considered for estimation of vessel's transfer function.

The heave acceleration, pitch and roll motions are analysed with SI 

modellings. The appropriate SI models' param eters are estim ated from 

the vessel motions. The SI models spectra are compared with the spectra 

determ ined by FFT. Pitch motion can be represented by the AR(16) and 

ARMA(12,1) models. The spectra estim ated by AR(16) and ARMA(12,1) 

models are compared with the spectra determ ined by FFT as shown in 

Figures 3.30a,b. Roll motion can be expressed by AR(29) model and its 

spectral comparison with FFT spectrum is shown in Figure 3.31. Similarly 

heave m otion can be rep resen ted  by the AR(13), ARMA(4,3) and 

ARMA(2,2) models and their spectra are com pared w ith FFT spectrum  

(Figure 3.32a,b,c).

The transfer functions (Briggs and Vandiver, 1982) estim ated by SI 

m odellings for each type of vessel m otions in random  sea waves are 

com pared w ith m easured transfer function determ ined by the FFT 

technique which shows good consistency w ith the SI derived transfer 

functions. Figures 3.33a,b show the comparison between the pitch transfer 

functions estim ated by SI m odelling and FFT technique. Similarly



Figures 3.34a,b show the comparison between the roll transfer functions 

estim ated by the SI modellings and FFT technique. These show good 

consistency between the estimated transfer functions by the SI modelling 

and FFT technique. The estimated transfer functions by SI modellings can 

also be used to represent heave motion as shown in Figures 3.35a,b. This 

study of transfer function estimation further confirms that the estimated 

lower order SI models can be used to represent vessel m otions with 

significant reduction in data storage requirements.



CHAPTER 4

REDUCED ORDER ARMA 
MODELLING OF UNIVARIATE 
RANDOM PROCESSES

4.1 Introduction

Selecting a suitable model for any stochastic process is a complicated 

task. Spanos and Mignolet (1986) and Lin (1987) have investigated the 

application of SI models to random  processes associated w ith the ocean 

environm ent. The most commonly m ethod of m odel order reduction 

technique in Control and System Engineering (Glover, 1984) is derived 

based on state-space modelling. This chapter presents a different method 

for the reduction of the model order based on the initial optim al AR 

estimates of the ocean dynamic systems and then the form ation of a 

reduced order ARMA algorithm.

4.2 Initial autoregressive parameters estimation using MYW 
equations

Let the time series (yt) be an ARMA process of the orders (p, q) with 

p ^ q defined by the difference equations



where ak and bt are the coefficients of the ARMA process. Here y t is the 

tth sample of the discrete stochastic process and w t is the Gaussian white 

noise. M ultiplying both sides of the equations (4.1) by yt_q_t and taking

expected values, the MYW equations can be obtained as described in 

equations (3.26) [Chapter 3] and can be rewritten as

R i « + a iR ,+l-i + a 2R , « - 2  + .........+ a pR ,„_ p = 0 for l S i S N - q

(4.2)

with the original Yule-Walker equations obtained by equating q to zero. In 

the case of spectral estim ation, we have to find the true correlation 

coefficients, Ri and the order (p, q) of the ARMA process. The correlation 

values can be determined from equations (3.6).

For the ARMA process, initial higher order p coefficients (a i, a 2 , 3-3 

...ap) are obtained by solving equations (4.2).

4.3 Higher energy modes selection to form reduced order AR 
parameters

After determining the initial AR coefficients a.y a2, a3, ... ap from

equations (4.2), it is required to determ ine the roots of the polynomial,



a(z-1), which contribute most of the energy to the stochastic process. These 

roots of a (z 'i)  containing h igher energies should  m atch closely to 

represent the original model or time series data without significant loss of 

information. In other words, the true SI model fits the required random  

process along with some noise components present in the system. Here 

we try to eliminate the noise m odes thus reducing the order of the SI 

m odel.

Some of the roots of the polynomial, a(z_1), may be real but most of 

the roots will be complex. Since the complex roots are conjugate, those 

pairs can be m ultiplied to form second order real modes. Therefore, the 

polynomial, a(z_1) can be factored into first and second order real modes,

a(z_1) = 1 + a1 z_1 + a2 z-2 + .......  + ap z 'p

or

Pi p2
a(z_1) = n [ 1 + diz - ] . I I 1+ e Hz-1 + e 2.z‘ 2]

i=1 i=1 (4.3)

w here p j +2p2 = p and dp e ip e2i are coefficients.

A nd p! is the num ber of first order modes and p 2 is the num ber of 

second order modes.

The truncated single sided pow er spectrum can be expressed in a 

partial fraction form. The total power spectrum can split into

ST(z) = S1Cz-l) + R(0) + S2(z) (4.4)

where, R(0) is the autocovariance with zero lag and S j , S2/ are the single 

sided causal and anti-causal power spectra respectively,



S-^z-1) = X R iz_i =
i=l

1± D r 1
^ 1  + d .z-1 + ^ 1

p> E,.z-' + E,.z-2 1) 2]
>1 1 ~ j‘ . .  ̂+ e vz _1+ e_.z-2j=l lj 2)

h7t(z)
(4.5)

Here n(z) is the transform of a rectangular w indow  (1, N) and *

denotes the convolution operator. D j, E ij  and E 2j can be estimated in the 

least squares sense.

We define

— 5—  = Y f  z-‘
1+djZ-1 k l:

(4.6)

1 + eliz '1 + e 2iz '2 ij= ^ g iiz"

(4.7)

H ere fij and gij are com puted using recursion filter techniques as 

described in Appendix-II (examples 3 and 4). Equation (4.5) can be 

rewritten in the time-domain as

[F G ]-
D
E

HR.

R.

L^N. (4.8)

w here

F =

01

li

02

12

f  f1 N - l  1 A N - l  1

... f  

... f
0 P,

1 P,

... f N - l  p

and



§oi 0 §0 p 2 0

§11 §01 -  S . P , § 0 p  v 2
G — §21 §11 §2 p r 2 §i p 2

§ N-l 1 fL N-21 •'* § N-l p r 2 S n - 2 P j  _

H ere R j, R2/R3/R4 ...RN are the estim ates of auto-covariances,

determ ined from the observed /genera ted  time-series data, or from the 

target spectrum. The f^ and gjj are determ ined from equations (4.6) and

(4.7). Therefore, D (i.e., Dp and E (i.e., Eij and E2 p can be determined from 

equation (4.8) which can be rewritten as

D
E = ([F G]T[F G ]) [F G]

HR
R.

lR , (4.9)

In order to select the higher energy modes we have to determine 

the energy associated w ith each m ode. Appendix-IV  describes the 

calculation procedure for determining the energies of the first and second 

order modes of a dynamic system (Porat, 1990). The energy of the first and 

second order modes can be obtained by replacing

al = elj
a! = d j a2 = e2j

b0 = 0 cr o II o

bi = Dj bi = E]j

b 2 = E2j

in equations (AV-7 and (AV-8) of Appendix-V respectively. 

The energy of a first order mode, Qij, is given by



and the energy of a second order mode, Q.2y is given by

q  _  (l + e 2j)(E|j + E2j) -  2 e 1jE1jE2j

( l - e 2j)(l + e2j+  e |j ) ( l  + e 2j - e | j )  (4.12)

The num ber of modes to be chosen depends on how  m uch prior 

knowledge we have of the dynamic system. It is required that only higher 

energy modes are retained which in combination represent more or less 

the original system. If the reduced order of the model is unknown, it is 

essential to fix some limit and retain those modes whose energies are 

above this limit. Finally, the selected modes are m ultiplied to yield the 

final reduced order (p3) AR part of the model.



4.4. Estimation of reduced order M A parameters

Once the AR part of the reduced ARMA model is obtained, the MA 

part can be calculated based on the m odal decom position and partial 

fraction m ethods. The power spectrum  of the reduced order ARMA 

model, St, can be described from equation (4.4) as

_ . . ^  n(z) _ n (z_1)
S T(z) = y R . z - * = - 7 T  + R B + - ——

T i f l  1 a(z) 0 a(z-1)
n(z).a(z-1)+ R 0.a(z).a(z_1) + n(z-1).a(z) 

a(z).a(z-1)
(4.13)

where the causal part of the autocorrelation sequence is 

^  = 2 > lZ-‘
a(z i=i ‘ (4.14)

“ p
n(z_1) = n^z-1 + n 2z -2 + ... + n p z 3

(4.15)

Defining the reduced order ARMA spectrum  as (b(z).b(z)}/{a(z).a(z)} 

and comparing with equation (4.13) the MA part of the ARMA spectrum 

can be expressed as

b(z).b(z-1) = n(z).a(z_1) + R 0.a(z).a(z-!) + n (z_1).a(z) ^  16^

We can define

4 t = 2 > . z - ‘

a(z) «  ‘ (4.17)

where hi can be determined by recursive filter techniques (Appendix-II, 

example 2). Here n(z_1) can be directly estim ated from Ri using  the 

approximate relationship in the time dom ain [ from equations (4.14) and 

(4.17) ]



Equations (4.18) form an overdeterm ined system. This system will 

not have a solution unless R* are associated w ith an ARMA process of 

order (p, q) or lower. Assuming that this not is the case, ni are determined 

in the least square sense. Rewriting equation (4.18)

Hjj. ni = Ri

or,

(4.19)

In order to achieve an efficient computational algorithm, one can 

take N=p, then equation (4.18) will provide a well determ ined solution. 

In other w ords, in simplifying overdeterm ined system  the following 

equations can be applied for determining nj.

' V O O i

"i "

n2
—

r 2 r , ... 0 a i

_n P_ _ ^ p a i
.  p- 1 .

(4.20)

Once ni are determ ined the MA part of the reduced order ARMA 

model is calculated using equation (4.16).



4.5 Final reduced order ARMA model

The final reduced order ARMA spectrum  [equation (4.13)] can be 

obtained from the reduced order coefficients of a(z_1) [from section-4.3], 

n(z_1) [from section-4.4, equations (4.17) and (4.18)] and Rq [section-4.2]. By

factorisation of equation (4.16), it is straight forward to obtain b(zd). Thus 

the reduced order ARMA algorithm is determined and is expressed by the 

difference equations

y, = - £aky,-k +k=i x=o (4.21)

where the time series (yt) is the t ^  sam ple of a reduced order ARMA 

process of the orders (p3, q3) with P3 -  T3 and ak and bL are the coefficients

of the reduced order ARMA process. Here w t is the Gaussian white noise. 

Now the ARMA(p3, q ^  process can also be expressed as the output of a

digital filter whose transfer function, H a r m a ( z ) ,  is defined in terms of the 

z-transform as

(4.22)

and whose input is a discrete white noise process, w t.

The estimated power spectrum, Syy(co), using z = e_itoT, is written as

S„(0)) = Ih ^  (e‘“T)|2
(4.23)

where co is the radian frequency and T is the sampling period.

. b(z-1)
H  ARMA ( Z  > =  a ( 2 - l )

where b(z-1) = b 0 + b ,z -1 + b 2z -2 + 

a(z_1) = l  + a ^ -1 + a 2z “2 +



4.6 Applications of reduced order ARMA m odelling

The model order reduction techniques presented in this chapter 

have been successfully applied to the estimation of reduced order ARMA 

param eters of ocean waves (theoretical spectra and m easured time series) 

and m easured offshore structural motions.

4.6.1 Ocean waves 

4.6.1a Theoretical (Pierson-Moskowitz and JONSWAP) power 
spectra

Consider first the Pierson-M oskowitz spectrum  associated w ith a 

w ind speed of 10 m /s  (denoted here as PM10). Figure 3.5 shows the 

normalised autocorrelation for this wave spectrum. Figure 4.1 presents 

the AIC against increasing AR model order. Consideration of Figures 3.5 

and 4.1 indicates that an AR model of order 40 (AR(40)) is the optim um  

representation of this wave spectrum. The coefficients of the AR part of 

the ARMA model are calculated from the AR(40) m odel using the MYW 

m ethod previously described. The resulting polynom ial, a(z_1) is then 

factorized into first and second order real modes. These modes are shown 

in Table 4.1. Here m odes 4 to 7 are first order real m odes and the 

rem aining m odes have complex conjugates. Hence pairs of complex 

conjugate modes are m ultiplied to form second order real modes. The 

energy in each mode is calculated using equations (4.11) and (4.12). Table

4.1 also shows the energy associated with each m ode for the coefficients of 

the AR part of the ARMA model representation of PM10.



The num ber of modes to be retained for the reduced order ARMA 

model depends on the required level of statistical accuracy. Single peak 

spectra generally associated with ocean waves can be represented by a few 

m odes which contribute the higher energies. Based on prior knowledge, 

some energy limit can be fixed and only those modes whose energies are 

above that limit need be considered. If the reduced m odel order is 

unknow n, one has to predeterm ine the energy limit. Table 1 shows that 

m ode 11 has the highest energy level. The energy levels presented in 

Table 1 are normalized by the energy associated with m ode 11. Modes 9 

and 10 also have significant energy levels. If only modes 10 and 11 are 

considered then PMlO's AR(40) m odel reduces to an ARMA(4,4) model. 

The MA part of the ARMA model is determ ined based on partial fraction 

and recursive m ethods previously described. Figure 4.2a presents a 

com parison betw een the reduced order ARMA(4,4) spectrum  and the 

target Pierson-M oskow itz spectrum  w hich show s reasonably  good 

agreement except in the low frequency region. As we are searching for an 

im proved fit, the next higher energy m ode is added to the AR part of the 

reduced ARMA model. Now modes 11, 10 and 9 are considered and the 

resultant ARMA(6,6) spectrum  is determined. The ARMA(6,6) spectrum  

shows some im provem ent com pared w ith the ARMA(4,4) spectrum  as 

show n in Figure 4.2a. From the above study, it is observed that 

consideration of all modes yields the best results bu t at the expense of 

added complexity. For instance the ARMA(20,20) spectrum  presented in 

Figure 4.2b shows a very good fit w ith  the target Pierson-M oskowitz 

spectrum  as it takes account of all the modes. This indicates that the 

initial AR(40) model was properly selected. N ow  suppose we take an 

AR(32) m odel and look for m odel order reduction. The resu ltan t



ARMA(16,16) spectrum  which takes account of all m odes present does 

show some differences with the target Pierson-Moskowitz spectrum. This 

is owing to the fact that the AR(32) autocorrelation function can not take 

into account all component energies present in the Pierson-M oskowitz 

spectrum .

Figure 4.3a and 4.3b present the results of the above model order 

reduction technique applied to the JONSWAP spectrum . Figure 4.3a 

shows reasonable agreement between a low order ARMA(2,2) spectrum  

reduced from an initial optimal AR(60) model and the target JONSWAP 

spectrum . Increasing the num ber of m odes so that the reduced  

ARMA(2,2) m odel increases to an ARMA(6,6) m odel results in an 

im proved com parison between the reduced m odel spectrum  and the 

target JONSWAP spectrum (see Figure 4.3b).

4.6.1b Measured time series of ocean waves

The wave measurements were recorded at a location in the southern 

North Sea where the water depth was 17.3m as shown in Figure 4.4. The 

wave gauge sensors were placed in the MPN platform as shown in Figures 

4.5a,b and time series waves were recorded.

For the present study a time series wave data (M12) is used here for the 

estimation of the reduced order ARMA parameters. This study considers 

4096 data points collected at a sam pling frequency of 4Hz. Figure 4.6 

shows the normalized autocorrelation of the M12 time series wave data. 

Figures 4.7a and 4.7b present the variation of AIC and  MDL with 

increasing model order. In Figure 4.7a the AIC and MDL are determined



using the error variance betw een the target spectrum  and estim ated 

spectrum. However sometimes the AIC m ethod may not determ ine the 

optimal model order. Using the forward linear prediction residual (FLPR) 

technique the AIC variation does not show the optimal order (Figure 4.7b). 

It may show a very high value which does not seem to be the appropriate 

m odel order. The MDL m ethod determ ines the optim al m odel order 

using the FLPR technique. The advantage of the MDL m ethod over the 

AIC m ethod is that the values of p ln(M) increase with M faster than 2p. 

Hence the MDL m ethod is said to be statistically consistent (Rissanen, 

1983). This example shows that it is not necessary that the AIC m ethod 

can always determine the optimal model order. As the ARMA parameters 

are derived from the initial higher order AR m odel which represent the 

time series wave data, the estim ates of the ARMA m odel param eters 

require a m axim um  of 2p param eters of the initial AR model. From 

Figures 4.6 and 4.7, it is shown that an initial higher order AR m odel of 

order 44 (AR(44)) is the optim um  representation of the above time series 

data. The coefficients of the AR part of the ARMA(22,22) are calculated 

from the AR(44) model using the MYW m ethod. The resulting  AR 

polynomial, a(z"l), has the order as 22. While factorizing a (z 'l)  to form 

the real m odes, it is observed that all m odes are complex conjugates. 

Therefore pairs of complex conjugate m odes are m ultip lied  to form 

second order real modes which are shown in Table 4.2. The energy in each 

mode is calculated as described in Appendix-V. Table 4.2 also shows the 

energy associated with each second order real mode for the coefficients of 

the AR part of the ARMA model which represents the time series wave 

data.



In the following the model reduction technique is applied to reduce the 

initial ARMA coefficients w ithout significant loss of inform ation. As 

described in sections 4.2 to 4.5, the num ber of modes to be retained for the 

final reduced order ARMA m odel depends on the required  level of 

statistical accuracy. Generally a good time series wave data set can be 

represented by a few modes which contribute the higher energies. Based 

on prior knowledge, some energy limit can be fixed and only those modes 

whose energies are above that limit need be considered. If the reduced 

m odel o rder is unknow n, one has to predeterm ine the energy limit. 

Table 4.2 shows that m ode 9 has the highest energy level. The energy 

levels presented in Table 4.2 are normalized by the energy associated with 

mode 9. Modes 10 and 11 also have some significant energy levels. If only 

m ode 9 is considered then M12's AR(44) model reduces to an ARMA(2,2) 

model. The MA part of the ARMA model is determ ined based on partial 

fraction and recursive methods previously described. Figure 4.8a presents 

a com parison betw een the reduced order ARMA(2,2) spectrum  and the 

target M12 ocean wave spectrum which shows reasonably good agreement. 

As we are searching for an improved fit, the next higher energy modes are 

added to the AR part of the reduced ARMA model. Now modes 9 ,10  and 

11 are considered and the resultant ARMA(6,6) spectrum  is determined. 

Figure 4.8b presents the ARMA(6,6) spectrum  w hich show s some 

im provem ent compared with the ARMA(2,2) spectrum.

Another time series wave data set (K15) collected off the West coast 

of India (Figure 3.11) is also investigated here. These time series wave 

data, each of 2048 points, were collected at 2 samples per second. Figures 

4.9a and 4.9b show the results of the reduced order ARMA spectra of K15.



Here it is seen that the ARMA(2,2) spectrum  of K15 wave data provides 

reasonable agreem ent w ith the m easured wave spectrum . Figure 4.9b 

shows that the ARMA(4,4) spectrum fits better than that of the ARMA(2,2) 

spectrum .

4.6.2 Semisubmersible (Santa Fe Rigl35) heave motion

The drilling sem i-subm ersible Santa Fe Rigl35 heave m otions 

digitized data are used here. A set of 2048 data points (sampling rate 2.5Hz) 

is considered. Based on the autocorrelation of this data set (Figure 3.17), it 

is observed that the model order will be optimally selected around 98 or 

100. The ARMA(49,49) and ARMA(50,50) power spectra were compared 

with the m easured heave acceleration spectrum  (Figures 3.19 and 3.20). 

and then m odel order reduction techniques are applied. The reduced 

ARMA(2,2) spectra determ ined from  ARMA(49,49) and ARMA(50,50) 

models show fairly good agreement w ith m easured acceleration spectrum 

which are show n in Figures 4.10 and 4.11. Evidently 2048 heave data 

sam ples can be expressed in only a few param eters w hich are the 

coefficients of ARMA(2,2) model.

It is observed from the above results that the relatively low order 

ARMA spectrum provides reasonable agreement w ith the target spectra or 

m easured time series data. This has a significant practical advantage in 

that a relatively long period record/target spectrum can be characterised by 

a low order ARMA model which is described by only a few parameters.



CHAPTER 5

ARIM A MODELLING OF 
UNIVARIATE NONSTATTONARY 
PROCESSES.

5.1 Introduction

Dynamic offshore systems are, strictly speaking, nonstationary. For 

application purposes, when a random  process follows a normal (Gaussian) 

distribution, a dynamic offshore system can be viewed as a wide-sense 

stationary process. Sometimes long period waves (swells) approach the 

coast along w ith wind generated sea waves of relatively short period. 

These com bined time series wave da ta  are strictly  nonstationary. 

Similarly m easurem ents of offshore structural m otions of long periods 

with short period waves yield nonstationary dynamic responses, and vice 

versa. These type of time series data can not be modelled using AR, MA 

and ARMA algorithms as described in previous chapters. Such types of 

nonstationary time series data can be m ore precisely m odelled using 

modified SI algorithms (Box and Jenkins, 1976, Jenkins, 1979, Pankratz, 

1983 and Priestley, 1988), nam ely, autoregressive integrated moving 

average (ARIMA).

The univariate autoregressive m oving average algorithm s have some 

advantages over other traditional m ethods such as:

a) The autoregressive moving average model is a family of models, 

not just a single model, that is, it can express any of the AR, MA and



ARMA algorithms.

b) The concepts of these models are derived from classical probability 

theory and mathematical statistics.

c) These m odels can determ ine optim al univariate prediction with 

smaller least squares error.

5.2 Definition of ARIMA model

A nonstationary time series data is subjected to some form of data

transformation and differencing d times to yield a stationary time series 

data, z t. If there is no differencing applied (d = 0) an ARMA model of z t

enables a wide class of stationary processes. If the differencing is greater 

than zero (d = 1, 2, 3, ... ), the appropriately transformed and differenced 

time series can be m odelled by the autoregressive integrated moving 

average (ARIMA) algorithms and it is denoted as ARIMA(p,d,q), where p 

is the num ber of autoregressive parameters, d is the degree of differencing, 

q is the num ber of moving average parameters.

The differencing d is a simple operation which involves determ ining

successive changes in the values of a data series. Let the original 

nonstationary time series data be yt. Then using the first differencing of yt, 

define a new variable z t as

Z, = y ,-y ,- i  for t = 2 ,3 ,4 , n (5.1)



Here the time series, z t is called the first differences of the time series, yt. If 

the first differences do not seem to show a stationary series, z t can be

redefined as the second differences (d = 2).

Differences of the first differences can be expressed as

Similarly one can continue the differencing until the new  time series 

shows a stationary process.

5.3 Backshift notation

Using the above definition we are forcing nonstationary time series 

into stationary time series and then estim ating ARIMA param eters. 

However we are interested in predicting the original time series. This is 

not a problem as we can regain the original time series using a backshift 

operator, p .

The backshift operator, p ,  is such that the time series data can be 

expressed as

z. = ( y , - y . - , ) - ( y , - ,  - y , . 2) 
= y t - 2 y.-i+y.-2 for t = 3 ,4, n (5.2)

p  y. =y , . ,  

P 2 y, = y ,_2 

p 3 y. = y ,- 3 (5.3)

p  y. =y,-dJ



H ere the backshift operator does not have any m eaningful value or

constant. To make sense of the backshift operator, equation (5.3) states that

p  shifts time subscripts. When p  is used in an algebraic expression it 

m ust be m ultiplied by some other variable such as y t. Therefore the

backshift operator, p , is meaningful because it changes the time subscript 

on the variable by which it is m ultiplied as shown in equation (5.3). 

Multiplying a constant by any num ber of p  's does not alter the constant. 

As an example, let C be a constant

Therefore the first differenced time series, z t of the original time series, y t 

can be expressed by using the differencing operator (1-p )  as

p  C = C 
p 2 C = C 
p 2C = C • (5.4)

* / C  = C

z . = y t -  y . -i
= y, -  p y t 
= (i -  P ) y t (5.5)

As P  is not a number, ( 1 - p ) has no numerical value; it is denoted as an 

operator. In equation (5.5), (1- P ) is m ultiplied by an original time series 

variable to express the first differences of that variable.



The second differenced time series data can be expressed as

Z, = y t - 2 y t_,+ y t_2 

= y, - 2 j ^ y ,+  p 2y t 
= (1 -  2 p  + p 2) y t

Similarly d differenced time series data can be expressed as

z = (1 — p)A y
V l )  y ' (5.7)

This shows that the differenced stationary time series, z^ is linked to the 

original nonstationary time series, yt by the operator (1- p  )d.

5.4 Formation of ARIMA algorithm

Based on the definition of the ARIMA processes and  backshift 

notation, steps may be followed for formation of the ARIMA algorithm as 

given below:

a) Select nonstationary variable yt and subtract its mean

y» = y*-y
w here y is the mean value of the nonstationary time series data, ŷ ..

b) M ultiply y t by the differenced operator (1 - p ) ^  to form a stationary 

time series, z t.



vnapiu j

c) M ultiply zt by the autoregressive operator which can be expressed as

(1+ + a 2p 2 + a3p 3 + ........+ app p)

where aj (i=l, 2, 3 ,... p) are the autoregressive coefficients up to order 

P-

d) M ultiply white noise w t by the moving average operator which can be

written as

(b 0 + + b 2p 2 + b3p 3 + ........+ b q£>q)

w here b[ (i=0, 1, 2, 3, ... q) are the m oving average coefficients up to

order q.

e) Equating the results from steps (c) and (d) yields the ARIMA algorithm

(1+ + a.2p 2 + &3p 3 + ........+ app p){(l -  p ) d (y, -  y)}

= (b0 + b1p  + b2p 2+ b }p i + ......... + b,£>’)w 1 (5g)

Equation (5.8) can be w ritten as ARIMA(p,d,q) algorithm  which is 

defined in section 5.2. The ARIMA(p,d,q) is a general form of MA, AR and 

ARMA in integrated form. So that the ARIMA (p,d,q) can be expressed in 

the form of either the MA as ARIMACO^q), AR as ARIMA(p,d,0) or a 

com bination of both. Once the differencing is carried ou t to form a 

stationary time series, the ARIMA models are expressed as similar to the 

univariate  ARMA m odels as described in Chapter-3, except for the 

additional procedure to determ ine the nonsta tionary  process. This 

additional procedure is described in the following.



5.5 Procedure for integration to regain nonstationary processes

Equation (5.7) shows that the z values are the differences of the y 

values, and the y values are sums of the z values. Therefore y values can 

be obtained by integrating (summing) the z values. So the ARMA(p,q) 

model for the stationary time series z t is an in tegrated ARIMA(p,d,q) 

model for nonstationary time series, y t. Even though we can build up the 

ARIMA m odel for the stationary time series, z t, our main aim is to get

back the original nonstationary time series . This can be achieved as 

follows.

Suppose we have the stationary time series z t for differencing, d = l, 

then equation (5.5) can be rewritten as

y t = ( i -  P ) ' 1 z t
= [1 + p  + p 2 + p 3 + ........ ]z,
= z t + p z t + p 1 Z t + p 1 Z t +  . . .

=  Z , + Z , _1 + Z , _ 2 + Z , _3

(5.9,

Suppose we have a differencing of d=2, we have to integrate twice to 

obtain yt

y, = ( i -  P ) 2 z t

= ( l - p ) - 1[ ( l - p ) - 1z,] (5.10)

Let the second term (in square brackets) in equation (5.10) be defined as xt . 

Equation (5.10) can then be rewritten as



y, = ( i -  P ) 1 x t

w here

(5.11)

x = (1 -  p )  1 z
5 1 (5.12)

Therefore once xt is obtained from equation (5.12) in the same way as 

shown in equation (5.9), substituting xt in equation (5.11) determines the 

original nonstationary time series, y t. In this way we can continue to

integrate d number of times to obtain the original time series.

5.6 Selection of number of differencing to form stationary 
processes

The num ber of differencing, d, can be selected based on the following 

procedures:

a) Check the time series data visually. This mostly gives a hint to the 

approximate degree of differencing required. Using nonstationary time 

series data, initially use first differencing (d=l) and then examine the 

first differencing time series. If it still shows nonstationarity, use d=2 

and check the second differencing time series. This way one can check 

the trend of time series and its mean value which tends towards zero.

b) Check the estimated autocorrelations of the original time series and the 

differenced time series. Variation of autocorrelation values with time 

lag can also sometimes give the proper selection of d values for which



differenced tim e series form a stationary process. The estim ated 

autocorrelation decays w ith increasing lag for nonstationary process 

does not seem to follow like stationary cases (Bendat and Piersol, 1986).

c) Also one can examine the initial estimated AR polynomial about stable 

stationary process. W hether poles of AR model are less than unity in 

m agnitude as described in section 2.3.

5.7 Applications

5.7.1 Generated nonstationary ocean waves

W ind generated waves are often called sea waves having relatively 

short periods com pared w ith swell or other long period waves. W hen 

waves of short periods and long periods are m easured in combination, the 

behaviour of such time series no longer follow stationarity conditions. If 

we divide the nonstationary time series into segments we find that their 

probability distributions are not the same. As an example, a m easured 

time series wave data set of short periods (North Sea waves: M l 2) is 

considered  here and then  com bined w ith  S i n ( y g Q - t )  to form  a 

nonstationary wave process. This combined process is shown in Figure

5.1. Since a basic requirem ent of SI m odelling is to have stationary 

processes, visual examination of the time series data (Figure 5.1) is clearly 

shown to be a nonstationary process. Now it is required to find the kind of 

transform ation that is likely to convert the nonstationary process to a



stationary process. Using the term differencing as described in section-5.6, 

one can convert the nonstationary process to a stationary process by using 

d num ber of differencings. Starting with d = l, the first differenced time 

series is estimated as shown in Figure 5.2. Examining both Figures 5.1 and

5.2, one can easily notice that the trend of long periods has disappeared in 

Figure 5.2 and seems to form a stationary process with constant mean.

Another way of checking the differenced time series to be stationary is 

to examine the estimated autocovariances for both the time series (Figures

5.1 and 5.2) as shown in Figure 5.3. This clearly shows that the differenced 

time series autocorrelations decay along the fixed (x-axis) line, whereas the 

autocorrelations of the nonstationary time series do not show  clear 

convergence which is the basis for identification in param etric modelling 

of random  processes.

Figure 5.4 shows the AIC variation for the autoregressive process of the 

first differenced time series. This shows that there is a gradual decrease in 

AIC values up to the model order of 32 and then there is very slow 

variation. It shows that the AIC(44) is m inim um  at the model order 44. 

Therefore estimations of AR(32) and AR(44) power spectra are compared 

with the power spectrum calculated by FFT which are shown in Figures 5.5 

and 5.6. This shows that there is little difference except in the peak 

frequency region. Based on this study the AR(32) model can be accepted as 

a good model of the first differenced time series data. However based on 

the m inim um  criterion, the AR(44) model is chosen for use of the model 

order reduction technique. Using the model order reduction technique as 

described in Chapter 4, the AR(44) model is reduced to an ARMA(4,4) 

model by discarding noise modes. A comparative study between the FFT



pow er spectrum  and the reduced order ARMA pow er spectrum  shows 

(Figure 5.7) that the ARMA(4,4) model can fairly represent first-differenced 

time series data (Figure 5.2). In nonstationary terms, this model can be 

expressed as an ARIMA(4,1,4) algorithm.

The model stability can be verified by examining the eigenvalues of the 

polynom ials, to determ ine if the eigenvalues are less than unity  in 

m agnitude. The best way to represent it is to plot poles as show n in 

Figures 5.8a,b. Here all poles are less than unity in m agnitude. Hence 

these SI models are stable.

To check w hether one can regain the original nonstationary time series 

data (Figure 5.1) from first differenced time series data (Figure 5.2) one has 

to integrate. Using the procedure given in section-5.5 and starting  

nonstationary value we get indistinguishable nonstationary time series 

data (Figure 5.1). Since the integrated time series data is indistinguishable 

from the original nonstationary time series data this plot is not shown 

here.

Examining the poles and zeros (Figures 5.9a, b) of the ARIMA(4,1,4) 

and ARIMA(2,1,2) models one notices that one complex pair of poles and 

zeros of ARIMA(4,1,4) are very close to the same value. If we cancel these 

poles and  zeros then the ARIMA(2,1,2) m odel is form ed as show n in 

Figure 5.10. However the ARIMA(2,1,2) spectrum shows a high PSE in the 

peak frequency region compared with the ARIMA(4,1,4) spectrum. Since 

the cancelled poles and zeros contribute some energy a better spectral 

estimate of ARIMA(4,1,4) algorithm is observed as shown in Figure 5.7.



5.7.2 Nonstationary displacements of jacket platform deck 
(Magnus)

The response of giant Magnus platform (Figure 5.11) deck (located in 

the northern  N orth  Sea) was m easured in the form of accelerations. 

These time series data have been double integrated to yield displacements. 

The platform deck acceleration appears to be a stationary process, whereas 

the resultant displacements are nonstationary. This can be observed from 

Figure 5.12. Before SI modelling, the nonstationary time series data need 

to be transform ed to stationary time series data. C onsidering first 

differencing, (d=l), the first differenced time series data are determ ined 

based on the procedure described in section 5.6. This is shown in Figure 

5.13. This also shows that some nonstationarity remains. Differencing of 

the first differenced time series data, (d=2), the second differenced time 

series data are estimated and shown in Figure 5.14. This appears to form a 

stationary process. By integrating (summing) twice, the time series data of 

Figure 5.14 can be converted to the original nonstationary data of Figure 

5.12.

Because the displacements of the platform deck form a sharp peaked 

power spectrum, it has a very high autocorrelation lag for which the AIC 

is minimum. A similar case was noticed as described in section-3.4. Such 

types of time series data can be m odelled w ith minimal AR or ARMA 

param eters. Starting w ith AR(2), the estim ated pow er spectrum  is 

compared with the power spectrum determined by the FFT method. This 

result shows a good match. The AR(2) model can be expressed as a 

nonstationary process of form as an ARIMA(2,2,0) m odel as shown in 

Figure 5.15. Similarly increasing the AR model order, the ARIMA(3,2,0) 

and ARIMA(5,2,0) model param eters are estim ated and their spectra are



compared with spectrum determined by FFT as showm in Figures 5.16 and 

5.17. The ARIMA(5,2,0) m odel seems to represen t well the second 

differenced time series data of platform  deck displacem ents. W hile 

exam ining poles of the above models as plotted and show n in Figures 

5.18a-c, it is observed that one pole is very close to zero in m agnitude in 

the ARIMA(3,2,0) model. If we do not consider this pole, then the 

ARIMA(2,2,0) m odel is formed. This can be verified by comparing their 

spectra. Because of the additional pole has a small value present in the 

ARIMA(3,2,0) model, the PSE contributed by this pole estim ates some 

energy which can be observed in the peak frequency region as compared to 

the ARIMA(2,2,0) spectrum (Figures 5.15 and 5.16).



CHAPTER 6

MULTIVARIATE AUTOREGRESSIVE 
MODELLING

6.1. Introduction

In the analysis of recorded time series of ocean wave processes we 

often require the power spectrum  which may be obtained from a single 

point m easurem ent such as local wave elevation. To obtain further 

information about the wave process such as directionality we need to 

app ly  m u ltivaria te  spectral analysis techniques to a num ber of 

simultaneously m easured wave records to determ ine the cross spectrum. 

The traditional approach to spectral analysis of ocean waves is to use 

m ethods based on the Fourier Transfer such as W elch's m ethod 

(Oppenheim and Schafer, 1975). An alternative approach is to use modern 

spectral estimation based on univariate and m ultivariate autoregressive 

algorithms.

Univariate autoregressive algorithm s have been widely applied in 

many fields, including ocean engineering, especially for the modelling of 

ocean waves (Spanos and Hansen, 1981 and Spanos, 1983). For univariate 

AR models, we only require autospectra of the time series data. There are 

many practical problems of interest where vector processes are involved. 

For example phase, coherence and directional spectra of ocean waves 

involve vector processes. In vector processes im portant information is 

present in the cross spectra rather than in the auto spectra alone. Here 

the d esired  in fo rm ation  can be ex trac ted  u sing  m u ltiv a ria te



autoregressive (MAR) algorithms. MAR algorithms can estimate not only 

the power spectral densities, but also phase and coherence spectra of time 

series wave data sets. From these MAR algorithms one can estimate wave 

directionality from three simultaneous wave time histories, provided that 

the distances between measurement locations are less than half the wave 

length.

This chapter describes MAR m odelling for the estim ation of 

m ultivariate AR m atrix coefficients and prediction error covariance 

matrices which finally yield the power spectral estimates. The present 

study considers bi-variate random  processes. The MAR model order is 

selected based on the auto and cross correlation methods and also Akaike 

information criterion method.



6.2. The multivariate AR m odel

The unidirectional ocean wave process can be described by the 

univariate  autoregressive algorithm  (Spanos, 1983 and Spanos and 

Mignolet, 1986). MAR processes are developed from the algorithms that 

have been developed for univariate autoregressive processes. The MAR 

m odel is developed to estim ate pow er spectral densities, and then 

coherence and phase spectra.

The MAR process is defined as the vector recursion

, = - T A „y,-k + u ,
k=l

(6.1)

where, yt is an m-variate vector of time variables,

y t =
y 2.t
y 3.t

y»,t (6.2)

y t_k is the vector of time variables with k time steps elapsed.

A^. are the mxm  autoregressive param eter matrices,

' A A A11 Jc 12 Jc 13 Jc *•* 1 m  Jc
A A A21 Jc 22 Jc 23 Jc **• ^ 2 m , k
A A A31 ,k ^ 3 2  Jc 33,k ^ 3 m , k k =  1 , 2 , 3 . . . ...p

A  , . A  , . A  , ,m  1,k m 2 Jc m 3,k . . . A  .m m  ,k_
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And u t is an m xl  vector representing the input driving noise process,

u t =

u
u
u

l . t

2,t

3 ,t

tm , t (6.4)

The z-transform of equation (2.1) can be written as

Y(z) = A~*(z) U (z) (6'5)
k = p

where, A(z) = I + £ A(k ) - z ' k
k=l

If the m ultivariate noise processes are w hite noise w ith constant 

covariance matrix, Pw, then the MAR PSE function can be written in z-

transform

P MAR(z)=  A_1(z). Pfw. A ' V 1)

=  B - ‘ ( z ) . p : . B - t ( z - )  ( 6 6 )

where A(z) and B(z) are forward and backward transfer functions, and Pfw 

an d  P^ are the respective prediction error variances of the time series 

data sets. The transfer functions and covariances of equation (6.6) are 

estim ated based on the estim ation of residual variance m atrices and 

partial correlations as described by Morf et al (1978).



6.3. Multivariate AR algorithms

A stationary m-variate AR process may be described by the forward 

filter process at time index, n, as

e fp(n) = y(n) + ^ A ( k )y (n  - k )
k=l

= a y (n)
(6.7)

w here e fp(n) is the forward prediction error at n, a p is the block row 

vector of MAR matrix coefficients given by

a p= [ I  A p(l) Ap(2) ... A p(p)]

(6.8)

I is an raxra identity  m atrix and y (n) is the block colum n vector of
~ p

multivariate data given by

y (n) =
— p

y(n) • 
y(n -  1)

_y(n -  p).

(6.9)

Similarly MAR processes can also be expressed by the backward 

filter process
p

ep(n -  1) = y(n -  p -  1) + ^ B ( k ) y ( n - p  -  1 - k )
k =1

= b y (n -  1)
p —

(6.10)

w here

- b = [ B p(p) B p(p - 1 )  ... B p(l) I]
(6.11)

y (n -  1) =
p

y(n -  p -  1)' 
y(n -  p -  2)

y(n -  1) (6.12)



and e p(n -  1) is the backward predictor error.

Initialization of forward and backward prediction error is 

e '(n ) = e ‘(n) = y(n) (613)

The residual variance m atrices, Pfp , Pp , and the covariance 

matrix, P^ are written as

N
Pp = — -—  e* (n) • e*T (n)

P N - P n = t +lP P

»b
P

N
£ ep(n - 1>-ep T<n - 1>N - pr n=p+l

pfb _ N

N - p  " J  r n=p+l
X ep ( n ) e p T (n -1 )

(6.14)

Initialization of residual variance matrices is

Pfo = K  = ^ - i y ( n ) . y T(n)
n=l (6.15)

Therefore the normalized partial correlation as proposed by Morf et 

al (1978) can be expressed as

Pp+i = (pfp)_1/2 - P p - ( p bPr T/2

=(pf; v  • pp • (pPl/2)_T
(6.16)

The logic for the square-root matrix, P1/2, is that for any positive 

definite matrix, P, satisfies



where PT/"2 equals (P1//2)T. The superscrip t1/2 denotes the lower triangular 

matrix. Similarly p_T/ 2 is equal to (P1^2)'1. The reflection coefficient, 

ap(p) provides a unique param eterization of the univariate AR process. 

Similarly the m ultivariate norm alized partial correlation pp provides a

un ique param eterization  sequence for the m ultivariate  algorithm . 

Therefore the new forward and backward reflection coefficients (A and B 

respectively) are predicted based on the partial correlation functions as

a p+1( p + d  = - ( p r ) p p+1(pp /2)_i 

B p+1(p +  1) = -  (Pp1" )  PTP+1 (P "  V
(6.18)

N ow the order for the prediction error covariance matrices is 

updated as

pU = [I - A P«(p + 1 )B P«(p + » ] pfP 

p p+, =  [ l - B P+. ( p  +  l ) A p « ( p + D ] p P
(6.19)

Also multivariate linear prediction errors between orders p and p+1 

can be established as

e p+1(n) = efp(n) + A p+1(p + 1) e p(n -  1) 

e p+1(n) = ebp( n - l )  + B p+1(P + l ) e fp(n)
(6 .20)

Here once the residual variance matrices and their norm alized partial 

correlations are determined, reflection coefficients and error covariances 

of MAR processes can be estim ated using equations (6.18) and (6.19). 

Reflection coefficients are also known as transfer functions.



6.4 Bi-variate random processes

For bi-variate autoregressive processes, equation (6.1) can be 

rewritten as

p P

yi.t — — ^ail,k y 1, t-k~ ̂ fai2, k y2,t-k +k=l k=l
P P

y2.t — — 21, k y 1, t-k~ ̂ a22, k y 2, t-kk=l k=l
(6.21)

w here yq t and y2 t are the two time series data sets, a  ̂  ̂ are bi-variate 

autoregressive coefficients, u 11 and u21 are white noise and p is the model 

order. The model order, p, is optim ized by using the auto and cross­

correlation processes and the AIC of the two time series data sets. The 

m ain purpose of optim izing the MAR model is to fit the model to the 

time series data as closely as possible. Optimization of MAR model order 

is essential if real time time series data is to be stored in the form of MAR 

parameters. This ensures that the maximum am ount of information may 

be retrieved from the MAR parameters.

The auto and cross correlations, ryiy.(^), of bi-variate processes 

[equations (4.1)] are expressed as

r v  ( \)  = E[y,(t+X.)-y ,(t)]

r r1»,M  = E [y 2(t + X.) • y 2(t)]

= E [ y i ^
(6.22)

where E[.] denotes the expected value.



Power spectral densities, P y ^ f )  can be described by the discrete 

Fourier transform of the correlation functions [equations (6.22)]

Py y (f) = T £  ry y ( X )  • e"jJ l1 l 3 l 3 1\  = -oo

p y y ( 0  =  T  2 > y  y W  ' e "3 2 3 2 3 23 2X = -oo

P y  y ( f )  =  T  X  r y y M  ' e " i2 ' ™ '3 1 3 2 3 V  2

(6.23)

where T is the sampling period and f is the cyclic frequency in Hz. 

Cross spectral densities are complex and related by

P y y (f) = p-y y ( - f )
1 2  2 1

(6.24)

where the asterisk superscript denotes the complex conjugate.

It is evident that the cross spectrum  m ust be less than or equal to 

the geometric mean of the time series y l and y2 process spectra, i.e.,

|P I < /p  ^P I yiy2| “ V yiyi y*y2
(6.25)

Therefore, the 2x2 power spectral densities matrix m ust have a 
positive determ inant for all frequencies. The coherence function, by^C f),

is defined in terms of complex dimensionless form as

p y,y (0
(})y y (f) =  / ----------

VP^O.Py.y.tf)
(6.26)



The phase spectrum , 0(f), betw een two time series data can be 

expressed as

0(f) = tan
Im ag  (0 y ^ )  

Real(<}) )
(6.27)

The magnitude squared coherence, O(f), is defined as

|p yy ( f ) f
O(f) = ----- -— —— '------Py y (f) -P y y (f)J 1 ' 1 J2J2

(6.28)

Since the cross spectrum  is less than or equal to the mean of the 

product of the autospectra [equation (6.25)], <D(f) lies between the limits of 

zero and unity which correspond to no and perfect coherence respectively.



6.5 M ultivariate m odel order selection

For the un ivariate  case, the least squares error and Akaike 

inform ation criterion m ethods are well know n and easily applied to 

determine the optimal model order. However, for multivariate cases, it is 

sometimes difficult to determine the optim al model order mainly owing 

to the cross correlation processes. To obtain a reliable estimate of MAR 

coefficients, one has to minimize the model order in order to ensure that 

the Toeplitz m atrix does not become ill conditioned. In addition, the 

computational time for MAR spectral estimates is m uch higher than that 

for univariate cases and so it is desirable to select the m inim um  model 

order which can represent approximately the MAR processes of the time 

series data sets.

In general, exact values of the covariance function are not known 
and need to be estim ated from the time series data y t . One m ethod for

estimating the lagged (X) covariances, R(>.) is

This is an unbiased correlation for a total of M data points. The 

model order can be selected from the auto and cross correlations of the 

time series data sets up to a lag, X, equal to the model order p, up to which 

the process is convergent. Alternately, one can use a m ultivariate version 

of the AIC (Jones, 1978) which can be expressed as

2  M -X

(6.29)

AIC(p) = M In + 2m2p (6.30)



H ere the model order, p, is selected for which AIC(p) is a minim um. 

Equation (6.30) can be used as a guideline for selecting the approxim ate 

model order. Both of the methods described above are used. In the first 

pass a simple method for selecting model order can be used by examining 

auto and cross correlations of the data sets, the best combination (from 

auto and cross correlations) of m inimum order, p, up to which the process 

is convergent may be selected. Then using equation (6.30) the selected 

optimal model order can be confirmed.



6.6 Application of multivariate AR algorithms for ocean wave
m odelling

The MAR algorithm s presented  in this chapter based on the 

forward and backward prediction error techniques have been successfully 

applied to the estimation of power spectra, phase and coherence of two 

m easured time series wave data sets.

The wave m easurem ents w ere recorded at a location in the 

southern N orth Sea where the w ater depth was 17.3m. The two wave 

gauge sensors (denoted M12 and M17 respectively) were horizontally 

separated by a distance of 17.66m (Figure 4.5b). Each wave record set 

consisted of 4096 points sampled at 4Hz.

The approximate model order for the M l2 and M l7 wave data sets 

is determ ined both by the auto and cross correlation m ethod and the AIC 

method, which are shown in Figures 6.1a and 6.1b. From Figure 6.1a, it is 

difficult to select the optimal model order, but it can be assum ed that it 

could be between 40 and 60, up to which the processes are convergent. 

This difficulty  is overcome w hen one considers the AIC which is 

presented in Figure 6.1b. It is evident from the Figure 6.1b that the AIC 

changes very little for model orders greater than 36. It can also be seen that 

the AIC is a minimum at the model order 44. Hence the optim al model 

order is selected as 44. Sometimes, if the processes are purely convergent, 

it is difficult to select the approxim ate m odel order by auto and cross 

correlation. In this case the AIC method is often the best method to select 

the approxim ate model order, because multivariate AIC takes into account 

of least squares error minimization of the m ultivariate processes.

Figures 6.2 and 6.3 show a comparison between the power spectral 

estimates using the MAR algorithm presented in this paper and the two



variable FFT technique for the two time series wave data sets. Here it is 

observed that the MAR power spectral estimates are reasonably close to 

those determined by the two variable FFT for frequencies where relatively 

high energy levels are present. Figure 6.4 presents a comparison of the 

cross spectral energy densities obtained from the above two methods. 

There is good agreem ent which is encouraging since the cross spectral 

density contains the im portant inform ation needed for estim ating the 

coherence and phase. Once the optimal model order of the MAR model is 

obtained based on the convergent processes, the phase and coherence of 

the time series data are determined using equations (6.27) and (6.28) which 

are show n in Figures 6.5 and 6.6. Figure 6.5 shows the comparison 

between coherence spectral estimates using MAR algorithms and the two 

variable FFT. The coherence spectrum  also shows good agreement for 

frequencies associated with relatively high energy levels. There are some 

differences in the estimates of the coherence and phase spectra compared 

with the results obtained from the two variable FFT. This is mainly owing 

to the approxim ation of the time series data sets in the form of MAR 

parameters. For purely convergent processes, the optim al model order 

will sometimes be very high. In this case it will be more complicated to 

estimate the MAR parameters owing to the ill conditioning of the Toeplitz 

matrices.
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CHAPTER 7 

DISCUSSION

7.1 Univariate AR, MA and ARMA modelling

This w ork presented provides an insight into stochastic processes 

(ocean waves and offshore vessel and structural motions) by the various 

SI models. Here three SI algorithm s, namely AR, MA and ARMA are 

successfully applied not only for generating time series data which are 

compatible w ith a target (Pierson-M oskowitz, JONSWAP or m easured) 

spectrum  of ocean waves, bu t also for optim ization of SI algorithm s for 

the reduction of the vast volume of time series m easured data.

The approxim ation of the theoretical Pierson-M oskowitz spectrum  

has dem onstrated that the system  identification process of the Taylor 

approx im ated  Pierson-M oskow itz spectrum  can be the basis for 

developing efficient ARMA models. The presence of a zero of infinite 

order of the true Pierson-Moskowitz spectrum  at the frequency, co=0, can 

be a source of ill-conditioning of the system of linear equations associated 

with SI models. The AR algorithm  represents the current value of the 

time series as a linear combination of its past values and of white noise. It 

is based on the recursive filter (refer to Appendix-II). This process also 

ensures that the autocorrelation functions of the target and AR processes 

match at a num ber of time steps (lag) by which the AR m odel order is 

determ ined. As long as the autocorrelation  function follow s the 

convergence rule, the model order selection will be proper. If the dynamic



system consists of a convergence and divergence process, then one must be 

careful while selecting the model order. One should select the optimal 

order of the model that covers only convergence of the autocorrelation 

function. The main feature of the AR process is that autocorrelation 

values can be extrapolated for a time lag greater than the duration of the 

available record using equation (3.9). The MA process can generate time 

series data based on the linear combination of a white noise process which 

is weighted by suitable constants. For determining these constants several 

criteria can be adopted. Here these constants are associated w ith the 

Fourier coefficients of the square root of the target spectrum. The ARMA 

process represents the curren t value of the tim e-series da ta  as a 

combination of its past values and the values of white noise. Here two 

approaches, namely, pow er of order m atching (POM) and inverse AR 

(IAR) filter using MYW equations can be used for determining the ARMA 

coefficients. The m odel order selections of the above SI m odels are 

optim ized based on the LSE and AIC m ethods. The results of a 

comparison study on LSE of both the IAR and POM methods of estimating 

ARMA spectra are shown in Table 3.1. It is observed there that the LSE of 

the ARMA-POM spectra are less than that of the ARMA-IAR spectra 

predicted from PM (PM10), JONSWAP (J10), and m easured (K15) spectra. 

This also confirms the efficiency of the ARMA-POM m ethod over the IAR 

m ethod. Both of the above ARMA spectral estim ation m ethods can be 

used w ithout much loss of information.

As the model order increases the num ber of equations in (3.10) 

increases and the system  of Yule-W alker equations becom es ill- 

conditioned for theoretical ocean wave spectral estim ation. Hence the 

accuracy of the AR coefficients deteriorates. For the above study to be 

reliable, the num erical in tegration for obtain ing autocorrelation  of 

theoretical spectra should be performed accurately.



Even though ocean dynam ic systems are random  in nature, the 

confused ocean surface elevations can be characterised by their power 

spectral estim ations. Sim ilarly offshore structural m otions can be 

expressed by their responses. Sometimes for structural m otions the 

correlation lags up  to the stage in which the process is convergent is of 

very high order owing to its sharp peaked nature. Hence the Toeplitz 

m atrix can become ill-conditioned. For such a high correlation lagged 

dynamic system the SI model order needs to be properly selected. The 

lower order autoregressive model can generally be used to describe the 

sharp peaked dynam ic system. The m onohull crane vessel A and B 

motions show examples of such cases. Using autocorrelation, AIC, or 

MDL methods the selected model order of the crane vessel motion yields a 

very high value for which the Toeplitz matrix in equation (3.10) becomes 

ill-conditioned. However, the lower order AR model [AR(3)] can fairly 

represent the above dynamic system as shown in Figure 3.26.

The study presented herein has shown that the ocean wave process 

can be appropriately  m odelled using autocorrelation, AIC, or MDL 

m ethods and AR, MA, and ARMA algorithms. For structural motions, 

one should make first ones examinations at autocorrelations lags up to 

which the process is convergent. If it is too high, one can start from a 

lower order and then estimate the proper AR or ARMA m odel which 

yields a better representation of the structural motions.



7.2 Reduced order ARMA m odelling

The reduced order ARMA m odelling p rocedure p resen ted  in 

Chapter 4 may be summarised. First the initial autoregressive param eters 

of the ARMA model are obtained based on the optim al m odel selection 

m ethods and MYW equations for target spectra or m easured time series 

wave data. Then a model order reduction technique is applied for further 

reduction of data in the form of reduced ARMA model coefficients.

Autoregressive, moving average and ARMA algorithms have been 

applied by other authors for the identification and m odelling of target sea 

wave spectra and the time series random  processes [ Spanos (1983), Spanos 

and M ignolet (1987, 1990), M arple (1987), Kay (1988), Rosen and Porat 

(1989), and Lin (1987)]. These SI algorithms are optimized by selecting the 

m odel orders based on autocorrelation matching, least squares error, or 

the AIC m ethod. Sometimes a particu lar SI m odel becom es ill- 

conditioned owing to a number of factors such as not taking into account 

all poles and zeros, optimal model orders, and the num ber of Yule-Walker 

equations. In some cases depending on the observed time series data, 

there m ay be inadequate correlation. Highly uncorrelated data can be 

modelled with very high model orders, and the model orders selected by 

the AIC may not always be an im proved representation of the dynamic 

system. However, the proposed m ethod for the reduction of the SI model 

orders described in C hapter 4, based on initial h igher order m odel 

selection, gives im proved statistics of the data while elim inating spurious 

disturbances and noise. In many situations, it is practically impossible to 

obtain und istu rbed  time series data. It is also difficult to rem ove 

disturbances from observed time series data. In the statistical sense and



with prior knowledge of the nature of the response of the system, these 

disturbances can be removed by the model order reduction technique.

This part of the study em phasizes the application of system  

id en tific a tio n  techn iques to the  fu rth e r  red u c tio n  of m arine  

environm ental data. Since the system identification m ethod allows one 

to bu ild  up  m athem atical m odels of dynam ic system s based  on 

experimental data from the systems, one w ould also like to establish the 

theoretical spectra in the form of rational modellings. In this part first 

theoretical PM and JONSWAP spectra are used. Even though selection of 

the initial model order is high, this can be reduced to a few param eters 

which are the reduced order ARMA coefficients. This shows that the 

model order reduction technique described here is also valid for the 

developm ent of theoretical spectra. H ere the m odel o rder reduction 

technique may not be practically useful for the theoretical spectra which 

are defined by few values such as w ind speed, significant wave height etc., 

it can be used to verify the power spectral estimatation. This leads to the 

further establishing of SI models of measured ocean waves. The reduction 

time series data first involves a sm oothing operation by a correlation 

technique. Here M data points are reduced to N  modified Yule-Walker 

equations where N corresponds to the num ber of correlation coefficients. 

Equations (3.6a) and (3.6b) estimate the correlations, where the num ber of 

correlations is set by equations (4.2). Then the SI algorithms are applied to 

reduce the N correlation coefficients to 2p AR coefficients by the optimal 

model order selection method. These AR coefficients are further reduced 

to a final reduced order ARMA m odel by only considering m odes w ith 

significant energy. Initial excessive smoothing (N is too small) will cause 

loss of resolution in the resulting spectral estimate. Very little or no 

sm oothing (M=N) should be initially applied  to signals w ith  spectra



containing sharp peaks, whereas considerable smoothing (M » N ) can be 

applied to signals with broadband spectra.

The method of estimating ocean wave spectra by the reduced order 

ARMA algorithm  represents an alternative to other m ethods such as 

those based on the fast Fourier transform (FFT) or summation of cosines. 

The FFT or sum m ation of cosines analysis will include the contributions 

from noise or the other erroneous disturbances present in the m easured 

time series data. The reduced order ARMA algorithm  presented  in 

C hapter 4 offers the potential to elim inate the noise m odes. Also 

relatively few param eters which are the reduced order ARMA coefficients 

are needed to describe the spectral estimate compared to that based on FFT 

methods. This has significant advantages in terms of the data storage 

requirements for a long term structural monitoring system.



7.3 ARIMA m odelling of nonstationary processes

The SI models described in Chapters 3 and 4 applied only to 

stationary processes, that is, mean, variance and autocorrelations of any 

random  process are constant through time. The time series can be 

nonstationary in m any ways. A time series can have a nonstationary 

m ean, variance, autocorrelations or com bination of these statistical 

parameters. The most common nonstationary processes can be those with 

some steady trend in the mean of the time series. Such types of time series 

can sim ply be transform ed to a stationary time series by using the 

differencing technique. Other types of time series may be such that their 

trend in variability is more complex in nature, and transformation of such 

time series to stationary process may not be achieved so easily. In these 

cases, some suitable algebraic transform ation techniques need to be 

developed.

In offshore dynamic systems nonstationary processes (which are a 

combination of short periods and long periods) are sometimes measured. 

SI m odelling of this type of time series data can be possible through 

transform ation of nonstationary process to a stationary process by the 

differencing technique. Complete removal of nonstationarity  may not 

alw ays be easy. From the practical application poin t of view an 

approximate transformed stationary time series is likely to be adequate for 

estimation of the ARIMA parameters.

The application of ARIMA modelling to nonstationary time series 

offshore data is examined in section 5.7. The offshore nonstationary time 

series are, in general, homogeneous, i.e., different segments of each time 

series seem to behave similarly to the rest of the time series if we allow for 

changes of each segment's trend which may be level a n d /o r  sloped. In



other words, if we can eliminate the slope and level of different segments 

of a nonstationary process, we form a seemingly stationary process. Such 

types of time series can be simply transformed to a stationary process by 

one or two time differencings as described in section 5.6.

After differencing to form a stationary process, the ARIMA(p,d,q) 

m odel is constructed. This SI m odelling procedure is sim ilar to that 

described in Chapter 3 and 4 except for the differencing term. Here model 

reduction techniques can also be applied to estim ate the reduced order 

ARIMA model.

One should  avoid unnecessary differencing which m ay create 

artificial patterns in the time series data and reduce estimation accuracy. 

The num ber of differencings can be chosen based on (a) visual inspection 

of time series data , (b) checking autocorrelations of original and 

differenced time series data, and (c) possibly examining the AR parameters 

to determine if they follow stationarity conditions.

To recover the original nonstationary time series the differenced 

time series needs to be integrated which involves sum m ing successive 

values in a differenced time series.



7.4 Multivariate autoregressive m odelling

M ultivariate autoregressive algorithms are applied for estim ating 

pow er spectral densities and then coherence and phase spectra of time 

series wave data sets. Before proceeding with any identification of time 

series data, one should first look into the data sets. In most cases, digital 

time series data recordings are in raw form and the records include some 

noise and extraneous disturbances. Even though system identification 

techniques can be applied to remove the disturbances as described by Witz 

and Mandal (1991), much better identification can be obtained if the data is 

preprocessed prior to identification. The preprocessing m ay involve the 

following:

1. Removal of erroneous large peaks

2. Removal of mean values

3. Band-pass filtering

4. Sampling interval selection

Once the data sets are preprocessed, they can be used for estimation 

of the MAR parameters. First of all an appropriate model order which can 

represent the MAR processes needs to be selected. There are some 

difficulties associated w ith selecting optimal model orders using auto and 

cross correlations of time series data sets as shown in Figure 6.1a. The AIC 

m ethod overcomes this problem. The AIC m ethod appropriately selects 

the minimum model order at which the AIC(p) is minimum. In general, 

param etric MAR models have high dim ensionality. For high model 

orders, sim ultaneous estimation of so m any param eters using the MAR 

algorithm  will involve very high com putational times com pared w ith 

those for univariate AR algorithms. In addition, higher order matrix



coefficients can som etim es give m isleading resu lts ow ing to the ill 

conditioning of the higher order Toeplitz matrix. Many researchers have 

extended Burg's (1975) algorithms to the m ultivariate case. In doing so, 

two sequences of reflection coefficients are determ ined by forw ard and 

backw ard filter techniques. Briggs and Vandiver (1982) used only the 

MAR forw ard filter technique to estim ate the transfer function of an 

offshore platform 's response to environm ental excitation. Using these 

two techniques it is straight forward to estimate power spectral densities 

separately. Power spectral density estimates from the two techniques are 

different for the same data sets. Here we have applied a partial correlation 

technique which has been applied to solve the estim ates of the MAR 

m atrix coefficients and predicted error covariance m atrices using both 

forw ard and backw ard filter techniques. This is m ade possible by 

determination of square-root matrix and normalized partial correlation as
b 'Y f

described by equations £kYl) and (3,T0) respectively.

For univariate AR models, we only require the autospectrum  of the 

time series data. There are m any practical problem s of interest where 

vector processes are involved. For example; phase, coherence, and 

directional spectra of ocean waves involve vector processes. In vector 

processes im portant information is present in the cross spectra rather than 

in the auto spectra alone. Here the desired information can be extracted 

using MAR algorithms. MAR algorithms can estimate not only the power 

spectral densities, but also phase and coherence spectra of time series wave 

data  sets. From these MAR algorithm s one can estim ate  w ave 

directionality from three simultaneous wave time histories, provided that 

the distances between measurement locations are less than half the wave 

length.



Using MAR modelling, one can reduce the time series data into a 

num ber of param eters which are the MAR coefficients. As an example, 

two time series wave data of 4096x2 points are show n to have been 

reduced  to 132 values w hich are the MAR coefficients. Future 

development of the reduced order m ultivariate SI modelling will further 

reduce multivariate SI coefficients w ith m inim um  loss of information.



7.5 Future work

The study presented herein provides an insight into the stochastic 

processes such as ocean waves and offshore structural motions by the 

various SI m odels. Here AR, MA and ARMA algorithm s have been 

successfully applied for estimation of theoretical and m easured spectra of 

ocean w aves, platform  deck m otion, sem isubm ersible and m onohull 

crane vessels' m otions. ARIMA algorithm s have been app lied  to 

nonstationary structural motions. Some time series wave data have also 

been used for optim al selection of the above SI algorithms. However 

there are m any limitations when m odel order reduction is applied. The 

quality of final reduced order ARMA spectral estimation purely depends 

on selection of the initial higher order model. If the initial higher order 

model is not properly selected, the final ARMA spectral estim ation can 

cause m isleading results. M oreover m ultipeak spectra lead to the 

selection of very high orders of model. So an initial higher orders model 

m ust be properly selected. Therefore, it is necessary to use many observed 

time series structural monitoring data and marine environmental data to 

verify the proposed SI models and m odify the SI m odels accordingly. 

Another way of verifying the performance of SI models is to compare the 

target spectrum  and estim ated spectrum  (or original data and predicted 

data) obtained from SI m odels by evaluating a num ber of statistical 

characteristics such as cum ulative energy and cum ulative root-m ean- 

square distributions. This is worthy of further study.

One should properly select the sam pling rate of the time series 

offshore data. A higher sam pling rate will increase correlation lags and 

hence the optim al model o rder will increase. H ow ever a very low



sampling rate may describe acceptable spectral estimates but it may poorly 

represent the time series. Detailed study of such cases may be undertaken 

to confirm the effect of SI m odelling on the sam pling rate of the time 

series.

Based on analysis of m easured m onohull crane vessel motions in 

random  sea waves the transfer function estimation by SI algorithms and 

FFT shows good consistency. However for better estimation of the transfer 

functions, one may measure and analyse different high sea state structural 

motions. This study will confirm the validity of estimation of the transfer 

functions by SI algorithms which can be used as an alternative method to 

the FFT technique.

Based on the study as reported here, it is clear that there is an 

im m ense opportunity  for use of SI m ethods applied to time series in 

offshore m onitoring and environmental data and further study is likely to 

be needed in order to obtain the most suitable properly selected optimal 

models for specific problems. Depending on the problems one needs to 

resolve, various SI algorithms can be formulated and used for wide sense 

stationary random  processes. As an example, to determine the modes and 

the intensity of vibration of a member of the offshore structure likely to 

fail, SI modelling can be applied.

Similarly modified SI algorithms can be applied depending on the 

nature of nonstationarity of the offshore random  processes. In this thesis 

generated  nonstationary  wave and  real p latform  deck m otions are 

analysed using ARIMA algorithms. Here the process is nonstationary in 

its mean. There may be nonstationarity in its variance or other form for 

which m odified SI modellings need to be developed.



The m odel reduction technique as described in C hapter 4 for 

univariate offshore dynam ic systems can be extended to m ultivariate 

offshore dynamic systems, so that the reduced order rational SI model 

could effectively represent the m ultivariate processes w ith m inimum loss 

of information. This will give a more complete reduction technique for 

application to offshore dynamic systems.

The m ultivariate autoregressive algorithm s described in Chapter 6 

are applied to two time series data  sets. These algorithm s could be 

extended to estimate wave directionality from three sim ultaneous time 

series wave data sets collected within the distances between m easurement 

locations are less than half the wave length.

The study  presen ted  herein  has been lim ited to off-line SI 

m odelling. This could also be extended for on-line SI m odelling by 

modifying SI algorithms and using proper feedback mechanisms.



CHAPTER 8 
CONCLUSIONS

The study presented herein has em phasized the application of 

system identification techniques to m arine environm ental and structural 

m onitoring data. The SI algorithm s, namely AR, MA, and ARMA have 

been discussed and applied not only for generating time series data which 

are compatible with a target (PM or JONSWAP) spectrum of ocean waves, 

bu t also for optim ization of SI algorithm s for the reduction of the vast 

volum e of time series m easured data (ocean waves, offshore structural 

m otions, etc.). Further reduction of the SI models' orders can elim inate 

noise disturbances which are present in the recorded time series data.

The AR algorithm  is form ulated based on the recursive filter 

technique (Appendix II). This process also ensures determ ination of the 

m odel order which is selected as the num ber of time steps of lag of the 

autocorrelation function up to which the process is convergent. The 

m ain feature of the AR process is that autocorrelation values can be 

extrapolated for lags greater than the duration of available record using 

equation (3.9). The MA algorithm  is form ulated based on the linear 

com bination of a w hite noise process w hich is w eighted by suitable 

constants associated with the Fourier coefficients of the square root of the 

target spectrum . The MA process can also be generated from the AR 

process using relationship as described in section 3.2.2. The ARMA 

algorithms are form ulated as the combination of AR and MA processes.



H ere two approaches, namely, pow er of o rder m atching (POM) and 

inverse AR (IAR) m ethods are used  for de term in ing  the ARMA 

coefficients as described in section 3.2.3. The model order selection of the 

above SI models are carried out based on the LSE, AIC, or MDL method.

The app rox im ation  of the  theo re tica l PM sp ec tru m  has 

d em o n stra ted  tha t the system  id en tifica tio n  p rocess of Taylor 

approxim ated PM spectrum up to an order of eight can be the basis for 

developing efficient ARMA models. The presence of a zero of infinite 

order of the true PM spectrum at the frequency, co=0, can be a source of ill- 

conditioning of the system of linear equations associated with SI models. 

The above SI algorithm s are successfully app lied  to ocean waves 

(theoretical PM and JONSWAP spectra and m easured time series) and 

offshore structural dynam ic systems. The time series m easured data 

should be preprocessed (removal of erroneous peaks and mean values, 

selection of proper sampling interval, etc.) prior to SI m odelling which 

will lead to a better estimation.

The correlation lag up to which the process is convergent is very 

high in some cases of offshore structural m otions. In these types of 

processes one should be careful about proper selection of model order. It is 

observed that the lower order AR or ARMA models can generally be used 

to express such types of time series. These lower order SI models' transfer 

functions of offshore structural m otions in random  sea waves show 

consistency with that estimated by FFT.

Based on the selection of the initial higher order SI model and the 

MYW method, the model order reduction technique is developed. Firstly 

an estim ation of a higher order AR is carried out and then the model



order reduction technique (based on calculation of the energy of the mode) 

is applied to obtain the final reduced order ARMA model. This reduction 

technique can remove the spurious noise modes which are present in the 

time series data. Using the above SI techniques, for example, 2048 digital 

wave data are reduced to a few values which are the reduced order 

parameters of an ARMA model as shown in Figure 4.9a. Therefore, once a 

particular SI model is validated for any stochastic process, this model can 

be used for subsequent reduction of time series data.

Sometimes nonstationary offshore structural m otions or ocean 

processes may be observed. Such types of time series normally can not be 

m odelled using SI algorithm s which are generally used for w ide sense 

stationary random  processes. One has to visually observe the time series 

in respect of its nature  of nonstationarity , i.e., levels and trends of 

nonstationarity. The study presented herein considered the cases w here 

the observed nonstationary time series having nonstationary mean are 

m odelled using differencing techniques as described in Chapter 5. To 

regain the nonstationary process, one has to integrate by a num ber of 

times equal to the num ber of differencings already undertaken for SI 

modellings. There m ay be some cases w here the time series having 

nonstationary variance can be modelled by first taking natural logarithms 

and then differencing techniques [Pankratz (1983), Chapter 7]. The main 

purpose of forcing the nonstationary time series to stationary time series is 

to model the process by formulating ARIMA algorithms. Once the system 

seems to form a stationary process one can use SI algorithms as described 

in Chapters 3 and 4. The generated nonstationary ocean waves and 

m easured nonstationary  platform  deck m otions (displacem ents) are



successfully modelled using ARIMA algorithms as described in Chapter 5.

The m ultivariate autoregressive m odelling will not only represent 

the random  processes, it can also give information about their effects or 

influences on each other based on coherence and phase spectral estimates. 

The MAR algorithm s are form ulated using the forw ard and backward 

prediction error techniques, feedback weighting coefficients matrices and 

the driving noise vector which are obtained based on the estimation of the 

partial correlation of the time series data sets. Here the appropriate model 

order is selected based on convergence processes of the time series data 

sets, i.e., by au to  and  cross correlations and m ultivaria te  Akaike 

information criterion methods. These algorithms are applied to estimate 

MAR power spectral density spectra and then phase and coherence spectra 

of two time series wave data sets collected at a N orth Sea location. The 

estim ation of MAR power spectral densities are com pared w ith spectral 

estimates com puted from a two variable fast Fourier transform , which 

show very good agreement. Also the estim ated coherence shows good 

agreem ent w ith coherence determ ined by FFT in the peak frequency 

region. This MAR m odelling can be extended to further development of 

the reduced order m ultivariate SI modellings which will further reduce 

the SI param eters w ith m inim um  loss of information.
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APPENDIX I

Maximum likelihood estimation and properties 
of convergence of random processes

The m ethod of maximum likelihood is w idely used in estimation 

theory. The basic concept of maximum likelihood m ethod is simple and 

can be described as follows.

Let e, [ e = y - x0 ] be a discrete white random  process (error) with 

zero mean and variance a 2, and p(e,0 ) be its probability density function, 

where 0 is some unknown param eter to be determined. Consider a set of 

M independent samples, ev  e2, eM. Now we have to obtain the best

estimate of these samples for the param eter 0. The estimate 0 is selected 

in such a way that are most likely to occur during measurements. The

best estimate 0  can be obtained by formulating a likelihood function and 

then taking into derivative with respect to 0 .

Assum ing the PDF of ej is G aussian d istributed , p(e,0) can be

expressed as

P(e  i»e) = ^ = t Exp( - ^ 2 )
V 2 7 i a 2 2 g  (A I -1 )

The likelihood function L(0) is expressed as the joint probability density 

function of and it can be written as



Lnixe)  = L i i ^ C e , , 0)
i = l

'  ^ 5 i r E x t ( ~ ^ e T e , }

= - ■ ^ l ( y - x 0 ) T( y - x 0 ) - ^ L n ( 2 j t a 2)

1 -(y -  x 0 )T ( y -  x0 ) + C
2a  (AI-2)

where C is a constant. Taking the derivative with respect to 0 of the above 

equation

30a ; ( y - x 0 )T( y - x 0 ) = 0
9=3 (AI-3)

This solution of estim ating 0 is identical to the least-squares solution. 

This shows that the ML estim ator for G aussian d istributed  errors is 

equivalent to the LSE estimator.

Some properties of convergence concepts for random  procrsses are 

given below. Let xt be an indexed sequence of random  variables and x* be

a random  variable, then

a) x t —»x* as t —»°o with probability unity

P(x —»x*,t —>oo) = 1
(AI-4a)

b ) x t —»x* in mean square

E[xt -  x* ] 2 —»° as t —>°o (AI-4b)



c) x t —»x* in probability

For every small value e > 0

P(|xt -x* |> e) -»0 as t - ) «  (AI-4c)

d ) x t —»x* in the distribution

If the probability density functions of x and x are defined as p^ (x) 

and p +(x) respectively , then

p (x) _> p (x) (AI-4d)
r  Xt x*

The stationary random process x(n) is said to be ergodic with respect

to its first and second order moments if 
m

^ j-£ x (n ) —» E[x(n)]

(AI-5a)

1 M^ - ] T x ( n +  r)x(n) -> E[x(n + t )x (n)]

n=1 (AI-5b)

with probability unity as M -» °° . The above two terms are also used as

the sample mean and covariance of the data respectively.

If the random  discrete tim e sta tionary  process x(n) show s

1 M
-j^-^x(n) —»E[x(n)] , then the covariances of the data R x —>0 as

n= l

\X\ — wi t h probability unity as M —>«> .

Proof of the above properties are given in Gnedenko (1967).



APPENDIX II

Some useful examples of recursive filters

The digital filters are applied to discrete time series by convolving 

input (xp time series with the impulse response or weighting function (f.)

of the filter. The output time series (y ) can be obtained as

N

y D = £ f . x
;  p  i p - i

i=0 (AIM)

The convolution operation can also be represented by the product of 

the z-transform  of the input and filter time series. Equation (AII-1) can 

also be expressed in the form of z-transform as

Y(z) = F(z ) . X(z)
(AIM)

Here X(z) is the input to the filter and Y(z) is the output. The 

variable z represents the operation of delaying the signal sample by one 

sample interval. In the form of Laplace transform, z can be expressed in 

frequency variable, co

z = e_a)T 

where T is the sample interval in seconds.



Some digital filters can be expressed as rational functions of z, i.e., a 

ratio of two polynomials in z. As an example, the digital filter can be 

written as

_  B (Z ) _  b 0 + b lZ ~1 + b 2Z ~ 2 +  - +  b  nZ ~ n
A(z) i + ajZ-1 + a 2z -2 + . . .+  a nz-n

(AII-3)

Substituting F(z) in equation (AII-2), we get

Y(z) + z • Y (z ) . [a t + a 2z_1 +  .] = [ b 0 + b 1z_1 + .......... ] .X(z)

Therefore,

Y(z) = [ b 0 + b 1z _1 + ........ ] .X(z) -  z . [ a j + a 2z _1+ .........].Y(z)
(AIM)

or,

Y(z) = B(z).X(z) -  [A(z) -  1]. Y(z)
(AII-5)

O utput 
 ►

Y(z)

Input

X(z)

CONVOLUTION 
 Bfz)

CONVOLUTION
A(z)-1

Figure AII.l Block diagram of equation AII-5

The above figure shows a feedback m echanism  of the dynamic 

system and m ay be realized in a digital com puter w ith a feedback or



recursive equation. The recursive equation for above figure can generally 

be expressed as

y„ = [ b 0x „ + b 1x n. 1 + ....... • ]- [ a 1y n_1 + a 2y n_2 + ......... ]
or,

n n
y n = I b . x  -  Xa .yJ " • n 1 n_1 • i J n - J

1=0 J=1 (An-6)

W here, the output time series is computed in the sequential order 

Y y  y2, Yy  V4  yn- Here the recursive filters are physically realizable in

the sense that they can not respond to an input before it occurs. Hence we 

must assume yn = 0  for n<0 , that is, there is no input before xQ.

Example-1

To prove equation (AII-6 ), let us consider a particular example of 

the recursive filter

\ 1 -0  F(z)
1.0 -  0.5 z - 1 (All-7)

The above filter could be applied by expanding in a polynomial and 

using convolution. By using simple division

1.0 - 0 .5  z_1)l.O (1 +  0.5z_1 + 0 .2 5 z " 2 + 0 .125z“3 + .........
1 . 0 -  0.5Z-1 

0 .5z_1
0.5Z-1 - 0 . 2 5  z- 2 

0.25 z"2



F(z) = 1 + 0.5z_1 + 0.25z-2 + 0.125 z-3  + ........
(AII-8)

This filter could be applied by convolving w ith a sufficient number 

of terms of the series. This filter could also be applied by using equation 

(AII-6 ), where

a i = - 0.5 

b0  = 1 .0

Therefore, equation (AII-6 ) becomes 

y„ = x , + 0.5 y n_1

(AII-9)

Now we can prove that equation (AII-9) is equivalent to equation

(AII-8 ) by using unit im pulse response of the recursive equation (i.e., 

input time series (xn) as 1 .0 , 0 .0 , 0 .0 , . . .  ).

So xQ = 1.0

x = 0 .0  for n = 0n

The output of equation (AII-9)

y  o = xo + 0-5(y -i)
= i.o+o.5<ao) = i.o

y i = x, + 0.5(y0)

= 0.0+0.5(1.0) = Q5

y 2 = x2 + 0-5 ( y 2)
= 0.04-0.5(0.5) = Q 25

y 3 = x | + 0*25 ( y 2)

= 0.0+0.5(0.25) = 0.125

(AD-10)



Therefore we could prove that the unit impulse response of the 

recursion equation is identical to the coefficients of the polynom ial 

expansion as given by equation (AII-9). Hence the recursion equation 

perform s the function as the convolution of the input w ith the filter 

weighting function.

Example-2

Consider an inverse of a polynomial, a (z 'l) of the time series

F(z) = — = £ y „ . z ' “a(z ) n=o

w here,
a(z_1) = 1 + ajZ-1 + a 2z -2  + a 3z -3 +

Equation (AII-6 ) can be applied as

y " = x n - [ a 1y n_1 + a 2y n_ 2 + a 3y n_3+ ...]

(An-ii)

(AII-12)

Using the unit impulse response or weighting function of the filter,

which is identical to the convolution of the operator of the filters, the 

coefficients yQ y2 • • • • can be calculated from equation (AII-12).

Here xQ = 1.0

x = 0 .0  for n = 0  n



The output of the equation (AII-12)

y0
yi
y 2 
y3 
y4

Example-3

1.0 -  [0 .0] = 1.0

0-0 -  [aiy„] 

o-o -[a1y, + a2yj
°-0 - [ a iy2+ a 2yi + a 3yo]
° .0 - [ a1y3 + a 2y 2 + a 3y, + a 4yo]

Consider a filter

(AII-13)

F(z) = 1

1 + d,.z -i £ y n-z'
n=0

(AII-14)

From equation (AII-6 ), the output time series can be written as 

x " -  d iy»-iy„
(AII-15)

Therefore, coefficients of the output are

y0 = 1 .0

yi = 0 .0 -djyQ

y2 = 0 .0 -  djy j

y3 = 0 -0 -  d j y 2

y4 = 0 .0 - d ^ (AII-16)



Example-4

Consider another type of filter

#

(AIM 7)

From equation (AII-6 ), the coefficients of ou tpu t time series can be 

expressed as

y n = * n "  “  e 2 y n_ 2

(An-i8)
Therefore, the coefficients of output are

y0 — 1.0
yi = 0.0 - eiy0
y 2 = 0.0 - eiyi - e2y0
y3 — 0.0 - eiy2 - e2yi

(AII-19)



APPENDIX III 

Modified Yule-Walker equations

An approach for the determ ination of successive values based on 

past observed values was introduced by Yule (1927). He carried out an 

investigation into the estimation of periodicities in disturbed series with 

special reference to successive annual sunspot numbers. Yule m ade an 

introductory study on generating random  data based on superposing 

harmonic fluctuations and disturbances. Yule developed the regression 

approach for estimating successive values. If y lr y2, y3 ,  yn represent

the series resulting from a dynamic system then successive values of that 

dynam ic system  in the absence of d istu rbances, having  a causal 

relationship, can be expressed in a regression equation as

y„ = - [ a 1y „_1 + a 2y n_2 + ........ + apy„.p]
(AIII-1)

The above equation w ith disturbances is obtained by adding a term, Wn to 

the right-hand side.

If equations (AIII-1) hold true and provided that n is large, Walker

(1931) showed that a similar equation holds approxim ately between the 

successive values of the correlation coefficients, Rt, of the terms of yj

separated by time lag t,



rr IV41A

Rt -  - [ a 1R t_1 + a2Rt_2+ +aPRt-P] (AIII-2)

The varia tion  of correlation coefficients, Rt, ob tained  from 

equations (AIII-2) is m uch smoother than that of the time series data. 

Based on equations (AIII-2) various relationships are found between the 

am plitude of corresponding terms in the Fourier series and those of the 

correlation coefficients. Equations (AIII-2) are known as the Yule-Walker 

equations.

Let y t be a discrete-time zero-m ean Gaussian ARMA process of 

order (p,q), with p > q, expressed by the difference equation

p q

y = -  £ a  v . + Xb.w
J  t  t - i  i  t - i

i=l i=0

(AIII-3)

W here ai and bj are the coefficients of the ARMA(p,q) process, and 

w t is a white Gaussian noise process.

Now m ultiply both sides of the equation (AIII-3) by yt.q.L and 

taking expected values, the correlation coefficients of the process yt are

given by

Ri = E{y.y.-,}
and

R. = R .1 -1

Then we get

Rq« + aiRq« —1 + a2Rq«—2+.......+aPRq«-p = °  f° r l ^ l < p  (Affl-4)



Equations (AIII-4) are often called M odified  Yule-W alker (MYW) 

equations. The simple ordinary Yule-Walker equations can be obtained 

with q = 0. In the case of spectral estimation, we have to find out the true 

correlation coefficients, Ri, and the order (p,q) of the ARMA process. If 

the observed or target spectrum is given, then R^ can be determined from

the relationships

2

Js(cD)cos(taoT)dco (AIII-5)

where, X = 0 , 1 , 2 ,3 , .. and,

T

is designated as the cut-off frequency.

In the absence of a target spectrum, if the available information is a 

finite set of time series data, such as for {0 < t < N}, then the true 

correlation coefficients, R^, can be calculated from the relationships



APPENDIX IV

Calculation of the roots of a polynom ial

To determine the roots of a polynomial in a straightforw ard way, 

one can use Laguerre's method which is briefly described below.

Let the polynomial is defined by its roots as

f„(x)= ( x -  XjXx- x 2)  (x - x n) (AIV-1)

Taking natural logs in both side of equation (AIV-1)

F x = In |fn(x)| = In |x -  x l + In |x -  x J  In|x -  x n|
(AIV-2)

Then taking the first derivative with respect to x

dFx j 1
V  __  V  V __dx X - Xj + X - X 2 (AIV-3)

and the second derivative with respect to x

1 1

dx 2 (x Xj) 2 ( x - x 2)2

(AIV-4)

the Laguerre formulaes make a drastic set of assumptions. They consider 

that the first root x  ̂ is located at some distance a from the current xi and

all other roots are located at a distance b



a = x -  x 1 
b = x -  x.,l i = 2, 3, n (AIV-5)

Using the notations a and b as given by equation (AIV-5), equations 

(AIV-3) and (AIV-4) can be writen as

Using equations (AIV-6 ) and (AIV-7), the solution of a is obtained as

Here the sign of the denominator should be taken care. If the factor inside 

the square root is negative, a can be complex. The method of obtaining the 

first root is determined by iteration. First using a trial value of x, a is

obtained using equation (AIV-8 ) and then (x-a) becomes the next trial 

value. This will continue untill the value a is sufficiently small. In this 

way subsequent roots are determined.

For more details one can refer to Stoer and Bulirsch (1980), and 

Press et al (1989).

G
(AIV-6 )

H
(AIV-7)

na

(AIV-8 )



APPENDIX V

Calculation of energies of first and second 
order modes of the dynamic system.

Let a t  be a pure AR process of the order n of the dynamic system,

a t =  " a i a t -l  - a 2a t - 2 “ ............- a nCXt- n + W t

(AV-1 )

W here, w t is the white noise with unit variance.

Let {r“, r“, r“, ....... r“} be the first n+1 covariances of { a t).

Using the Yule-Walker equations for the order n



1

(AV-3)

Let n = 2

or,

■■ 
1 

o3
a

A A

k

_i a i a 2 ' A ' "1“
a t 1+ a2 0 %A = 0

_ a  2 a i 1 i 0.

Now consider

A = (l + a 2)+ a]a2 - a ^ - a 22(l + a 2)
(1 + a 2) -  a2(l + a 2) + a2a 2 -  a2 

(l + a 2)(l -  a2) — aj(l — a2)

(1 + a 2) 2(1 -  a 2) — af (1 — a 2)

= (1 -  a 2) [ (1  + a 2) 2 -  a*]
(1 — a 2)(1  + a2 + aj)(l + a 2 -  at)

(AV-4)

1 + 2L-

-a .

- a t( l - a 2) 
1 -  a?

a j - a 2(l + a2) a 1a2 - a 1

- a 1(l + a2) 
a,a.1 2  

2 “ 11 + a, -  a2

" l"

. 0

_0_

JL_
A

1 + a-
-a .
aj - a 2(l + a2) (AV-5)



Let us consider b t is an ARMA process of order n of the dynamic system 

e,

P. = -  a,Pt_ , - a j P . ^ - a , ^ , . ,  • • • - a„P t-n + b 0w t + b , w l . 1 ... + b„wt.„

Therefore, the variance of b t is given by

(AV-6 )

£  = [b 0 b, b 2 . bn]

r «  . . . .
'• r “  1 V

A r “o r °  . . . . . .  r “n —1 b .

r o - • ■ r “  ,  n -*2 b  2

1
•-» 

. 
3

 Q C , c *  - 1

• 
0 

0
1-4 .b „.

Let n = 1, i.e, for first order case,

A  =  [ b 0 b l ] ‘

1 - a l
- a ,  1 • 1 - a J

1 - a J

Let n = 2, i.e, for second order case

1 + a„

•i = i t b 0 b i b J

(AV-7)

-  a
~ a i
1 + a

a j - a 2( l + a 2) -  aj

a f - a 2(l + a 2)

” a i
1 + a„

rboi
. bi

b__ 2_

(AV-8 )

Here, equations (AV-7) and (AV-8 ) are the energies of first and 

second order modes of the dynamic system respectively.



Table 3.1 Comparison of LSE of ARMA power spectra 
between IAR and POM techniques.

Model

Order

ARMA-

IAR

ARMA-

POM

K15 (2 0 , 2 0 ) 0.003346 0.002750

J io (2 0 , 2 0 ) 0.007545 0.001064

J1 0 (30,30) 0.001358 0.001028

PM10 (2 0 , 2 0 ) 0.000833 0.000780

Table 4.1 Modes and energy levels for PM10

Mode
Number

Mode Normalized Energy

1 1 + 1.5453Z' +1.4740 z-2 <1.0E-06

2 1 + 1.4370Z- + 1.0976Z"2 <1.0E-06

3 1 -. 0.0562Z' + 1.1598Z'2 <1.0E-06

4 1 + 1.0018z- <1.0E-06

5 1 + 0.8981z" <1.0E-06

6 1 + 0.7920Z' <1.0E-06

7 1 + 0.4639Z" 0.000001

8 1- 1.4135Z' + 0.7104z-2 0.06136

9 1- 1.3012z- + 0.6184Z'2 0.52210

10 1- 1.1280z- + 0.5088z'2 0.97570

11 1 - 0.8990z- + 0.3543Z'2 1.00000

12 1 - 0.5970z- + 0.1627z-2 0.01831



Table 4.2 Modes and energy levels for M12

Mode
Number

Mode Normalized Energy

1 1 +2.0146Z-U 1.0470 z-2 <lE-06

2 1 + 1.7136Z'1 + 0.9728Z'2 <lE-06

3 1 + 1.3518Z'1 + 0.9540Z'2 <lE-06

4 1 + 0.9331Z-1 + 1.0519z-2 <lE-06

5 1 - 0.1283Z’1 + 1.2933Z-2 <lE-06

6 1 - 1.4063Z'1 + 1.5560Z-2 <lE-06

7 1 - 0.4225Z-* + 0.6942Z-2 <lE-06

8 1 - 2.5952Z-1 + 1.7261Z-2 <lE-06

9 1- 1.8786Z'1 +0.931 lz '2 1.0000

10 1 - 1.7675Z'1 + 0.8763Z-2 0.1482

11 1 - 1.0679z-l + 0.5032z-2 0.0002



Table 4.3 Modes and energy levels for K15

Mode
Number

Mode Normalized Energy

1 1 - 0.0569z'l + 3.9920Z"2 <lE-06

2 1 + 1.8125Z-1 + 1.0776Z*2 <lE-06

3 1 + 1.2114Z*1 + 0.9331z-2 0.00004

4 1 + 0.9234Z"1 0.00002

5 1 + 0.7494z'l 0.00005

6 1 - 0.3274Z-1 + 0.9844Z-2 0.00624

7 1 - 1.4870Z'1 + 1.4601Z-2 <lE-06

8 1 - 0.4412z-l + 0.7595z*2 0.00501

9 1 - 1.8268Z'1 + 0.9248z'2 0.00232

10 1 - 1.6260Z'1 + 1.0357Z'2 <lE-06

11 1 - 1.3200Z'1 + 0.7819Z'2 1.00000
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Figure 1.1 Dynamic system w ith input x(t), output y(t), and 
disturbance w(t).
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Figure 2.1 A piecewise-constant function
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Figure 2 .2  Relationships of the time series, autocorrelation 
and power spectral energy (PSE).
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Figure 3.1 Autoregressive, AR(p) m odel
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Figure 3.2 Moving average, MA(q) model
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Figure 3.3 Autoregressive moving average, ARMA(p,q) model
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PM10 (PM spectrum  w ith  u=10 m /s).
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Figure 3.9 Comparison between JONSWAP (u=10m/s,
7=3.3) spectrum and MA(29) spectrum.
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Figure 3.13 Least squares error variation for K15.
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Figure 3.16 Semisubmersible Santa Fe R igl35 in North Sea.
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model.
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by FFT and MA(32) model.
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Figure 3.25 Normalized autocorrelation of monohull crane 
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roll spectrum and AR(3) spectrum.
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Figure 3.27 Normalized variation of the MA coefficients 
[equation (3.13)] of monohull crane vessel-A roll.
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Figure 3.28 Comparison between FFT monohull crane vessel-A
roll spectrum and MA(30) spectrum.
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Figure 3.30b Pitch (vessel-B) spectral estimates by FFT
and ARMA(12,1) model.
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estimates by FFT and AR(13) model.
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estimates by FFT and ARMA(4,3) model.
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Figure 3.33a Pitch (vessel-B) tran sfe r functions 
estimated by FFTand SI models with 36 
parameters [from Figures 3.30a and 3.29b].
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Figure 3.34a Roll (vessel-B) transfer functions estimated 
by FFT and SI models with 49 parameters 
[from Figures 3.31 and 3.29b].
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Figure 4.5a MPN platform with location of wave gauge sensors.
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estimated from AR(44) using MYW equations and 
reduction method.
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Figure 5.11 Jacket platform  (Magnus) in  N orth  Sea.
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5.500 - LEGEND - 
  Spectrum by FFT

 ARIMA(3,2,0) spectrum

O) 3.300 -

2.200

Q .

1.100

0.000
2.0001.6001.2000.8000.4000.000

Frequency in Hz

Figure 5.16 Comparison of second differenced time series 
(Figure 5.14) spectra calculated by FFT and 
ARIMA(3,2,0) model.

x10"®
5.000

- LEGEND•
  Spectrum by FFT

 ARIMA(5,2,0) spectrum

O  3.000 -

2.000

CL

1.000

0.000
0.000 1.2000.400 0.800 1.600 2.000

Frequency in Hz

Figure 5.17 Comparison of second differenced time series 
(Figure 5.14) spectra calculated by FFT and 
ARIMA(5,2,0) model.



0.8

0.6

0.4

N 0.2
brZ
£
totZ
I  -0 .2

-0.4

- 0.6

- 0.8

0.5-0.51 0 1
Real (z)

Figure 5.18a Location of poles of the ARIMA(2,2,0) model.

0.8

0.6

0.4

,n 0.2
b
5 0
to
6 - 0.2

-0.4

-0 .6

-0 .8

1 -0.5 0.50 1
Real (z)

Figure 5.18b Location of poles of the ARIMA(3,2,0) model.



Im
ag

in
ar

y 
(z

)

-  AD  U -

0 .8

0 . 6

0.4

0 .2

-0 .2

-0.4

-0 .6

-0 .8

1 -0.5 0 0.5 1

Real (z)

Figure 5.18c Location of poles of the ARIMA(5,2,0) model.



No
rm

al
ize

d 
au

to
co

rre
la

tio
n

1.000
- LEGEND•

 Autocorrelation^ 12)
 Autocorrelation^ 17)

Crosscorrelation0.600

0.200

-0.200

-0.600

- 1.000
80.0 100.060.040.00.0 20.0

Lag

Figure 6.1a Normalized auto and cross correlations of two time 
series North Sea wave data sets: M l2 and M l7.

-9.000

-9.200

-9.400

o
<

-9.600

-9.800

- 10.000
0.0 20.0 40.0 60.0 80.0 100.0

MAR model order

Figure 6.1b AIC variation for MAR processes of two time series 
data sets.
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