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ABSTRACT

This thesis describes an investigation into the analysis methods
arising from identification aspects of the theory of dynamic systems with
application to full-scale offshore monitoring and marine environmental
data including target spectra. Based on the input and output of the
dynamic system, the System Identification (SI) techniques are used first to
identify the model type and then to estimate the model parameters. This
work also gives an understanding of how to obtain a meaningful
matching between the target (power spectra or time series data sets) and SI
models with minimal loss of information.

The SI techniques, namely, Autoregressive (AR), Moving Average
(MA) and Autoregressive Moving Average (ARMA) algorithms are
formulated in the frequency domain and also in the time domain.

The above models can only be economically applicable provided the
model order is low in the sense that it is computationally efficient and the
lower order model can most appropriately represent the offshore time
series records or the target spectra. For this purpose, the orders of the
above SI models are optimally selected by Least Squares Error, Akaike
Information Criterion and Minimum Description Length methods.

A novel model order reduction technique is established to obtain
the reduced order ARMA model. At first estimations of higher order AR
coefficients are determined using modified Yule-Walker equations and
then the first and second order real modes and their energies are
determined. Considering only the higher energy modes, the AR part of
the reduced order ARMA model is obtained. The MA part of the reduced
order ARMA model is determined based on partial fraction and recursive
methods. This model order reduction technique can remove the spurious
noise modes which are present in the time series data. Therefore, firstly
using an initial optimal AR model and then a model order reduction
technique, the time series data or target spectrum can be reduced to a few
parameters which are the coefficients of the reduced order ARMA model.

The above univariate SI models and model order reduction
techniques are successfully applied -for marine environmental and



structural monitoring data, including ocean waves, semi-submersible
heave motions, monohull crane vessel motions and theoretical (Pierson-
Moskowitz and JONSWAP) spectra.

Univariate SI models are developed based on the assumption that
the offshore dynamic systems are stationary random processes. For
nonstationary processes, such as, measurements of combined sea waves
and swells, or coupled responses of offshore structures with short period
and long period motions, the time series are modelled by the
Autoregressive Integrated Moving Average algorithms.

The multivariate autoregressive (MAR) algorithm is developed to
reduce the time series wave data sets into MAR model parameters. The
MAR algorithms are described by feedback weighting coefficients matrices
and the driving noise vector. These are obtained based on the estimation
of the partial correlation of the time series data sets. Here the appropriate
model order is selected based on auto and cross correlations and
multivariate Akaike information criterion methods. These algorithms
are applied to estimate MAR power spectral density spectra and then phase
and coherence spectra of two time series wave data sets collected at a
North Sea location. The estimation of MAR power spectral densities are
compared with spectral estimates computed from a two variable fast
Fourier transform, which show good agreement.
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CHAPTER 1
INTRODUCTION

1.1 General

In offshore engineering theoretical models are extensively used in
the design of offshore structures. These theoretical models describe the
marine environment and offshore structure, and are applied to predict the
structure’s service life and response to extreme conditions. Often these
theoretical models require validation to ensure that the engineers have
high confidence in their design. One common design verification
procedure is to carry out model scale tests. Model scale tests are also often
useful for providing additional design data. As a result of the
assumptions made in the structural modelling process and the natural
variation of environmental conditions, there is always an element of
uncertainty associated with the predicted response of the final design.
Owing to these factors, many offshore structures are equipped with
structural monitoring systems which collect long term data on the marine
environment and the structure’s response. Examples of typical data
collected are wave elevations, fluid velocities and accelerations, wind
velocity and direction, structural accelerations and structural strains.
These full scale data are useful for verification of the predicted response of
the structure and for future improvements in designs. The task of
establishing dynamic models from these full scale data is known as System
Identification and it is this field that this thesis addresses. It should be
noted that collecting, storing and handling vast volumes of such data in

the marine environment is an expensive and complicated procedure.



Accordingly measurement programmes need to be properly planned.

The system identification method allows one to build up
mathematical models of dynamic systems based on experimental data
obtained from such systems. Since dynamic systems are abundant in
many fields, system identification (SI) techniques (Eykhoff, 1974, Ljung,
1987, and Soderstrom and Stoica, 1988) have widespread applications. In
the fields of Communications, Mechanical Engineering and Geophysical
Engineering, SI techniques are used for spectral analysis (Kay, 1988,
Priestley, 1981, 1988, Bendat and Piersol, 1980, 1986), adaptive filtering,
fault detection, linear prediction (Karl, 1989, Franklin and Powell, 1980 and
Safak, 1989) and many other purposes. In Systems and Control
Engineering, SI techniques are used to obtain proper models for design of
prediction algorithms, simulation, or synthesis of regulators. In business
and economics, SI techniques are used to forecast in business inventories,
goods production, etc. (Harvey, 1987, Nazem, 1988, Pankratz, 1983). Most
of the SI modellings in business and earthquake engineering (Beck, 1979)
are for nonstationary processes. SI techniques are also being successfully
used in other fields such as Biology and Environmental Science to
develop models for in depth scientific understanding. More recently SI
techniques are also being applied in Offshore fields (Samii and Vandiver
1984, Mason and Ullmann, 1990, Broome and Pittaras, 1990, Jefferys and
Goheen, 1990, Witz and Mandal, 1991, Mandal, Witz and Lyons, 1992,
Worden et al, 1992). However, because of limitations in the
understanding of the complex ocean phenomena, SI techniques have not
been used extensiv‘ely in this field compared with other fields. Proper SI
modelling can not only solve mass data storage and handling problems,
but also can detect structural failures and other unknown phenomena in

the presence of noise in measured offshore dynamic systems.



1.2  System identification procedures

Measured data can be used to identify and establish proper models
by SI techniques for solving many unknown phenomena for which many
laboratory experiments could not appropriately identify or solve the
problems. SI algorithms are becoming powerful tools for solving those
unknown/complex phenomena in offshore fields. If the observed
(offshore) time series data can be well-defined by some mathematical
rules, it is said to be a true system. But in practise, comparing certain
aspects of the physical systems with its mathematical description can
never establish an exact or true relationship. However, mathematical
rules can establish as best as possible a representation to describe the
physical system, from the point of view in usefulness rather than truth.
Sometimes, owing to lack of measured data, approximation of the system

by SI methods could reasonably well describe the dynamic system.

The dynamic system can be defined by an Input-Output system

which is shown in Figure 1.1.

For constructing a model from the data, the SI procedure, in

general, can be expressed in the steps given below.

a) Input-Output data - The input-output data are required for a
specifically designed experiment. Since collecting any offshore time series
data on a long-term basis is most expensive, one must have prior
knowledge (as much as possible) about what are the data to be measured
and when to measure. Therefore, the experiment design gives some
choices so that the data become maximally informative. Several choices

are available in experiment design . These are: which signals to measure,



when to measure them, which signals to manipulate, how to manipulate
them, and how to choose presampling filters and how to polish them by

removing trends.

b) Define some SI models which are to be used with the data and
choose the most suitable one. This is the most difficult and important step
of the SI procedure. If one does not know the physical background of the
system as prior knowledge or information being available , standard linear
models could be used (Ljung, 1987 and Marple, 1987). If the prior
information which leads to the dynamic system is known, this may be a
good starting point for choosing a suitable model. Some knowledge about
the nature of relationships between the measured signals can lead to
appropriate selection of model structures. Fast Fourier transform (FFT)
analysis of the data (Newland, 1984) also can lead to a meaningful
selection of SI model order, based on the spectral shapes. This type of
model set, whose parameters are viewed in order to adjust the fit to the
data and do not reflect physical concepts, is called a black box. The black
box type of models are used for adaptive prediction of the dynamic system.
The model set with adjustable parameters for physical interpretation,
called a grey box, is used for estimation of parameters of the dynamic

system.

c) The assessment of the model quality depends on the
performance of the model. One must identify the best model which

provides the best representation or reproduction of measured data.

d) Once a particular model is chosen based on certain criteria, it is to
be confirmed that the estimated model is a realistic approximation of the
actual system. This is known as validation of the model. So one has to

test whether the estimated model is good enough for its purpose. Model



validation involves various procedures to assess how the model relates to
observed data and to its intended use. The simplest test is to compare the
estimated power spectrum with that obtained from the Fast Fourier
Transform (FFT) analysis. The second test may be to compare the output
time series of the SI model with the actual output. The output time series
of the optimal SI model should give a fairly good match with the actual
output. Another way of validating the SI model is to estimate the
residuals of the model. The residuals estimation is based on the condition
that the difference between the model output and the actual output
should be a white noise process. If the estimated residuals of the SI model
is closer to white noise, the better the model is. One can plot the residuals
and its FFT spectrum and then look to see whether they are similar to
those of a white noise process. Other checks can be made by using various
statistical tests. In most practical applications, we are more interested in
estimating the optimal SI model parameters rather than estimating the

noise or residual model.

The above procedures can be briefly described in the loop as shown

in Figure 1.2.



1.3  Modelling

The models are principally categorized into parametric and
nonparametric types. Some of the features of both types are briefly
discussed in this section and importance of parametric modelling in ocean
engineering field is highlighted. The SI models, namely, AR, MA,
ARMA and ARIMA algorithms can be used for parameter estimation of

univariate random processes related to the ocean engineering field.

A SI model can be defined by any mathematical representation
which approximates the relation between the input and output of a
dynamic system. The SI models can be classified into two principal

categories.

a) Parametric models: These are a particular type of SI model
where the essential features of the input-output relations are described in
the form of parametric polynomials. These parameters must be assigned
values before the model is completely specified. Prior information will
assist to determine the assigned values. Various parametric model
structures are available (see Ljung, 1987 and Safak, 1989). In general the
parameters must be estimated from the input and output of the dynamic
system. As an example, time series data of a stochastic process could be
expressed in the time domain by the difference equation as

P q
y, = - Zakyt_k + Xbw
k=1 (1.1)

where aj and b, are unknown parameters of the model to be estimated, wy

is the white noise as input and y, is the tth sample of the discrete stochastic

process as output.

Assuming that the model is linear and time-invariant, equation (1.1)
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can be expressed in polynomial form in terms of z-transform notation as

Y(z) = H(z) W(z) (1.2)
_ Bz
where H(z)= A

The transfer function H(z) containing unknown parameters A(z) and B(z)

is to be estimated (see equation AII-5, Appendix-II).

b) Nonparametric models: These types of models have unknown
parts in the form of functions rather than parameters. In these types of

system it is required to assume
i) Finite memory
ii) Time-invariant
iii) Linearity for simplification of the problem

For nonparametric modelling, the system can be treated as a “black
box”, since its aim is to determine a function which relates the input to the
output without recourse to any prior information about the internal
structure of the system. As an example, a time-invariant linear model
with a single input and single output (SISO) can be expressed by the

impulse function, h(t), and its input-output relationship is

y(®) = [h(t) x(t - 7) dt
0 (1.3)

where x(t) is the input and y(t) is the output. Equation (1.3) can be written

in z-transform as

Y(z) = H(z) X(z)
(1.4)

Here h(t) and H(z) are arbitrary transfer functions to be estimated from the
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input and output of the dynamic system. Whereas the transfer functions
in equation (1.1) and (1.2) are in the form of unknown parameters.
Therefore different identification procedures are required for each of the
above cases. More details with examples on nonparametric modelling are

given in Ljung (1987), Chapter 6.

Classical methods of estimating power spectral energy (PSE) from
the time series data use discrete-time Fourier transform operations of the
infinite autocorrelation sequence (ACS). This relationship between the
PSE and ACS can be considered as a nonparametric description of second
order statistics of the random process. In the case of a parametric model,
the PSE of the time series model is a function of model parameters which

are to be estimated.

The major motivation for use of parametric models of stochastic
processes is the apparent higher spectral resolution achievable with these
models than that achievable by classical approaches. The parametric
approach could give users choices in ability to fit an assumed model with
few parameters. Depending on the order selection and estimation of
model parameters, the model will yield the least squares error which
could be minimized by optimal selection of model order. The SI models,
namely AR, MA and ARMA algorithms are formulated (see Chapter 3) to
determine the spectral estimates of the stationary marine environmental
and offshore monitoring data. Similarly for nonstationary dynamic
offshore processes, ARIMA algorithms are formulated for parameter

estimation as described in Chapter 5.



1.4 The application of system identification to offshore
engineering problems

Most of the offshore engineering problems may be approximately
solved using conventional analytical and empirical methods. Many
complicated offshore phenomena, owing to lack of in-depth knowledge,
are analysed based on empirical methods. From the design point of view,
safety factors selected sometimes seem to be higher than required, making
the design more costly. Structural fatigue, structural damping and
external loading on structures in offshore environment are very different
from the conventional land-based structural problems for which theories
are well established. Even though the offshore dynamic problems are
solved generally based on linear assumptions and modified land-based
structural theories, in actual fact there are many unknown phenomena
happening in the offshore environment for which present theories may
not be of sufficiently useful. It is for these reasons that many offshore
platforms have been equipped with structural monitoring systems to
observe full scale dynamic responses which e\}entually will yield data
which can be used for improvement in designs, manufacturing and
operations of offshore structures. These full scale structural monitoring
data need to be properly analysed. Using the conventional approaches,
these analysed data may sometimes result in misleading information
owing to unknown phenomena included in the data. -

The data obtained from offshore structural monitoring systems can
be analysed in many ways depending on the user's interest. It can be
categorised into three primary uses. The first is that the data may be used

in long term statistical models where there is little theoretical basis for



establishing extreme events (Patel and Witz, 1991). The structural
monitoring data also provides a cumulative loading history which is
important in establishing the service life of the structure and related
inspection intervals. A third approach is to analyse the structural
monitoring data by applying system identification techniques which relate
the structure’s response and environmental excitation. The structural
models identified from measured data using SI algorithms may be
compared with the theoretical models used in the design process. This
leads to the estimation of appropriate filter parameters.

Most of the offshore time series recordings collected are in their raw
form. The time series raw data can be plotted and visually inspected for
quality of the data. Any abnormal data recorded in the time series can be
easily noticed. An alternative way in which one can detect the bad data is
by using a residual plot (Ljung, 1987, Chapter 16.5). These data may not
provide a good identification of the dynamic system. Based on the study
by Witz and Mandal (1991), it is shown that the SI techniques can be
applied to remove the disturbances or noise modes present in offshore
time series data. Much better identification can be obtained if the data is
preprocessed prior to identification. The preprocessing may involve
removal of mean and erroneous large peaks, filtering, sampling interval
selection and synchronization of input and output.

The dynamic characteristics of any offshore system are complicated,
and can be modelled by SI techniques. Removal of the mean, simplifies
solution of the problem. Sometimes there may be erroneous large peaks
at several points in the time series data owing to various reasons, such as
radio or electrical interference and temporary sensor failure. These errors
certainly disturb the identification which may cause misleading results.
Large erroneous peaks should be removed prior to identification.

Selection of sampling interval also plays an important role in the SI



parameter estimation. The sampling interval is directly related to the
frequency resolution of the time series data through the cut-off frequency
(Nyquist frequency, fy). The frequencies beyond f, are folded back and
superimposed over the lower frequencies in the spectrum. This process is
called aliasing. To avoid aliasing, data should be filtered using an anti-
aliasing filter which is a low-pass filter with cut-off frequency, fy. In
general, in offshore dynamic systems, the phenomena are described up to
a certain frequency which may be much smaller than f. If this is the case,
one need not use a high sampling rate. For high sampling rates, the SI
algorithm will only identify the high frequency part of the dynamic system
(Ljung and Soderstorm, 1983). Sometimes one may need a high-pass filter
to eliminate the very low-frequency drifts in the time series data.

The last step in the preprocessing of data is the synchronization of
the input and output. If data are not recorded in a synchronous way, it can
be tackled by properly selecting the time delay between input and output
during the identification. However, it is often difficult to select an
appropriate time delay which must be obtained by trial and error.

Therefore, it is better to use synchronized data without a time delay.



1.5 Review of previous work

1.5.1 Univariate SI models and applications

Cadzow (1980) presented a method for generating an ARMA
spectral estimate of wide sense stationary time series data. The method is
based on a set of error equations which are dependent on the ARMA
model parameters. The deviation of these error equations with respect to
the ARMA model parameters leads to the ARMA spectral estimates. Even
though the method developed by Cadzow gives high performance as
compared to the maximum entropy method (Burg, 1975) where much
higher order estimates needed to reproduce the actual spectral estimates,
an improved and more efficient ARMA spectral estimate model can be

formulated as described in Chapter 3.

Generally, the numerical generation of sea wave records is
computed based on the superposition of several harmonic waves.
Although this approach is simple, it requires a large number of harmonic
components and considerable computer time. The first to apply linear
prediction theory were Spanos and Hansen (1981). This was an
autoregressive (AR) algorithm for digital simulation of sea waves and can
be used as an alternative, efficient method. They used the Pierson-
Moskowitz spectrum as the target spectrum which can be obtained as the
output of the AR model. Time series waves were determined as the
output of the recursive digital filter to a white noise input. Even though
AR spectral estimates fluctuated, in an average sense the AR model

approximated reliably the Pierson-Moskowitz spectrum. It was



emphasized that the numerical studies were considered as preliminary
and the prime aim of attention was to the potential usefulness of AR

algorithm for ocean engineering applications.

Based on studies of linear prediction theory applied to sea wave
estimation by Spanos and Hansen (1981), ARMA algorithms were applied
to similar studies by Spanos (1983). It was shown that one should carefully
select the sampling interval for developing an AR approximation of a
Pierson-Moskowitz spectrum. Spanos also suggested that a quite high
order AR modelling should be used to ensure proper matching. This is
not always true. For least squares error converging with increasing model
orders, one can always select a high model order. Otherwise for proper
matching one should follow model order selection methods as described
in Chapter 3. Spanos assumed ARMA algorithms were of the form of
single degree-of-freedom linear spring-mass-damper system. Accordingly
Spanos h}d investigated the use of a least squares approximation of
ARMA modelling of Pierson-Moskowitz spectrum. Even though the
ARMA spectrum appeared very similar to the Pierson-Moskowitz
spectrum and gave improved results with higher order ARMA models,

the matching inequality remained.

Later on, much improved ARMA modelling of Pierson-Moskowitz
spectrum was carried out by Spanos and Mignolet (1986). It was shown
that the fluctuations in the AR spectrum were associated with the
presence of poles of the transfer function in the vicinity of the unit circle.
They had shown how the initial AR approximation could lead to efficient
ARMA models of the Pierson-Moskowitz spectrum. Using the Taylor
approximation of exponential terms of the Pierson-Moskowitz spectrum,

the AR spectral estimates reduced sharp fluctuations but could not



eliminate them. They used two alternative procedures to obtain ARMA

coefficients:

a) Auto/cross Correlation Matching (ACM) where an ARMA
representation of the AR filter can be obtained by matching the output

auto-correlations with input-output cross-correlations.

b) Power Order Matching (POM) the ARMA model equivalent to
the AR model. Here, by equating like powers of z (where the SI models
are defined by z-transform), the coefficients of the ARMA models are

obtained from the known initial AR coefficients.

Mignolet and Spanos (1987) presented a unified approach in
determining ARMA algorithms for simulating a random process based on
the target spectrum. The ARMA algorithms were obtained by relying on a
prior AR approximation of the target spectrum. AR to ARMA procedures
were formulated by minimizing the frequency domain error. For
determining ARMA parameters two approaches, namely, ACM and POM
were studied in detail. It was shown that there are computational
advantages of the POM procedure over the ACM procedure in terms of the

size of the system of linear equations.

A finite-order stationary ARMA model was obtained from an
infinite-order AR model by equivalence relation as described by Li, Zhu
and Dickinson (1989). In practice, it is not possible to obtain the
parameters of an infinite order AR model. Therefore, some
approximations have to be made by using a higher order AR model. Li et
al presented a comparison study for two methods of estimating
ARMA(p,q) parameters p and q . One method was derived directly from

the equivalence relation (Graupe, Krause and Moore, 1975). The other



one was derived by Li and Dickinson (1986, 1988) based on an iterated least
square regression approach, where the ARMA parameters p and q are
determined by first obtaining a p+q order AR model and then solving a set

of linear equations similar to the method by Graupe et al.

Rosen and Porat (1989) presented a class of estimators based on the
sample covariances for the time series data with missing observations.
They proposed an algorithm which is based on nonlinear least squares fit
of the sample covariances determined from the time series data to the
covariances of the assumed ARMA model. While collecting time series
data, the pattern of missing data can be quite arbitrary. As cases of special
interest, Rosen and Porat considered two patterns: (a) random Bernoulli
pattern - the data missing is of a fixed probability and misses are
independent and (b) deterministic periodic pattern - missing data points
are repeated periodically. The ARMA algorithm presented by them is
asymptotically optimal, i.e., the error variance tends to the smallest value

when the amount of data tends to infinity.

Cadzow (1982) atterﬁpted to establish the fundamental approach to
the generation of rational modelling of wide sense stationary time series
data. Rational modelling was carried out based on the modified Yule-
Walker (MYW) equations which characterize the autocorrelation sequence
of the rational time series data. By taking an overdetermined model
parameter approach, a procedure for reduction in data-induced model
parameters was obtained and then improvement in the modelling
performance was carried out. Furthermore, adapting a singular value
decomposition representation of the MYW equations to this procedure, a
desired rational model order determination method was achieved. This

approach yields low order high quality spectral estimates using short data



lengths.

Beex and Scharf (1981) proposed a systematic procedure to
covariance sequence approximation for parametric spectrum modelling.
This approach was represented by the approximation of a covariance
sequence of a wide sense stationary process in a modal decomposition. For
the special class of processes with modal decomposition, there is a random
synthesis algorithm that may be used for time series data reduction. They

used the first order mode decomposition technique.

Friedlander and Porat (1984) made some clarifications and put in
proper perspective the various issues related to the MYW method. While
reviewing the different versions of the MYW method, they exposed the
common framework of the stochastic process leading to MYW equations
and fitting a rational model to a noisy impulse response of a linear time-
invariant system. They also emphasized the importance of using a
combination of an overestimated order model and an overdetermined set
of equations. They used a procedure for removing spurious noise modes
based on the modal decomposition of the sample covariance sequence as
proposed by Beex and Scharf (1981). The concept of modal energy is
defined to select the signal related models and to discard the noise modes.
They also reviewed the singular value decomposition method for solving
MYW equations. The estimation of MA spectral parameters seems to be
the more difficult part of the ARMA spectral estimation problem. Even
though this paper described many techniques for evaluating MA spectral
parameters, none of them guarantee the positive definiteness of the MA

correlation sequence, which sometimes estimates negative spectra.

Samii and Vandiver (1984) presented a numerically efficient
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technique for time domain simulation of water particle velocities and
accelerations corresponding to a target wave spectrum. The ARMA
algorithms were applied for estimating time series data on wave velocities
and accelerations. They used theoretical Bretschneider wave spectra for
ARMA spectral estimation. Based on available significant wave height
and zero upcrossing period, the peak frequency and corresponding peak
power spectral energy of the Bretschneider velocity spectrum can be
obtained. The output of the ARMA model was processed by a series of
numerical convolutions. Each convolution accounts for a horizontal or
vertical shift to a different spatial location. Numerical differentiation of
the vertical velocity yields acceleration at each point. Horizontal velocities
and accelerations were determined by using a Hilbert transform.

Simulation steps were discussed and presented in a block diagram.

Samaras, Shinozuka and Tsurui (1985) developed a technique to
generate the sampling functions of a Gaussian vector process using an
ARMA model. They used a two-stage least squares method to determine
the coefficient matrices of .the ARMA models. The numerical example
showed that the sampling functions generated by the method developed
by them reproduced the target correlations extremely well. This was
observed between the analytical target auto and cross correlations and the
corresponding correlations obtained from the generated sample functions.
But they did not carry out optimal selection of model orders which is

important for better estimation of ARMA representation.

Popescu and Demetriu (1990) had shown that the nonstationary
analysis technique and representation of the quasi-stationary data blocks of
earthquake ground motions through parametric ARMA models provide

an efficient and flexible description of the observed motion by a few



parameters. The problem of nonstationary time series data was solved by
segmenting the original data into different data blocks which were
considered to be quasi-stationary. Using evaluation by the Akaike
information criterion, an ARMA model was fitted for each quasi-
stationary data block. The original data and predicted data obtained from
ARMA models in a case study were compared by evaluating a number of
statistical characteristics such as cumulative energy, cumulative root-
mean-square acceleration, short-time energy, short-time autocorrelation,
and short-time spectrum distributions. It was shown that there is a good

acceptance match for all above statistical distributions.

In general many authors developed ARMA process based on the
initial higher order AR approximation. Spanos and Mignolet (1990)
introduced a new concept as an alternative approach of estimating ARMA
process from the initial MA approximation, where the time series data are
poles dominated. The MA parameters were obtained first relying on the
maximization of an energy-like quantity, then the ARMA algorithms
were derived from the initial MA approximation. This was achieved by
relying on the minimization of frequency domain errors. It was observed
that the initial higher order AR approximation sometimes creates a
sensitiveness for proper representation of ARMA process estimation.
Spanos and Mignolet emphasized that the MA to ARMA approximation
technique can be used as an alternative approach of AR to ARMA
modeling of the stochastic process. It was observed that the MA to ARMA

of order (p, q) approximation sometimes shows very good results for the

model orders q2p .

Li and Ko (1988) applied autoregressive, moving average and

autoregressive moving average models to structural failure detection and
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monitoring for offshore applications. Li and Ko used the Green’s function
of the time series and the impulse response function of a vibrating system
for formulation in terms of AR and MA parameters while MA parameters
were checked by the inverse function of the time series for the control of
numerical convergency. The ARMA(2n,2n-1) was developed under the
strategy of modelling as described by Pandit and Wu (1983). The variation
of the absolute value of the modal characteristic roots could be used as the
index for judgement of the degree of relative damage. The location of
damage was judged by comparing of the variations of dispersions of the
major modes detected by different accelerometers. Later on Li (1991)
conducted a series of progressive tests in sea trials of ships to obtain the
response signals of structural vibration aboard ship and process the
random time series data by a linear difference stochastic modelling
(ARMA) technique to study the estimation of system damping ratios of
the ship hull-girders in response to random environment. For solving
the dynamic equation of multi-degree systems of ship structures, one can
choose reasonable values of modal damping ratios which can be

determined using ARMA(2n,2n-1) model.

Mourjopoulos and Paraskevas (1991) carried out all-pole (i.e.,
autoregressive) and all-zero (i.e., moving average) model approximations
of transfer functions with application to acoustic signals. While
examining the above modelling, two main problems associated with
transfer functions are apparent. These are their high arithmetic order, and
their sensitivity and dependence on specific source placement. An all-pole
transfer function model order was optimized using an information
criterion (Akaike, 1974) method. It was shown that in a time series digital
acoustic signals, the optimal order of an all-pole model increases with an

increase of data points (two to the power of an integer number). It was
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found that all-pole models present significant advantages over all-zero
models because of their lower order and lower sensitivity to source
placement variation. An all-zero model can yield an exact model of a
spectrum within an approximation error. However it generates a
mismatched time domain model owing to sensitivity to changes in source
placement. The sensitivity of an all-zero model to source placement
variations can be explained by the nature of acoustic signals. Transfer
function zeros result from local cancellations of multi-path sound

components which are easily disturbed by changes in source positions.

Kaplan, Jiang and Dello-Stritto (1981) described a sequential
estimation technique of system identification for determining coefficients
of Morrison equation which is used to describe the hydrodynamic loading
on slender offshore structures. The method of system identification was
applied to estimate the state-space variables and parameters in a noisy
nonlinear dynamic system. The least squares estimate of state variables
was obtained from minimizing the integral of weighted mean square
errors. They also studied on-line filtering action and compared measured
forces, velocities, etc. with estimated values in the time domain. The
unknown force coefficients estimated by the SI technique were found to be
reasonably constant and the estimated force time histories generally

exhibited Morrison's equation model results.

Methods relevant to identification of linear and nonlinear
behaviour of structures subjected to environmental loadings, such as
ground motion owing to earthquakes (seismic motion), wind generated
pressures and ocean wave forces were reviewed by Imai, Yun, Maruyama
and Shinozuka (1989). The methods used were least squares, instrumental

variables, maximum likelihood and extended Kalman filter. The dynamic
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characteristics of the structural behaviour could be described by system
identification models. Models commonly used in structural engineering
are state-space and ARMAX (Auto-Regressive Moving Average
eXogeneous) models derived from the ordinary differential equations
describing equilibrium of the structures. Numerical simulation studies
were carried out for identification of the aerodynamic coefficients of a
suspension bridge under wind forces, drag coefficients of an offshore
structure under wave forces, and displacement and stiffness ratio of a
building structure subjected to seismic excitation. Numerical results
showed that the instrumental variables and maximum likelihood
methods provide good estimates for a linear system and the extended
Kalman filtering technique gives excellent estimates for non-linear

system.

Jefferys and Goheen (1990) carried out studies on parametric
modelling of marine dynamic systems, such as the dynamics of a floating
body in waves, and the surge radiation forces of a tension leg platform
(TLP). They used two methods to estimate the transfer functions. The
first one is the indirect frequency response curve fitting method which
produces reliable transfer function models. This method optimizes in the
square norm sense in the frequency domain. The second method
involves three stages: production of input-output time-domain series by
inverse Fourier transformation; identification of ARMA discrete time
models by SI, and then a transformation back to continuous time by a
mapping from z-plane to s-plane. Both the above methods were shown to

work on frequency response data derived from a known transfer function.

Mason and Ullmann (1990) carried out an experimental study on

evaluation of structural damping in a major diagonal member of an
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offshore steel jacket in the fabrication yard. The response histories
(displacement and acceleration) of the diagonal member in air were
measured and then the system identification technique, namely, output
error algorithm which is not restricted to single degree-of-freedom system
was applied. It was shown that the response histories reconstructed from
system parameters identified by the output error method were often

visually indistinguishable from the corresponding recorded data.

An advanced statistical method was applied to analyze the wave
induced forces acting on the free-to-surge vertical cylinder (Sajonia and
Niedzwecki, 1990). The experimental data were used to develop an
autoregressive wave force model which is capable of accounting for
localized flow history effects. It was noticed that a high frequency force
component which was not accounted for in the Morrison equation was
quantified using the AR model. The AR model with higher order can
improve the force prediction for the above experiment. Using
experimental data and Morrison equation resulted in a root mean square
error of 24% and multiple correlation coefficient of 0.71. The AR model
reduced the root mean squares error from 24% to 9% and increased the
multiple correlation coefficient from 0.71 to 0.83, and accounts for the high
frequency components. The research study carried out showed significant
improvements in hydrodynamic force prediction through the
development of a wave force model which was expressed by an

autoregressive algorithm.

Broome and Pitteras (1990a) carried out work on adaptive ship
motion prediction which is based on mathematical models generated in
real time by using system identification techniques. They used ARMAX

algorithm with the option of obtaining ARMA and AR parameters



estimation. Using a recursive least squares algorithm, the unknown SI
parameters were determined based on the input-output measurements
and then the one-step-ahead predictor was estimated. To determine the
appropriate model order they used a loss function which is described in
the form of a least squares error variation with model orders. At first an
AR(5) model was chosen as the least squares error did not decrease
appreciably for model orders greater than 5. A low order ARMA(2,4) was
also chosen which could represent ship motion fairly well. The best
approach chosen was based on the search of ARMA models from (2,1) to
(2,15) which showed that the optimal AIC was at the ARMA(2,14) model.
Later on an AR(20) model was used for ship motion prediction based on
the study carried out by Broome and Pitteras (1990b). The method used
here could not perform well for the large amplitude ship roll motions
which needed to be investigated. However prediction theory used by

them can be applied for short time prediction of ship motions.

Based on studies by Spanos and Hansen (1981) and Spanos (1983), it
was observed that the AR spectrum fluctuation are in the peak frequency
region of the theoretical ocean wave spectrum. And even by selecting
higher model orders, the AR spectral shape remains sharply deviated
from theoretical ocean wave spectrum near the peak frequency region.
This instability problem was studied by Medina and Sanchez-Carratala
(1991) to represent a robust AR algorithm of the theoretical JONSWAP
ocean wave spectrum. They also introduced a reasonable criterion for
qualifying the goodness of fitting a proposed ARMA model to a target
ocean wave spectrum. After establishing this criterion and considering
most existing techniques to define ARMA models, a new robust AR

representation could be obtained. An extra white noise was added with a

variance of 0.0025m, (where my is the zeroth spectral moment) to the AR
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model to generate a robust AR representation of the JONSWAP spectrum.

A broad perspective review on spectrum analysis of discrete time
series was carried out by Kay and Marple (1981). Many new techniques
were developed in the sixties, seventies and early eighties. These include
the classical periodogram, classical Blackman-Tukey, autoregressive
(maximum entropy), moving average, ARMA, maximum likelihood,
Prony and Pisarenko methods. These were all presented in a unified
framework and with common nomenclatures. All methods were
tabulated for comparative studies including their type of model structures,
key references, appropriate equations for computation of each spectral

estimate, advantages and disadvantages.

Very recently Pires et al (1992) carried out a comprehensive study on
adaptive AR modelling of measured sea waves off the Portuguese
continental coast and Azores islands with water depth ranging from 40 to
100m. They demonstrated that the adaptive AR modelling performed
better in high seas than in calm seas. One justification could be the
existence of a certain level of noise originated in the measuring, recording
and digitizing equipment. The domination of noise in calm sea waves

may sometimes lead to erroneous results.



1.5.2 Determination of optimal model orders

Anderson (1963) discussed the determination of the order of
dependence in a Gaussian autoregressive process explicitly as a multiple
decision problem. A sequence of tests of the models was carried out
starting from highest order to the lowest order. This procedure can be
applied to a real problem provided one specifies the level of significance of
the test for each order of the model. As it is difficult to choose the levels of
significance, the essential problem of optimal model order determination
remains. The loss function of the decision procedure defined by the
probability of making incorrect decisions leads to a situation where the

order of the true structure will always be infinite.

Akaike (1969) first introduced a criterion which is called the Final
Prediction Error (FPE). The appropriate AR model order was selected
based on the FPE method, where the average error variance is minimized.
Here the average error variance is the mean of the sum of squared errors
between the target and AR process. For the AR process, the FPE is defined

as

M+(p+1)

FPE(p) €; m

(1.5)

where M is the total number of samples, p is the model order, and ¢g; is the
average of the sum of errors between observed and estimated data. The
appropriate AR model order, p is selected for which the FPE is minimum.
If the random process purely consist of zeros, the model orders are fairly

well selected by FPE method. However offshore dynamic systems are



random in nature and mostly consist of poles and zeros. Therefore one

should define criteria for model order selection for specific applications.

Akaike (1974) reviewed statistical hypothesis testing in time series
analysis. It was noticed that the hypothesis testing procedure was not
adequately defined as the procedure for statistical model identification.
The problem of determining a finite order model structure can be solved
by approximation of the true structure by the model. Based on reviewing
the classical maximum likelihood estimation procedure, Akaike
introduced a new estimate which is called after his name as the Akaike

Information Criterion (AIC) estimate. It is defined as

AIC = -2 Log [Maximum likelihood] + 2 [Number of adjusted parameters]

(1.6)

For analysis of any random process, the exact definition of likelihood
function is generally too complicated for practical use. Therefore some
approximation is made based on the Gaussian distributed random process.
Instead of maximum likelithood, the mean log-likelihood was chosen for
the criterion of fit of a statistical model. From the above relation, a more

applicable simplified AIC is defined by Marple (1987) as

AIC=MLn[gl+2p (1.7)

This provides a versatile procedure for statistical model identification.
The ambiguities inherent in the application of conventional hypothesis
testing procedure for statistical model identification resulted in very
limited practical utility. Since the procedure based on the AIC estimate
can be implemented without the aid of subjective judgement, many

statistical identification procedures with the AIC estimate could be made



practical. It must be noted that the AIC method can not be compared with
a hypothesis testing method unless the latter is specified with the required

levels of significance.

Parzen (1974) described some of the important concepts and
techniques which may help to provide a solution of the stationary time
series problem. A comparative study between the measured signal plus
noise and the ARMA representation was carried out. He reviewed
prediction theory and developed criteria of closeness of AR, MA and
ARMA models to the ‘true’ models. The central role of the infinite AR
transfer function was developed and then tested with time series
modelling. He also introduced a criterion for selecting model orders and it

is termed as Criterion Autoregressive Transfer (CAT)

P
_1sl1 _ 1
CAT(p)—Néei e
(1.8)

€ = ~€ .
where € N3 i

This criterion will determine a finite AR model order which is optimal.

Many researchers had noticed that the order selected by AIC is too
low for non-autoregressive processes. Kashyap (1980) had found that the
AIC is not statistically consistent. The result was a tendency to
overestimate the order as the data record length increases which was also
noticed by Mourjopoulos and Paraskevas (1991). Because of inconsistency
of the AIC estimation, Rissanen (1983) developed a variant information
theoretical criterion to the AIC which is called Minimum Description

Length (MDL). Rissanen introduced the MDL principle for minimization



of the number of binary digits required to represent the observed data.
This method gives an optimum length relative to a class of parametrically
given distributions. It permits estimation of the number of parameters in
statistical models, their values and the model structure. Rissanen also
described a procedure for truncating the real valued Maximum Likelihood
estimates to an optimum precision for the final criterion. The MDL
criterion had been shown to lead to strongly consistent estimates of the

model parameters and their numbers in AR and ARMA processes.

Jones (1974) carried out a study on identification of model orders
and AR spectrum estimation. While selecting model order, Jones used
the AIC method. He extended the AIC method from univariate AR
process to multivariate AR processes. The comparative study between AR
spectrum estimation and classical spectrum estimation was shown to be
consistent in respect of the model order selection. He tested the above
from the analysis of the large amount of digital data from the biological
[two channels of electroencephalographic (EEG) data from a human
newborn] and physical sciences [meteorology, i.e., wind data at two
stations]. It showed that the AIC method worked very well for model
order estimation, and the multivariate AR model order estimation

proposed by him showed consistently good results.



1.5.3 Multivariate SI processes

Morf and Kailath (1975) introduced some new algorithms for
recursive estimation algorithms for linear systems based on the Kalman
(1960) filter technique. The solution of a matrix can be obtained using
square-root algorithms in the least squares sense. They first presented an
instantaneous derivation of a form of the previously known covariance
square-root array algorithms. Then it was shown how the assumption of
constant model parameters could be used to reduce the number of
variables in the array algorithm. Finally updating equations were
obtained by explicitly specifying the orthogonal transformations used in

the array methods.

Based on the above technique for estimation of the square-root
matrix, Morf, Vieira, Lee and Kailath (1978) applied this to stationary
discrete time séalar processes. The autocorrelation of a stationary discrete
time scalar process can be characterised by the partial autocorrelation
function which is a sequence of values less than or equal to unity. They
had shown that the matrix covariance function of a multivariate
stationary process could be characterized by a sequence of matrix partial
correlations, which were obtained using techniques based on forward and
backward prediction of the time series data sets, where singular values are
less than or equal to unity in magnitude. The squares of the singular
values of a matrix, R are the eigenvalues of RRT. Morf et al. presented a
procedure to estimate a sequence of matrix partial correlations directly
from the multivariate data. From these estimates Morf et al. uniquely
determined minimum phase multivariate AR parameters and hence a

unique power spectral estimate was obtained.
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Strand (1977) described a multivariate complex maximum entropy
(autoregressive) method for estimating spectral parameters. He extended
this to generalize the univariate Burg reflection coefficient estimation
(Burg, 1975) process to multivariate complex time series. It was shown
that least-squares estimation of complex matrix reflection coefficients
using inverse-power weighting provides a sequence of positive definite
power matrices. This yields a resulting positive definite autocovariance
matrix. Based on the preliminary numerical results obtained from a
monochromatic signal with noise, it was noticed that superior spectral

resolution can be expected from the extended multivariate Burg processes.

Jones (1978) reviewed the univariate algorithms and discussed
multivariate generalizations of autoregressive algorithms using residuals
within the data span. The problems encountered in generalizing Burg’s
maximum entropy algorithm to multivariate time series were
highlighted. Burg’s algorithm did not generalize directly since the forward
and backward autoregression matrices are not the same in the
multivariate case, and the forward and backward one-step prediction error
covariance matrices are different. Therefore this leads to different
estimates of the power spectrum. This problem does not arise in case of
univariate AR processes, where only a single sequence of reflection
coefficients exists. This fundamental difficulty was overcome by Morf et al
(1978) where normalized partial correlations were directly obtained from
the multivariate data and then multivariate transfer functions and

prediction error covariance matrices were determined.

Lin (1987) proposed a multivariate ARMA model for prediction of a
ship's response to random waves. Each degree of freedom of ship motions

and each wave measurement was considered as one of the inputs and
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outputs of the ARMA filter. Using the laboratory test data, it was shown
that the agreement between predicted and measured response of the ship
model was very good. The ARMA filter takes into account the directional
response of the ship to the ocean waves. The directional effects of waves
on pitch prediction were examined by a tri-variate ARMA model (which
includes two sets of wave measurements and the pitch measurement) and
a bi-variate ARMA model (which includes a wave measurement and the
pitch measurement). It was shown that the tri-variate ARMA model is
superior to the bi-variate ARMA model for different prediction time steps.
This demonstrated that the directional effects of waves are very important
for ship motion prediction. The coupling effect on ship motion prediction
was studied by a quad-variate ARMA model (pitch, heave and the two
wave measurements). This showed further improvement in prediction of

ship motions as compared to that of tri-variate ARMA modelling.



1.6  Objectives

Offshore structures are designed based on the selection and
application of theoretical models representing marine extreme conditions.
Owing to limitations in assumptions while modelling a structure and
variation of extreme marine conditions, there is always an element of
uncertainty associated with the predicted response of the final design. For
these reasons, full scale real time long term data on the marine
environment and the structure’s response are measured enabling future
improvement in design. Collecting, storing and handling vast volumes of
such data in the marine environment is not a simple process. Also there
may be noise or disturbances collected along with actual response of the

structure or environmental data which must be correctly dealt with.

The study presented herein has investigated the analysis methods
arising from identification aspects of the theory of dynamic system. Using
SI methods, parametric models of dynamic systems are determined based
on input and output of the stochastic processes. Full-scale offshore
monitoring data or marine environmental data can be substantially
reduced to a few parameters of the SI models which can also further
produce the estimated spectrum of the stochastic process for immediate
requirements. At the initial stage, the parametric models’ orders are
obtained based on auto correlation and or cross correlation, least squares
error, Akaike information criterion and minimum description length
methods. Further reduction of the model orders can eliminate spurious
noise or disturbances. Using SI techniques, the parametric models can also

be applied to simulate time series data based on the target spectrum.

Sometimes nonstationary time series offshore data which are a

combination of high frequencies and low frequencies are observed. These



types of data can be modelled provided the nonstationary time series data
are transformed to stationary time series data by a differencing technique

prior to modelling as demonstrated in Chapter 5.

The multivariate autoregressive (MAR) modelling of ocean waves
can provide not only the required power spectra but also the phase and
coherence which lead to information about wave directionality. Using
traditional FFT methods, one can estimate the power spectrum. However,
there might be spikes due to disturbances which one may not be able to
discard. Using MAR modelling the required spectra can be estimated as

shown in Chapter 6.



1.7 Summary of contribution

The principal aim of this research work has been to formulate a
practical approach which will allow the optimal estimates of parameters of
structural models to be determined systematically from the time series
recordings of ocean waves and offshore structural motions. This approach
can be used for in situ data reduction, which can store much longer
duration information of offshore dynamic systems than the present

methods of data storage.

The linear SI models are chosen here partly because they are simple
and easily formulated, and partly because they are a natural starting point.
Because the linear time-invariant discrete models are commonly used in
dynamic design, identification of these types of models is of practical
importance in offshore dynamic systems. These can be used either in the
response spectrum approach or through the SI models and particular
offshore time series records to estimate full response histories. The main
aims of this work have been to investigate (a) how well the time-invariant
linear discrete models fit with target spectra of ocean waves and offshore
structural motions in stationary and nonstationary cases, (b) how the
model orders can be reduced to obtain acceptable reduced order ARMA
models, and (¢) multivariate autoregressive models, and their practical

applications.

Since the use of SI techniques as applied to ocean dynamic system is
an unusual approach for offshore engineers and ocean scientists, an
introduction has been included covering system identification procedures,
parametric and non-parametric modelling, application problems of

offshore raw data in Chapter 1. For on-line estimation, one has to use the



delay-time or recursive filtering .technique. The study presented herein
considers off-line estimation procedure as a number of data sets or blocks
to be used for parameter estimation. The parametric modelling technique

is suitable for off-line estimation.

The main previous works relevant to the study presented herein
are described in Chapter 1 (section 1.5). Most of this related work and
theoretical development took place in the electrical, system and control
engineering fields. In the offshore field, very little related work has been
carried out but that which has is reported here. The first part of the review
of previous work mainly concentrates on establishing the SI techniques,
namely, autoregressive, moving average and ARMA algorithms which
have been subsequently developed for offshore dynamic systems. The
Yule-Walker equations may be used to obtain the AR model. For rational
modelling, an extended version of Yule-Walker approach yields efficient
ARMA models. Some of these algorithms are used in other fields. The
second part describes the appropriate selection of the SI model order. This
part optimizes the model structure and minimizes the computational
time and hence leads to a more efficient representation of the dynamic

system. Finally multivariate autoregressive modelling is reviewed.

Chapter 2 gives an overview of stochastic processes and linear
systems leading to an information criterion. This chapter describes how
well the random processes can be represented by the linear time-invariant
discrete models and leads to the estimation of power spectral energy.
Random processes are also shown to lead to the estimation of an
information criterion. The basic notations for the SI modelling

introduced in this chapter are used in later chapters.

In Chapter 3, the identification of the various suitable SI models for

given target processes is carried out as highlighted by system identification



procedures (section 1.2). The SI models, namely, AR, MA and ARMA
models are formulated. A meaningful AR power spectrum can be
obtained from the target (either power spectra or time series data) based on
the appropriate selection of model order. Because of some inherent
properties of AR modelling, the Pierson-Moskowitz wave spectrum is
shown to need modification for better results. The estimation of MA
parameters is carried out from the perspective of Fourier approximation of
a decomposition of the target spectrum. The ARMA modelling is carried
out based on the initial AR parameters estimation. Two approaches,
namely, power order matching and inverse AR methods are used for
estimation of the ARMA parameters. A comparative study between those
two approaches of the ARMA modelling is carried out for theoretical
wave spectra (PM and JONSWAP) and measured ocean waves. These SI

modellings are also applied to offshore structural motions.

Model order reduction techniques applied to the ARMA algorithm
are described in Chapter 4. Firstly the initial higher model order is selected
based on the AIC or MDL method and then the AR coefficients are
determined using the modified Yule-Walker equations. Then the first
and second order real modes are obtained from the AR polynomial. A
method of calculating energy in each mode is described in Appendix-V.
Each modal energy contributed for the SI model is determined and then
only higher energy modes which form the AR part of the reduced order
ARMA model are considered. The moving average part is calculated
based on partial fraction and recursive methods. This reduced order
ARMA modelling is applied to ocean waves and offshore structural

motion.

Chapter 5 describes the application of SI modelling to nonstationary

offshore dynamic systems. The nonstationary time series data set can be



modelled using autoregressive integrated moving average (ARIMA)
algorithms which are defined and formulated depending the nature of the
nonstationary process. Nonstationary generated ocean waves and offshore

platform deck (Magnus) displacements are used for ARIMA modelling.

Multivariate autoregressive modelling and its application to ocean
waves are presented in Chapter 6. The MAR model is formulated based
on the estimation of the residual variance matrices and partial
correlations of the multivariate processes. Here the appropriate model
orders are selected based on auto and cross correlations and the
multivariate AIC methods. These algorithms are applied to estimate the
power spectral energies and their phase and coherence spectra of two time

series wave data sets collected at a North Sea location.

The last two chapters give an overall discussion and conclusions
based on the various SI modellings and their applications to offshore

dynamic systems.



1.8 Applications

As indicated in the foregoing sections the techniques developed and
adapted in this study have been applied to a number of sources of real
marine environmental and offshore structural monitoring data. Some of
this which has been made available is considered propriety. As a result
full details of some of the sources can not be made available herein. The

data has been made available from

Table 1.1 Measured time series data sets of offshore
dynamic systems and sources.

Source Location/ | Dataset Date
Offshore structures

Rijkswaterstaat, North Sea waves Waves
Netherlands from MPN platform 22- Jan- 1980
M12 and M17
Indian Navy Sea waves from Waves
West Coast of India 28- May- 1989
. K15
BP, UK Magnus Platform Deck Hor.

Acceleration| 22 - Oct- 1987

Santa Fe Drilling Semisubmersible Heave
Co, UK ) Acceleration| 11- Aug- 1989
Rigl135
HAZ28
McDermott, UK DB50 Roll 23 - Oct- 1987
Crane vessel A
Anon. Crane vessel B Pitch, Roll,
12- Apr- 1992

Heave Acc.




CHAPTER 2

STOCHASTIC PROCESSES AND
LINEAR SYSTEMS OF SPECTRAL
ESTIMATION

2.1 Introduction

Power spectral estimation has generally been a traditional research
area for statisticians (Anderson, 1971). Recently it has been extensively
used for engineering applications (Bendat and Piersol, 1986, Newland,
1984, Witz and Mandal, 1991). Most of the statistical analyses are carried
out based on restrictive assumptions about the nature of the data, that is,
whether it is Gaussian distributed. The art of spectral estimation lies more
on empirical relationship than on a theoretical one. Using a spectral
analysis method, any signal or time series random process can be
characterized in the frequency content. The strengths of the signal or time
series in the frequency domain can be quantified by the power spectral

energy estimation techniques.

Power spectral energy estimation has traditionally been based on
Fourier transform techniques. A primary motivation for this research
study in alternative methods is to improve performance with minimum
loss of information while expressing the spectral estimates by a few

parameters of the rational functions.

This chapter gives an overview of linear systems (Sinha, 1991,

Hannan and Deistler, 1988, Oppenheim and Schafer, 1975, 1989) and



stochastic processes leading to the estimation of information criteria and
power spectral energy of dynamic systems. Many of the notational
conventions introduced in this chapter are used in later chapters.
Stochastic processes leading to the estimation of linear system parameters
and power spectral energy are presented in section-2.2. A linear system
(discrete or continuous) can be expressed by superposition of responses.
Suppose that there are two input signals to the response of a linear system,
then the system can be expressed by simply the sum of the separate system
responses to each individual input signal. The linear system is said to be
time-invariant if the inputs and outputs are time independent, for
example, an input x; produces y; and Xt+tg produces yi,¢ 0 for any time

shift t;. Since the present study is restricted to discrete system (as offshore

time series data are collected that way), linear time-invariant discrete
processes are presented in section-2.3. Section-2.4 describes the discrete
linear processes which can be analyzed by using the Fourier series
transform. While formulating random processes in the form of linear
systems, one has to verify or check the model quality. One such important

test is the stability criterion which is described in section-2.5.



2.2 Stochastic processes leading to information criteria and PSE
estimation

The concepts of probability and stochastic process theory is briefed
here for formal introduction of information criteria and power spectral
energy estimation. This section is segmented into four subsections dealing
with probability and random variables, random processes, power spectral

energy estimation, and convergence of random sequences.

2.2.1 Probability and random variables

Let X be a random variable of some experimental outcome which
cannot be exactly predicted in advance. Mathematically the properties of X
are quantified by a distribution function, F(x), which is the probability that
the random variable X has a value less than or equal to x or Pr(X<x). F(x)
is a nondecreasing function with limiting values of
F(-e)=0  and F(°°)= 1. The probability density function (PDF),
p(x) is expressed as

px) = dI;)((X)

(2.1)

For discrete random variables, X takes one of the finite number of
values x;, x,, ... with corresponding probabilities p,, p,, ... which must

satisfy the conditions

p;:20 and Zp =1
: (2:2)



Then the distribution function,

F(a)=Pr[X<a]= Y p, (2.32)

X;<a

If a<X<b then

Pr{a <X <b] =F(b)-F(a) (2.3b)

which is a piecewise constant function with a jump of height p; at x;j
(Figure 2.1).
For continuous random variable, the distribution function can be

defined as

F(a)= [p(x) dx

2.4)
and p(x) must satisfy
p(x)=0 and Jp(x) dx =1
N (2.53)
If a<X <b then
b
Prla<X <b] = [p(x)dx
) (2.5b)

An important parameter of a random variable is its expectation or

mean value, denoted by E[x] which is given by

E[x] = in P; (discrete)
(2.6a)



E[x] = :[’ x p(x) dx (continuous) (2.6b)

This is also called the first moment of x. The expectation of x squared is

defined as

Elx?]=Y (x,)’ p; (discrete) @72
E[x?] = _]ixz p(x) dx (continuous) 272

This is also called the second moment of x.
The expectation of a function, g(x) of random variable x can be

directly calculated using the PDF of x as

E[g(x)] = [g(x) p(x)dx  (continuous)
RO (2.8a)

Elg(x)] = Z g P (discrete) (2.8b)

The variance, p of the random variable is the mean squared

deviation of the random variable from its mean.

= B2l — 2
var{x}= E[x*] - E[xD) ' =p (2.9)

The standard deviation, ¢ of x is

o=/var(x) =~/p (2.10)
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The covariance is defined as the statistical correlation between one
random variable and another random variable. If X1 and X are any pair
of finite variance random variables, the covariance of X; and X7 can be
expressed as

cov{X,X,} = E[(X, - E[X,;]XX, = E[X,])]

= E[X,X,]- E[X,] E[X,] (2.11)

If X1 and X3 are said to be independent for a purely random case (i.e.,

white noise) if
cov{X1Xp} =0

The uniform distribution of a real variable x is quantified by a

uniform PDF as

1
= for a<x<b
PX)=5—3 (2.12)

The Gaussian or normal distribution of a real variable x with mean,

X and variance p is characterised by a PDF given by

1 x-%)

p(x)= exp|:— ] for — o< X< o0
20,

vV 2no c 2.13)

Here it is assumed that the random variable, x; (fori=0,1,2, ... M-1)is
statistically independent. A class of estimators is known as maximum
likelihood estimates [see Appendix-I] which are based on a consideration
of the joint probability of M observed values as a function of the
parameter to be estimated. The maximum likelihood estimate is the

value of the parameter for which the probability of the observed values is



a maximum. The maximum likelihood estimates method can be used to
determine the best estimate of the model parameters. Equation (2.13) can
be used to estimate the information criterion of the random process for
appropriate SI model order selection.

Let xq, X5, ...xy represent the results of M independent
observations of a random variable with PDF p(x). If the parameter family
of the function is expressed by f(x|6) with a vector parameter 0 which is

to be optimized, the average log-likelihood can be expressed as

1 M

As M tends to infinity, the above average tends, with probability one, to

MLL = [ p(x) In £(x|6) dx (2.15)

where MLL is the average or mean log-likelihood. From the efficiency
point of view of the maximum likelihood estimate, it must be highly
sensitive to small deviations of f(xle) from p(x). With some
modification of equation (2.15) and using information theory, Akaike

(1974, 1976) derived a final form of the information criterion, AIC as

AIC = -2 In [ maximum likelihood ] + 2 k (2.16)

where k is the number of independently adjusted parameters to be

selected.



2.2.2 Random processes

A discrete random process is a collection or ensemble of real or
complex discrete sequence pf time series observed values of any
experiment. Mathematically it is just a collection {X,te T} of
observations of a random variable. Here T has the connotation of time,
i.e.,, {Xy) is a continuous time process if T is an interval, say, [a, b]; or (Xy} is
a discrete time process if T contain only integer values.

The present work is limited to discrete time processes, i.e., digitized
time series records of ocean waves, offshore structural motions, etc.
Therefore, the random process theory presented here is restricted to
discrete time processes. There are two ways to define the time series
which can be modelled by discrete time processes:

a) Time series data which are only available in discrete form

b) Time series data which are produced by sampling continuous

data
In the second case, one should be careful about the appropriate sampling
rate to be chosen so that discrete time series data fairly represent the
continuous data.

If T =[1,2, ... M], then the random process is expressed as {Xi} = [X1,
X2, ... Xm]), and its probabilistic behaviour is given by the joint
distribution of the M random variables involved.

Even though an offshore dynamic system is a stochastic process
with time, for calculation simplicity one can define this process as
stationary if its distribution does not vary with absolute time, i.e., for any

[tg, t1, t, ... tg], the distribution of the n vector random variables



[Xt‘,th, ...... th] is the same as that of [thﬁo,thﬂo, ...... thHo] . This

shows that the origin of time is irrelevant and the joint distribution of the
random variables depends only on time interval separating them.
Therefore this process has well-defined mean and covariance function.
The process is said to be a wide-sense stationary (WSS) if its mean, a
constant, and auto-correlation are independent of absolute time and the

autocorrelation depends only on the relative time.

Let x, be a stationary random process. At time index 1, the mean or
expected value is defined as

X = E[x,] = E[x,,] (2.17)

The auto-correlation of the random process at two different time

indices t and t+1 is expressed as

R« () =E[x,x,,]
(2.18)

In engineering applications, the term autocorrelation is normally
defined as a relative quantity, called the normalized autocorrelation which
lies between zero and unity. The autocovariance of the process is the auto-

correlation process with mean removed,

C (1) = El(x, = %) (X =X )]
= BlxX..] - Elx ] Elx,.]

=Rul0)=xx 2.19)



If the above process has zero mean for all t, then the auto-

correlation and the auto-covariance are identical,

Cu(t) =R, (1)
(2.20)

The cross-correlation of two random processes xt and y: can be

defined as

R, () =Elx, y...] (2.21)

Similarly cross-covariance is defined as

Cy (W =Ellx, =) (¥, =7 )
= Elx,y,,.]-Elx ] Ely,.]

=R, (1)-Xy 2.22)
If two random processes are uncorrelated then
Cy(r)=0 for all
y(T) or T 2.23)
Some useful properties are
R, (0)2R, (1)
R (-1) =R (1)
(2.24)

R, (R, 0 2R, (0
R,,(-1) =R, (1)




The above properties are valid for all integers t. From these
properties one can verify that autocorrelation must be a maximum
att=0.

Based on equation (2.17), the random process can be rewritten after

removing the mean (X ) from the original process as

X,=x,—-X (2.25)
Let a linear system be expressed as
p
'it = 2 ak nx‘t-k
k=l (2.26)

P
To fit this model [ equation (2.26)] of order k'[ where k=1, 2, ....p], one can

start with least squares method which needs the mean square of the

residuals (Resp) as

P

4 M
2
Res, = %/[_z(iz - 2 a, X,_)
1=l k=l (2.27)
Resp is to be minimized with respect to unknown parameters {al, Ay, e
ap} assuming that X, =0 for t <0. To determine these unknown
parameters, one has to use Yule-Walker equations, where equations (2.17)

to (2.23) are needed. This relationship can be written in Toeplitz matrix,

TA, as

[TAllay) = (C) (2.28)



where

_Cxx(o) Cxx(l) Cxx(P _ 1)_
Cux) C,0) .. C.(p-2)
TA = Cx:x(z) :Cxx(l) c:xx(p ~3)
Cu(P-1D Cp(p-2) ... C,(0)
and
(CreD) ]
Cxx(z)
c=1 4
| Cax(P))

Based on residual estimates [equation (2.27)] and Yule-Walker equations,
model order selection methods (AIC and MDL) are established as described

in the later chapters.

2.2.3 Power spectral energy estimation using FFT

Fourier series techniques play an important role for the analysis of
WSS processes, which leads to the so called power spectral theory of
stationary processes.

The z-transform of the auto correlation and cross correlation

sequences which are determined from time series x and y are defined as



S, (2)= inx(’C) z™"

T=—o0

5,@)= SR ()"

T==—00

(2.29)

This leads to the definition of power spectral energy. The above

equations are expressed in frequency scale

S, (H)=T inx(t) exp(-j2nftT) (2.30)

T=—oo

S, (=T 3 R, (1) exp(~j2nfxT)

T=—00

(2.31)

Here S(f) is a density function which represents the distribution of power
with frequency, f and j is the square root of -1. The Fourier transform of
the auto-correlation sequence is often referred to as the Weiner-
Khintchine theorem. Owin'g to the properties of correlations, PSE must be

a real and positive. For the autocorrelation to be strictly real valued,

Ryx(-T) = Ryx(1) (2.32)

Then the PSE can be expressed as

S () =2T3 R, (1) cos(2nfrT) 2.33)
=0



Here

Sxx('f) = Sxx(f) (2.34)
which means that it is a symmetric function.

Therefore, the time series can be expressed by its autocorrelations
which can be used to determine power spectral energy. This relationship

is also shown in Figure 2.2.

The discrete white noise process with zero mean can be defined in

the form of autocorrelation function as

Ryx(1) = px (1) (2.35)
where

0t) =1 fort=0

]

0 fort#0 (2.36)

d(1) is the discrete impulse function. This says that a white noise process
is uncorreleted with all time lags except at T = 0. Therefore the PSE of the

white noise process becomes

Sxx(f) = 2Tpx (2.37)

which is a constant for all frequencies. The reason for the name white
noise is by analogy with white light which has an approximately flat

frequency spectrum.
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2.2.4 Convergence of stochastic processes

While investigating random processes, one may wish to ask many
questions such as whether a given process is stationary, whether
parameter estimates converge to their true values with increasing data
points, and so on. To answer the above questions, one has to study the
convergence of sequences of random processes.

Let {X;} = X1, Xy, ..... be a non-random sequence of real numbers.

Then one can say that {X;} converges to X, i.e.

Xk—>X as k oo

Lim X, =X
k— oo

(2.38)

The process {X,} converges to some random variable X if and only if {X,} is
a Cauchy sequence,ie, [X.—Xm|—0 as nm —eo . This means that for
any small value € > 0 there exists n(e) such that |X,, - Xm| <¢g for all nm
2 n(e). Here the definition of a Cauchy sequence means only to the
elements of the sequence themselves and it does not consider any possible
limit points.

Some properties of the convergence of random processes are
highlighted in Appendix-I. For further details on convergence of random
processes, one can refer to texts by Pollard (1984), and Hannan and Deistler

(1988).
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2.3 Linear time-invariant discrete processes

Linear time-invariant discrete processes form the most important
class of random processes such as time series of ocean waves, response of
offshore structures etc. Here some basic concepts are described below
which will be instrumental in development of the SI models. The linear

time-invariant discrete process can be expressed as

Y= z hx,_, for t=012 ..
(2.39)

where x¢ is the input, y; is the output and hy is the impulse response or
weighting function. The above process is said to be time-invariant if its
response to a certain input does not depend on absolute time. And the
above process is also linear in the sense that the output response to a
linear combination of inputs is the same linear combination of the output
responses of the individual inputs.

The input-output relationship [ equation (2.39) ] with the transfer

function can be expressed as

R,y(1) = D h(k)R (T -k)
k

R, (1) = X h'(=K)R (T —k)

k==co

R,,(1) = i h(t - m) ih'( - K)R o (m —k)
mem K= (2.40)

Denoting the z-transform of the transfer function , h(k) as



H(z) = ih(k)z'k

k=—oo
(2.41)
the power spectral energies are obtained as
Sy (2)=H(2)S,,(2)
S, (2)=H(1/2)5,(2)
S, (2)=H(z)H (1/2")5,(2)
(2.42)
If h(k) is real then
H'(1/z*) = H(1/z)
(2.43)
Using the concept of z-transform, equation (2.39) can be written as
Y(z) = H(z) X(z
(z) = H(z) X( )‘ (2.44)

where X(z) and Y(z) are the z transforms of the variables x and y.
The formation of equation (2.44) is described in Appendix-II. The

transfer function, H(z) describes a complete characterization of the process.

Here x; is assumed to be a stationary random sequence with

autocorrelations, Ryx(t) and power spectral energy, Syx(f) related as given

by

R (1) =Elx,x;,.]= J S(@e™™do (245)
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and

__1 3 jarT
)= PR (2.46)
oy, is the cut-off frequency which satisfies Nyquist relation as
T=—
wb
(2.47)

The output system y, is also a stationary random sequence whose

power spectral energy is

S,, (@) =H'(e"")S,, (0) H' (")
= 5, (@) [H(e™ )
(2.48)

Equations (2.46) and (2.48) are periodic functions of period, 2n/ .

As a simple case, assume that the input process x¢ is a band-limited

discrete white noise. The auto-correlation and power spectral energy of

the input white noise process can be described as

R, (1)=2w,I &(1)
(2.49)

and

=1
S, (®) (2.50)
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where I and §(t) are identity matrix and discrete impulse function
respectively. 08(t) is also known as the Kronecker delta. Therefore an
approximate transfer function, H(ei'®T) can be determined by several
procedures based on the input and output of any dynamic system of
random processes. For example, an important causal discrete linear time

invariant process can be described by a constant coefficient linear

difference equation in which input (white noise), w¢ and output, y; are

related as
P q
Y. = -Zak)’,_k + zblwr—l
k=1 1=0
(2.51)
Here the estimators aj, ap, ... ap and bg, by, ... bq characterise the linear
process.
The z-transform of the above equation can be written as
P q
Y(z)[ 1+ Zakz“‘] = W(z) [zb‘z“]
k=1 1=0 (2.52)
Therefore the transfer function H(z) can expressed as
9
b.,z™
_ Y@ g’o
H(z) = Wz - T =
1+ Yaz™
k=1 (2.53)

Here both the polynomials can be factored into its roots (A and B,) and

can be expressed by



q
b.[Ja-B.z™
H(Z) = 1=l

|4
[Ta-a.z"
k=1

(2.54)

where b, is a scaling factor which can be determined from the random
process. The upper roots By, By, ... B are called the zeros of H(z) and the
lower roots Ay, Az, ... Ap are called the poles of H(z). For a stable
minimum phase linear process, all the poles and zeros of the transfer

function H(z) lies inside the unit z-plane circle. i.e,,

A
|A <1 and |[B,|<1 2.55)

The definition of the stability for linear systems is given in section 2.5. If
any of the poles lies outside the unit circle in the z-plane, the system can

be said to be anticausally stable.
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2.4 Discrete-time Fourier series transform

The existence of the Fourier transform and its inverse for a given

function x(t) can be determined by one sufficient condition
[Ix(oldt < o

One can refer to Kay (1988) and Marple(1987) for details of less restrictive
sufficient conditions for the existence of the Fourier transform.

Based on the usual definition of the Discrete Fourier Transform
(DFT), X(f) of the discrete data samples, x¢ (total M points) can be expressed

as

M-1 ‘
X(f) = ;‘;xt g iam/M (2.56)
Inverse of DFT is
1 M-1 .
X, = _Ex(f) e]Zt:ft/M
M i (2.57)

Here the sampling period (T) is not taken care for proper units of spectral
estimates. This can be modified for the discrete-time Fourier series as

given below.

M-1
X(f) = TYxe™M  for 0<ts(M-1) (2.58)

t=0



M-1

x, = 1 Ex(f) el?™/M for 0<fsM-1) (2.59)
MT =

Therefore, power spectral energy of the discrete-time Fourier series is

written as

2

S()=|X()f = T2

M-1 .
z X, e—)Z t/M
t=0

(2.60)

2.5 Stability of linear systems

A linear system is said to be stable if the output is bounded for all
bounded inputs. The responses of the system will be bounded if and only
if the roots of the AR polynomial, the denominator of the transfer
function are less than one. In other words, a linear time-invariant discrete
system is said to be stable in the bounded input and bounded output
(BIBO) sense if all the roots of the AR polynomial have magnitudes less

than unity. Otherwise the system is unstable.

If we define the transfer function in the form of poles of the
random process, then the system is said to be stable and causal provided
that the poles lie within the unit circle of the z-plane. This is also known
as the minimum-phase filter. If the system is anticausal and stable, the

poles have to lie outside the unit circle.

To explain these two cases, consider a general AR process. A causal

transfer function



-1
Hy(2)=1/A(z) = [1 + iakz'kil
P

(2.61)
will lead to the parametric model
P
X( = =D aXe tOW, (2.62)
k=1
Similarly an anticausal transfer function
P -1
» N » » _ » -k
H,(z)=1/A"1/Z) = [1+§{akz ] (2.63)
yields the parametric model
P »
Xy = _zakxuk + w, (2.64)

k=1

Using equation (2.64) x, can be generated based on the future values x, .

The causal stable model given by equation (2.62) is said to be the forward
prediction model, and the anticausal one given by equation (2.64) is called
as the backward prediction model. The forward and backward prediction
models are used later in multivariate AR parameter estimation. For the
MA model stability, one can choose the transfer function as the
minimum-phase filter which will guarantee a stable and causal inverse
filter. For more about the stability of the linear systems one can refer texts

by Sinha (1991), and Soderstrom and Stoica (1989).



CHAPTER 3

PARAMETRIC MODELLING OF
UNIVARIATE RANDOM PROCESSES

3.1 Identification of parametric models

While identifying a parametric model, one has to look into the
random process to see whether it should be identified by off-line or
on-line techniques. On-line identification is needed if the purpose is to
track parameters slowly varying in time. Whereas off-line identification is
used batchwise where all recorded data is processed simultaneously. Even
for on-line identification of the process with unknown dynamic
properties, one should first use off-line identification in order to validate

the model.

For identifying a particular model which is most suitable for the
random process under consideration one should follow the scheme as
highlighted in Figure 1.2; i.e., an experiment has to be designed (select
inputs, outputs, sample interval, total number of sample, etc.); a model
set and model structure has to be chosen (choose linear/nonlinear
characteristics of model, model order, parametrization, etc.); an
identification criterion has to be selected (prediction error methods or
correlation methods) and a procedure for validating the chosen model has

to be devised.

When selecting an identification method the purpose of the



identification should be clear to users, since it may express both the type of
model which is required and what accuracy is sought. A crude model can
be adequate for the purpose of rough estimation, while high accuracy is
needed for better representation of the processes such as marine
environments and structural motions, where theoretical models need to

be verified.

The reliability of the optimal estimates of SI parameters depends on
how accurately the SI model represents the ‘true’ system. Theoretical
dynamic systems can be best described by the optimal estimates of SI
parameters (Ljung, 1987). However, in practical cases with the presence of
noise, one has to draw a line between the fitness of acceptability and the
‘true’ system, i.e., a particular SI model can give a best fit which is very
close to the ‘true’ system, but may not exactly describe the ‘true’ system.
Therefore, an optimal estimate of the SI model can describe an
approximation to the physical processes occurring in the real system.

Based on previous works on random processes, the present study
considers AR, MA and ARMA models of SI methods which are to be
applied to the target (marine environmental and structural monitoring
time series data). Since the stochastic processes in an ocean state have
either poles or zeros or combination of both, the above three models can
fairly represent the above process. In general, the above SI algorithms are
described in Spanos (1983), Marple (1987) and Kay (1988). Here the above

models are formulated and applied to stochastic data of the ocean state.



3.2 Description of system identification models

It is sometimes too difficult to select an appropriate SI model for
spectral estimates of any random process. Based on studies carried out by
Spanos (1986), Lin (1987), Spanos and Mignolet (1987), Witz and Mandal
(1991), Mandal, Witz and Lyons (1992), and others, SI algorithms are
applied to a random process in ocean dynamic states. The study presented
herein considers autoregressive, moving average and autoregressive
moving average algorithms which are formulated leading to power

spectral estimates as described below.

3.2.1 Autoregressive (AR) model

The time series {y,} is said to be an autoregressive process of the

order p, AR(p), if it is generated from the relationship

P
Y. = -Zakyr—k + byw,
k=t (3.1a)

Here y, is the rth sample of the discrete stochastic process and wr is

Gaussian white noise. Equation (3.1a) can be written in polynomial form

as

= ]
f a(zh| ot (3.1b)



where

a(z") = 1+a,z'+a,z%+a.z>+......4+4a zP
1 2 3

p
=1+ az™
kel

The AR(p) model is also called as an all-pole model and is

illustrated in Figure 3.1.

The transfer function of the AR(p) process can be expressed as
b
Ho@® = ——
k= (3.2)

and whose input is a white noise process w,. The scaling constant b, can

be obtained by using the equation

. p
2 1
b, = 20, RO+§{akRk]

(3.3)

The sampling period, T is generally defined by the cut-off frequency, w,
through the Nyquist relationship
(3.4)

Therefore, the estimated power spectrum Syy(®) of yr can be written

as



Sp@ = [Hee*?)|
_ b
- 2

P
1+ Zake""“DT

k=1

(3.5)

The autocorrelation function R, of the target/observed power

spectrum is defined as

S(w).cos(Aw T).dw

w
>
I}
=3 =y H|a

7\,:0, L, 2, 3..... (363)

where, S(w) is the target/observed spectrum. In the absence of a target
spectrum, if the available information is a finite set of time series data, i.e.
{0 <y, < M}, then the true correlation coefficients Ry can be calculated

from the relationships

M
R, = fM,A) . z Y.Yoa
= +1 (3.6b)

where, f(M,A) =1/(M - 1) for the unbiased sample correlations and
f(M,A) =1/M for the biased sample correlations.
The error, € between the target spectrum, S(w), and the estimated

power spectrum of the AR output, Syy(®), is expressed as

®
b

b, S(w)
£ = . do
20, _mhsw(m)

3.7



Substituting Syy(w) [equation (3.5)] into the above equation gives

2

1 %
€ = EJS(O)) dw

b -0y

P
1+ ae™"
k=1

(3.8)

By minimizing €, the parameters a, are determined. Therefore,

minimisation of error, ¢ brings the following important relationship

de 1 :
?d;—i' = m_b [Rl + ;alei_kljl - O
or
P
2Ry = -R, (3.9)

Equation (3.9) can be written in Toeplitz matrix form as given below

0 1 2 Rp—l a,] R, ]

R, R, R, RP_2 a, R,

R, R, R, R,la,| = - [R,

R, R _, R R, |[L%e RS
- - (3.10)
These are also known as Yule-Walker equations.  Using

equations (3.3) and (3.10), i.e.; when the parameters a;, a,, as, ... a’, and by

are determined, then the time series y, can be generated digitally by using

the recursive equation (3.1). Here one has to obtain optimal spectral

estimates for the values of a; and p such that the AIC or MDL between the

target and estimated spectra must be a minimum.
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3.2.2 Moving average (MA) model

The time series {y,} is said to be an moving average process of the

order q, MA(q) if it is generated from the numerical scheme

q
yr = Zblwt—l
1= (3.11)

Here y, is the rth sample of the discrete stochastic process and wy is the

Gaussian white noise. The MA(q) model is also called as an all-zero
model and is shown in Figure 3.2.

In general, any weakly stationary process can be expressed as the
output of an infinite (in practical applications a finite value of q is chosen)

order digital filter whose transfer function is defined as

’ q
H,(2) = Xbz"
i=—-q

(3.12)

and whose input is a white noise process. As one is looking for the best fit

of the target spectrum, S(w), the MA coefficients b, are calculated by
making use of the Fourier coefficients of the square roots of the target

spectrum as follows

T
b, = =]Q)cos(iTw) dw
o

where S(w) = Q(w).Q (w)
(3.13)



If S() is real then Q(®w)=+/S(w) . Therefore, the estimated

power spectrum Syy(w) of the MA process can be written as

S,@ = H,,(e°7).H,, "7
(3.14)

If the available information is in the form of time series, then the

MA coefficients, b, can be estimated from either of the following

relations:

(a)

(b)

Equating power spectra estimated by the FFT [equation (2.29)] and

equation (3.14) gives

1=q
bb,_ for k=0,1,2,......,
R, (k) = Zk * i (3.15)

R (-k) for k=-q,-(q-1,......,-1

The above equations are valid for the general case. The present study
estimates the SI coefficlients in real form. Therefore, equations (3.15)
can be solved to obtain the MA coefficients. However for higher
order MA models, estimation of the MA coefficients using equations
(3.15) becomes more complicated. In this case an alternative method
can be used as described in (b).

By equating the AR(p) process with the MA(q) process, [equation

(3.1a) with equation (3.11)] a is expressed as the impulse response of

1/b(z’Y). This can can be written as

1
a(z™) (3.16)

Hy,(z) = b(z7) =



- Dttty wihdutalibad

Therefore,

ay _ 1 (3.17)
A=) = o

Hence Hy;,(2) can be obtained from the AR polynomial, a(z'1) [see

example 2 of Appendix IlI]. Now if the impulse response of 1/ b(z1) decays
to zero for a lag greater than p, then the AR(p) process is a good
approximation to the MA(q) process.

Equation (3.11) can be used for simulating a time series by the
weighted average of 2q+1 white noise deviates which moves in time. The
advantage of this model is that one does not require feedback values of
time series. However in the case of equation (3.1) the AR process requires
not only the feedback mechanism of the time series but also the initial yr.1

values.

3.2.3 Autoregressive moving average (ARMA) model

Let the time series {y,} be an Autoregressive Moving Average
(ARMA) process of the orders (p, q) with p2q_ It is defined by the

difference equations
P q
Y. = - ZaRYr-k + thwr—l (3.18a)
k=1 1=0

Here y, is the rth sample of the discrete stochastic process and wy is the

Gaussian white noise process. The above equation (3.18a) can be expressed



in polynomial notation as

_|bz™ w
y: = a(z-l) cr (3.18b)

where
-1y _ -1 -2 -3 -p
a(z™) = 1+a,2" +a,z" +a,z" +......+a,Z
P
=1+ az™
k=1
and

b(z™) = by + b,z +b,z2 + bz +......4+b 2z
q
= Zblz"
1=0

The ARMA(p,q) model is also known as a pole-zero model and is

illustrated in Figure 3.3.

Now the ARMA(p,q) process can also be expressed as the output of a

digital filter whose transfer function in terms of z-transform is defined as

q
-1
2.b.z
1=0

P
1+ Zakz"‘
k=1

H on @

(3.19)

and whose input is a discrete white noise process w.

The estimated power spectrum Syy(®) is written as

. 2
Sp@ = € (3.20)



There are various procedures available to obtain the unknown

coefficients a, and b, [see Graupe et al (1975), Gersch and Yonemoto
(1977), Friedlander (1983)]. Based on applications [Samii and Vandiver

(1984), Samras et al (1985), and others] of random processes in marine

problems, two alternative procedures to determine a, and b, are

described below.

3.2.3a Power order matching (POM)

This technique is to match the power of AR and ARMA algorithms.
Equating the transfer functions of AR(m) [ replacing a, and by by &, and

’t;o in equation (3.1) ] and ARMA(p,q) models given by equations (3.2) and

(3.19) the following relationship can be expressed

P 9 m
b1+ Yaz® = (Ob.z)a+ Y48z
k=1 1=0 t=1

(3.21)

where, it is assumed that p+q<m and p=2q.

Now equating the same power of z in the above relation, the

following equations are obtained to determine the unknown coefficients

a, and b,.
a ] 2 0 0 ..0] b, ] b, ]
a, 1 32 ﬁl 0 .. 0 bl . b2
a, =-§—.a3 92 al .0 {b, +Q_b3
0 H H 0]
a 4 2 4 4 _ b
L 9] L q-1 q-2 L q-1J L 9

(3.22)



3 4 ] q+ ﬁq a-1 " %1 |[b,]
aq+2 1 q+2 Qq+1 q 2 b1
a = — A
q+3 /6 a3 Sz dgn 3 b}
o: : :
a b
S 8, 4., & , .8, L
(3.23)
and
_ 1
p+l p p-1 tee p+l-q bO
p+2 p+l p p+2-q b1
* a0 * b2 = O
p+3 p+2 p+l p+3—q R
A b
_ﬁ p+q p+q-1 ﬁp+q—2 i dP 1 a-
(3.24a)
or,
- - o B
ﬁP ﬁp—l . ﬁp-b-l—q -bl-‘ ﬁp-lrl
ﬁp+l ﬁP * ﬁp-l»2-q b2 p+2
o = -
Q p+2 p+l e d p+3—-q i 1?3 bo : p+3
' b
L Qp'fq-l ptq-2 """ QP =% .ﬁpwd
(3.24b)
. A
with bO = bo (3.25)

First, by, by, by ...bq are determined from equation (3.24b); thereafter a;, a,,

as, ... 3 are calculated from equations (3.22) and (3.23).
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3.2.3b Inverse AR filter using MYW equations

Multiplying both sides of the equation (3.18a) by Yt-g-1 and taking

expected values, the correlation coefficients of the process y, is

R, =  E{yvywa}

and

R, = R_,

Then we get

Ry +a,R a,R +. +a,Rg.i.p = 0 for 1s1sN-¢q

q+l-l+ 27" q+1-2

(3.26)

Equations (3.26) are often called the Modified Yule-Walker (MYW)
equations. The simple ordinary Yule-Walker equations can be obtained
with q equal to zero. If the observed or target spectrum, S(w), is given,
then Rj can be determined from equation (3.6a) or equation (3.6b). Now
the AR part of the ARMA algorithm is obtained by solving the above
MYW equations. There are various methods available to estimate the MA
part of the ARMA algorithm. An efficient computational method is

described below.

Based on the modal decomposition method and combining all
partial fractions to a common denominator, the power spectrum of the

ARMA model can be described as



Sy@® = SRz

j=—o0

_ n(2) N n(z™h
a(z 0 -1
(2) a(z™) (3.27)
where, the causal part of the autocorrelation sequence is
-1 .
nEZ—I)) — ZRiZ-i
alz =l (3.28)
and
nz?) =nz'+nz?%+ ... + npz_p
(3.29)

Therefore n(z-1)/a(z"1) is a linear system whose impulse response is

the one-sided covariance sequence.

The ARMA spectrum is defined as

b(z).b(z™!)

Sy(2) = a(z).a(z™) (3.30)

Comparing equations (3.27) and (3.30), the MA part of the ARMA

spectrum can be expressed using numerators as

b(z).b(z?) = n(z).a(z?) + R a(z).a(z?) + n(z1).a(z) (3.31)

We define

1 — .
= >Yh.z"
a(z) § ’ (3.32)

Where hj can be determined by a recursive filter technique. Here

n(z-1) can be directly estimated from R; using the approximate



relationship in the time-domain

h, 0 0 0 n, R,
h, hy 0 0 n, R,
h, h; h, 0 n, R,
s s i o= (3.33)
h,,h,, h ... hy n, R,
_hN—I hN_Z hN-3' .o hN"p_ _nN_ _RN i

Equation (3.33) is an overdetermined system. This system will not
have a solution unless the R; are associated with an ARMA process of
order (p, p) or lower. Assuming this not to be the case, one can determine
nj in the least squares sense using the singular value decomposition
(S§VD) technique. Once nj are determined, the MA part of the ARMA
model is calculated using equation (3.31). Hence the final ARMA
spectrum can be obtained from coefficients of a(z'1), n(z'1) and Roe. By
factorisation of equation (3.31), it easy to obtain b(z-1). Hence the ARMA
algorithms are determined. The quality of the ARMA spectral estimate
described in the above two cases will depend on how accurately the initial

higher order AR parameters are selected.
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3.3 Univariate optimal model order selection

The modified Yule-Walker method requires a maximum of p+q
(where p and q are the ARMA model orders) correlation coefficients for
the solution of the well-determined set of equations of an ARMA process.
Friedlander (1983) has demonstrated the improvement in spectral
estimation accuracy with a larger number of equations and more
correlation coefficients. However, there are high computational costs
associated with an overdetermined set of equations and higher order
models. The question is how high a model order should one select so that
the solution remains computationally feasible from the application point
of view and the model can represent an acceptable target. There are
various methods available by which one can select the optimal model

order, i.e.,

a) Auto Correlation Matching (ACM) (Spanos, 1983)

b) Least Squares Error (LSE) (Kay, 1988)

¢) Final Prediction El;ror (FPE) (Akaike, 1974)

d) Akaike Information Criterion (AIC) (Akaike, 1976)

e) Minimum Description Length (MDL) (Rissanen, 1983)

f) Criterion Autoregressive Transform (CAT) (Marple, 1987)

The LSE method is commonly used owing to its simplicity, but can
not be applied to all random processes. If a process is purely convergent,
the least squares error will decrease with increasing model order. Hence,
using the LSE method, it is sometimes difficult to select the SI model order
which is the optimal representation of the stochastic process. Other

methods based on the AIC or MDL overcome this problem.



The optimal model order of the initial AR process can be selected by

the AIC and MDL which are expressed as

AIC =M [In(ER)] + 2p (3.34a)

MDL =M [In(ER)] + p In(M) (3.34b)

where M is the number of time series data points and ER is the average
value of the sum of the squared error of the data or target spectrum with
estimated values from 1 to M. Another way of estimating ER is based on
the estimation of variance of the initial higher order AR process using the
forward linear prediction residual (FLPR) technique. The ARMA model is
derived from the initial higher order AR model. The higher order AR
model needs a finite order which can be determined by the FLPR

technique. The FLPR ( based on the AR process) is expressed as

P
ef(n) =x(n) + Y,a(k).x(n - k)
k=1 (3.35)

where x(n) represents the discrete data and a(k) are the AR coefficients.
This expression is identical to the AR algorithm except for the term on the
left hand side of the equation which is not a driving white noise process.
The FLPR from a finite discrete data set may, or may not, be a white noise
process. While fitting an AR model to a finite data set, here we assume
that the FLPR is a white noise process, so that it allows one to equate the
AR parameters to the linear prediction coefficients. The sum of the

squares of the FLPR is estimated as

1 2
ERz—M_p;]e‘(nﬂ (3.36)
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This ER is used in equations (3.34) to find the value of p that
minimizes the AIC or MDL.

An approximate expression for the AIC as given in Friedlander and

Porat (1984) is
AIC = N log{(ERp)/(N-p)} + 2p. (3.37)

where, ERp is the sum of the squared error from p+1 to N (N 22p). Here

the MYW method is used for solving an overdetermined set of equations.

Let the MYW be written as

Ryveta Rt aRo ot 4aRo o = e, for 1<T<(N-q)

(3.38)

then ERp is estimated as the sum of the squares of eq+t. Here one has to
find the value of p that minimizes AIC. If the autocovariance sequences
of the stochastic process follow the convergence rule, then for higher
values of p, the estimate will improve. However, if the autocovariance
sequences first converge and then diverge one should select p for the

autocovariance sequences just before divergence.



3.4 Applications of AR, MA and ARMA modelling

Sometimes a particular SI model becomes ill-conditioned owing to
reasons such as not taking into account poles and zeros, optimal model
orders and the number of Yule-Walker equations. Here the theoretical
(Pierson-Moskowitz and JONSWAP) wave spectra are considered for AR,
MA and ARMA algorithms of SI methods. Measured time series waves
and offshore structural motions are then considered for the above
algorithms. Subsequently a reduced model order technique is used for
further reduction of data in the form of reduced ARMA model coefficients

as described in Chapter 4.

3.4.1 Ocean waves

Ocean waves represent a random process. In many occasions and
locations we may not have measurements of the wave process, and so
theoretical estimates are used for design purposes. These may be obtained
from spectral formulation such as the Pierson-Moskowitz or JONSWAP
ocean wave spectra. Here these theoretical wave spectra are used to
establish system identification algorithms in the form of rational
modellings. Since most of the theoretical spectra represent random
processes which can be modelled by SI algorithms, it is simple to generate

time series ocean waves using equations (3.1), (3.11) and (3.18).



3.4.1a Theoretical Pierson-Moskowitz power spectrum

The first systematic and reliable way of establishing an ocean wave
spectrum was carried out by Pierson and Moskowitz (1964) and is widely
accepted for the waves of a fully developed sea. The Pierson-Moskowitz

spectrum is defined as

A B
S(w) = P eXp(—F)

(3.39)
where, A =0.0082 g2
B=0.74 (g/v}

v = wind speed in m/sec at a height of 19.5m above mean water
level

g = gravitational acceleration in m/sec?
® = 2xf

f = frequency in Hz

Spanos and Hansen (1981) have shown that the Pierson-Moskowitz
spectrum could be approxifnated reliably by the AR process in an average
sense, but the AR spectrum exhibits sharp fluctuations. These fluctuations
could not be removed either by increasing the filter’s orders or by selecting
a larger number of equations in the Toeplitz matrix [equations (3.10)].
While examining equation (3.39), it clearly shows that the Pierson-
Moskowitz spectrum does possess a zero of infinite order at the frequency,
®=0. Therefore, numerical difficulties exist in approximating the Pierson-
Moskowitz spectrum by AR algorithms which are best suited for all pole-
dominated spectra. It is shown that an eight term Taylor expansion of the
exponential term of equation (3.39) expresses an excellent approximation

to the Pierson-Moskowitz spectrum for a wide range of wind velocities
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most commonly used by engineers. The Taylor expansion of equation

(3.39) is expressed as
A.?
S(w) = B2 B B B B® B B°
o”? +Bo” + jm“ + Tmm + —4T°)16 + —SToo12 + a(os + —7—!-0)4 + 3
(3.40)

This equation has been successfully applied (Spanos, 1983) to represent a
reliable AR process of the Pierson-Moskowitz spectrum. Here it reduces
the order of the zero of the Pierson-Moskowitz spectrum at w=0 from
infinity to only 27. Figures 3.4 shows comparison between a Taylor
approximated Pierson-Moskowitz spectrum and a true Pierson-Moskowitz
spectrum for various wind speeds. It is observed that there are very small
variations at the low frequency region. This is owing to the
approximation of the true Pierson-Moskowitz spectrum. Otherwise, there
are hardly any differences. The Taylor approximated Pierson-Moskowitz
spectrum is an excellent fit with the MA(29) (the model order is chosen
based on the autocorrelation of the process, Figure 3.5) spectrum as shown
in Figure 3.6 as compared to the true Pierson-Moskowitz spectrum (Figure
3.7) where some differences are observed in the peak frequency region.
This is owing to the presence of the zero of infinite order in the true
Pierson-Moskowitz spectrum. Figures 3.8 shows the comparison between
the Pierson-Moskowitz spectrum and ARMA(20,20) spectrum.
Improvement of matching occurs owing to consideration of more time
steps of the autocorrelation of the Pierson-Moskowitz spectrum which is a

convergent process.



3.4.1b Theoretical JONSWAP power spectrum

The JONSWAP (JOint North Sea WAve Project) spectrum is
established based on the North Sea wave measurements and analysis

carried out by Hasselmann et al (1973). This spectrum is defined as

S(w)= o.go”.exp{ - (0 P/(0)4}.\(r
T=exp (- (©-0,)%20%))
(3.41)

The same Pierson-Moskowitz spectrum with o = 0.0082, = 0.74 (g/ v)4,

P
.= 0.07, 6,=0.09 and y= 3.3 is compared with MA(29), ARMA(25,25)

spectra (Figures 3.9 and 3.10) which show a very good fit.

3.4.1c Measured time series of ocean waves

A long term wave measurement programme was carried out by the
Indian Navy off the West Coast of India at 16m water depth as shown in
Figure 3.11. A set of 2048 measured wave data points (K15) at 2Hz
sampling rate are used for wave power spectral estimation using AR, MA
and ARMA algorithms. The order of the model is determined based on
an autocorrelation process (Figure 3.12) and the LSE (Figure 3.13) method.
The ARMA(p,q) algorithms are determined based on the power of order
matching method. Equating transfer functions of initial AR(m) and
ARMA(p,q) algorithms and considering the like powers of z [see

equations (3.21) to (3.25)], the coefficients, by and a, are determined.

Based on the LSE and autocorrelation methods, the model orders are



selected. Here the selected model orders are AR(40), MA(30) and
ARMA(20,20). A comparison study on both IAR and POM methods
(Figure 3.14) show that there are some differences. The advantage of POM
method over IAR method is that knowing the initial AR process the
ARMA coefficients are obtained taking into account all energies
contributed from initial AR estimates, whereas the approximate technique
based on the MYW equations is applied to the IAR method. Comparative
results of LSE of ARMA spectra between POM and IAR techniques for PM,
JONSWAP and K15 waves are tabulated (Table 3.1), which also confirm
that POM method estimates less LSE as compared to LSE by the IAR
method. Both of the above ARMA spectral estimation techniques can be
applied without much loss of information. Figure 3.15 shows good
agreement between the SI models’ spectra and the FFT spectrum. It is
observed from the autocorrelation and LSE plots that this power spectrum
is a pure convergent process. Therefore, by increasing the model orders, it

yields improved results.

3.4.2  Semisubmersible (Santa Fe Rig135) heave motion

Santa Fe Rigl35 is representative of semisubmersibles used for
hydrocarbon exploration and production in the North Sea (Figure 3.16).
Heave acceleration of semisubmersible (Santa Fe Rigl135) collected by the
IDAS load and motion monitoring package developed by the Department
of Mechanical Engineering, University College London is considered
herein. A typical 2048 digital heave acceleration data set (SF28) collected at

2.5 Hz interval (Figure 3.17a) is considered to estimate the power spectrum



using SI algorithms. Figure 3.17b shows the normalised autocorrelation of
the initial AR algorithm' for the above data. This shows that the
acceleration data are not purely convergent. Based on the autocorrelation
process (Figure 3.17b), it is observed that the model order can be optimised
at 98. The AR(98) model shows good matching with the FFT spectrum
(Figure 3.18). Here ARMA(50,50) and ARMA(49,49) spectral estimates
show very little difference (Figures 3.19 and 3.20). The above two ARMA
spectral estimates can be used for further reduction of ARMA model
orders. The normalized variation of MA parameters (Figure 3.21) of the
above data shows very low optimal model order as compared to AR and
ARMA processes. Figures 3.22 and 3.23 show the comparison between MA
spectra with 32 and 34 coefficients and the FFT heave acceleration
spectrum which fits very well. This type of data in which mostly zeros are
present in the SI algorithm may require a higher order AR or ARMA

model. Zeros of any random process can best be fitted by a MA algorithm.

3.4.3 Monohull crane vessel motions

Two vessels, namely, Vessel-A and Vessel-B are considered here.
The former is the DB50, the latter is not disclosed owing to reasons of

confidentiality, but is also a monohull crane vessel.

3.4.3a Crane Vessel-A

As described above for the Rigl35 heave motions, similar

observations are noticed for the McDermott’s DB50 crane vessel roll
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motions. A record of 2048 data points collected at a rate of 4 Hz is
considered for this study. Based on the autocorrelation process
(Figure 3.25), the initial higher AR model order is estimated which is
shown to be more than 200. The AR or ARMA algorithm can not be
properly applied for such a high model order owing to ill conditioning of
Toeplitz matrix values. However for such a case a very low order AR
model can generally be fitted to the measured spectrum. Starting from the
first order of the autoregressive process the AR(3) model seems to provide
a very close fit to the above process as shown in Figure 3.26. The above
data can easily be fitted with the MA algorithm which is shown in Figures
3.27 and 3.28. Here the 2048 time series data points can be represented by

only 30 parameters which are the coefficients of the MA(30) model.

3.4.3b Crane Vessel-B

A later version of the offshore monitoring unit, IDAS (see
section-3.4.2) was installed on monohull crane vessel-B in the North Sea
in April 1992 and recorded the vessel's motions at different headings and
sea conditions. Here one set of such a time series of 1024 data points in
head seas is analysed. The sampling rate of the time series was 5 Hz. The
measured data consist of pitch, roll, strap down vertical (heave)
acceleration, longitudinal acceleration, transverse acceleration and sea
wave elevation. Power spectra calculated using the FFT technique show
that these are narrow banded spectra for which the autocorrelation lags are
very high up to which the process is convergent. Since these time series

are narrow banded, a low order AR or ARMA model can be used to
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represent the measured spectra. The appropriate AR or ARMA model
orders are selected based on the best estimate to represent the power
spectra.

First the sea wave data is modelled using autocorrelation, LSE and
AIC techniques. It shows that even though the actual model order seems
to need to be very high the best fit between the measured wave and
estimated AR spectra shows that model order of 24 seems to adequately
represent the wave process. While examining the LSE there is not much
variation between the AR(20) and AR(24) models (Figures 3.29a,b,c) which
are considered for estimation of vessel's transfer function.

The heave acceleration, pitch and roll motions are analysed with SI
modellings. The appropriate SI models' parameters are estimated from
the vessel motions. The SI models spectra are compared with the spectra
determined by FFT. Pitch motion can be represented by the AR(16) and
ARMA(12,1) models. The spectra estimated by AR(16) and ARMA(12,1)
models are compared with the spectra determined by FFT as shown in
Figures 3.30a,b. Roll motion can be expressed by AR(29) model and its
spectral comparison with FFT spectrum is shown in Figure 3.31. Similarly
heave motion can be represented by the AR(13), ARMA(4,3) and
ARMA(2,2) models and their spectra are compared with FFT spectrum
(Figure 3.32a,b,c).

The transfer functions (Briggs and Vandiver, 1982) estimated by SI
modellings for each type of vessel motions in random sea waves are
compared with measured transfer function determined by the FFT
technique which shows good consistency with the SI derived transfer
functions. Figures 3.33a,b show the comparison between the pitch transfer

functions estimated by SI modelling and FFT technique.  Similarly
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Figures 3.34a,b show the comparison between the roll transfer functions
estimated by the SI modellings and FFT technique. These show good
consistency between the estimated transfer functions by the SI modelling
and FFT technique. The estimated transfer functions by SI modellings can
also be used to represent heave motion as shown in Figures 3.35a,b. This
study of transfer function estimation further confirms that the estimated
lower order SI models can be used to represent vessel motions with

significant reduction in data storage requirements.



CHAPTER 4

REDUCED ORDER ARMA
MODELLING OF UNIVARIATE
RANDOM PROCESSES

4.1 Introduction

Selecting a suitable model for any stochastic process is a complicated
task. Spanos and Mignolet (1986) and Lin (1987) have investigated the
application of SI models to random processes associated with the ocean
environment. The most commonly method of model order reduction
technique in Control and System Engineering (Glover, 1984) is derived
based on state-space modelling. This chapter presents a different method
for the reduction of the model order based on the initial optimal AR
estimates of the ocean dYnamic systems and then the formation of a

reduced order ARMA algorithm.

4.2 Initial autoregressive parameters estimation using MYW
equations

Let the time series {yt} be an ARMA process of the orders (p, q) with
P 2 q defined by the difference equations
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P q
yt = —Zakyt—k + szw‘-l
k=l 1=0 (4.1)

where a, and b, are the coefficients of the ARMA process. Here y, is the
tth sample of the discrete stochastic process and w, is the Gaussian white

noise. Multiplying both sides of the equations (4.1) by Yi-g1 and taking

expected values, the MYW equations can be obtained as described in
equations (3.26) [Chapter 3] and can be rewritten as

R +aR +a,R + e +a,R = 0 for  1S1<N-q

q+i-1 27 q+-2

(4.2)
with the original Yule-Walker equations obtained by equating q to zero. In
the case of spectral estimation, we have to find the true correlation
coefficients, Rj and the order (p, q) of the ARMA process. The correlation

values can be determined from equations (3.6).

For the ARMA process, initial higher order p coefficients (a1, as, a3

...ap) are obtained by solving equations (4.2).

4.3 Higher energy modes selection to form reduced order AR
parameters

After determining the initial AR coefficients ay, a5, a5, . ap from

equations (4.2), it is required to determine the roots of the polynomial,



a(z'1), which contribute most of the energy to the stochastic process. These
roots of a(z'l) containing higher energies should match closely to
represent the original model or time series data without significant loss of
information. In other words, the true SI model fits the required random
process along with some noise components present in the system. Here
we try to eliminate the noise modes thus reducing the order of the SI
model.

Some of the roots of the polynomial, a(z-1), may be real but most of
the roots will be complex. Since the complex roots are conjugate, those
pairs can be multiplied to form second order real modes. Therefore, the

polynomial, a(z'1) can be factored into first and second order real modes,

a(Z'l) = 1 + al Z'l + a2 2-2 + e + ap Z-p
or

P P

a@) =[J1+dz?].JJ[1+ e,z +e,z7%]
i=1 i=l (4.3)

wherep, +2p, =p and d,, €,;, €, are coefficients.

And p,; is the number of first order modes and p, is the number of

second order modes.

The truncated single sided power spectrum can be expressed in a

partial fraction form. The total power spectrum can split into
S1(z) = S;(z1) + R(0) + Sx(2) : (4.4)

where, R(0) is the autocovariance with zero lag and S;,S,, are the single

sided causal and anti-causal power spectra respectively,
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4.5)

Here mn(z) is the transform of a rectangular window (1, N) and *

denotes the convolution operator. Dj, E1j and Epj can be estimated in the

least squares sense.

We define

(4.6)

“4.7)

Here fjj and gij are computed using recursion filter techniques as
described in Appendix-II (examples 3 and 4). Equation (4.5) can be

rewritten in the time-domain as

Fal-[7] -
(4.8)
where
f,, f,, f0p, T
I f, f, f1pl
_fN_“ foais O SV .

and
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Here Rq, Ry, R3 R, ..Ry are the estimates of auto-covariances,

determined from the observed/generated time-series data, or from the

target spectrum. The fij and g;; are determined from equations (4.6) and

(4.7). Therefore, D (i.e., Dj) and E (i.e., Ejj and Ezj) can be determined from

equation (4.8) which can be rewritten as

P]- (¢ o' &) = G|,

4.9)

In order to select the higher energy modes we have to determine
the energy associated with each mode. Appendix-IV describes the
calculation procedure for determining the énergies of the first and second
order modes of a dynamic system (Porat, 1990). The energy of the first and

second order modes can be obtained by replacing

ay=eyj |
a; =d; ay = eyj
bg =0 & bg=0 (4.10)
by =D; by =Ey;

b2 = Eyj)

in equations (AV-7 and (AV-8) of Appendix-V respectively.

The energy of a first order mode, Q3j, is given by
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and the energy of a second order mode, Qy;, is given by

(1+ e XEf; + E3;) — 29,y Ey;
(1_e2j)(1+32j +61j)(1+e2j —e1i) (4.12)

The number of modes to be chosen depends on how much prior
knowledge we have of the dynamic system. It is required that only higher
energy modes are retained which in combination represent more or less
the original system. If the reduced order of the model is unknown, it is
essential to fix some limit and retain those modes whose energies are

above this limit. Finally, the selected modes are multiplied to yield the

final reduced order (p,;) AR part of the model.



4.4. Estimation of reduced order MA parameters

Once the AR part of the reduced ARMA model is obtained, the MA
part can be calculated based on the modal decomposition and partial
fraction methods. The power spectrum of the reduced order ARMA

model, ST, can be described from equation (4.4) as

(z) n(z™)
S = Rz —= 7
@) ,g’,. a(z™)
n(z).a(z‘l)+R0.a(z).a(z‘1)+n(z‘l).a(z)
= a
a(z).a(z™) 4.13)
where the causal part of the autocorrelation sequence is
n(z1) - .
= z™
az™ STR (4.14)
n@z?)=nz'+n,z7?+ ... +n, z 3
’ (4.15)

Defining the reduced order ARMA spectrum as {b(z).b(z)}/{a(z).a(z)}
and comparing with equation (4.13) the MA part of the ARMA spectrum

can be expressed as

b(2).b(z?) = n(z).alz")+R,.a(@).az) + n(z").a(z) (4.16)

We can define

Zh z™
g 4.17)
where hj can be determined by recursive filter techniques (Appendix-II,
example 2). Here n(z'1) can be directly estimated from R;using the

approximate relationship in the time domain [ from equations (4.14) and

4.17)]
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= ' (4.18)
and h,_ =0 fori<k

Equations (4.18) form an overdetermined system. This system will
not have a solution unless R; are associated with an ARMA process of
order (p, q) or lower. Assuming that this not is the case, n; are determined

in the least square sense. Rewriting equation (4.18)

Hjj.nj = R

or,

H;,.H,] Hj.R

n; =|Hy -Hy | -y Ry

[ Ha] H (4.19)
In order to achieve an efficient computational algorithm, one can

take N=p, then equation (4.18) will provide a well determined solution.

In other words, in simplifying overdetermined system the following

equations can be applied for determining n;.

n, 0 0 1
n, R, 0 a,
np Rp_l Rl ap—l

(4.20)

Once nj are determined the MA part of the reduced order ARMA

model is calculated using equation (4.16).



4.5 Final reduced order ARMA model

The final reduced order ARMA spectrum [equation (4.13)] can be
obtained from the reduced order coefficients of a(z'1) [from section-4.3],
n(z-1) [from section-4.4, equations (4.17) and (4.18)] and R [section-4.2]. By
factorisation of equation (4.16), it is straight forward to obtain b(z'1). Thus
the reduced order ARMA algorithm is determined and is expressed by the

difference equations

P q

3 3
L = -22ay._ + Xbw._
Y k=1 1 ok 1=0 “4.21)

where the time series {y} is the tth sample of a reduced order ARMA

process of the orders (p3, q3) with P, 2 q; and ak and b, are the coefficients

of the reduced order ARMA process. Here wt is the Gaussian white noise.

Now the ARMA(p,, q;) process can also be expressed as the output of a

digital filter whose transfer function, Harma(2), is defined in terms of the

z-transform as

b(z™1)
H z) = —
wa @256 (4.22)
where b(z)=b +bz' +b,z72+ ... ... b,z
a(z)=1 +azl+a,z2+..... a,z "’

and whose input is a discrete white noise process, wy.
The estimated power spectrum, Syy(®), using z= ei0T, s written as

. 2
Sp(@) = [H g 1)
4.23)

where o is the radian frequency and T is the sampling period.
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4.6 -  Applications of reduced order ARMA modelling

The model order reduction techniques presented in this chapter
have been successfully applied to the estimation of reduced order ARMA
parameters of ocean waves (theoretical spectra and measured time series)

and measured offshore structural motions.

4.6.1 Ocean waves

4.6.1a Theoretical (Pierson-Moskowitz and JONSWAP) power
spectra

Consider first the Pierson-Moskowitz spectrum associated with a
wind speed of 10 m/s (denoted here as PM10). Figure 3.5 shows the
normalised autocorrelation for this wave spectrum. Figure 4.1 presents
the AIC against increasing AR model order. Consideration of Figures 3.5
and 4.1 indicates that an AR model of order 40 (AR(40)) is the optimum
representation of this wave spectrum. The coefficients of the AR part of
the ARMA model are calculated from the AR(40) model using the MYW
method previously described. The resulting polynomial, a(z-1) is then
factorized into first and second order real modes. These modes are shown
in Table 4.1. Here modes 4 to 7 are first order real modes and the
remaining modes have complex conjugates. Hence pairs of complex
conjugate modes are multiplied to form second order real modes. The
energy in each mode is calculated using equations (4.11) and (4.12). Table
4.1 also shows the energy associated with each mode for the coefficients of

the AR part of the ARMA model representation of PM10.



The number of modes to be retained for the reduced order ARMA
model depends on the required level of statistical accuracy. Single peak
spectra generally associated with ocean wavés can be represented by a few
modes which contribute the higher energies. Based on prior knowledge,
some energy limit can be fixed and only those modes whose energies are
above that limit need be considered. If the reduced model order is
unknown, one has to predetermine the energy limit. Table 1 shows that
mode 11 has the highest energy level. The energy levels presented in
Table 1 are normalized by the energy associated with mode 11. Modes 9
and 10 also have significant energy levels. If only modes 10 and 11 are
considered then PM10’s AR(40) model reduces to an ARMA(4,4) model.
The MA part of the ARMA model is determined based on partial fraction
and recursive methods previously described. Figure 4.2a presents a
comparison between the reduced order ARMA(4,4) spectrum and the
target Pierson-Moskowitz spectrum which shows reasonably good
agreement except in the low frequency region. As we are searching for an
improved fit, the next higher energy mode is added to the AR part of the
reduced ARMA model. Now modes 11, 10 and 9 are considered and the
resultant ARMA(6,6) spectrum is determined. The ARMA(6,6) spectrum
shows some improvement compared with the ARMA(4,4) spectrum as
shown in Figure 4.2a. From the above study, it is observed that
consideration of all modes yields the best results but at the expense of
added complexity. For instance the ARMA(20,20) spectrum presented in
Figure 4.2b shows a very good fit with the target Pierson-Moskowitz
spectrum as it takes account of all the modes. This indicates that the
initial AR(40) model was properly selected. Now suppose we take an

AR(32) model and look for model order reduction. The resultant
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ARMA(16,16) spectrum which takes account of all modes present does
show some differences with the target Pierson-Moskowitz spectrum. This
is owing to the fact that the AR(32) autocorrelation function can not take
into account all component energies present in the Pierson-Moskowitz
spectrum.

Figure 4.3a and 4.3b present the results of the above model order
reduction technique applied to the JONSWAP spectrum. Figure 4.3a
shows reasonable agreement between a low order ARMA(2,2) spectrum
reduced from an initial optimal AR(60) model and the target JONSWAP
spectrum. Increasing the number of modes so that the reduced
ARMA(2,2) model increases to an ARMA(6,6) model results in an
improved comparison between the reduced model spectrum and the

target JONSWAP spectrum (see Figure 4.3b).

4.6.1b Measured time series of ocean waves

The wave measurements were recorded at a location in the southern
North Sea where the water depth was 17.3m as shown in Figure 4.4. The
wave gauge sensors were placed in the MPN platform as shown in Figures

4.5a,b and time series waves were recorded.

For the present study a time series wave data (M12) is used here for the
estimation of the reduced order ARMA parameters. This study considers
4096 data points collected at a sampling frequency of 4Hz. Figure 4.6
shows the normalized autocorrelation of the M12 time series wave data.
Figures 4.7a and 4.7b present the variation of AIC and MDL with

increasing model order. In Figure 4.7a the AIC and MDL are determined
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using the error variance between the target spectrum and estimated
spectrum. However sometimes the AIC method may not determine the
optimal model order. Using the forward linear prediction residual (FLPR)
technique the AIC variation does not show the optimal order (Figure 4.7b).
It may show a very high value which does not seem to be the appropriate
model order. The MDL method determines the optimal model order
using the FLPR technique. The advantage of the MDL method over the
AIC method is that the values of p In(M) increase with M faster than 2p.
Hence the MDL method is said to be statistically consistent (Rissanen,
1983). This example shows that it is not necessary that the AIC method
can always determine the optimal model order. As the ARMA parameters
are derived from the initial higher order AR model which represent the
time series wave data, the estimates of the ARMA model parameters
require a maximum of 2p parameters of the initial AR model. From
Figures 4.6 and 4.7, it is shown that an initial higher order AR model of
order 44 (AR(44)) is the optimum representation of the above time series
data. The coefficients of the AR part of the ARMA(22,22) are calculated
from the AR(44) model using the MYW method. The resulting AR
polynomial, a(z'1), has the order as 22. While factorizing a(z"l) to form
the real modes, it is observed that all modes are complex conjugates.
Therefore pairs of complex conjugate modes are multiplied to form
second order real modes which are shown in Table 4.2. The energy in each
mode is calculated as described in Appendix-V. Table 4.2 also shows the
energy associated with each second order real mode for the coefficients of
the AR part of the ARMA model which represents the time series wave

data.
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In the following the model reduction technique is applied to reduce the
initial ARMA coefficients without significant loss of information. As
described in sections 4.2 to 4.5, the number of modes to be retained for the
final reduced order ARMA model depends on the required level of
statistical accuracy. Generally a good time series wave data set can be
represented by a few modes which contribute the higher energies. Based
on prior knowledge, some energy limit can be fixed and only those modes
whose energies are above that limit need be considered. If the reduced
model order is unknown, one has to predetermine the energy limit.
Table 4.2 shows that mode 9 has the highest energy level. The energy
levels presented in Table 4.2 are normalized by the energy associated with
mode 9. Modes 10 and 11 also have some significant energy levels. If only
mode 9 is considered then M12’s AR(44) model reduces to an ARMA(2,2)
model. The MA part of the ARMA model is determined based on partial
fraction and recursive methods previously described. Figure 4.8a presents
a comparison between the reduced order ARMA(2,2) spectrum and the
target M12 ocean wave spectrum which shows reasonably good agreement.
As we are searching for an improved fit, the next higher energy modes are
added to the AR part of the reduced ARMA model. Now modes 9, 10 and
11 are considered and the resultaht ARMAC(6,6) spectrum is determined.
Figure 4.8b presents the ARMA(6,6) spectrum which shows some

improvement compared with the ARMA(2,2) spectrum.

Another time series wave data set (K15) collected off the West coast
of India (Figure 3.11) is also investigated here. These time series wave
data, each of 2048 points, were collected at 2 samples per second. Figures

4.9a and 4.9b show the results of the reduced order ARMA spectra of K15.



Here it is seen that the ARMA(2,2) spectrum of K15 wave data provides
reasonable agreement with the measured wave spectrum. Figure 4.9b
shows that the ARMA(4,4) spectrum fits better than that of the ARMA(2,2)

spectrum.

4.6.2  Semisubmersible (Santa Fe Rig135) heave motion

. The drilling semi-submersible Santa Fe Rigl35 heave motions
digitized data are used here. A set of 2048 data points (sampling rate 2.5Hz)
is considered. Based on the autocorrelation of this data set (Figure 3.17), it
is observed that the model order will be optimally selected around 98 or
100. The ARMA(49,49) and ARMA(50,50) power spectra were compared
with the measured heave acceleration spectrum (Figures 3.19 and 3.20).
and then model order reduction techniques are applied. The reduced
ARMA(2,2) spectra determined from ARMA(49,49) and ARMA(50,50)
models show fairly good agreement with measured acceleration spectrum
which are shown in Figures 4.10 and 4.11. Evidently 2048 heave data
samples can be expressed in only a few parameters which are the

coefficients of ARMA(2,2) model.

It is observed from the above results that the relatively low order
ARMA spectrum provides reasonable agreement with the target spectra or
measured time series data. This has a significant practical advantage in
that a relatively long period record/target spectrum can be characterised by

a low order ARMA model which is described by only a few parameters.



CHAPTER 5

ARIMA MODELLING OF
UNIVARIATE NONSTATIONARY
PROCESSES.

5.1 Introduction

Dynamic offshore systems are, strictly speaking, nonstationary. For
application purposes, when a random process follows a normal (Gaussian)
distribution, a dynamic offshore system can be viewed as a wide-sense
stationary process. Sometimes long period waves (swells) approach the
coast along with wind generated sea waves of relatively short period.
These combined time series wave data are strictly nonstationary.
Similarly measurements of offshore structural motions of long periods
with short period waves yield nonstationary dynamic responses, and vice
versa. These type of time séries data can not be modelled using AR, MA
and ARMA algorithms as described in previous chapters. Such types of
nonstationary time series data can be more precisely modelled using
modified SI algorithms (Box and Jenkins, 1976, Jenkins, 1979, Pankratz,
1983 and Priestley, 1988), namely, autoregressive integrated moving
average (ARIMA).

The univariate autoregressive moving average algorithms have some
advantages over other traditional methods such as:

a) The autoregressive moving average model is a family of models,

not just a single model, that is, it can express any of the AR, MA and
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ARMA algorithms.

b) The concepts of these models are derived from classical probability
theory and mathematical statistics.

c) These models can determine optimal univariate prediction with

smaller least squares error.

5.2 Definition of ARIMA model

A nonstationary time series data is subjected to some form of data
transformation and differencing d times to yield a stationary time series
data, z;. If there is no differencing applied (d = 0) an ARMA model of z;
enables a wide class of stationary processes. If the differencing is greater
than zero (d = 1, 2, 3, ... ), the appropriately transformed and differenced
time series can be modelled by the autoregressive integrated moving
average (ARIMA) algorithm.s and it is denoted as ARIMA(p,d,q), where p
is the number of autoregressive parameters, d is the degree of differencing,
q is the number of moving average parameters.

The differencing d is a simple operation which involves determining

successive changes in the values of a data series. Let the original

nonstationary time series data be y;. Then using the first differencing of y,

define a new variable Z¢ as

Zt = Yt - YI—l for t= 21 31 4/ ------ n (5.1)
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Here the time series, z, is called the first differences of the time series, y;. If

the first differences do not seem to show a stationary series, z; can be

redefined as the second differences (d = 2).

Differences of the first differences can be expressed as

z, = (YY) = (Y1 = ¥i2)

=y, =2y 1+ V.2 for t=3,4,..... n 5.2)

Similarly one can continue the differencing until the new time series

shows a stationary process.

5.3 Backshift notation

Using the above definition we are forcing nonstationary time series
into stationary time series and then estimating ARIMA parameters.
However we are interested in predicting the original time series. This is
not a problem as we can regain the original time series using a backshift
operator, £.

The backshift operator, §, is such that the time series data can be

expressed as

Y. =Y., )
502 yt =y[_2
3
P Y. =Y., (5.3)
o'y =y,



Here the backshift operator does not have any meaningful value or
constant. To make sense of the backshift operator, equation (5.3) states that
¢ shifts time subscripts. When £ is used in an algebraic expression it
must be multiplied by some other variable such as y;. Therefore the
backshift operator, §, is meaningful because it changes the time subscript
on the variable by which it is multiplied as shown in equation (5.3).
Multiplying a constant by any number of £ 's does not alter the constant.

As an example, let C be a constant

ppC=C )

p*C=C

P’C=C ¢} (5.4)
ptC=C

Therefore the first differenced time series, z, of the original time series, y;

can be expressed by using the differencing operator (1- ) as

Z, = Y.~ Y
=Yy, -0y,
= (1- )y, (5.5)

As £ 1is not a number, (1- ) has no numerical value; it is denoted as an
operator. In equation (5.5), (1- ) is multiplied by an original time series

variable to express the first differences of that variable.
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The second differenced time series data can be expressed as

z, =y, -2y _,+Y._,
= yt_ZSOYr."'SOZYt
(1-2p+ pYy,

= (- @)Yy,
oIy (5.6)
Similarly d differenced time series data can be expressed as
= (1- p)°
z, = (1-9)y, 5.7)

This shows that the differenced stationary time series, z; is linked to the

original nonstationary time series, y; by the operator (1- £ )4,

5.4 Formation of ARIMA algorithm

Based on the definition of the ARIMA processes and backshift
notation, steps may be followed for formation of the ARIMA algorithm as
given below:

a) Select nonstationary variable y{ and subtract its mean
Yo = ¥.7Y
where y is the mean value of the nonstationary time series data, y;.

b) Multiply ¥, by the differenced operator (1-#)d to form a stationary

time series, z;.
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©) Multiply z; by the autoregressive operator which can be expressed as

2 3
(l+ap+ap +a,p +...... +a,0")

where a; (i=1, 2, 3, ... p) are the autoregressive coefficients up to order
o

d) Multiply white noise w; by the moving average operator which can be
written as

(b,+b @ +b,@° +b,@° +...... +bp?)
where b; (i=0, 1, 2, 3, ... q) are the moving average coefficients up to

order g.

e) Equating the results from steps (c) and (d) yields the ARIMA algorithm

(I+ap+a,p’+a,p’+.... +a, @) {1 -0 vy, - )
= (by+bp+b, 0> +b,@°+... ... +b pYw, 68)

Equation (5.8) can be written as ARIMA(p,d,q) algorithm which is
defined in section 5.2. The ARIMA(p,d,q) is a general form of MA, AR and
ARMA in integrated form. So that the ARIMA (p,d,q) can be expressed in
the form of either the MA as ARIMA(0,d,q), AR as ARIMA(p,d,0) or a
combination of both. Once the differencing is carried out to form a
stationary time series, the ARIMA models are expressed as similar to the
univariate ARMA models as described in Chapter-3, except for the
additional procedure to determine the nonstationary process. This

additional procedure is described in the following.
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5.5 Procedure for integration to regain nonstationary processes

Equation (5.7) shows that the z values are the differences of the y
values, and the y values are sums of the z values. Therefore y values can

be obtained by integrating (summing) the z values. So the ARMA(p,q)
model for the stationary time series z;, is an integrated ARIMA(p,d,q)

model for nonstationary time series, y;. Even though we can build up the
ARIMA model for the stationary time series, z;, our main aim is to get

back the original nonstationary time series . This can be achieved as

follows.

Suppose we have the stationary time series z; for differencing, d=1,

then equation (5.5) can be rewritten as

-1
y, = (1-9) z,
=[l+p+p +p°+..... Iz,
-— 2 3
=z t+pPz +PZ +pz +.....
=z, 4z _ +Z, _,+Z 5 e

t
=2z,
. i

j=—ee (5.9

Suppose we have a differencing of d=2, we have to integrate twice to

obtain y;

y, = (-0 "z,
=(1- ) [1-p)'z] (5.10)

Let the second term (in square brackets) in equation (5.10) be defined as x;.

Equation (5.10) can then be rewritten as
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_ _ -1
y, = (I-6) x, 5.11)

where

x =(1-p "z
= d-e e, (5.12)
Therefore once x; is obtained from equation (5.12) in the same way as

shown in equation (5.9), substituting x; in equation (5.11) determines the

original nonstationary time series, y;. In this way we can continue to

integrate d number of times to obtain the original time series.

5.6 Selection of number of differencing to form stationary
processes

The number of differenéing, d, can be selected based on the following
procedures:

a) Check the time series data visually. This mostly gives a hint to the
approximate degree of differencing required. Using nonstationary time
series data, initially use first differencing (d=1) and then examine the
first differencing time series. If it still shows nonstationarity, use d=2
and check the second differencing time series. This way one can check
the trend of time series and its mean value which tends towards zero.

b) Check the estimated autocorrelations of the original time series and the
differenced time series. Variation of autocorrelation values with time

lag can also sometimes give the proper selection of d values for which
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differenced time series form a stationary process. The estimated
autocorrelation decays with increasing lag for nonstationary process
does not seem to follow like stationary cases (Bendat and Piersol, 1986).
c) Also one can examine the initial estimated AR polynomial about stable
stationary process. Whether poles of AR model are less than unity in

magnitude as described in section 2.3.

5.7 Applications

5.7.1 Generated nonstationary ocean waves

Wind generated waves are often called sea waves having relatively
short periods compared with swell or other long period waves. When
waves of short periods and long periods are measured in combination, the
behaviour of such time series no longer follow stationarity conditions. If
we divide the nonstationary time series into segments we find that their
probability distributions are not the same. As an example, a measured
time series wave data set of short periods (North Sea waves: M12) is
considered here and then combined with Sin( %t) to form a
nonstationary wave process. This combined process is shown in Figure
5.1. Since a basic requirement of SI modelling is to have stationary
processes, visual examination of the time series data (Figure 5.1) is clearly
shown to be a nonstationary process. Now it is required to find the kind of

transformation that is likely to convert the nonstationary process to a
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stationary process. Using the term differencing as described in section-5.6,
one can convert the nonstationary process to a stationary process by using
d number of differencings. Starting with d=1, the first differenced time
series is estimated as shown in Figure 5.2. Examining both Figures 5.1 and
5.2, one can easily notice that the trend of long periods has disappeared in

Figure 5.2 and seems to form a stationary process with constant mean.

Another way of checking the differenced time series to be stationary is
to examine the estimated autocovariances for both the time series (Figures
5.1 and 5.2) as shown in Figure 5.3. This clearly shows that the differenced
time series autocorrelations decay along the fixed (x-axis) line, whereas the
autocorrelations of the nonstationary time series do not show clear
convergence which is the basis for identification in parametric modelling

of random processes.

Figure 5.4 shows the AIC variation for the autoregressive process of the
first differenced time series. This shows that there is a gradual decrease in
AIC values up to the model order of 32 and then there is very slow
variation. It shows that the AIC(44) is minimum at the model order 44.
Therefore estimations of AR(32) and AR(44) power spectra are compared
with the power spectrum calculated by FFT which are shown in Figures 5.5
and 5.6. This shows that there is little difference except in the peak
frequency region. Based on this study the AR(32) model can be accepted as
a good model of the first differenced time series data. However based on
the minimum criterion, the AR(44) model is chosen for use of the model
order reduction technique. Using the model order reduction technique as
described in Chapter 4, the AR(44) model is reduced to an ARMA(4,4)

model by discarding noise modes. A comparative study between the FFT
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power spectrum and the reduced order ARMA power spectrum shows
(Figure 5.7) that the ARMA(4,4) model can fairly represent first-differenced
time series data (Figure 5.2). In nonstationary terms, this model can be

expressed as an ARIMA(4,1,4) algorithm.

The model stability can be verified by examining the eigenvalues of the
polynomials, to determine if the eigenvalues are less than unity in
magnitude. The best way to represent it is to plot poles as shown in
Figures 5.8a,b. Here all poles are less than unity in magnitude. Hence

these SI models are stable.

To check whether one can regain the original nonstationary time series
data (Figure 5.1) from first differenced time series data (Figure 5.2) one has
to integrate. Using the procedure given in section-5.5 and starting
nonstationary value we get indistinguishable nonstationary time series
data (Figure 5.1). Since the integrated time series data is indistinguishable
from the original nonstationary time series data this plot is not shown

here.

Examining the poles and zeros (Figures 5.9a, b) of the ARIMA(4,1,4)
and ARIMA(2,1,2) models one notices that one complex pair of poles and
zeros of ARIMA(4,1,4) are very close to the same value. If we cancel these
poles and zeros then the ARIMA(2,1,2) model is formed as shown in
Figure 5.10. However the ARIMA(2,1,2) spectrum shows a high PSE in the
peak frequency region compared with the ARIMA(4,1,4) spectrum. Since
the cancelled poles and zeros contribute some energy a better spectral

estimate of ARIMA(4,1,4) algorithm is observed as shown in Figure 5.7.
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5.7.2 Nonstationary displacements of jacket platform deck
(Magnus)

The response of giant Magnus platform (Figure 5.11) deck (located in
the northern North Sea) was measured in the form of accelerations.
These time series data have been double integrated to yield displacements.
The platform deck acceleration appears to be a stationary process, whereas
the resultant displacements are nonstationary. This can be observed from
Figure 5.12. Before SI modelling, the nonstationary time series data need
to be transformed to stationary time series data. Considering first
differencing, (d=1), the first differenced time series data are determined
based on the procedure described in section 5.6. This is shown in Figure
5.13. This also shows that some nonstationarity remains. Differencing of
the first differenced time series data, (d=2), the second differenced time
series data are estimated and shown in Figure 5.14. This appears to form a
stationary process. By integrating (summing) twice, the time series data of
Figure 5.14 can be converted to the original nonstationary data of Figure

5.12.

Because the displacements of the platform deck form a sharp peaked
power spectrum, it has a very high autocorrelation lag for which the AIC
is minimum. A similar case was noticed as described in section-3.4. Such
types of time series data can be modelled with minimal AR or ARMA
parameters.  Starting with AR(2), the estimated power spectrum is
compared with the power spectrum determined by the FFT method. This
result shows a good match. The AR(2) model can be expressed as a
nonstationary process of form as an ARIMA(2,2,0) model as shown in
Figure 5.15. Similarly increasing the AR model order, the ARIMA(3,2,0)

and ARIMAC(S,2,0) model parameters are estimated and their spectra are
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compared with spectrum determined by FFT as shown in Figures 5.16 and
5.17. The ARIMAC(5,2,0) model seems to represent well the second
differenced time series data of platform deck displacements. While
examining poles of the above models as plotted and shown in Figures
5.18a-c, it is observed that one pole is very close to zero in magnitude in
the ARIMA(3,2,0) model. If we do not consider this pole, then the
ARIMA(2,2,0) model is formed. This can be verified by comparing their
spectra. Because of the additional pole has a small value present in the
ARIMAQ(3,2,0) model, the PSE contributed by this pole estimates some
energy which can be observed in the peak frequency region as compared to

the ARIMA(2,2,0) spectrum (Figures 5.15 and 5.16).



CHAPTER 6

MULTIVARIATE AUTOREGRESSIVE
MODELLING

6.1. Introduction

In the analysis of recorded time series of ocean wave processes we
often require the power spectrum which may be obtained from a single
point measurement such as local wave elevation. To obtain further
information about the wave process such as directionality we need to
apply multivariate spectral analysis techniques to a number of
simultaneously measured wave records to determine the cross spectrum.
The traditional approach to spectral analysis of ocean waves is to use
methods based on the Fourier Transfer such as Welch's ﬁlethod
(Oppenheim and Schafer, 1975). An alternative approach is to use modern
spectral estimation based on univariate and multivariate autoregressive

algorithms.

Univariate autoregressive algorithms have been widely applied in
many fields, including ocean engineering, especially for the modelling of
ocean waves (Spanos and Hansen, 1981 and Spanos, 1983). For univariate
AR models, we only require autospectra of the time series data. There are
many practical problems of interest where vector processes are involved.
For example phase, coherence and directional spectra of ocean waves
involve vector processes. In vector processes important information is
present in the cross spectra rather than in the auto spectra alone. Here

the desired information can be extracted using multivariate
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autoregressive (MAR) algorithms. MAR algorithms can estimate not only
the power spectral densities, but also phase and coherence spectra of time
series wave data sets. From these MAR algorithms one can estimate wave
directionality from three simultaneous wave time histories, provided that
the distances between measurement locations are less than half the wave

length.

This chapter describes MAR modelling for the estimation of
multivariate AR matrix coefficients and prediction error covariance
matrices which finally yield the power spectral estimates. The present
study considers bi-variate random processes. The MAR model order is
selected based on the auto and cross correlation methods and also Akaike

information criterion method.
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6.2. The multivariate AR model

The unidirectional ocean wave process can be described by the
univariate autoregressive algorithm (Spanos, 1983 and Spanos and
Mignolet, 1986). MAR processes are developed from the algorithms that
have been developed for univariate autoregressive processes. The MAR
model is developed to estimate power spectral densities, and then

coherence and phase spectra.

The MAR process is defined as the vector recursion

p
yt = _zAkyt-k + uv.
k=1
(6.1)
where, i is an m-variate vector of time variables,
(Y. ]
y2,l
yl = y3,l
_Ym.l_ (6.2)

Yix 1s the vector of time variables with k time steps elapsed.

A, are the mxm autoregressive parameter matrices,

All,k A12,k Al3,k "'Alm,k
A21,k 22k 23 k ”'A2m.k
k 3L,k 32k 33,k A

3m.k b k=12 3...... P

ml.k m2k m3,k v mm, k | (6.3)
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And u; is an mx1 vector representing the input driving noise process,

ul,t

u2.t

- (6.4)

The z-transform of equation (2.1) can be written as

Y(z) = AT(z)-U(2) (6.5)

k=p

where, A@) = I + Y A(k)-z*
k=1 .

If the multivariate noise processes are white noise with constant

covariance matrix, P,, then the MAR PSE function can be written in z-

transform

P.(z2)=A"() P, - A7 (z)

_rlry . p? r T
=B7(z) P>, B "z 66)

where A(z) and B(z) are forward and backward transfer functions, and wa
and P, are the respective prediction error variances of the time series
data sets. The transfer functions and covariances of equation (6.6) are
estimated based on the estimation of residual variance matrices and

partial correlations as described by Morf et al (1978).
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6.3. Multivariate AR algorithms

A stationary m-variate AR process may be described by the forward

filter process at time index, n, as

P

ef(n) = yn)+ YAk y@n-k)
k=1
= 3,y

6.7)

where e}(n) is the forward prediction error at n, a_ is the block row

vector of MAR matrix coefficients given by

a,=[1 A ) A2 ... AyD)]
(6.8)

I is an mxm identity matrix and y (n) is the block column vector of
-rp

multivariate data given by

y(n)
-1
_P(n) _ y(:l )
y(n—-p)

(6.9)
Similarly MAR processes can also be expressed by the backward

filter process

P
y(n—p- 1)+ 2B(k)y(n —p - 1-k)

e(n-1) =
= by@m-D
(6.10)
where
b, =[By(p) Byp—-1) ..B() I
(6.11)
yn-p-1
Zp(n _1= y(:l—p— 2)
y(n—1)

(6.12)
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and e%(n — 1) is the backward predictor error.

Initialization of forward and backward prediction error is

ey(n) = eg(n) = y(n) (6.13)

. . . f b .
The residual variance matrices,P, , P, , and the covariance

. b .
matrix, P, are written as

P

N
f 1 f £T
= Ee (n)-e.." (n)
N pn-—p+1p P
N
PI‘§=L S-S -1 | (6.14)
N_pn=p+1
N
fb 1 f bT
P’ =— Ze (n)-e. "(n-1)
P N—pn_p_HP P

Initialization of residual variance matrices is

L = P = x vy
o=l (6.15)

Therefore the normalized partial correlation as proposed by Morf et

al (1978) can be expressed as

Ppa =B Py (BT
=@, " Py - (BHT

(6.16)

The logic for the square-root matrix, P1/2, is that for any positive

definite matrix, P, satisfies

p = pPp~
(6.17)
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where PT/2 equals (P¥HT. The superscript /2 denotes the lower triangular
matrix. Similarly P1/2 is equal to (P1/2)T.  The reflection coefficient,
ap(p) provides a unique parameterization of the univariate AR process.
Similarly the multivariate normalized partial correlation Po provides a
unique parameterization sequence for the multivariate algorithm.
Therefore the new forward and backward reflection coefficients (A and B

respectively) are predicted based on the partial correlation functions as

£1/2 b1/2-1
Ap+l(p +1) = —(P,") P st Py
Bp+1(p+ ) = - (lelz) p1;)+1 (prllz)-l

(6.18)

Now the order for the prediction error covariance matrices is

updated as

f —

Pp+1 [I - Ap+1(p + 1) Bp+l(p + 1)] Pi’
PP,=[I-B_(p+DA_(p+D]P,

(6.19)

Also multivariate linear prediction errors between orders p and p+1

can be established as

efw(n) e;(n) + Apﬂ(p + 1) c';(n -1

e';H(n) = ey(n-D+ B .(p+1) ef(n)
(6.20)
Here once the residual variance matrices and their normalized partial
correlations are determined, reflection coefficients and error covariances
of MAR processes can be estimated using equations (6.18) and (6.19).

Reflection coefficients are also known as transfer functions.



6.4 Bi-variate random processes

For bi-variate autoregressive processes, equation (6.1) can be

rewritten as

p P

Yi. T ~ zau.k Yie-x ~ zalz,k y2,t—k+ u,
k=1 k=1
P P

Yo, = _ZaZI.k Yiex ~ zazz.k Yo e T Uy,
k=l k=l

(6.21)

j are bi-variate

autoregressive coefficients, u,, and u,, are white noise and p is the model

where y,, and y,, are the two time series data sets, ga;

order. The model order, p, is optimized by using the auto and cross-
correlation processes and the AIC of the two time series data sets. The
main purpose of optimizing the MAR model is to fit the model to the
time series data as closely as possible. Optimization of MAR model order
is essential if real time time series data is to be stored in the form of MAR
parameters. This ensures that the maximum amount of information may

be retrieved from the MAR parameters.

The auto and cross correlations, rYinO”)' of bi-variate processes

[equations (4.1)] are expressed as

ry,le") = E[yl(t +A) -y 1(0]
Iy y, (M) E[y,(t+}) - y,(D]
rylyzo‘) E[y,(t+}) - y2(t)]

(6.22)

where E[.] denotes the expected value.



Power spectral densities, PYin(f) can be described by the discrete
Fourier transform of the correlation functions [equations (6.22)]

P,,() = T Z T,y (M) o ~iZEAT
A=—oo
Py, (f) = T r,, (A ™7
27 2 P Y— 27 2
Py.y f =T 2 Tyy ) - Ok
2 N 1”2
(6.23)
where T is the sampling period and f is the cyclic frequency in Hz.
Cross spectral densities are complex and related by
Py, () = Py, (=6
(6.24)

where the asterisk superscript denotes the complex conjugate.

It is evident that the cross spectrum must be less than or equal to

the geometric mean of the time series y, and y, process spectra, i.e,,

ylyZ -

P

(6.25)

Therefore, the 2x2 power spectral densities matrix must have a
positive determinant for all frequencies. The coherence function, ¢y1y2(f),

is defined in terms of complex dimensionless form as

Py y (D
) =
¢y1y2 .\/Py y (D P yzyz(f)

11

(6.26)



The phase spectrum, 6(f), between two time series data can be

expressed as

f [Imag®, )
8(f) = tan Real(o y1y2)
(6.27)
The magnitude squared coherence, ®(f), is defined as
(D f IPylyz(f)Iz
(= Py.y.(f) -P yzyz(f)
(6.28)

Since the cross spectrum is less than or equal to the mean of the
product of the autospectra [equation (6.25)], O(f) lies between the limits of

zero and unity which correspond to no and perfect coherence respectively.



6.5 Multivariate model order selection

For the univariate case, the least squares error and Akaike
information criterion methods are well known and easily applied to
determine the optimal model order. However, for multivariate cases, it is
sometimes difficult to determine the optimal model order mainly owing
to the cross correlation processes. To obtain a reliable estimate of MAR
coefficients, one has to minimize the model order in order to ensure that
the Toeplitz matrix does not become ill conditioned. In addition, the
computational time for MAR spectral estimates is much higher than that
for univariate cases and so it is desirable to select the minimum model
order which can represent approximately the MAR processes of the time
series data sets.

In general, exact values of the covariance function are not known

and need to be estimated from the time series data y, . One method for

estimating the lagged (A) covariances, R(}) is

M-A

1
RA)=——= 2. Ve
= (6.29)

This is an unbiased correlation for a total of M data points. The
model order can be selected from the auto and cross correlations of the
time series data sets up to a lag, A, equal to the model order p, up to which
the process is convergent. Alternately, one can use a multivariate version

of the AIC (Jones, 1978) which can be expressed as

AIC(p) =M In[P{|+ 2m?p (6.30)
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Here the model order, p, is selected for which AIC(p) is a minimum.
Equation (6.30) can be used as a guideline for selecting the approximate
model order. Both of the methods described above are used. In the first
pass a simple method for selecting model order can be used by examining
auto and cross correlations of the data sets, the best combination (from
auto and cross correlations) of minimum order, p, up to which the process
is convergent may be selected. Then using equation (6.30) the selected

optimal model order can be confirmed.



- A AS bl ndin sl g

6.6 Application of multivariate AR algorithms for ocean wave
modelling

The MAR algorithms presented in this chapter based on the
forward and backward prediction error techniques have been successfully
applied to the estimation of power spectra, phase and coherence of two

measured time series wave data sets.

The wave measurements were recorded at a location in the
southern North Sea where the water depth was 17.3m. The two wave
gauge sensors (denoted M12 and M17 respectively) were horizontally
separated by a distance of 17.66m (Figure 4.5b). Each wave record set

consisted of 4096 points sampled at 4Hz.

The approximate model order for the M12 and M17 wave data sets
is determined both by the auto and cross correlation method and the AIC
method, which are shown in Figures 6.1a and 6.1b. From Figure 6.1a, it is
difficult to select the optimal model order, but it can be assumed that it
could be between 40 and 60, up to which the processes are convergent.
This difficulty is overcome when one considers the AIC which is
presented in Figure 6.1b. It is evident from the Figure 6.1b that the AIC
changes very little for model orders greater than 36. It can also be seen that
the AIC is a minimum at the model order 44. Hence the optimal model
order is selected as 44. Sometimes, if the processes are purely convergent,
it is difficult to select the approximate model order by auto and cross
correlation. In this case the AIC method is often the best method to select
the approximate model order, because multivariate AIC takes into account

of least squares error minimization of the multivariate processes.

Figures 6.2 and 6.3 show a comparison between the power spectral

estimates using the MAR algorithm presented in this paper and the two
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variable FFT technique for the two time series wave data sets. Here it is
observed that the MAR power spectral estimates are reasonably close to
those determined by the two variable FFT for frequencies where relatively
high energy levels are present. Figure 6.4 presents a comparison of the
cross spectral energy densities obtained from the above two methods.
There is good agreement which is encouraging since the cross spectral
density contains the important information needed for estimating the
coherence and phase. Once the optimal model order of the MAR model is
obtained based on the convergent processes, the phase and coherence of
the time series data are determined using equations (6.27) and (6.28) which
are shown in Figures 6.5 and 6.6. Figure 6.5 shows the comparison
between coherence spectral estimates using MAR algorithms and the two
variable FFT. The coherence spectrum also shows good agreement for
frequencies associated with relatively high energy levels. There are some
differences in the estimates of the coherence and phase spectra compared
with the results obtained from the two variable FFT. This is mainly owing
to the approximation of the time series data sets in the form of MAR
parameters. For purely convergent processes, the optimal model order
will sometimes be very high. In this case it will be more complicated to
estimate the MAR parameters owing to the ill conditioning of the Toeplitz

matrices.
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CHAPTER 7
DISCUSSION

7.1 Univariate AR, MA and ARMA modelling

This work presented provides an insight into stochastic processes
(ocean waves and offshore vessel and structural motions) by the various
SI models. Here three SI algorithms, namely AR, MA and ARMA are
successfully applied not only for generating time series data which are
compatible with a target (Pierson-Moskowitz, JONSWAP or measured)
spectrum of ocean waves, but also for optimization of SI algorithms for

the reduction of the vast volume of time series measured data.

The approximation of the theoretical Pierson-Moskowitz spectrum
has demonstrated that the system identification process of the Taylor
approximated Pierson-Moskowitz spectrum can be the basis for
developing efficient ARMA models. The presence of a zero of infinite
order of the true Pierson-Moskowitz spectrum at the frequency, ®=0, can
be a source of ill-conditioning of the system of linear equations associated
with SI models. The AR algorithm represents the current value of the
time series as a linear combination of its past values and of white noise. It
is based on the recursive filter (refer to Appendix-II). This process also
ensures that the autocorrelation functions of the target and AR processes
match at a number of time steps (lag) by which the AR model order is
determined. As long as the autocorrelation function follows the

convergence rule, the model order selection will be proper. If the dynamic
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system consists of a convergence and divergence process, then one must be
careful while selecting the model order. One should select the optimal
order of the model that covers only convergence of the autocorrelation
function. The main feature of the AR process is that autocorrelation
values can be extrapolated for a time lag greater than the duration of the
available record using equation (3.9). The MA process can generate time
series data based on the linear combination of a white noise process which
is weighted by suitable constants. For determining these constants several
criteria can be adopted. Here these constants are associated with the
Fourier coefficients of the square root of the target spectrum. The ARMA
process represents the current value of the time-series data as a
combination of its past values and the values of white noise. Here two
approaches, namely, power of order matching (POM) and inverse AR
(IAR) filter using MYW equations can be used for determining the ARMA
coefficients. The model order selections of the above SI models are
optimized based on the LSE and AIC methods. The results of a
comparison study on LSE of both the IAR and POM methods of estimating
ARMA spectra are shown in Table 3.1. It is observed there that the LSE of
the ARMA-POM spectra are less than that of the ARMA-IAR spectra
predicted from PM (PM10), JONSWAP (J10), and measured (K15) spectra.
This also confirms the efficiency of the ARMA-POM method over the IAR
method. Both of the above ARMA spectral estimation methods can be
used without much loss of information.

As the model order increases the number of equations in (3.10)
increases and the system of Yule-Walker equations becomes ill-
conditioned for theoretical ocean wave spectral estimation. Hence the
accuracy of the AR coefficients deteriorates. For the above study to be
reliable, the numerical integration for obtaining autocorrelation of

theoretical spectra should be performed accurately.
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Even though ocean dynamic systems are random in nature, the
confused ocean surface elevations can be characterised by their power
spectral estimations. Similarly offshore structural motions can be
expressed by their responses. Sometimes for structural motions the
correlation lags up to the stage in which the process is convergent is of
very high order owing to its sharp peaked nature. Hence the Toeplitz
matrix can become ill-conditioned. For such a high correlation lagged
dynamic system the SI model order needs to be properly selected. The
lower order autoregressive model can generally be used to describe the
sharp peaked dynamic system. The monohull crane vessel A and B
motions show examples of such cases. Using autocorrelation, AIC, or
MDL methods the selected model order of the crane vessel motion yields a
very high value for which the Toeplitz matrix in equation (3.10) becomes
ill-conditioned. However, the lower order AR model [AR(3)] can fairly
represent the above dynamic system as shown in Figure 3.26.

The study presented herein has shown that the ocean wave process
can be appropriately modelled using autocorrelation, AIC, or MDL
methods and AR, MA, and ARMA algorithms. For structural motions,
one should make first ones examinations at autocorrelations lags up to
which the process is convergent. If it is too high, one can start from a
lower order and then estimate the proper AR or ARMA model which

yields a better representation of the structural motions.
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7.2 Reduced order ARMA modelling

The reduced order ARMA modelling procedure presented in
Chapter 4 may be summarised. First the initial autoregressive parameters
of the ARMA model are obtained based on the optimal model selection
methods and MYW equations for target spectra or measured time series
wave data. Then a model order reduction technique is applied for further
reduction of data in the form of reduced ARMA model coefficients.

Autoregressive, moving average and ARMA algorithms have been
applied by other authors for the identification and modelling of target sea
wave spectra and the time series random processes [ Spanos (1983), Spanos
and Mignolet (1987, 1990), Marple (1987), Kay (1988), Rosen and Porat
(1989), and Lin (1987)]. These SI algorithms are optimized by selecting the
model orders based on autocorrelation matching, least squares error, or
the AIC method. Sometimes a particular SI model becomes ill-
conditioned owing to a number of factors such as not taking into account
all poles and zeros, optimal model orders, and the number of Yule-Walker
equations. In some cases depending on the observed time series data,
there may be inadequate correlation. Highly uncorrelated data can be
modelled with very high model orders, and the model orders selected by
the AIC may not always be an improved representation of the dynamic
system. However, the proposed method for the reduction of the SI model
orders described in Chapter 4, based on initial higher order model
selection, gives improved statistics of the data while eliminating spurious
disturbances and noise. In many situations, it is practically impossible to
obtain undisturbed time series data. It is also difficult to remove

disturbances from observed time series data. In the statistical sense and
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with prior knowledge of the nature of the response of the system, these
disturbances can be removed by the model order reduction technique.

This part of the study emphasizes the application of system
identification techniques to the further reduction of marine
environmental data. Since the system identification method allows one
to build up mathematical models of dynamic systems based on
experimental data from the systems, one would also like to establish the
theoretical spectra in the form of rational modellings. In this part first
theoretical PM and JONSWAP spectra are used. Even though selection of
the initial model order is high, this can be reduced to a few parameters
which are the reduced order ARMA coefficients. This shows that the
model order reduction technique described here is also valid for the
development of theoretical spectra. Here the model order reduction
technique may not be practically useful for the theoretical spectra which
are defined by few values such as wind speed, significant wave height etc.,
it can be used to verify the power spectral estimatation. This leads to the
further establishing of SI models of measured ocean waves. The reduction
time series data first involves a smoothing operation by a correlation
technique. Here M data points are reduced to N modified Yule-Walker
equations where N corresponds to the number of correlation coefficients.
Equations (3.6a) and (3.6b) estimate the correlations, where the number of
correlations is set by equations (4.2). Then the SI algorithms are applied to
reduce the N correlation coefficients to 2p AR coefficients by the optimal
model order selection method. These AR coefficients are further reduced
to a final reduced order ARMA model by only considering modes with
significant energy. Initial excessive smoothing (N is too small) will cause
loss of resolution in the resulting spectral estimate. Very little or no

smoothing (M=N) should be initially applied to signals with spectra
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containing sharp peaks, whereas considerable smoothing (M>>N) can be
applied to signals with broadband spectra.

The method of estimating ocean wave spectra by the reduced order
ARMA algorithm represents an alternative to other methods such as
those based on the fast Fourier transform (FFT) or summation of cosines.
The FFT or summation of cosines analysis will include the contributions
from noise or the other erroneous disturbances present in the measured
time series data. The reduced order ARMA algorithm presented in
Chapter 4 offers the potential to eliminate the noise modes. Also
relatively few parameters which are the reduced order ARMA coefficients
are needed to describe the spectral estimate compared to that based on FFT
methods. This has significant advantages in terms of the data storage

requirements for a long term structural monitoring system.
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7.3 ARIMA modelling of nonstationary processes

The SI models described in Chapters 3 and 4 applied only to
stationary processes, that is, mean, variance and autocorrelations of any
random process are constant through time. The time series can be
nonstationary in many ways. A time series can have a nonstationary
mean, variance, autocorrelations or combination of these statistical
parameters. The most common nonstationary processes can be those with
some steady trend in the mean of the time series. Such types of time series
can simply be transformed to a stationary time series by using the
differencing technique. Other types of time series may be such that their
trend in variability is more complex in nature, and transformation of such
time series to stationary process may not be achieved so easily. In these
cases, some suitable algebraic transformation techniques need to be

developed.

In offshore dynamic systems nonstationary processes (which are a
combination of short periods and long periods) are sometimes measured.
SI modelling of this type of time series data can be possible through
transformation of nonstationary process to a stationary process by the
differencing technique. Complete removal of nonstationarity may not
always be easy. From the practical application point of view an
approximate transformed stationary time series is likely to be adequate for

estimation of the ARIMA parameters.

The application of ARIMA modelling to nonstationary time series
offshore data is examined in section 5.7. The offshore nonstationary time
series are, in general, homogeneous, i.e., different segments of each time
series seem to behave similarly to the rest of the time series if we allow for

changes of each segment's trend which may be level and/or sloped. In
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other words, if we can eliminate the slope and level of different segments
of a nonstationary process, we form a seemingly stationary process. Such
types of time series can be simply transformed to a stationary process by

one or two time differencings as described in section 5.6.

After differencing to form a stationary process, the ARIMA(p,d,q)
model is constructed. This SI modelling procedure is similar to that
described in Chapter 3 and 4 except for the differencing term. Here model
reduction techniques can also be applied to estimate the reduced order

ARIMA model.

One should avoid unnecessary differencing which may create
artificial patterns in the time series data and reduce estimation accuracy.
The number of differencings can be chosen based on (a) visual inspection
of time series data, (b) checking autocorrelations of original and
differenced time series data, and (c) possibly examining the AR parameters

to determine if they follow stationarity conditions.

To recover the original nonstationary time series the differenced
time series needs to be integrated which involves summing successive

values in a differenced time series.



7.4 Multivariate autoregressive modelling

Multivariate autoregressive algorithms are applied for estimating
power spectral densities and then coherence and phase spectra of time
series wave data sets. Before proceeding with any identification of time
series data, one should first look into the data sets. In most cases, digital
time series data recordings are in raw form and the records include some
noise and extraneous disturbances. Even though system identification
techniques can be applied to remove the disturbances as described by Witz
and Mandal (1991), much better identification can be obtained if the data is
preprocessed prior to identification. The preprocessing may involve the

following:
1. Removal of erroneous large peaks
2. Removal of mean values
3. Band-pass filtering
4. Sampling interval selection

Once the data sets aré preprocessed, they can be used for estimation
of the MAR parameters. First of all an appropriate model order which can
represent the MAR processes needs to be selected. There are some
difficulties associated with selecting optimal model orders using auto and
cross correlations of time series data sets as shown in Figure 6.1a. The AIC
method overcomes this problem. The AIC method appropriately selects
the minimum model order at which the AIC(p) is minimum. In general,
parametric MAR models have high dimensionality. For high model
orders, simultaneous estimation of so many parameters using the MAR
algorithm will involve very high computational times compared with

those for univariate AR algorithms. In addition, higher order matrix
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coefficients can sometimes give misleading results owing to the ill
conditioning of the higher order Toeplitz matrix. Many researchers have
extended Burg’s (1975) algorithms to the multivariate case. In doing so,
two sequences of reflection coefficients are determined by forward and
backward filter techniques. Briggs and Vandiver (1982) used only the
MAR forward filter technique to estimate the transfer function of an
offshore platform's response to environmental excitation. Using these
two techniques it is straight forward to estimate power spectral densities
separately. Power spectral density estimates from the two techniques are
different for the same data sets. Here we have applied a partial correlation
technique which has been applied to solve the estimates of the MAR
matrix coefficients and predicted error covariance matrices using both
forward and backward filter techniques. This is made possible by
determination of square-ro&t matrix and normalized partial correlation as
described by equations g;&fﬂ) and (3/‘16/0’)?espectively.

For univariate AR models, we only require the autospectrum of the
time series data. There are many practical problems of interest where
vector processes are involved. For example; phase, coherence, and
directional spectra of ocean waves involve vector processes. In vector
processes important information is present in the cross spectra rather than
in the auto spectra alone. Here the desired information can be extracted
using MAR algorithms. MAR algorithms can estimate not only the power
spectral densities, but also phase and coherence spectra of time series wave
data sets. From these MAR algorithms one can estimate wave
directionality from three simultaneous wave time histories, provided that
the distances between measurement locations are less than half the wave ('

length.
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Using MAR modelling, one can reduce the time series data into a
number of parameters which are the MAR coefficients. As an example,
two time series wave data of 4096x2 points are shown to have been
reduced to 132 values which are the MAR coefficients. Future
development of the reduced order multivariate SI modelling will further

reduce multivariate SI coefficients with minimum loss of information.



7.5 Future work

The study presented herein provides an insight into the stochastic
processes such as ocean waves and offshore structural motions by the
various SI models. Here AR, MA and ARMA algorithms have been
successfully applied for estimation of theoretical and measured spectra of
ocean waves, platform deck motion, semisubmersible and monohull
crane vessels' motions. ARIMA algorithms have been applied to
nonstationary structural motions. Some time series wave data have also
been used for optimal selection of the above SI algorithms. However
there are many limitations when model order reduction is applied. The
quality of final reduced order ARMA spectral estimation purely depends
on selection of the initial higher order model. If the initial higher order
model is not properly selected, the final ARMA spectral estimation can
cause misleading results. Moreover multipeak spectra lead to the
selection of very high orders of model. So an initial higher orders model
must be properly selected. Therefore, it is necessary to use many observed
time series structural moniforing data and marine environmental data to
verify the proposed SI models and modify the SI models accordingly.
Another way of verifying the performance of SI models is to compare the
target spectrum and estimated spectrum (or original data and predicted
data) obtained from SI models by evaluating a number of statistical
characteristics such as cumulative energy and cumulative root-mean-

square distributions. This is worthy of further study.

One should properly select the sampling rate of the time series
offshore data. A higher sampling rate will increase correlation lags and

hence the optimal model order will increase. However a very low
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sampling rate may describe acceptable spectral estimates but it may poorly
represent the time series. Detailed study of such cases may be undertaken
to confirm the effect of SI modelling on the sampling rate of the time

series.

Based on analysis of measured monohull crane vessel motions in
random sea waves the transfer function estimation by SI algorithms and
FFT shows good consistency. However for better estimation of the transfer
functions, one may measure and analyse different high sea state structural
motions. This study will confirm the validity of estimation of the transfer
functions by SI algorithms which can be used as an alternative method to

the FFT technique.

Based on the study as reported here, it is clear that there is an
immense opportunity for use of SI methods applied to time series in
offshore monitoring and environmental data and further study is likely to
be needed in order to obtain the most suitable properly selected optimal
models for specific problems. Depending on the problems one needs to
resolve, various SI algorithms can be formulated and used for wide sense
stationary random processes. As an example, to determine the modes and
the intensity of vibration of a member of the offshore structure likely to

fail, SI modelling can be applied.

Similarly modified SI algorithms can be applied depending on the
nature of nonstationarity of the offshore random processes. In this thesis
generated nonstationary wave and real platform deck motions are
analysed using ARIMA algorithms. Here the process is nonstationary in
its mean. There may be nonstationarity in its variance or other form for

which modified SI modellings need to be developed.
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The model reduction technique as described in Chapter 4 for
univariate offshore dynamic systems can be extended to multivariate
offshore dynamic systems, so that the reduced order rational SI model
could effectively represent the multivariate processes with minimum loss
of information. This will give a more complete reduction technique for

application to offshore dynamic systems.

The multivariate autoregressive algorithms described in Chapter 6
are applied to two time series data sets. These algorithms could be
extended to estimate wave directionality from three simultaneous time
series wave data sets collected within the distances between measurement

locations are less than half the wave length.

The study presented herein has been limited to off-line SI
modelling. This could also be extended for on-line SI modelling by

modifying SI algorithms and using proper feedback mechanisms.
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CHAPTER 8
CONCLUSIONS

The study presented herein has emphasized the application of
system identification techniques to marine environmental and structural
monitoring data. The SI algorithms, namely AR, MA, and ARMA have
been discussed and applied not only for generating time series data which
are compatible with a target (PM or JONSWAP) spectrum of ocean waves,
but also for optimization of SI algorithms for the reduction of the vast
volume of time series measured data (ocean waves, offshore structural
motions, etc.). Further reduction of the SI models' orders can eliminate

noise disturbances which are present in the recorded time series data.

The AR algorithm is formulated based on the recursive filter
technique (Appendix II). This process also ensures determination of the
model order which is selected as the number of time steps of lag of the
autocorrelation function up to which the process is convergent. The
main feature of the AR process is that autocorrelation values can be
extrapolated for lags greater than the duration of available record using
equation (3.9). The MA algorithm is formulated based on the linear
combination of a white noise process which is weighted by suitable
constants associated with the Fourier coefficients of the square root of the
target spectrum. The MA process can also be generated from the AR
process using relationship as described in section 3.2.2. The ARMA

algorithms are formulated as the combination of AR and MA processes.



Here two approaches, namely, power of order matching (POM) and
inverse AR (IAR) methods are used for determining the ARMA
coefficients as described in section 3.2.3. The model order selection of the

above SI models are carried out based on the LSE, AIC, or MDL method.

The approximation of the theoretical PM spectrum has
demonstrated that the system identification process of Taylor
approximated PM spectrum up to an order of eight can be the basis for
developing efficient ARMA models. The presence of a zero of infinite
order of the true PM spectrum at the frequency, w=0, can be a source of ill-
conditioning of the system of linear equations associated with SI models.
The above SI algorithms are successfully applied to ocean waves
(theoretical PM and JONSWAP spectra and measured time series) and
offshore structural dynamic systems. The time series measured data
should be preprocessed (removal of erroneous peaks and mean values,
selection of proper sampling interval, etc.) prior to SI modelling which

will lead to a better estimation.

The correlation lag up to which the process is convergent is very
high in some cases of offshore structural motions. In these types of
processes one should be careful about proper selection of model order. It is
observed that the lower order AR or ARMA models can generally be used
to express such types of time series. These lower order SI models' transfer
functions of offshore structural motions in random sea waves show
consistency with that estimated by FFT.

Based on the selection of the initial higher order SI model and the
MYW method, the model order reduction technique is developed. Firstly

an estimation of a higher order AR is carried out and then the model



order reduction technique (based on calculation of the energy of the mode)
is applied to obtain the final reduced order ARMA model. This reduction
technique can remove the spurious noise modes which are present in the
time series data. Using the above SI techniques, for example, 2048 digital
wave data are reduced to a few values which are the reduced order
parameters of an ARMA model as shown in Figure 4.9a. Therefore, once a
particular SI model is validated for any stochastic process, this model can
be used for subsequent reduction of time series data.

Sometimes nonstationary offshore structural motions or ocean
processes may be observed. Such types of time series normally can not be
modelled using SI algorithms which are generally used for wide sense
stationary random processes. One has to visually observe the time series
in respect of its nature of nonstationarity, i.e., levels and trends of
nonstationarity. The study presented herein considered the cases where
the observed nonstationary time series having nonstationary mean are
modelled using differencing techniques as described in Chapter 5. To
regain the nonstationary process, one has to integrate by a number of
times equal to the number of differencings already undertaken for SI
modellings. There may be some cases where the time series having
nonstationary variance can be modelled by first taking natural logarithms
and then differencing techniques [Pankratz (1983), Chapter 7]. The main
purpose of forcing the nonstationary time series to stationary time series is
to model the process by formulating ARIMA algorithms. Once the system
seems to form a stationary process one can use SI algorithms as described
in Chapters 3 and 4. The generated nonstationary ocean waves and

measured nonstationary platform deck motions (displacements) are
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successfully modelled using ARIMA algorithms as described in Chapter 5.

The multivariate autoregressive modelling will not only represent
the random processes, it can also give information about their effects or
influences on each other based on coherence and phase spectral estimates.
The MAR algorithms are formulated using the forward and backward
prediction error techniques, feedback weighting coefficients matrices and
the driving noise vector which are obtained based on the estimation of the
partial correlation of the time series data sets. Here the appropriate model
order is selected based on convergence processes of the time series data
sets, i.e., by auto and cross correlations and multivariate Akaike
information criterion methods. These algorithms are applied to estimate
MAR power spectral density spectra and then phase and coherence spectra
of two time series wave data sets collected at a North Sea location. The
estimation of MAR power spectral densities are compared with spectral
estimates computed from a two variable fast Fourier transform, which
show very good agreement. Also the estimated coherence shows good
agreement with coherence determined by FFT in the peak frequency
region. This MAR modelling can be extended to further development of
the reduced order multivariate SI modellings which will further reduce

the SI parameters with minimum loss of information.
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APPENDIX I

Maximum likelihood estimation and properties
of convergence of random processes

The method of maximum likelihood is widely used in estimation
theory. The basic concept of maximum likelihood method is simple and
can be described as follows.

Let e,[ e =y -x0] be a discrete white random process (error) with
zero mean and variance ¢2, and p(e,0) be its probability density function,
where 6 is some unknown parameter to be determined. Consider a set of

M independent samples, eq, €;, ..., €yy- Now we have to obtain the best

estimate of these samples for the parameter 8. The estimate 0 is selected

in such a way that e; are most likely to occur during measurements. The
best estimate 6 can be obtained by formulating a likelihood function and
then taking into derivative with respect to ©.

Assuming the PDF of e; is Gaussian distributed, p(e,0) can be

expressed as

2

1

€.
(e.0) = —A—Exp(- —
P Vorat R 267 (A1)

The likelihood function L(8) is expressed as the joint probability density

function of € and it can be written as



M
Lnl(0) = Lan(ei,e)
G 3
T
- - zl—cz(y ~x6)' (y- x6) - S'Ln Qo)

S S
= 202(y x0) (y—x0)+C (AL2)

where C is a constant. Taking the derivative with respect to 6 of the above

equation

0 T
50y —x6) (y-x6) =0
98" =8 (AL-3)

This solution of estimating 6 is identical to the least-squares solution.
This shows that the ML estimator for Gaussian distributed errors is

equivalent to the LSE estimator.

Some properties of convergence concepts for random procrsses are

given below. Let x, be an indexed sequence of random variables and x" be

a random variable, then

a) X, =X" as t e with probability unity

P(x, = x*t =) =1
(Al-4a)

b) X, =X in mean square

E[x, —x‘]z—)O as t—oo (AI-4b)



X

c) X, =X in probability

For every small value £>0

P(|xl -x*

>6) 50 as t—oe , (AI-4¢)

d) X, =X* in the distribution

If the probability density functions of x and x are defined as pXt(x)
and px*(x) respectively , then

pXt(X) - P () (AI-4d)

The stationary random process x(n) is said to be ergodic with respect

to its first and second order moments if

1 M
M 2x(n) = E[x(n)]
n=l
(AI-5a)

M
.I\l—dzx(n +1)x(n) = E[x(n + 1)x(n)]
n=l (AI"Sb)

with probability unity as M — e . The above two terms are also used as
the sample mean and covariance of the data respectively.
If the random discrete time stationary process x(n) shows

M

1

sz(ﬂ) — E[x(n)] , then the covariances of the data R, -0 as
n=1

|A\| »e with probability unity as M — e .

Proof of the above properties are given in Gnedenko (1967).



APPENDIX II

Some useful examples of recursive filters

The digital filters are applied to discrete time series by convolving

input (x,) time series with the impulse response or weighting function (f;)

of the filter. The output time series (yp) can be obtained as

=0 (AII-1)

The convolution operation can also be represented by the product of
the z-transform of the input and filter time series. Equation (AII-1) can

also be expressed in the form of z-transform as

Y(z) = F(z).X(z) (AIL-2)

Here X(z) is the input to the filter and Y(z) is the output. The
variable z represents the operation of delaying the signal sample by one
sample interval. In the form of Laplace transform, z can be expressed in

frequency variable, ®

-oT

where T is the sample interval in seconds.



Some digital filters can be expressed as rational functions of z, i.e., a

ratio of two polynomials in z. As an example, the digital filter can be

written as
B(z) b,+bz'+bz?+ ..+bz™"
FO=R@ "1 vaz ' vtaz?+ tanz’
(AII-3)
Substituting F(z) in equation (AII-2), we get
Y(z)+z- Y(2).[a, +az? +... ... ] = [by+bz+.....].X(2)
Therefore,
Y(z) = [by+bzl+....].X(@)-z[a,+a,z7+ .....].Y(2)
(AIl-4)
or,
Y(z) = B(2).X(z) -[A(z) - 11 Y({2)
(AII-5)
l
Pt | convorumion] g (s o Output
X(z) B(z) Y(2)
CONVOLUTION
A(z)-1
Figure AIL1l Block diagram of equation AII-5

The above figure shows a feedback mechanism of the dynamic

system and may be realized in a digital computer with a feedback or



recursive equation. The recursive equation for above figure can generally

be expressed as

Yo = [bxatbx _ +... .. J-[ay, +tay,,+. .- ]
or,

(AII-6)

Where, the output time series is computed in the sequential order

Yy Yo Y3 Yg-oo - Yo Here the recursive filters are physically realizable in

the sense that they can not respond to an input before it occurs. Hence we

must assume y_=0 for n<Q, that is, there is no input before Xq-

Example-1

To prove equation (AII-6), let us consider a particular example of

the recursive filter

1.0
F =
(Z) .0 - 0.5z (AH-7)

The above filter could be applied by expanding in a polynomial and

using convolution. By using simple division

1.0-0.5z11.0 (1+0.527 +0.25272+ 0.1252% + ......
L.0-0.5z"
0.5z
0.5z7' —0.25z2

0.25z72
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F(z) = 1+40.5z'+0.25272+0.125z3%+ ... ...
(AII-8)

This filter could be applied by convolving with a sufficient number
of terms of the series. This filter could also be applied by using equation

(AII-6), where

a1 = -05
bg = 1.0

Therefore, equation (AII-6) becomes

y, = x, + 05 Y.,

n

(AII-9)

Now we can prove that equation (AII-9) is equivalent to equation

(AII-8) by using unit impulse response of the recursive equation (i.e.,

input time series (xn) as 1.0,0.0,0.0,... ).
So Xg = 1.0
x, = 0.0 for n=0

The output of equation (AII-9)
Yo = X+ 05(y_)
= 1.0+ 0.5(0.0) = 10

y; = x;+05(y,)
= 0.0+0.5(1.0) = Q5

Y, = %x,+05(y,)
= 0.0+0.5(05) = 025

y; = x;+025(y,)
= 0.0+0.5(0.25) = 0125

(AII-10)



Therefore we could prove that the unit impulse response of the
recursion equation is identical to the coefficients of the polynomial
expansion as given by equation (AII-9). Hence the recursion equation
performs the function as the convolution of the input with the filter

weighting function.

Example-2

Consider an inverse of a polynomial, a(z-1) of the time series

1 -
F = — = A
(@) a@z™ Eoy" z
(AII-11)
where,
az™) = l+az?'+a,z7?+a;z?+
Equation (AII-6) can be applied as
Yo = Xo—[ay,,+2y,,+3,¥, 5% ]
(AII-12)

Using the unit impulse response or weighting function of the filter,

which is identical to the convolution of the operator of the filters, the

coefficients y, y; y, .... canbe calculated from equation (AII-12).
Here Xy = 1.0
x =00 forn=0

n



The output of the equation (AII-12)

y, = 10-[0.01 = 10

y, = 0.0-[ay]
Y, = 0'0-[alyl+a2y0]
y, = 00-[ayy,+a,y +a,y]

Yo T 0.0 - [aly3+a2yz +a,y, +ay]

(AII-13)
Example-3
Consider a filter
Fz2) = —— = Zy,z7
1+d,.z7 20"
(AII-14)

From equation (AIl-6), the output time series can be written as

Ya = Xa — d Y.o
o (AI-15)

Therefore, coefficients of the output are

Yo = 1.0

¥q = 0.0—dlyo
Y, = O.O—dly1
Ys = 0.0-d,y,

y, = 00-dyy, (AII-16)
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Example-4

Consider another type of filter

e
F(z) = 1 = i z™"
l+e,.z7+e,z27” I

(AII-17)
From equation (AII-6), the coefficients of output time series can be

expressed as

yn = xn - e1yn--1 - elyn—Z
(AII-18)

Therefore, the coefficients of output are

Yo = L0

Y, = 0.0 - ey,

Y2 = 0.0 - ey, — &y,
y, = 00 - ey, - ey,

(AII-19)



APPENDIX III
Modified Yule-Walker equations

An approach for the determination of successive values based on
past observed values was introduced by Yule (1927). He carried out an
investigation into the estimation of periodicities in disturbed series with
special reference to successive annual sunspot numbers. Yule made an
introductory study on generating random data based on superposing
harmonic fluctuations and disturbances. Yule developed the regression
approach for estimating successive values. If y, ¥, y3, - ¥, Tepresent
the series resulting from a dynamic system then successive values of that
dynamic system in the absence of disturbances, having a causal

relationship, can be expressed in a regression equation as

Yo = — [alyn_1 +'a2yn_2 + ... + apyn_p]
(AIII-1)

The above equation with disturbances is obtained by adding a term, W to

the right-hand side.

If equations (AIII-1) hold true and provided that n is large, Walker

(1931) showed that a similar equation holds approximately between the

successive values of the correlation coefficients, Ry, of the terms of y;

separated by time lag t,



- ey wf wihdiainhaded

R, = —[aR.+aR ,+...+aR_] (AIII-2)

p~t-p

The variation of correlation coefficients, R{, obtained from
equations (AIII-2) is much smoother than that of the time series data.
Based on equations (AIII-2) various relationships are found between the
amplitude of corresponding terms in the Fourier series and those of the
correlation coefficients. Equations (AIIl-2) are known as the Yule-Walker

equations.

Let y; be a discrete-time zero-mean Gaussian ARMA process of

order (p,q), with p > q, expressed by the difference equation

P q
y. = -~ zaiy:—i + Ebiw;—i
i=1 i=0
(AIII-3)

Where a, and b, are the coefficients of the ARMA(p,q) process, and

w, is a white Gaussian noise process.

Now multiply both sides of the equation (AIII-3) by Yt-g-t and

taking expected values, the correlation coefficients of the process y, are

given by
Ry = Elyw.}
and
R, = R
Then we get
Ron+taRo i +a,Re, ,+..+a R, =0 for 1<1<p (AIII-4)



Equations (AIIl-4) are often called Modified Yule-Walker (MYW)
equations. The simple ordinary Yule-Walker equations can be obtained
with @ = 0. In the case of spectral estimation, we have to find out the true
correlation coefficients, Rj, and the order (p,q) of the ARMA process. If

the observed or target spectrum is given, then R, can be determined from

the relationships

R, _ j.SIS(m)cos().mT)dco

W/ LUS\AW L Juw (AIII-5)
where, A =0,1,2,3, .. and,

T =
w, is designated as the cut-off frequency.

In the absence of a target spectrum, if the available information is a

finite set of time series data, such as for {0 < t < N}, then the true

correlation coefficients, R,, can be calculated from the relationships

1 N
R, = op XYV (AIII-46)

t=A+1



APPENDIX IV

Calculation of the roots of a polynomial

To determine the roots of a polynomial in a straightforward way,
one can use Laguerre’s method which is briefly described below.

Let the polynomial is defined by its roots as

(AIV-1)
Taking natural logs in both side of equation (AIV-1)
F,=hi{f,(X){=In|x —-x|+Inlx—-x|...... Inlx —x,
GO =t =x [+ e =x =l (AIV-2)
Then taking the first derivative with respect to x
dF, 1 1 1
& SX-x tX=x, x—x. =G (AIV-3)
and the second derivative with respect to x
d’F, 1 1 1
= + ... =H
dx? (x — xl)2 (x—x2)2 (x —xn)2 (AIV-4)

the Laguerre formulaes make a drastic set of assumptions. They consider

that the first root x; is located at some distance a from the current x; and

all other roots are located at a distance b



a=X-X

b=x-x, i=2,3 ...... n (AIV-5)

Using the notations a and b as given by equation (AIV-5), equations

(AIV-3) and (AIV-4) can be writen as

1l n-1 _

at p - O (AIV-6)
1 n—1

;4— b2 = H

(AIV-7)

Using equations (AIV-6) and (AIV-7), the solution of a is obtained as

n

G ++/(n—-1)aH- G

a =

(AIV-8)

Here the sign of the denominator should be taken care. If the factor inside
the square root is negative, a can be complex. The method of obtaining the
first root x, is determined by iteration. First using a trial value of x, a is
obtained using equation (AIV-8) and then (x-a) becomes the next trial
value. This will continue untill the value a is sufficiently small. In this
way subsequent roots are determined. |

For more details one can refer to Stoer and Bulirsch (1980), and

Press et al (1989).



APPENDIX V

Calculation of energies of first and second
order modes of the dynamic system.

Let ot be a pure AR process of the order n of the dynamic system,

o, = —a,0 _ —a,0 ,~...... —a,0,_, + W,
(AV-1)
Where, w, is the white noise with unit variance.
Let {rg, 15, 13- 7} be the first n+1 covariances of { o}.
Using the Yule-Walker equations for the order n
RSN ST S S e B 1
oA & S o RN S I - 0
U SO S S 8 = 0
R - S ¢ |la,] 0
(AV-2)
Let n=1

or,



£&s

To - 1-a?
a !
h - 1- a?
(AV-3)
Let n =2
o T I3[l 1
R PR A S = 0
S I 0
or,
1 a, a,|[rs 1
, 1+a, 0|1} = l:O]
, 4 1|1 0
Now consider
A = (l+a)+a%a,—al-al(1+a,)
= (1+a,)-a%(l+a,) +a’a,-a}
= (+a)(1-a)-aXl-a)
=  (+ap)’(t-a,)—al-a,)
= (-a) (1+a)" —a?]
= (I-a,)l+a,+a)1+a,—-a)
(AV-4)
r: 1+a2 _a‘[(l_az) _a1(1+a2) 1
¥ - 1 -a, 1-a; aa, |0
oy al-a,(1+a,) aa,-a, 1+a,-a% |0
1+a,
— — ——al

al —a,(1+a,) (AV-5)



Let us consider b, is an ARMA process of order n of the dynamic system

i.e,
B, = -aP,_,-aB _,-aB,...—aB_,+bw +bDw _ ...+b,w _,
(AV-6)
Therefore, the variance of by is given by
RS SOl ST 7 [b,]
U SO ST r_|b,
£ = [b, b b,..b]|r3 T 1§ ... ., |llb,
R SO PR ry |Lbal
Let n = 1, i.e, for first order case,
1 —a, bo 1
N )
bl —2a b, +b’
- 1-a?
(AV-7)
Let n = 2, ie, for second order case
1+a, -a, a’-a,(l+a,)|[b,
1 - -
£ = ~[b, b, b,]. a, l+a, a b,
aZ-a,(l+a,)) -a l+a, b
(AV-8)

Here, equations (AV-7) and (AV-8) are the energies of first and

second order modes of the dynamic system respectively.



Table 3.1 Comparison of LSE of ARMA power spectra
between IAR and POM techniques.

Model ARMA- ARMA -

Order IAR POM
K15 (20, 20) 0.003346 0.002750
J10 (20, 20) 0.007545 0.001064
J10 (30,-30) 0.001358 0.001028
PM10 (20, 20) 0.000833 0.000780

Table 4.1 Modes and energy levels for PM10

Mode Mode Normalized Energy

Number
1 1+ 1.5453z"1 + 1.4740 22 <1.0E-06
2 1+ 1.4370z"1 + 1.0976z-2 <1.0E-06
3 1-.0.0562z1 + 1.1598z2 <1.0E-06
4 1+1.00182-1 <1.0E-06
5 1+ 0.8981z"1 <1.0E-06
6 1+ 0.7920z"1 <1.0E-06
7 1+ 0.4639z"1 0.000001
8 1- 1.4135z°1 + 0.7104z2 0.06136
9 1- 1.3012z°1 + 0.6184z2 0.52210
10 1- 1.1280z°1 + 0.5088z2 0.97570
11 1- 0.8990z°1 + 0.3543z2 1.00000
12 1- 0.5970z°1 + 0.162722 0.01831




Table42  Modes and energy levels for M12

"~ Mode  Mode  Normalized Energy
Number
1 1+ 2.014621 + 1.0470 z2 <1E-06
2 1+ 1.7136z°1 + 0.9728z2 <1E-06
3 1+ 1.3518z°1 + 0.9540z2 <1E-06
4 1+ 0.9331z°1 + 1.0519z2 <1E-06
5 1- 0.1283z1 + 1.293322 <1E-06
6 1- 1.4063z1 + 1.5560z2 <1E-06
7 1- 0.4225z1 + 0.6942z2 <1E-06
8 1- 2.5952z1 + 1726122 <1E-06
9 1- 1.8786z1 + 0.9311z2 1.0000
10 1- 1.7675z1 + 0.8763z2 0.1482
11 1- 1.0679z-1 + 0.5032z2 0.0002




Table 4.3 Modes and energy levels for K15

Mode Mode Normalized Energy
Number

1 1- 0.0569z°1 + 3.9920z-2 <1E-06
2 1+ 1.8125z°1 + 1.07762-2 <1E-06
3 1+1.2114z°1 + 0.93312°2 0.00004
4 1+0.9234z°1 0.00002
5 1+ 0.7494z"1 0.00005
6 1- 0.3274z°1 + 0.984422 0.00624
7 1- 1.4870z1 + 1.4601z°2 <1E-06
8 1- 0.4412z71 + 0.7595z-2 0.00501
9 1- 1.8268z°1 +0.924822 0.00232
10 1- 1.6260z"1 + 1.0357z-2 <1E-06
11

1- 1.3200z°1 + 0.7819z-2 1.00000
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Figure 2.1 A piecewise-constant function
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Figure 2.2 Relationships of the time series, autocorrelation
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Figure 3.3 Autoregressive moving average, ARMA(p,q) model
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Figure 3.16 Semisubmersible Santa Fe Rigl35 in North Sea.
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Figure 3.17a Time series heave acceleration (SR=2.5Hz)
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Figure 3.17b Normalized autocorrelation function of the
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Figure 3.21 Normalized variation of the MA coefficients
[equation (3.13)] of heave acceleration (SF28).
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Figure 3.27 Normalized variation of the MA coefficients
[equation (3.13)] of monohull crane vessel-A roll.
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Figure 4.4 MPN platform location in North Sea.



Figure 4.5a MPN platform with location of wave gauge sensors.
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Figure 4.6 Normalized autocorrelation function of the North Sea
time series wave data: M12.
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Figure 4.7b Variation of AIC and MDL (ER calculated using
forward linear prediction residual technique) for M12.
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Figure 4.8a FFT wave (M12) spectrum and ARMA(2,2) spectrum
estimated from AR(44) using MYW equations and

reduction method.
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estimated from AR(40) using MYW equations and
reduction method.
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Figure 4.10 Comparison between FFT heave acceleration (SF28)
spectrum of semisubmersible (Santa Fe Rig135) and
ARMA(2,2) spectrum estimated from AR(98) using

MYW equations and reduction method.
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Figure 4.11 Comparison between FFT heave acceleration (SF28)
spectrum of semisubmersible (Santa Fe Rigl35)
and ARMA(2,2) spectrum estimated from AR(100)

using MYW equations and reduction method.
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Figure 5.1 Generated nonstationary time series ocean waves.
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Figure 5.2 First differenced time series estimated from the non-
stationary time series (Figure-5.1) ocean waves.
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Figure 5.5 Power spectral energies of the time series (Figure 5.2)
calculated by FFT and ARIMA(32,1,0) model.
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Figure 5.6 Power spectral energies of the time series (Figure 5.2)
calculated by FFT and ARIMA(44,1,0) model.
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Figure 5.11 Jacket platform (Magnus) in North Sea.
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Figure 5.12 Time series offshore platform deck displacements.

0.00850

0.00510 —

0.00170 —

-00170 H

-00510

-.00850

I l |
0.0 50.0 100.0 150.0 200.0 250.0
Time in sec.

Figure 5.13 First differenced time series estimated from the

nonstationary time series (Figure 5.12) offshore
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Figure 5.14 Second differenced time series estimated from the
nonstationary time series (Figure 5.12) offshore
platform deck displacements.
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Figure 5.15 Comparison of second differenced time series
(Figure 5.14) spectra calculated by FFT and
ARIMA(2,2,0) model.
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Figure 5.18c  Location of poles of the ARIMA(5,2,0) model.
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Figure 6.3  Comparison between FFT auto spectrum of M17
data and MAR(44) spectrum.
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