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Abstract

As many engineering systems are neither linear nor nearly linear, they are normally modelled 
by nonlinear equations for which closed-form analytical solutions are unobtainable. However 
with the advent of powerful computers, equations can be readily integrated numerically, so that 
the response from a given set of starting conditions is easily established. Unlike linear systems 
where all initial conditions lead to one type of motion, be it to an equilibrium point or to a 
harmonic oscillation, nonlinear systems can exhibit chaotic transients which can settle down to 
a rich and complex variety of competing steady state solutions.
Associated with each steady state solution is its basin of attraction. Under the variation of a 

control parameter, as the attractors move and bifurcate, the basins also undergo corresponding 
changes and metamorphoses. Associated with the homoclinic tangling of the invariant manifolds 
of the saddle solution, basin boundaries can change in nature from smooth to fractal, resulting 
in regions of chaotic transients.
The aim of the thesis is to investigate how the size and nature of the basin of attraction changes 
with a control parameter. We show that there can exist a rapid loss of engineering integrity 
accompanying the rapid erosion and stratification of the basin.
We explore the engineering significance of the basin erosions that occur under increased forcing. 
Various measures of engineering integrity are introduced: a global measure assesses the overall 
basin area; a local measure assesses the distance from the attractor to the basin boundary; a 
velocity measure is related to the size of impulse that could be sustained without failure; and a 
stochastic integrity measure assesses the stability of an attractor subjected to an external noise 
excitation. Since engineering systems may be subjected to pulse loads of finite duration, attention 
is given to both the absolute and transient basins of attraction. The significant erosion of these 
at homoclinic tangencies is particularly high-lighted in the present study, the fractal basins 
having a severely reduced integrity under all four criteria.
We also apply the basin erosion phenomena to the problem of ship capsize. We make a numerical 
analysis of the steady state and transient motions of the semi-empirical nonlinear differential 
equations, which have been used to model the resonant rolling motions of real ships. Examination 
of the safe basin in the space of the starting conditions shows that transient capsizes can occur 
at a wave height that is a small fraction of that at which the final steady state motions lose their 
stability. It is seen that the basin is eroded quite suddenly throughout its central region by gross 
striations, implying that transient capsize mightbe a reasonably repeatable phenomenon, offering 
a new approach to the quantification of ship stability in waves.
We conclude from this thesis that the stability of nonlinear engineering systems may, in the 

future, be based on the basin erosion phenomenon relating to chaotic transients and incursive 
fractals.
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CHAPTER 1: INTRODUCTION

There are many vibratory problems in engineering. Structures subjected to earthquakes, 

ships subjected to wind and waves or bridges subjected to vehicle and environmental 

conditions are just a few examples to mention. Differential equations, which represent 

the essential aspects of the structure and sufficiently describe the dynamics of the 

system, may often be used to model such problems. However as real-world problems 

are neither linear or nearly linear, they are normally modelled by nonlinear equations 

for which closed-form analytical solutions are unobtainable. However there has been 

a spectacular growth in nonlinear dynamics in recent years, made possible on one hand 

by great theoretical strides in Poincare’s qualitative topological approach and on the 

other hand by the wide availability of powerful computers. This has allowed equations 

to be readily integrated numerically, so that the response from a given set of starting 

conditions is easily established. Typical dynamical systems exhibit a start up transient, 

after which the motions settles down to some form of long term recurrent behaviour. 

Unlike linear systems where all initial conditions lead to one type of motion; be it to 

an equilibrium point or to a harmonic oscillation, nonlinear systems can exhibit a rich 

and complex variety of competing steady state solutions.

The phase portraits of many nonlinear systems are often characterized by the existence 

of one or more stable attractors, which typically include point equilibria, periodic 

oscillations (harmonic and subharmonic), quasi-periodic solutions and chaotic 

attractors. Each attractor is embedded in its own domain or basin of attraction, bounded 

by a separatrix associated with an unstable saddle solution. Indeed much work has been 

done on how point, periodic, quasi-periodic and chaotic attractors are created, changed 

and destroyed as a system parameter is varied. The mechanisms include the well-known 

local bifurcations, together with subharmonic cascades, intermittencies, crises, etc. In
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addition it is important to recognize that in typical dynamical systems several attractors 

often coexist at fixed parameter values. This has lead to much interest in basins of 

attraction, and how they too undergo changes and metamorphoses. Under the variation 

of a control parameter, as the attractors move and bifurcate, the basins also undergo 

corresponding changes and metamorphoses. These changes in size and shape are usually 

continuous but can be discontinuous as when an attractor vanishes, along with its basin, 

at a saddle-node bifurcation. Associated with the homoclinic tangling of the invariant 

manifolds of the saddle solution, basin boundaries can also change in nature from 

smooth to fractal.

The aim of the thesis is to investigate how the size of the basin of attraction changes 

with a control parameter. We show that there can exist a rapid loss of engineering 

integrity accompanying the rapid erosion and stratification of the basin. This as we 

shall show in subsequent chapters has important practical and theoretical implications. 

As an illustrative example we shall consider the problem of the sinusoidally forced 

motions of a particle in a single potential well, V=x2/2 - x3/3. This system is chosen 

because the escape of a dynamical system is a recurrent theme in physics and 

engineering. In the field of marine engineering, for example, the roll response of a 

vessel in regular seas can be modelled by this type of problem (Thompson, Bishop & 

Leung, 1986).

We thus consider the mechanical oscillator with the single generalised co-ordinate x 

described by the equation;

x + px +x - x 2 = F sin cor ( x = y )  (1.1)

where p, 0), F are system parameters and a dot denotes differentiation with respect 

to time.
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In chapter 2 we give a brief outline of nonlinear dynamical phenomena, as well as 

introducing the basic techniques used in nonlinear dynamics to investigate periodically 

forced mechanical oscillators.

In chapter 3 we explore the engineering significance of the basin erosions that occur 

under increased forcing. Various measures of engineering integrity of the constrained 

attractor are introduced: a global measure assesses the overall basin area; a local measure 

assesses the distance from the attractor to the basin boundary; and a velocity measure 

is related to the size of impulse that could be sustained without failure.

Since engineering systems may be subjected to pulse loads of finite duration, attention 

is given to both the absolute and transient basin boundaries. The significant erosion of 

these at homoclinic tangencies is particularly high-lighted in the present study, the 

fractal basins having a severely reduced integrity under all three criteria.

Chapter 4 examines the dynamical response of attractors subjected to external 

fluctuations. Introducing a superimposed noise excitation, we quantify the response in 

terms of a stochastic integrity measure, and correlate this with the geometrical changes 

experienced by the deterministic basin of attraction.

In chapter 5 we investigate the four dimensional phase-control space spanned by 

{^c(0),i:(0),F, co}. We explore the engineering significance of the control cross-section 

corresponding for example to jc(0),jc(0) = 0. The fractal boundary in this section is a 

failure locus for a mechanical system subjected, while resting in its ambient state, to a 

sudden pulse of excitation. We assess the relative magnitude of the uncertainties implied 

by this fractal structure. Absolute and transient basins are examined giving 

control-space maps analogous to familiar pictures of the Mandelbrot set. Generalising 

from this prototype study, it is argued that in engineering design, against boat capsize 

or earthquake damage, for example, a study of the safe basins should augment, and 

perhaps entirely replace, conventional analysis of the steady state attracting solutions.
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In chapter 6 we apply the ideas presented in the previous chapters to the problem of 

ship capsize. We make a numerical analysis of the steady state and transient motions 

of the semi-empirical nonlinear differential equations, which have been used to model 

the resonant rolling motions of two ships. Examination of the safe basin in the space 

of the starting conditions shows that transient capsizes can occur at a wave height that 

is a small fraction of that at which the final steady state motions lose their stability. It 

is seen that the basin is eroded quite suddenly throughout its central region by gross 

striations, implying that transient capsize might be a reasonably repeatable 

phenomenon, offering a new approach to the quantification of ship stability in waves. 

Such an approach has the twin advantages of being both conceptually simpler, and at 

the same time more relevant, than one based on the steady state rolling motions. The 

latter analysis can be dangerously non-conservative.

A summary and conclusion of the thesis is presented in chapter 7. We also outline the 

research that should be made in the near future, on both the theoretical and practical 

levels, concerning the ideas presented in this thesis.
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CHAPTER 2: BACKGROUND THEORY

In this chapter we give a general outline of nonlinear dynamical phenomena. Readers 

desiring a more detailed discussion in classical nonlinear vibrations should consult 

books like Nafyeh and Mook (1979). New concepts in nonlinear dynamics such as 

chaos are excellently reviewed in books by Thompson and Stewart (1986), Moon (1987) 

and Guckenheimer and Holmes (1983). We also introduce the basic techniques used 

in nonlinear dynamics to investigate periodically forced vibratory systems. We pay 

particular attention to forced or driven mechanical oscillators, described for example 

by the non-autonomous differential equation

m x +f(x,x)  = F sin cor (2.1)

Here the forcing is sinusoidal with a magnitude of F and a frequency of co, and the 

phase space is three-dimensional spanned by x , x  and t. This phase space is full of 

non-crossing trajectories which spiral around the time axis looking like a stranded cable. 

It is sometimes convenient to plot the phase projection in the subspace of x  and jc, but 

here the trajectories will constantly cross one another.

We notice here that this non-autonomous second-order differential equation can be 

converted into three first-order equations if we set* = y and employ the standard trick 

of regarding t as one of the variables with the third equation simply t = 1.

2.1 The Poincare Map

A standard technique in dealing with the three-dimensional phase space (x,x, t )  of 

our periodically driven oscillator is to inspect the projection (x,x)  whenever t is a

5



multiple of T -  (27t/co) as shown in figure 2.1. Here T is the periodic time of the 

forcing. Clearly a similar trajectory bundle emerges from each t=mT plane 

(m=0,l ,2,3,...) so that photographs of every interval would be identical. This does 

not mean that a particular trajectory repeats itself with period T; the one shown in 

figure 2.1 repeats itself every 2T. The repetition after T  of the trajectory bundle is 

conveniently treated in topological dynamics by imagining the whole bundle of one 

interval twisting back onto itself forming a torus. Most of these trajectories will 

represent transient motions, but within the bundle of a dissipative system will usually 

exist some steady state trajectories, or attractors. In many nonlinear systems there 

can be many competing attractors, repellors and saddles.

If the steady state trajectory repeats itself with period T of the forcing, the 

corresponding oscillation is usually termed the fundamental solution. If it repeats 

itself after n intervals, so that it has period nT it is called a subharmonic o f order n 

(figure 2.1 shows an n=2 subharmonic). A steady state attractor that never repeats 

itself is usually termed a chaotic attractor. The result of inspecting the phase 

projection at only the specific times t-m T, is to see a sequence of dots, representing 

the so-called Poincare mapping. Transient motions would appear as a sequence of 

dots and the emergence of a stable fundamental solution would be seen as a repetition 

of just one fixed mapping point. A subharmonic of order n would be a systematic 

jumping between n mapping points. A chaotic attractor would appear a scatter of 

points on an ordered fractal structure that never repeat themselves.

2.2 Stability of the steady state

As was shown in the previous section, the Poincare mapping technique for flows 

allows us to condense the behaviour of three-dimensional trajectories to a mapping
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of a two-dimensional surface of section to itself. Thus the stability properties of the 

map reflect the stability properties of the flow. In this section we outline how this 

is done by considering equation (1.1) as an illustrative example. In order to do so 

we can write equation (1.1) as set of three autonomous first order equations

X = y

y = - x  + x 2-  py +F  sin <}) (2.2)

(j> =  CD

with the three controls (F,co, (3).

The divergence of trajectories in the three dimensional phase space, R 3, spanned 

by (x,y,t), is governed by

l + H  = -P  »-3)

so we have a constant exponential contraction, of the phase volume, V, according 

to

V = -pV  (2.4)

V(t) = V(0)e-*

We now introduce Poincare sections (x,y) defined by

r = fp + lT ( /  = l , 2, . . , r = ^ )  (2.5)

( | )  =  ( J ) y j  =  (Htp

and the associated map

P($r):{x(tp),y(tp)} -> {x{tP + T) , y ( tP + T)}— (2.6)

This maps takes us iteratively from (xh y{) to (xi + 1,yi + 1) according to an implied

functional relationship
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x;il = G(Xi.yJ (2.7)

yi + i ^ H f o . y d

where G and H can be evaluated numerically for any (jcx , y,) by making a Runge-Kutta 

numerical time integration through one forcing period.

Let x , +x E and yt + y E be a fixed point of (2.7), and superimposing a small 

disturbance, we get

xU i = x E + t^tl  = G(xE + ̂ . u y E+r\i . l) (2.8)

.  i = y £ + 1), +1 = #  (*E + C;-.i. }'£ + *1i.  1)

Expanding G and H in a Taylor series at the fixed point, retaining only the linear 

part of the expansion, and abbreviating the first derivatives as a, b, c, d we obtain 

the variational equation

C,-+I = aC + \  (2-9)

+1 — C "h d .̂

or in matrix form

Yi + i=A*Yi

The eigenvalues A,, A2, of the matrix M, thus determine the stability criterion for

two-dimensional maps which is best discussed in the complex plane. If the 

eigenvalues are both inside the unit circle the system is stable; if at least one of the 

eigenvalues is outside the unit circle the system is unstable. The stability boundary 

is the unit circle itself. If the eigenvalues are real there are only two points at which 

they can cross the stability boundary, at A = ±1. When one of the eigenvalues say 

Al5 is equal to 1 and | A2| <1 the system is in a state of incipient divergence; when 

A, is equal to -1 and | A2| <1, the system in a state of incipient flip. These types of 

instability are essentially one-dimensional, involving only one eigenvalue. If the
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eigenvalues are complex conjugate they can cross the unit circle at an angle 0 * 0, n 

and is called a Neimark instability. Figure 2.2 shows the stability transitions for the 

equilibrium states of flows and maps in the complex plane (Thompson & Stewart, 

1986).

2.3 Response and bifurcations

Nonlinear systems can have many steady state solutions, which can be stable or 

unstable, at a fixed set of control parameters. Once these are found they can be 

followed as paths under the variation of a primary control, while bifurcations of 

these paths can be followed in control space under the variation of a second 

parameter.

The response of these steady states, under the variation of a control parameter, can 

be very complex indeed (Thompson, 1989). Unlike linear systems where the 

solutions are invariably harmonic, nonlinear systems can exhibit harmonic, 

subharmonic, quasi-periodic or even chaotic oscillations. In this section we outline 

a "typical" sequence of attractor bifurcations, which can occur in many nonlinear 

oscillators. We use the oscillator described by (1.1), as an illustrative example. 

Figure 2.3 shows a schematic response curve with the corresponding stability 

transitions.

From S°, the path S 1 starts as an attracting focus, becomes a directly attracting node 

at a where the eigenvalues becomes real and positive, and folds at A where 

penetrates the unit circle. From fold A to fold B we have a directly unstable saddle 

D] (where r for resonant distinguishes this from the hilltop saddle D *), and the path 

restabilizes at fold B as A, re-enters the unit circle at +1. Physically however, folds 

A and B give rise to a region of resonant hysterisis where the two stable attractors
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are separated by an n=l solution which is directly unstable with both eigenvalues 

positive and real with 1 < Aj < <», 0 < A2 < 1. This results in jumps to and from 

resonance at A and B respectively. A7 then becomes complex at b, passing completely 

around the unit circle to give an inversely attracting node with real negative 

eigenvalues between c and C. At C, Aj passes out of the unit circle at -1, and we 

have a supercritical flip bifurcation into a n=2 stable subharmonic. This is followed 

by a supercritical flip from an n=2 to an n=4 , and a complete period-doubling 

cascade leading to a chaotic attractor, which quickly becomes unstable at a boundary 

crisis at E leaving no attractor and an inevitable jump to escape. The unstable n=l 

solution meanwhile continues to the fold G where it turns back to become the hill-top 

saddle cycle D \  Before doing so however it is clear that from the constraints on the 

eigenvalues (Thompson , 1989) that we must have a reversed flip at F, and this is 

indeed confirmed by our numerical results. There is indeed a complete reversed 

period-doubling and chaos as illustrated. The reversed flip F is, indeed very close 

to G so that the stable n=l regime F-f-g-G is in reality very short. Path D l finally 

returns to the hill-top equilibrium D°. Steady state bifurcation diagrams in 

control-space, clearly summarise the parameter values at which important 

bifurcations take place. This is described in more detail in the next chapter.

2.4 Basins of attraction

In damped linear systems, at a fixed set of parameter values, all initial conditions 

eventually lead to one possible steady state motion; this can be an equilibrium point 

or a harmonic oscillation. However in nonlinear systems, it is possible for several 

attractors to co-exist at a fixed set of control parameters. This is clearly illustrated 

in figure 2.4 for our escape equation. Here the (x,y) phase space has two equilibria
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position at x=0 and x= l. The stable state 5 ° of minimum energy at (0,0) corresponds 

to an attracting focus , while the unstable state D° of the maximum energy at (1,0) 

corresponds to a saddle. The stable manifold, or inset, of this saddle, namely the set 

of all points that tend to the saddle as t —»<», defines the basin boundary, or 

seperatrix, around the basin of attraction of 5°. Starting conditions outside this basin 

that lead to escape over the hill-top (with x  —» «») are highlighted by the dot screen. 

There are several techniques for determining basins of attraction based on the 

Poincare mapping techniques that we have introduced earlier. To elaborate this, we 

can consider that equation (2.1) can be written as two first-order equations

x = X ( x  ,y , t )  (2.10)

y = Y { x , y , t )

where X and Y are both periodic in t, with the same period L. Suppose that x(t) and 

y(t) are the solutions, starting at a point P° in the (x,y) phase projection. So P° has

the co-ordinates x(0), y(0). We study the Poincare mapping, looking at the points

Pm at the time t=mL, where m=0,l,2 ...We call the transformation PQ—>Pl the 

mapping, T, and write Px =TP0. In an extension of this notation we can write

P2 = TPt = T 2P0 (2.11)

/>3 = 77>2 = 7'3/>0

etc. We can also write the inverse mapping, P0 = T~lP, = T~2P2, etc. If a solution 

x(t), y(t) is a fundamental harmonic with the period L of the forcing, then the point 

Pq is a fixed point of the mapping T. If, alternatively we have a subharmonic of order 

n (=2,3,..) with a minimum period of nL, the steady state mapping points

11



PQ,P i .. -,Pn-i are called periodic points. They are in fact all fixed points of the nA 

iterate, Tn, of the mapping T. By studying just the mapping T of the (x,y) onto itself 

serves to determine the basins of attraction of our original continuous differential 

equation. Any initial point in the basin of a particular attractor, steps, under repeated 

iterations of the mapping T, to that particular attractor that is located in the interior 

of that basin. Numerical techniques, which obtain these basins of attraction typically 

include grid o f starts, cell-to-cell mapping or invariant manifold analysis 

(Thompson, 1989).

As shall be discussed in subsequent chapters, basins and basin boundaries, like their 

attractors, change and bifurcate as system parameters are varied. It has recently been 

shown that in many nonlinear systems basin boundaries are fractal, which has 

fundamental implications for the behaviour of dynamical systems. This is because 

small changes in the initial conditions or other system parameters can lead to 

uncertainties in the outcome of the system. This leads to unpredictability in such 

systems (Grebogi et a l , 1983, 1985, 1986).
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Figure 2.2 Stability transitions in the complex plane for flows and maps.
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Figure 2.3 (a) Schematic sketch of the response curves at constant co and constant p, showing
the opposing flip cascades (b) the behaviour of the mapping eigenvalues in the complex plane.
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Figure 2.4 Two-dimensional phase portrait of the undriven autonomous system.
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CHAPTER 3: INTEGRITY MEASURES AND BASIN EROSION

3.1 Introduction

In this chapter we firstly consider how the basin of attraction is affected by the appearance 

of a homoclinic tangency (predicted by the method of Melnikov). In order to illustrate this, 

we shall consider the erosion of the basin of attraction of the main sequence of attractors 

from the fundamental state F=x=y=0 to the final blue sky event, at F=FX, whether it be a 

simple cyclic fold or a boundary crisis.

Secondly the nature (smooth/fractal) of the basin of attraction will be considered and 

escape from a simple cyclic fold will be used to illustrate that, if the invariant manifolds 

of a saddle cycle have already homoclinically tangled at some value FT, they must 

"detangle" before any saddle-node bifurcation that invokes this saddle cycle. In addition 

we emphasize that for a saddle node bifurcation the area of the absolute basin of attraction 

remains finite, within a specified window, at the escape value, Fx. This area will then drop 

to zero when the relevant attractor loses its stability catastrophically at the final bifurcation, 

which results in the inevitable jump to failure.

Thirdly we shall consider the transient escape behaviour. This is important because systems 

are not always subjected to constant forcing for long periods. This is especially tTue in the 

field of marine and naval technology where offshore structures are often subjected to a 

steady train of waves for relatively short periods of time, making the short term response 

of considerable significance. Transient basin diagrams (Pezeshki and Dowell, 1987), may 

be used to show how the transient basins of the attractor at infinity change as a system 

parameter is varied both before and after the blue sky catastrophe. Long transient behaviour 

is common after a saddle-node fold as examined by Van Damme & Valkering (1987).
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Finally we shall consider how, if the local stability of an attractor under small-but-finite 

disturbances is to be examined, numerous factors other than the size and nature 

(smooth/fractal) of its basin of attraction must be investigated. These include how an 

attractor would respond to impact loading, noise, etc. We consider the sensitivity of an 

attractor subjected to impact loading, together with an alternative criterion of local integrity 

based on a suitably defined minimum distance from the attractor to the basin boundary.

3.2 Transient basins and integrity measures

In studying transient times we must acknowledge the fact that a system does not usually 

reach an attractor in finite time. We must therefore introduce a suitably defined 

neighbourhood of the attractor. For a point attractor in a Poincare section an obvious 

neigbourhood would be a small disc centred on the attractor.

In this chapter we are only concerned with transients, from a local window of starts, that 

lead to escape from a potential well with x tending to infinity; that is to say the transients 

leading to the attractor at infinity. As our criterion of nearness to this we specify x>20, 

based on the experience that for our equation a computer usually crashes due to overflow 

shortly after x passes 20.

We can therefore define a transient basin, as the set of all starting points that reach 

x=20 in t<T. It is also convenient to define the constraint basin, Cj, as the set of all points 

that reach x=20 in t>t (or not at all). The transient boundary, #T, between these two areas 

is then defined as the set of all points that reach x=20 in precisely time t . The normally 

defined, absolute basin of attraction is clearly obtained by letting t  tend to infinity. 

We are not particularly concerned here with the fate of the constrained, non-escaping
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trajectories. Most will be attracted to a well defined attractor (or one of a pair of attractors, 

in the region of hysteresis) lying on the main sequence of stable attractors (harmonic, 

subharmonic, and chaotic) originating from the equilibrium state F=x=y=0 under slowly 

incremented F. A small number may however be attracted to the large number of unexplored 

but highly localized competing attractors that are invariably encountered in problems of 

this type, examples being the S3 and S6 subharmonics associated with the saddle-node 

cascade scenarios (Thompson, 1989).

To quantify the erosion of the basin of constraint we introduce three measures which might 

serve to assess the engineering integrity of the main attractor.

The first concerns the area of Q within a prescribed window. Using a grid of N starts, we 

write the proportion that fall within £  as GT. We shall in fact measure T  in number of forcing 

cycles, m, and the write the proportion as Gm. This global integrity measure (GIM) is, 

conveniently, independent of the finite attractors onto which the constrained motions settle. 

Focusing on a given point attractor within C°° a useful deterministic measure of its integrity 

would seem to be the minimum distance, LT, in the (x,y) Poincare section, from the attractor 

to the transient basin boundary <BX. This gives us our second local integrity measure (LIM), 

Lm, written again in terms of forcing cycles.

Our third measure, based on the concept that a mechanical oscillator might be subjected 

to an impulse, in which it could be thought to experience an instantaneous step change in 

velocity, involves the minimum distance in the direction of +y or -y. The minimum distance 

in the Poincare section from the point attractor to the boundary $Tin the direction of positive 

y is written as I+, and in the direction of -y as I'. With either a positive or negative sense, 

we thus have the impulsive integrity measure (IIM) denoted by Im.
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A fourth, stochastic integrity measure (SIM) can be defined in terms of the mean escape 

time when the attractor is subjected to white noise of prescribed intensity. This is 

investigated in detail in chapter 4.

3.3 Numerical simulations

The transient basin diagrams (Figures 3.3-3.7) where obtained by performing a fourth-order 

Runge Kutta numerical algorithm on equation (1). Here 100 by 100 initial conditions were 

chosen in the form of a grid and integrations were continued until either the escaping 

criterion was satisfied (arbitrarily chosen as x>20), or the maximum allowable number of 

forcing periods was reached. For obvious reasons of computational economy, the allowable 

number was here taken as m=16. All the times to escape were stored with their 

corresponding initial conditions, and transient basin diagrams were plotted by assigning a 

different shade to assigned transient intervals. Global integrity curves, Gm (F, co, p) versus 

F, can also be drawn from the stored data.

3.4 Choice of frequncies

In order to understand how a homoclinic tangency would affect the size of a basin of 

attraction several values of frequency, co, involving different routes to escape from the 

F=x=y=0 fundamental state, were chosen and compared. The values of co were chosen 

from a consideration of Figures 3.1a and 3.1b. These bifurcation diagrams were obtained 

by plotting curves, in (F,co) space for fixed p(=0.1), at which a homoclinic tangency, a 

period-doubling flip and a saddle-node fold bifurcation occur (Thompson, 1989).
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The equation of the Melnikov homoclinic tangency line was obtained by applying the 

method of Melnikov (Thompson, Bishop and Leung, 1987). The condition for a homoclinic 

tangency between the stable and unstable manifolds of the saddle cycle close to the x=l 

hilltop was found to be :

pM  _  p s i n h ( T O i )  g
5jkd2

This is of course only an approximation to the true homoclinic tangency, FT, and gives 

misleading results at large F and co as we shall see. For this reason we have sketched a 

dashed line in Figure 3.1a on which we expect the actual homoclinic tangency to occur. 

The fold and flip bifurcation lines were obtained by using a bifurcation following routine, 

the flip being the first period-double from the fundamental n=l to a subharmonic n=2 

attractor. The right hand insert of Figure 3.1b shows four typical traces of the steady state 

responses at constant co with F plotted against the stroboscopically sampled x.

The values of co were chosen as follows; co=3.4 at which there exists an n=l periodic 

attractor from the F=0 fundamental state all the way to the final saddle-node blue sky event: 

co=2.4 at which there also exists an n=l periodic attractor until the final escape, however 

in this case a homoclinic tangency occurs at some value FT(=FM): co=1.0 and 0.85 are similar 

in that in both cases there exists an n=l periodic attractor (during which there is homoclinic 

tangency) which has a period doubling cascade leading to a boundary crisis; however at 

the latter there exists a hysteresis fold before the homoclinic tangency: co=0.65, where there 

exists an n=l fundamental steady state in which escape occurs at a simple fold (in addition 

there coexists an n=l periodic attractor with a period doubling cascade leading to a chaotic 

attractor).
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3.5 Erosion of the basin of attraction

3.5.1 Results for co=3.4

The first case considered was that of co=3.4. Here there exists a monotonic trace of 

fundamental (n=l) harmonic oscillations originating at F=x=y=0 and terminating in a 

simple cyclic fold at Fx=8.11. For the sake of this presentation it will be useful to assume 

that if trajectories do not escape within the maximum allowable time (16 forcing cycles) 

they will remain constrained, and hence that the # 16 basin boundary represents the absolute 

boundary between the attractor at infinity and the period-one attractor (®16~®°o), and C16 

represents the corresponding absolute basin of attraction (Qf-C00).

The erosion of the C16 basin can be seen quantitatively in Figure 3.2. The proportion of 

initial conditions constrained decreases in a smooth manner from F=0 to F=8.0: none are 

constrained at F=9.0 as there only exists the attractor at infinity.

No homoclinic tangency was expected to occur on the basis of the Melnikov analysis (see 

Figure 3.1) and thus it was expected that the basin of attraction would remain smooth 

throughout. Indeed, as can be seen from Figure 3.3 (transient basin diagrams for co=3.4), 

although the C]6 basin changes in size, position and shape as F is gradually increased from 

F=0 to F=FX, it seems to remain smooth. It is also important to discuss the behaviour of 

the transient boundaries and their corresponding transient basins. As can be seen in Figure

3.3 each different shade represents the basin of attraction for a particular transient-length 

interval. It must be pointed out however that the range of initial conditions were chosen 

such that the overall behaviour could be observed, and at the same time enough detail 

preserved for the purpose of this study. As can be seen each basin seems to be smooth and
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once again as the value of the forcing amplitude is gradually increased the basins change 

in size. However unlike the Cx6 basin which vanished after Fx (-8.11) the other transient 

basins still exist. This is perhaps most clearly illustrated by looking at the C4 basin. At 

F=8.0 the C4 basin is reminiscent of the C16 basin at lower values of F. However as F is 

increased to 9.0 the C16 basin has disappeared whereas the C4 basin still exists in 

approximately the place where the Ci6 basin had resided. This can be explained by the fact 

that a saddle-node bifurcation is followed by long transients in the region of the extinguished 

basin (Van Damme and Valkeering, 1987). It must also be pointed out that this phenomenon 

seems not only to take place at the saddle-node bifurcation, but also when part of the 

basin is eroded; here also the eroded region generates orbits with long escape times (see 

Figure 3.3, F=6.0 to 7.0). This is indeed what we would expect from the continuity of 

dynamical behaviour.

The sizes of the transient basins may be seen quantitatively in Figure 3.2. Each curve 

represents the proportion of initial conditions being constrained, Gra, for m cycles (as 

denoted by the specimen diagram). For low values of forcing most initial conditions are 

constrained within one cycle. This is partly due to the fact that all the simulations were 

started at phase ({>=180° (by replacing F by - F as previously mentioned). This implies that 

the system is being first pushed into the potential well, tending initially to constrain the 

system. As one might expect, as the forcing increases a little, a greater number are 

constrained; as is indeed the case when practically all the initial conditions are constrained 

for one cycle at F=7.0. The proportion constrained for two cycles initially rises then falls. 

Here we must point out that this is true for the window of initial conditions considered and 

might not have been the case if a different range was chosen. From the transient basin 

diagrams of Figure 3 it can be seen that there is a considerable shift in the C2 basin and this
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may account for the rise and fall of G2. The erosion of the C4 basin seems to follow closely 

the trend of the Cl6 basin. However the G4 integrity curve, clearly illustrates there still exists 

the C4 basin for F>FX. It can also be seen that the Gg, and G16 curves almost lie on top of 

one another, implying that the proportion escaping between 8 and 16 cycles is relatively 

small. This reinforces the view that G16=G<*>.

3.5.2 Results for co=2.4

The effect of a homoclinic tangency on the erosion of the basin of attraction will be 

considered for the case of (0=2.4. Here a direct comparison can be made with the previous 

case of co=3.4, as the routes to escape were identical (i.e. an n=l periodic attractor with 

escape from a simple fold ); however here a homoclinic tangency was expected to occur 

(see Figure 3.1) at FM=1.05, well before the final blue sky event at Fx=4.13. Indeed, as 

expected, the Cx6 basin of attraction seems to remain smooth below the Melnikov criterion 

(Figure 3.4). However once the forcing amplitude exceeds the Melnikov limit, the basins 

become more complex with whisker-like projections indicating fractal behaviour 

(McDonald, Grebogi, Ott & Yorke, 1985; Moon and Li, 1985; Moon, 1987). This 

smooth-fractal basin boundary metamorphosis is due to the homoclinic tangling of the 

stable and unstable manifolds of the saddle periodic orbit on the basin boundary as Grebogi 

et al (1987) have indicated. As the forcing amplitude is further increased the basin becomes 

more complex in appearance as new tongue-like projections gradually erode more and 

more of the basin. However at F=3.5, although a considerable part of the basin has been 

eroded, the structure seems to become less complex in appearance. In fact at F=4.0 the 

basin seems once again to have become smooth. This is indeed the case as we shall examine
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later. Indeed, it is clear from centre manifold considerations that on approaching a 

saddle-node bifurcation there can be no homoclinic tangling of the saddle manifolds. So 

at this co value we must have a detangling before Fx i.e. a smooth-fractal metamorphosis 

as well as a fractal-smooth metamorphosis must take place.

The effect of the homoclinic tangency on the size of the basin of attraction can be seen 

quantitatively in Figure 2. For F<FT (~FM) as was seen previously, a small gradual shrinkage 

of the Ci6 basin takes place. After the homoclinic tangency, the catchment region is very 

rapidly eroded, reducing by about 50% from F=1.0 to F=2.0. Furthermore, it is important 

to note that for F<FM the G16, G8, and G4 integrity curves seem to be coincident, while after 

the tangency they diverge appreciably. This, as will be more clearly illustrated later on, is 

due to the emergence of the finger-like projections and chaotic transients.

3.5.3 Results for co=1.0 and co=0.85

In this study co=1.0 and 0.85 were also considered and the transient basin diagrams are 

reproduced in Figures 3.5 and 3.6. In both cases an n=l periodic attractor terminates in a 

Fiegenbaum cascade, leading to a chaotic folding band attractor, and finally escape is 

triggered by the blue sky disappearance of the attractor at Fx=0.220 and Fx~0.109 

respectively. The essential difference is that the latter exhibits a region of hysteresis. In 

addition to seeing how the homoclinic tangency will affect the size of the basin of attraction 

in this particular problem, the effect of a hysteresis loop will be examined as well as the 

transient behaviour after a chaotic blue sky event.

It is perhaps in the case of co=0.85, from all the cases studied, that the effect of the 

homoclinic tangency is most clearly illustrated. This is due to the fact that there seems to
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be only a small movement in the position of the basin of attraction and hence the overall 

picture is more easily examined. As seen in the co=0.85 global integrity curves there is little 

or no change in the size of the transient basins before the homoclinic tangle. It is important 

to point out that, apart from the Gi curve, the curves here seem to be almost coincident 

implying that a relatively small proportion escape between 2-16 cycles. However as the 

Melnikov criterion is exceeded there is a dramatic erosion in the C16 basin with a not so 

dramatic erosion of the C8, C4, and C2 basins, as indicated by the divergence of the integrity 

curves. This can be clearly observed in the transient basin diagrams of Figure 3.6; for F=0.0 

to 0.07 there is little or no change in the transient basins; however at F=0.07 a small 

finger-like projection appears, where upon at F=0.08 there is a sudden shrinking of the Q 6 

basin and a complete change in the appearance of the picture. It can also be noted that 

although the total areas of the C8, C4, and C2 basins decrease after the homoclinic tangency, 

there is an increase in the proportion of initial conditions which escape between 2-4,4-8, 

and 8-16 cycles. Correspondingly the Ci6 basin will depart more significantly from the C°° 

basin. This is due to the development of the homoclinic tangle and the emergence of the 

finger-like projections, causing chaotic transients as an escape sequence maps from one 

finger to the next. A detailed illustration of this mapping sequence is given by Thompson 

(1989). As F is increased further towards Fx, there is a continuation of the erosion, although 

not so dramatic, of the C16, C8, C4, C2 ,and Cx basins. At Fx (*0.109) there is a boundary crisis 

of the chaotic attractor and an instantaneous destruction of the C°° basin of attraction, 

analogous to that elucidated by Abraham and Stewart (1986) for the Van der Pol oscillator. 

However there still exist well defined transient basins after the blue sky catastrophe, and 

on the macroscopic level there seems to be no immediate change in the C16, C8, C4, C2, and 

Ci basins. Even at F=0.110 there exists a C16 basin, as seen in the transient basin diagrams
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as well as in the integrity curve, G16. This transient chaotic dynamical behaviour beyond 

a crisis, as described by Gwinn and Westervelt (1986), is associated with the folding in 

the phase space. At a crisis the collision with an accessible saddle (here D6as demonstrated 

by Thompson (1989)) destroys the C°° basin, although the "metastable" basin remains. The 

scaling of chaotic transients beyond the boundary crisis is shown, to follow the exponential 

laws of Grebogi et al (1986).

The effect of the hysteresis can be considered by comparing the results for co=0.85 with 

those of co=1.0 where the diagrams (Figures 3.5 and 3.6) and integrity curves are seen to 

behave in a similar fashion. Looking more closely at the region of hysteresis for (0=0.85, 

there exists a resonant hysteresis in the region between two cyclic folds at F«0.05 and 

F=0.07; Fm is at 0.065. By inspecting the (0=0.85 integrity curves there seems to be little 

or no change in the size of the C16 basin (or in any of the basins) during the region of 

hysteresis. This implies that the total non-escaping region is unaffected by the hysteresis 

loop, although the size of the individual basins for the two coexisting n=l attractors is 

continually changing over this range. This is because the size and nature of the total absolute 

non-escaping boundary is determined by the inset of the hilltop saddle while the separatrix 

between the two coexisting n=l basins is determined by the resonant saddle between the 

coexisting attractors.

3.5.4 Results for (0=0.65

The final value chosen was (0=0.65. Here there exists a monotonic trace of the fundamental 

(n=l) solution terminating in escape from a simple cyclic fold at FA. Also present though 

not encountered in a natural loading sequence from F=x=y=0 is an n=l periodic attractor
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created by the saddle-node at FB which period doubles to a chaotic attractor. The range of 

F in which the fold B, flip C and crisis occur is extremely small and coincides roughly with 

the Melnikov value FM=0.057. For the transient basin diagrams of co=0.65 (Figure 3.7) it 

can be seen that as the forcing amplitude increases from F=0, the C16 basin increases in 

size as well as remaining smooth until the Melnikov criterion is reached. Here a fractal 

appearance is observed although it is not entirely clear. As F is further increased, the gradual 

erosion of the C16 basin is, unlike the cases of co=0.85 and 1.0, by one finger like projection, 

which grows in size encircling the Ci6 basin. In fact the C16 basin seems once again to have 

become smooth, and its erosion is in a similar fashion to that at cd=2.4: and in both cases 

termination of the n=l attractor is by escape from a simple fold, with long transients after 

the saddle node bifurcation. Here, however the saddle of the saddle-node bifurcation is not 

the hilltop cycle, but the resonant saddle created at fold B.

The integrity curves confirm these deductions. After a slight increase in the size of the £*16 

basin, it starts to diminish after FM. However the G16, G8, and G4 curves seem to remain 

roughly coincident indicating the lack of the finger-like projections. This suggests that the 

basin of the attraction might have become smooth before the final escape. The sequence 

of events at co=0.65 is indeed not entirely clear, and warrants further study.

3.6 Tangling and detangling

The effect of the homoclinic tangency on the erosion of a basin of attraction has already 

been considered. It is also useful to know whether a basin is smooth or fractal. The analytical 

method of Melnikov can be used to predict, at which forcing amplitude, FM, the appearance 

of a homoclinic tangency, FT, takes place. However, as discussed in section 3.5.2, there
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exists a value of forcing at which the basin seems to have become smooth, indicating a 

"detangling" of the stable and unstable manifolds. In this section we show that this is indeed 

the case; critical forcing amplitudes, in which a smooth-fractal metamorphosis or a 

fractal-smooth metamorphosis takes place can be defined.

As an illustration of this we shall consider the case of co=2.4 where escape occurs from a 

simple fold at Fx=4.13. Here the homoclinic tangency between the stable and unstable 

manifolds predicted by Melnikov’s method was at FM*1.05. We deduce that at some forcing 

amplitude F°, such that FT<FD<FX there must be a detangling of the stable and unstable 

manifolds before the final saddle-node bifurcation. This must happen as just before a 

saddle-node bifurcation there can be no crossing of the stable and unstable manifolds as 

is apparent from the centre manifold concepts (Thompson and Stewart, 1986). Figure 3.8 

shows the stable and unstable manifolds of the hill-top saddle cycle superimposed on the 

basin of attraction for several forcing amplitudes. These were obtained by plotting orbits 

in the Poincare sections at phase <j)= 180° backwards in time from a ladder of starts along 

the ingoing eigenvector of the saddle and forward in time from the outgoing eigenvector. 

The accuracy of the Melnikov criterion can be seen in Figures 3.8a and 3.8b. For F<FM the 

stable and unstable manifolds do not cross; as the forcing just exceeds the Melnikov 

criterion (F>FM) the stable manifold develops a finger which crosses the unstable manifold 

as shown in Figure 3.8b. As F is further increased, as seen in Figure 3.4 of the transient 

basin diagrams for co=2.4, it can be seen that the basin becomes more complex in character 

until about F=4.0 where the basin seems to have become smooth once again. Indeed this 

is confirmed in Figures 3.8c and 3.8d where at F=3.5 there is a tangling of the manifolds 

and at F=3.8 there is not. These results imply that approximately for 0<F<1.1 no tangling 

occurs (hence the basin is smooth), for 1.1<F<3.65 a tangling occurs and the basin is
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therefore fractal, and for 3.65<F<FX there is again no tangling of the manifolds (smooth 

basin). Figure 3. la  shows a sketched line of the form that we expect the actual homoclinic 

tangency line to follow. The two crosses are values at which actual homoclinic tangencies 

were found.

Although this would be the simplest case in which this type of behaviour would occur for 

our particular oscillator, for other frequencies with complicated routes to escape, this 

scenario would be common. For example in the case of (0=0.85, in which FM=0.065 and 

escape occurs from a chaotic blue sky event at Fx=0.109, there exists a reversed period 

doubling cascade and chaos at F=0.70 leading to a second "escape" from a simple fold, 

and thus a "detangling" should once again occur. It can thus be deduced that although the 

Melnikov criterion, FM, quite accurately predicts the homoclinic tangency, FT, over a certain 

range of parameter values, there exists another critical value, F°, in which a detangling 

takes place as shown in figure 3.1a. Relevant recent work on fractal distributions and the 

stable manifold has been done by Vazquez et al (1987).

3.7 Local integrity of the attractor

If one was to consider the "local stability" (but not infinitesimally local) of a particular 

attractor, numerous factors other than the size (section 3.5) and the nature (section 3.6) of 

its basin of attraction must be considered. These include the response to impact loading 

and external noise, position of the attractor within the basin, etc. Some specific examples 

are as follows: (a) often a system settled on a particular attractor may experience a nearly 

instantaneous change of velocity due to an impact loading, perhaps causing the system to 

jump from one attractor to another; (b) basins of attraction are often finely divided, as in
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the case of a fractal, where the separation between the attractor and the boundary can be 

small; the addition of external noise can easily push trajectories across these boundaries 

as in the case discussed by Gwinn and Westervelt (1986), of noise induced intermittency 

of a driven damped pendulum; (c) often real dynamical systems do not settle down to "true" 

periodic, subharmonic or chaotic motion; this can be due to a small random disturbance 

(noise) of either mechanical, thermal or electrical origin. In the case of a period one 

oscillation the long term behaviour, viewed through Poincare sections, would then appear 

to be a scatter of dots around this "attractor". This is dicussed in more detail in chapter 4.

3.7.1 Local integrity measure

In this section we shall consider how close the attractor is to the basin boundary, the 

distance in the stroboscopically sampled (t=2i7t/co i= l,2,3 ...) Poincare section (x,y) 

offering one measure of the engineering robustness of the attractor. Local integrity curves, 

similar to those of the global integrity are drawn, as shown in Figure 3.9, in this case the 

abscissa being the distance, Lm, to the transient basin boundary, (Bm. They were obtained 

by measuring the minimum distance from the attractor to the (Bm basin boundary using the 

stored data and the co-ordinates of the main sequence attractor. From previous 

considerations (section 3.3) it will be useful in our discussion to speak as if L16=L©° i.e. 

the distance from the attractor to the absolute basin boundary.

On first glance the results seem to be in close agreement with the global integrity curves. 

As one would expect the shrinking of the basin generates a reduction in the distance between 

the attractor and the basin boundary. This can be clearly seen in the case of co=3.4 where 

as F is increased the basin shrinks resulting in the reduction of the local integrity measure,
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L16, between the n=l periodic attractor and the $ 16 basin boundary. This is also the trend 

for the L8, L4, L ,̂ and local integrity curves.

The effect of a homoclinic tangency on the local integrity measure can be seen in the case 

for (0=2.4. Here the homoclinic tangency causes a dramatic erosion of the C16basin resulting 

in the reduction of L]6. Once again (as in the case of the global integrity curves), the not 

so dramatic reduction of L8, L4, L2, and after the homoclinic tangency gives rise to a 

divergence of the local integrity curves.

However for co=1.0 although initially there is no erosion of the basin of attraction as seen 

from the global integrity curves before the Melnikov criterion, there is a continuous 

reduction in all the local integrity curves. This implies that as F is gradually increased, 

successive attractors become nearer to the various transient basin boundaries. In addition 

it can also be seen that the homoclinic tangency does not significantly change the trend of 

the local integrity curves as most of the erosion of the basin takes place outside the vicinity 

of the attractor. It must also be pointed out that unlike the previous cases of co=3.4 and 2.4, 

where at a fixed forcing amplitude the L16, L8, L4, L a n d  Lx integrity measures were 

significantly different, here they seem to be coincident; this implies that in the vicinity of 

the attractor the distance between (B16and the other transient basin boundaries is extremely 

small, and hence a slight change in the starting conditions could mean either no escape or 

escape within one forcing cycle. This can be clearly seen in Figure 3.5.

In the case of co=0.85, the results are as expected; however there is a sudden reduction in 

the local integrity just after F=0.07. A closer inspection reveals that this is not due to the 

sudden erosion of the basin, but due to the hysteresis jump in which the new attractor is 

considerably closer to the basin boundary. The attractor chosen in this study is always the 

one that would be observed physically under the slow increase of F from zero (incidentally

32



only n=l and n=2 attractors were considered for the F values examined: in the latter case 

the minimum of two distances was chosen). Once again the homoclinic tangency does not 

seem to cause a dramatic change in the local integrity curves. For co=0.65, the size of the 

basin of attraction grows as F increases for F<FM, and drops dramatically for F>FM. This 

also seems to be the trend of the local integrity curves.

3.7.2 Impact loading

In this section we will consider the response of a system subjected to an instantaneous 

change of velocity. Figures 3.10 and 3.11 show how large a positive or negative impact, 

measured here by Ay, would be needed before the various transient basin boundaries are 

reached. These were obtained by performing a line of starts in the (+/-) x  direction from 

the relevant attractor. The required impact, Im, to cause the attractor to cross the basin 

could thus be obtained.

For co=3.4 and fixed F, the required impact to cross successive transient basin boundaries 

increases; the and l \  are not shown as the impact required to cross CBj were larger than 

those considered in this study. As F is increased the required impact (both positive and 

negative) to cause the attractor to escape reduces in magnitude ( where I16«I«>); this is due 

to the erosion of the basin of attraction as seen in Figure 3.2. Just before the saddle-node 

fold, the value of I*,,,, is relatively small; indicating that the attractor is extremely sensitive 

at such loading.

In the case of co=2.4 the effect of a homoclinic tangency on the impulsive integrity measure 

was found to follow a similar trend to those of the local and global integrity curves. After 

the tangency there is a sudden reduction in F ^as well as a not so dramatic reduction of
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1*8,1*4, 1*2, and I*! as indicated by the divergence of the impulsive integrity curves. This is 

due to the appearance of the whisker-like projections making the attractor more sensitive 

to such loading.

For co=1.0 as F is increased successive attractors get closer and closer to the "northern" 

basin boundary. This has the effect of reducing the required positive impact to reach failure 

but increasing the magnitude of negative impact required to cause the stable attractor to 

escape. However as the Melnikov criterion is exceeded, as well as there being a sudden 

reduction in the size of the basins, there is a dramatic reduction of I m but hardly any change 

in I+m. This can be explained by the fact that most of the erosion takes place in the negative 

x  direction from the attractor.

For (0=0.85, a hysteresis jump causes the relevant attractor to become much closer to the 

basin boundary; resulting in the positive impact to cause failure to be significantly reduced 

with a slight increase in the negative impact required. The curves seem to be unaffected 

by the homoclinic tangency (FT=0.065). In fact there seems to be a critical value (F»0.08) 

at which a sudden drop in I m occurs, and it can thus be deduced that the erosion of the basin 

by the finger-like projections has taken place in the vicinity of the attractor and caused it 

to be considerably more sensitive to such an impact. These observations also hold for the 

case of co=0.65.

3.8 Summary of the chapter

In this chapter we have investigated how on the macroscopic level, the size and nature 

(smooth/fractal) of basins of attraction change as a system parameter is varied, namely as
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the forcing amplitude of our driven oscillator is increased from the F=0 fundamental state 

to and beyond a bifurcation or a crisis. Our main conclusions are as follows:

(a) The erosion of the basin of attraction until its final destruction at Fx, exhibits no 

discontinuous jump in size except at the final bifurcation. However the appearance of a 

homoclinic tangency of the stable and unstable manifolds resulting in a fractal basin 

dramatically enhances the erosion of the basin. In addition, the erosion of both smooth and 

fractal basins resulted in a region (residue) of long transient orbits; trajectories initialized 

in the vicinity of the of the attractor, but not in its basin, would remain near it for long 

periods.

(b) The size of the basin at Fx, although finite, was extremely small for damping level 

(3=0.1. Beyond a crisis this basin was destroyed and long transient behaviour was observed. 

At a saddle-node bifurcation the transient behaviour was roughly periodic, and at a boundary 

crisis the transients were chaotic. However on the macroscopic level, no significant change 

in the transient basins was observed just before and beyond a crisis, where there exists a 

"metastable" basin of attraction.

(c) A region of hysteresis does not effect the erosion of the total non-escaping basin of 

attraction, although the size of the competing basins are changing continuously (Thompson 

andUeda, 1989).

(d) The Melnikov criterion, FM, accurately predicted the appearance of a homoclinic 

tangency, FT, for a certain range of frequencies. However for forcing levels above this 

criterion a "detangling" at F° was observed. Hence a more realistic representation of 

regimes where the basin was smooth or fractal could be defined as seen in Figure 3.1a.

(e) Global integrity curves are a useful tool when investigating basin boundary 

metamorphoses: however it must be pointed out that the size of a basin is just one of the
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numerous factors which must be considered when analysing the finite stability of an 

attractor. For example whether the basin is smooth or fractal, and the position of the attractor 

within the basin must be considered.

Impulsive and local integrity curves can be used, together with global integrity curves to 

give an indication of the local stability of an attractor, and hence an estimation of its response 

to external forces such as an impact loading:

(1) A hysteresis jump or rapid movement of the attractor as a system parameter is varied, 

can cause the attractor to move much closer to the boundary without any change in the size 

of the basin; this can result in a greatly reduced impulsive and local integrity measure.

(2) Attractors lying in fractal basins of attraction can be extremely sensitive to impact 

loading or noise which can cause a trajectory to move from one attractor to another.

(3) On approaching a boundary crisis or a saddle-node fold, the attractor was extremely 

sensitive to impact loading as its basin of attraction was often very small. We should notice 

here, that, unlike the global integrity measure G°®, the local integrity measure, L°°, drops 

smoothly lo zero at a saddle-node bifurcation.
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Figure 3.1a Bifurcation diagram for P=0.1 showing the saddle-node fold G and flip C (first 
period-double from the fundamental n=l solution) curves, as well as the Melnikov line in the 
(F,co) control space. Also shown is a sketched line showing the form that we expect the actual 
homoclinic tangency line to follow. The vertical dashed lines indicate the frequency values 
examined in this report.

12.0

Melnikov line

Fold line G

Sketched 
tangency line

Flip line

0.0
5.0 oj2.4 3.40.0

37



Figure 3.1b Blow-up of Figure la. Inset are four typical traces of the steady state responses 
at constant co, with F plotted against x as sampled stroboscopically at phase <J)=0. The vertica 
dashed lines indicate the frequency values examined in this report.
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Figure 3.4
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CHAPTER 4: STOCHASTIC ANALYSIS

In chapter 3 it was shown that basins of attraction can change dramatically in size, shape 

and position under small variations in parameter values. In this chapter we investigate 

the dynamical response of attractors subjected to external fluctuations (Moss & 

McClintock, 1989). The role of basins of attraction and the boundaries that separate 

them will also be considered, such that a correlation between the sensitivity of attractors 

to noise and their noise-free basins of attraction can be assessed.

We thus consider the mechanical oscillator, described by equation 3.1, with the 

additional excitation term such that

i' + p jt+ x-.x2 = Fsincor + (̂r) (4.1)

where ^(t) is an optional noise term which is zero unless otherwise stated. We

define x  = y and we focus attention throughout on phase,

(J) = 180°, p = 0.1,0) = 0.85. The detailed response of this oscillator has been 

mapped out by Thompson (1989).

Firstly, the effect of external noise on a steady state attractor is investigated using 

a suitably defined stochastic integrity measure which will indicate for a given 

noise intensity the sensitivity of an attractor to such excitation. In the absence of 

noise the lifetimes of stable running modes of driven damped oscillators are 

infinite; however in any real physical system, external noise is present, and will 

eventually" cause transitions between previously stable attractors. Although the 

input excitation and the output response are then not deterministic, the statistics 

of such dynamic response (or input) quantities can be simply converted into 

statistics on the sensitivity of an attractor to stochastic loading. Many engineering
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problems experience the type of loading considered in this paper where 

mechanisms are governed by a vibrational environment (often by a sinusoidal 

forcing) but effected also by a noisy environment which can be mechanical, 

thermal or electrical in origin. By observing the stochastic integrity measure as 

a control parameter is varied the relative sensitivity of attractors for a given noise 

level may be seen. At a fixed control parameter the stochastic integrity measure 

may be used to determine at which noise intensities the attractor becomes 

appreciably sensitive to noise.

Secondly we shall assess the relationship between the response of the attractor 

to external fluctuations and its basin of attraction. Local, global and stochastic 

integrity measures may be used to indicate if such a correlation exists, and how 

they may be used in conjunction with one another to give an overall view of the 

robustness of the attractor. Figure 4.1 shows the basin of attractions and theirs 

coresponding attractors for co=0.85. Figures 4.2a and 4.2b show the local and 

global integrity curves as described in chapter 3.

4.1 Stochastic integrity measures

In this section we shall propose a way of determining the sensitivity of an attractor 

to external loading if ^(r) * 0 in eqn (4.1). We shall consider the input excitation, 

^(0, to be that of white noise with a prescribed intensity and with a Gaussian 

distribution, such that - - —
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< S ( f £ ( r ' ) > = 2 D 5 ( r - r ' )  

< ^ ( f ) > = 0

(4 .2)

The reason for choosing Gaussian white noise, aside from all the analytical 

advantages and available literature, is that the Gaussian process has a great 

importance as a model for real physical processes. Many random processes in nature 

which play the role of excitation to vibratory systems are approximately Gaussian, 

and some are typically wide-band such as the pressure fluctuations on the surface 

of a rocket missile due to acoustically transmitted noise, or due to supersonic 

boundary layer turbulence (Crandall and Mark, 1963).

As the excitation in eqn (4.1) is random if £;(r) * 0, we must consider the statistical 

behaviour of the response of the attractor to external noise for a large number of 

trials, N. One way of quantifying the sensitivity of an attractor to noise is the 

stochastic integrity measure ST, defined as the proportion of trials that are constrained 

for time T, and with % measured in forcing cycles m,

Sm = \imN^ N J N  (4.3)

where Nm is the number of trials constrained for at least m forcing cycles in N trials. 

This measure is chosen for its comparability with the global and local integrity 

measures described earlier. An alternative way of describing the sensitivity of the 

attractor to external _noise would be using the mean escape time and its standard 

deviation ( which we shall show results for later on). Another approach would be 

to fit a Normal probability distribution response curve to the results data, (as the 

input excitation is Gaussian, we might hope that the response will also be 

approximately Gaussian). This probability distribution function would then
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completely describe the response of the system to external loading (mean escape 

time, standard deviation and proportion constrained within m cycles) although it 

might prove ineffective for studying these quantities with any precision. The 

stochastic integrity measure as well as the mean escape time are easy to calculate 

and have analogues to well known engineering "fatigue/failure" problems. The 

problem considered in this paper does of course fall under the category of a "first 

passage problem" where escape can be considered as the failure criterion (Arecchi 

et al, 1984)

4.2 NUMERICAL SIMULATIONS

4.2.1 Stochastic integrity

After the system is settled on the noise-free attractor, and a few hundred cycles 

added to ensure that the motion is completely stable with no transients, noise is 

applied by adding a Gaussian random number to the right hand side of eqn (4.1), 

with zero mean and standard deviation a, at the start of each Runge Kutta 

time-step. The time to escape was recorded and the process repeated (N=300) 

until we have built a well defined distribution of escape times. The noise intensity 

(strength), D, can be approximated by . _... .......................................

c2 = 2D At as At - ^ 0  (4.4)

where At is the Runge Kutta time-step. In our case we chose At =(1/40) x (forcing

period). Several smaller time-steps were tested with the same noise intensity, 

and approximately the same mean escape time was observed, indicating that for
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the purpose of this study At was sufficiently small.

The stochastic integrity measure, for a given noise intensity D, could thus be 

calculated from eqn (4.3). Stochastic integrity curves of Sm versus forcing 

amplitude, indicating the relative sensitivity of successive attractors to a fixed 

noise intensity, D, could thus be drawn. Results showing the sensitivity of an 

attractor to different noise levels are also drawn by plotting stochastic integrity 

(and mean escape time) versus noise intensity. Upper bound limits of the noise 

intensity which would cause "failure" ( in the engineering sense that "failure" 

occurs when a certain proportion of trials reach the failure criterion in a specified 

time) of an attractor could thus be determined.

4.2.2 Noise modelling

Given that we have already made deterministic escape-time studies in chapter 

3 from a grid of starts in our basin investigations, it is perhaps worth enquiring 

how we could use this data to assess the pattern of mean escape times and 

stochastic integrity that we have just examined under real stochastic loading. 

We consider figures 4.1, 4.2a and 4.2b which summarise the relevant results 

found in chapter 3.

Suppose that under random noise fluctuations the stochastic phase portrait (in 

a two dimensional Poincare section, say) has the rotationally symmetric 

probability function p(r)y where r is the distance from the attractor to a point in 

the Poincare section. [Rotational symmetry is of course quite a heavy assumption, 

but in the present context might not be too drastic.] Imagined as a large number 

of required starting points, N, for our deterministic runs distributed over a large
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area A we have,

1 p(r)dA  = 1
A

No .o f required, points within 5A = Np(r)bA

We want to make a series of deterministic runs from such a distribution of starts. 

We use our previous fine grid of N  points distributed uniformly over an area A 

so that

No. o f real grid points in 5A = NbA/A

To make this correspond to the required distribution we introduce the weighting 

function W(r), such that

No. o f imagined points in bA = NW(r)bA/A 

We normalise W(r) so that

\W(,r)dA = A
A

making the total number of imagined points also equal to N. Equating the required 

and imagined distributions we have

W(r)=A p(r)

Suppose a typical grid point, i, has escape time r„ and radius r,-. Then the required 

mean escape time is
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MEAA^a/AOXr.Wfc) = (1 /«)Z  tiPirt)

where n is the number of real grid points per unit area.

Introducing for every grid point i an index T, designated so that T, = 1 if the trial 

is constrained for m forcing cycles and T, = 0 if the trial escapes within m forcing 

cycles, we can define the stochastic integrity as

STOCHASTIC INTEGRITY= Sz = 'LTiW(ri)/'LW(ri)

As we have already considered the effect of real noise applied in a Gaussian 

form it would be reasonable to take a Gaussian form for the probability density 

function. So in terms of the normal Gaussian function

, . exp(-x2/2a2)

we write

p(r) = p (x ,y )= p (x )p (y )w ith  r2 = x 2 + y 2

to give

P(r)  =
exp(-r2/2o2) 

2 na2

with

I  p  (r ) 2 nr dr=  1
0
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4.3 Noise sensitivity of attractors

4.3.1 Varying Noise Intensity

In this section we consider the effect of noise on the main sequence of stable 

attractors which include period-one, subharmonic and chaotic attractors 

(Thompson and Stewart, 1986).

In the absence of noise the lifetimes of these attractors are infinite, but in noisy 

environments there is always a finite probability of escape within any time x. 

Different attractors respond differently to the same noise levels and the same 

attractor can behave differently to varying noise levels. This is clearly seen in 

figure 4.3 where the stochastic integrity measure S16 is plotted versus noise 

intensity for two period-one attractors. In reality this type of variation occurs 

quite frequently, where noise levels on one particular attractor can change, due 

for example to a temperature change. In the noise-free environment with D=0, 

we have S16=l .0. This is of course as expected, since all the trials are constrained 

with trajectories remaining perfectly on the attractor.

For F=0.01 the stochastic integrity remains at 1.0 for low noise levels, indicating 

that all the trials were constrained. This was indeed the case for m=16 but would 

not have been the case if m was infinitely large since 5^=0 and all the trials would 

escape. But as this paper is predominantly concerned with transient behaviour, 

which is more relevant to real situations, there is no real paradox here.

These results suggest that the attractor, at F=0.01, although changed in 

appearance remains relatively unaffected by low noise levels.

For F=0.07, the picture is quite different. As the noise level is slightly increased 

from D=0, the stochastic integrity reduces quite rapidly, indicating that a much
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higher proportion of trials escape. These results imply that this attractor is much 

more sensitive to noise induced failure, as we would expect.

Viewed through Poincare sections the sequence of events is as follows. In the 

noise-free environment the period-one attractor would be seen as a dot. The 

addition of a small amount of noise causes a broadening of the attractor, but 

remaining well within its basin for the finite times under consideration here. The 

increasing noise level greatly broadens the attractor asymmetrically along the 

direction for which attraction is weakest (in some cases producing a 

noise-broadened attractor which resembles a chaotic one, as shown later on). 

Techniques such as using the Liapunov exponents which can be used to 

distinguish between chaotic and periodic orbits are no longer as straight forward 

as in the noise-free deterministic limit (Crutchfield etal, 1982). The broadening 

of the attractor makes trajectories more susceptible to hopping into other basins, 

specifically the one of the attractor at infinity. This process is clearly enhanced 

by increasing the noise level as seen in fig 3 where the proportion of trials escaping 

increases with noise intensity. It is perhaps convenient to point out, that in the 

presence of noise , trajectories with certain initial conditions, are attracted 

towards the vicinity of the noise-free attractor and remain there for some time. 

We can speak of noisy attractors. It is important to point out, however, that the 

addition of noise will cause all trajectories to escape as time tends to infinity; 

but as we are considering only reasonably short transient behaviour the above 

term seems justified.

4.3.2 Comparison with analogue simulations

57



Our colleagues at Lancaster University (U.K.) have also made some analogue 

simulations of the escape from our metastable well in the case of strong sinusoidal 

forcing and weak additive noise (Dykman et al, 1989).

Their experimental procedure is as follows. The system is set on the attractor 

(noise-free) and allowed a few hundred orbits to ensure the motion is completely 

stable; then the noise is applied, and simultaneously, the data processor is 

triggered; a sweep of x(t) is recorded; the time at which escape occurs is measured 

and stored in a separate memory block. The process repeats, again and again, 

until a well-defined distribution of escape times has been determined. As can be 

seen in Figure 4.4a the distributions consist of a series of separate maxima, 

reflecting the fact that escape is most likely to occur in a particular region of the 

orbit. Figure 4.4b shows a three-dimensional stochastic portrait of the escape 

process. Here a snap-shot of the probability distribution, P (x ,i), is shown a short 

time after the application of noise.

Dykman et al have measured a large number of such distributions and averaged 

each of them to find the corresponding mean escape time as a function of noise 

intensity. As discussed earlier the mean escape time is one useful measure of the 

"robustness" of the attractor in question. Several different attractors were chosen, 

and the analogue and numerical simulations are compared in Figures 4.5a and 

4.5b.

Both sets of results clearly show that by increasing the noise level attractors 

become less robust as indicated by the reduced mean escape time. It can also be 

seen that attractors closer to the chaotic attractor at F=0.109 are much more 

sensitive to noise. This is due to the changing geometry of their respective basins 

of attraction and will be discussed in greater detail in the following sections. 

Figure 4.5c shows the comparison of the analogue and numerical simulations.
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As can be seen there is a good comparison between both sets of results. However 

it must be pointed out that noise was applied to the attractor at a phase of 0° in 

the analogue simulations and at 180° in the numerical simulations. This, assuming 

that the numerical and experimental inaccuracies encountered were negligible, 

clearly accounts for the discrepancies at higher noise intensity where the system 

becomes much more sensitive to the phase at which noise is applied.

4.3.3 Stochastic integrity curves

In Figure 4.2c we have plotted stochastic integrity curves for fixed noise intensity 

D=0.0004. This diagram represents how Sm varies for the different attractors 

which exist at different forcing amplitudes, F. The sequence of attractors chosen 

is that considered in the analysis of the local integrity.

On first glance the curves seem qualitatively the same as those of the local and 

global integrity curves, but a closer inspection reveals both similarities and 

discrepancies between them. However it would be useful to understand the 

stochastic integrity curves, in terms of noise-free basins of attraction and in the 

context of the local and global integrity measures.

For forcing levels below F=0.06 the basins are smooth, and of approximately 

the same size; and the position of the attractor remains relatively unchanged. For 

the noise intensity considered, D=0.0004, the stochastic integrity measure S16 

remains at 1.0, up to F=0.05, indicating that all the trials are constrained and 

hence that the noisy attractors are sufficiently robust to resist appreciable 

noise-induced failure by the external stochastic noise source. However between 

F=0.06 and F=0.07, there is a dramatic drop in S16 to about 33% of its previous
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value. The explanation is quite simple. At F=0.069 there is a hysteresis jump to 

a new attractor significantly closer to the basin boundary, as exemplified by the 

local integrity curves. However it must be pointed out that the basin has also 

become fractal and this may be a contributory, but not a major factor, in the 

dramatic loss of stochastic integrity between F=0.06 and F=0.07. Indeed the 

fractal basin, as well as the fact that the attractor is much closer to the basin 

boundary, can account for the longer chaotic transients at F=0.07 as indicated 

by the divergence of the S16,S8,S4,S2 and integrity curves. The effect of the 

fractal structure is more clearly seen as the forcing amplitude is further increased. 

This can be seen at F=0.08 where, in the noise-free state, the transient time map 

is very complex indicating that that the basin boundary is highly fractal with a 

fractal dimension of approximately 1.85 (Thompson and Soliman, 1990a). This 

implies that the system has a high sensitivity to initial conditions and, going one 

step further, a high sensitivity to noise. The addition of a small amount of noise 

in these circumstances can easily push trajectories across the boundaries, causing 

escape. As can be seen in Figure 4.6, when the dimension of the boundary is 

close to two and the separation between the attractor and its basin boundary is 

small, the addition of low noise can cause external intermittency. Here a n=2 

subharmonic attractor at F=0.107 becomes practically identical to the chaotic 

attractor at F=0.109, due to the addition of a small amount of noise. Inter-twining 

basins as those seen in the case of fractals can cause longer chaotic transients as 

trajectories in an escape sequence map from one finger to the next, and in the 

presence of noise from one basin to the next.

Another major factor contributing to the reduced stochastic integrity for F>0.07 

is the continual destruction of the basin. For the noise level considered there is 

a correlation between the noise sensitivity and the geometry of the basin as we
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shall discuss in the next section. The reduction in the size of the basin causes a 

greater likelihood that the attractor escapes. This process continues until the final 

destruction of the attractor at a crisis when F=0.109.

4.3.4. Correlation between stochastic integrity and the basin of 

attraction

In this section we examine the stochastic integrity curves in more detail to see 

if, under increasing noise intensity, there still exists a well defined relationship 

between the noisy attractor and its noise-free basin of attraction (Gwinn and 

Westervelt, 1986a, 1986b). Considering firstly the condition D=0, all trajectories 

lying with the basin converge towards the attractor and once there remain for 

infinite time. The basin in effect plays no further role in the stability of its attractor. 

This is clearly seen in Figure 4.7 where obviously all the trials are constrained 

for D=0. As the noise is increased very slightly to D=0.00001, the noisy attractors 

(at low forcing amplitudes) lying within smooth, large basins (F<0.07) tend to 

be relatively unaffected by the external noise, whereas attractors lying close or 

within fractal boundaries (which tend to be sensitive to initial conditions in the 

noise-free state anyway) are a little more sensitive. There is no dramatic drop in 

the stochastic integrity curve. Here, although the noise affects the local stability 

properties of all the attractors, the global stability remains relatively unchanged 

for most of them. For the sake of this presentation, as we are considering 

reasonably short transient behaviour, we can consider that noisy attractors lie 

within noisy basins and their robustness depends upon the geometrical properties 

of these basins.
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Increasing the noise level to D=0.0004 has a similar effect on the attractor. 

However attractors closer to the basin boundary ( from the effect of the hysteresis 

jump) are significantly more sensitive to this noise level. The same is true for 

D=0.0008 but here attractors lying within a resonant hysteresis are more sensitive 

to the increased noise level. The reason for this is that although the attractor 

considered lies well within the constraint basin boundary, it is relatively close 

to the boundary that separates it from its co-existing attractor. The addition of 

noise may generally not be enough to cause this attractor to escape directly but 

can push it across the boundary to its co-existing attractor which is significantly 

closer to the escape basin boundary and hence much more sensitive to 

noise-induced failure.

It can now be said that for the small noise levels considered so far (D<0.0008) 

the stability of the noisy attractors can be put in the context of their original 

noise-free basins of attraction, and correlated with the local and global integrity 

curves. Attractors lying close to their basin boundary are inherently more 

sensitive to noise-induced hopping.

However at higher noise levels, although there is hardly any change in the size 

or nature of the noise-free basins of attraction, or in the position of the attractors 

within them (as indicated by the transient time maps, local and global integrity 

curves) for F<0.05, there is an instantaneous fall of the stochastic integrity 

measure. The reason for this is that both the noisy attractor and its noisy basin 

are qualitatively different from their original geometry, and hence the noisy 

attractor bears no correlation to its original basin of attraction.
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4.3.5 N oise M odelling

Figure 4.8 shows the results obtained using the noise modelling technique 

outlined in section 4.3.3. The results are qualitatively similar to those obtained 

by adding real noise to the system as seen by the stochastic integrity curves of 

figure 4.2c. There is a sharp drop in the stochastic modelling integrity curves 

just after the hysteresis jump, although not of the same magnitude as that of the 

stochastic integrity curves. There are several reasons for this. Firstly we have 

assumed rotational symmetry in the stochastic response of the attractor which is 

obviously not the case: as we have seen, the attractor broadens along the axis of 

weakest compression. Secondly we have assumed that there is no change in the 

geometry of the transient basins after the application of noise. Obviously this is 

not the case as shown in section 4.3.3. Thirdly the relationship between the input 

noise intensity in the real case and the output response distribution in the 

modelling case is not clearly established.

4.4 Summary of chapter

We have analyzed the effect of an external noise in a driven damped oscillator for 

varying forcing amplitudes. S tochastic integrity measures have been used to describe 

the sensitivity of an attractor to noise-induced jumping. Global and local integrity 

curves have been used to descnbe_changes in the geometry of its corresponding 

basin of attraction. Our studies have lead to several conclusions:

(1) Global integrity curves clearly indicate basin boundary changes in terms of the 

size of the basin of attraction. A homoclinic tangency of the stable and unstable
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manifolds, resulting in a fractal basin, dramatically enhances the erosion of the basin 

of attraction.

(2) A hysteresis jump or movement of the attractor as a system parameter is varied 

can cause the attractor to move much closer to the basin boundary without any 

change in the size of the basin of attraction. This is clearly indicated by the local 

integrity curves.

(3) The addition of noise can cause qualitative changes in the appearance of an 

attractor. Increasing the noise intensity increases the sensitivity of attractors to 

noise-induced hopping (in our case usually causing trajectories to escape). The 

stochastic integrity measure clearly quantifies such behaviour as well as the relative 

response of different attractors subjected to the same noise level.

(4) Stochastic integrity curves give the relative response of a naturally occurring 

sequence of attractors subjected to a fixed noise intensity. It was found that

(a) At extremely low noise intensities, attractors lying within fractal basin 

boundaries were much more sensitive to noise-induced failure than their 

smooth-basin counterparts.

(b) At slightly higher noise intensity a hysteresis jump causes the system to become 

considerably more sensitive to noise. Attractors lying within the region of resonant 

hysteresis were hardly affected at all. However increasing the noise level further 

often indirectly caused the attractor lying within the resonant hysteresis to escape. 

The reason is that although the attractor lies well within the constraint boundary, it 

is relatively close to the boundary that separates it from its coexisting attractor. The
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addition of noise might not cause the attractor to escape directly, but could push it 

over to its coexisting attractor, which is significantly closer to the basin boundary 

and hence more sensitive to noise-induced failure at a later time.

(5) The global stability and escape statistics of a noisy attractor can be assessed in 

terms of its noise-free basin of attraction for low noise levels. However at higher 

noise levels this ceases to be the case. These deductions are clearly established by 

the stochastic, global and local integrity curves.
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Figure 4.1

Figure 4.1 Basins of attraction where
black represents no escape within 16 cycles 
white represents escape within 16 cycles
For each figure co = 0.85, (3 = 0.1,<J> = 180° in the window: -0.8<x<1.2 -1.0<y<1.0 

A triangle represents the position of the main sequence attractor.



Figure 4.2 Loss of engineering integrity under increasing F.

(a) Global integrity curves
(b) Local integrity curves
(c) Stochastic integrity curves
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Figure 4.3 Stochastic integrity measure, S16, versus noise intensity, D. 
Attractors chosen are at F=0.01 and F=0.07.

s to c h a s tic  
integrity, S16

0.9

F-0.010.8

0.7

0.6

0.5

0.4

0.3

0.2 F-0.07

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.0040
noise intensity, D

68



Figure 4.4

Figure 4.4 Analogue simulations by Lancaster group (Dykman, et al, 1989) using an 
electronic model.
(a) A stochastic phase portrait with

P = 0.1,0) = 0.85, F = 0.109, D = 9.5* 10"*

-1.07 <* < 2.14,-0.83 <* < 0.83

(b) Probability distribution P(t) of the escape times from the main sequence period-one 
attractor at F=0.099 (P = 0.1, co = 0.85,D = 8.7* 10~5)

i P ( x ,  i )
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Figure 4.5
(a) Mean escape time (forcing cycles) versus noise intensity, D, using analogue computer. 
Attractors considered are at F=0.089 (black square, n=l),F=0.099 (white square, n=l); 
F=0.102 (black diamond, n=2) ,F=0.107 (white diamond, n=2); F=0.109 just below FE ( black 
triangle, chaotic attractor).
(b) As 5a but using numerical technique.
(c) Comparison of 5a and 5b for attractor at F=0.089.
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Figure 4.6 Addition of external noise to the n=2 attractor at F=0.107 produces a ’noisy 
attractor* visually similar to the main sequence chaotic attractor at F=0.109.
(a) Chaotic attractor at F=0.109
(b) Period n=2 attractor at F=0.107
(c) Noisy attractor at F=0.107, D=0.0001
(d) Noisy attractor at F=0.107, D=0.0002
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Figure 4.7 Stochastic integrity measure, S16, versus forcing amplitude for different noise 
intensities, D.
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Figure 4.8 Stochastic integrity measure versus forcing amplitude using noise modelling 
technique.
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CHAPTER 5: ENGINEERING RELEVANCE OF BASIN EROSION 

AND CHAOTIC TRANSIENTS

5.1 Introduction

In assessing the engineering significance of chapters 3 and 4, especially in relation to 

ship capsize, we have concluded that rather than analysing the intricate patterns of 

bifurcating steady states, it is both simpler and more relevant to focus attention on 

(transient) basin boundaries. The exploration of these using a grid of starts in the space 

of the starting conditions is a conceptually simple and easily automated approach, 

suitable for routine design studies; and due to the rapid erosion of the safe basin long 

before the final extinction of the last stable attracting solution, the transient basin 

approach is much more relevant to engineering systems in noisy or ill-defined systems. 

This conclusion is reinforced by the fact that basin boundaries become fractal, adding 

a new degree of uncertainty to the response.

The engineer ultimately needs design data in the space of the system parameters (control 

space), and one diagram that has both scientific and practical interest is the safe basin 

locus in parameter space corresponding to motions from the ambient resting state of 

zero displacement and zero velocity. This might correspond to a structural component 

subjected to a sudden earthquake tremor, or to a boat experiencing a worst case resonant 

excitation from a short train of regular waves. This control space diagram will reflect 

the fractal character of the phase-space basins, and due to the rapid erosion and 

fragmentation of the latter, it can be expected to give a good guide to the safe parameter
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regime.

5.2 Fractal boundaries in control space

When a metastable, damped, oscillator is driven by strong periodic forcing, the 

catchment basin of constrained finite motions in the phase space of the starting condition 

{ *(0) = *(0) = 0 } is known to develop a fractal boundary associated with a homoclinic 

tangling of the governing invariant manifolds. The four dimensional basin in the phase 

control space spanned by [x,x,F,  0)} where F is the magnitude and co is the frequency 

of the periodic excitation, will like-wise acquire a fractal boundary, and we here explore 

the engineering significance of the control space cross-section for example to 

x  (0 )= x  (0 )= 0. The fractal boundary of this section is a locus for a mechanical or 

electrical system subjected, while resting in its ambient equilibrium state, to a sudden 

pulse or train of steady periodic excitation. We assess here the relative magnitude of 

the uncertainties implied by this fractal structure for the optimal escape from a universal 

cubic potential well. Both absolute and transient basins are examined, giving 

control-space maps analogous to the familiar pictures of the Mandelbrot set.

Indeed although almost totally unknown in an engineering context, this concept of a 

a fractal control boundary in control space is well known to mathematicians which are 

clearly illustrated in the classical pictures of Mandelbrot (Mandelbrot, 1977). Here the 

escape to infinity of the complex iterated map z=>z+c from the fixed starting condition 

z=0 serves to locate the Mandelbrot set (defined in terms of the connected Julia sets)
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in the real two-dimensional space associated with the complex control c. This follows 

from the results of Julia and Fatou which show that the Julia set is connected if and 

only if z=0 lies outside the domain of attraction of the attractor at infinity. Meanwhile, 

contour colouring of the iteration-time to escape beyond some arbitrary remote 

boundary yields the classical pictures exemplified by Peitgen and Ritcher (1986). 

Corresponding transient-time maps in control space for periodically driven oscillators 

governed by differential equations of the form

x +f ( x , x ) =Fp( t )  (5.1)

(where a dot denotes differentiation with respect to time t) may be of interest for the 

more practical reason that a mechanical or electrical system in its ambient equilibrium 

state might be required to resist pulse of excitation of magnitude F and frequency CO. 

The set (F,co) values that can sustain such a pulse is here the set of absolute constraint, 

CM, corresponding to the Mandelbrot set : while the control parameters that prevent 

escape within a time define a set of transient constraint, Cx, which can be conveniently 

colour coded in a map of the (F,co) space.

5.3 Four dimensional phase-control space

In this section we formally define the phase-control space we shall be considering, and 

outline the numerical techniques used in obtaining our results. We shall present 

computer studies of the escape equation (3.1) keeping (3 constant at 0.1. By using a
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fourth order Runge Kutta numerical time integrations from a simple grid of starts, 

typically 100 by 100. Each integration is continued until x  exceeded 20, at which point 

the system is deemed to have escaped, or the maximum allowable number of forcing 

cycles, M, (typically 16 or 32) is reached. In this way the set of points in the four 

dimensional phase-control space spanned by (jc(0) =jc(0),F,cd} that do not escape 

within m forcing cycles defines a transient safe basin, Cm, the basin for m=M hopefully 

giving a good approximation to the absolute safe basin, Cx. Specifying the controls 

(F,co) and taking a grid in the {*(0) =*(0)} plane allows us to draw the conventional 

cross-sections of Cm in the phase-space of the starting conditions: while specifying 

(x(0) = x(0)}, say equal to (0,0), and taking a grid in the (F,co) plane allows us to draw 

the cross-sections of Cm in the two dimensional control space.

Notice that in keeping with our earlier philosophy, we are throughout this study making 

no note of the attractors, be they harmonic, subharmonic or chaotic, onto which the 

non-escaping motions might settle. At many control settings there are of course 

competing attractors within the well, some with exceedingly small domains of attraction.

5.4 Control space basins and the escape boundary

Starting all time integrations atx(f))'= jc(0)=0 and using a grid in the control space gives

the (F,co) cross-sections of the safe basins in Figures 5.1 and 5.2.

The top left-hand picture of Figure 5.1 shows the various bifurcation curves, while the 

remaining three pictures, in which the region of greatest interest is progressively
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enlarged, shows the boundaries of C4 and CM. Regions that give no escape in M forcing 

cycles are indicated in black: regions that lead to escape in between 4 and M cycles are 

indicated by the grey dotted area: regions that lead to escape in less than 4 forcing cycles 

are represented by white. The values of M (16 or 32) are indicated in the caption. More 

detailed coloured versions, one of which is shown in Figure 5.2, confirm the boundary 

of C16 is for practical purposes a very good approximation to the boundary of CM.

The curve A rising sharply to the left from the cusp point P is the saddle-node fold 

locus located by a numerical bifurcation-following routine. It represents the final 

resonant jump out of the potential well for the approximate frequency range 

0.6 < co < 0.8, there being no attractor within the well at values of F just above this 

curve. The curve C rising steeply to the right is the period-doubling flip bifurcation, 

from harmonic to subharmonic of order two, that signals the start of a short 

period-doubling cascade to chaos and escape. So for the approximate range 0.8 < co< 1.0 

the ultimate escape locus, beyond which there is no attractor in the well, is given by a 

boundary crisis line running just above this flip locus as indicated in the first diagram 

of Figure 5.1 by the white line, E, between the hatched and dotted regions: more details 

can be seen in Figure 3.1. At co=0.85 this boundary crisis is at F=0.109 as we have 

previously indicated. The other locus of interest is the Melnikov curve, M, rising slowly 

to the right, which in this region of control space is an accurate approximation to the 

curve of homoclinic tangency at which the phase-space basin becomes fractal.

The escape boundary beyond which there are no available attractors in the well is thus 

given by the fold curve and the crisis curve, the condition of optimal escape, Q, being 

where these curves intersect at co=0.80. The boundary of C„ must of course fall below 

this escape locus, and the boundary of C16 falls predominantly below the drawn flip and
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fold lines. Notice however that for co>0.8 the boundary of C16 is quite substantially 

lower than the escape boundary, corresponding to the substantial erosion of the 

phase-space basin at these forcing frequencies.

The fractal structure of the control space cross-section becomes increasingly clear in 

the lower enlargements of Figure 5.1, and is seen to the best advantage in the colour 

picture of Figure 5.2 for which M=32. Here we can see that at co=0.85 thin fingers 

penetrate into C32 to the values of the forcing magnitude of F=0.0725. This is about 70 

per cent of the crisis value of F=0.109, but correlates well with the rapid erosion of the 

phase space basin that we observed in Figures 3.2 and 3.6.

The fingers of the control-space pictures of Figure 5.1, are of course different 

cross-sectional representation of the fractal structure of C„ in the four dimensional 

phase-control space. The fractal boundary thus implies an extreme final state sensitivity 

to both the starting conditions and the parameter values.

5.5 Fractal Dimension

The data from the grid of starts, used to produce the transient time maps, can be used 

to estimate the fractal dimensions of the phase and control boundaries, using a similar 

technique to Grebogi et al ( 1983) in their study of final state sensitivity. For each grid 

point in turn, we inspect expanding circuits of adjacent grid points and record which 

circuit number, or tolerance, e, that first gives a change of basin. We then determine 

the fraction of grid points, /(e), that are uncertain for tolerance e, and use the relation
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(5.2)

where K is a constant, D is the dimension of the cross-section (in our case 2), and d is 

the required fractal dimension o f the basin boundary\  Plotting In /(e) versus In e, for 

several values of e, and using a least squares fit to calculate the slope and hence d. 

Figure 5.3 shows the fractal dimension of the basin boundary in phase space where F 

and co are fixed. For Figure 5.3a, co=0.85, F=0.05 (i.e. F<FM) and for figure 5.3b, co=0.85 

and F=0.08 (F>FM). From these sample plots, it can be seen that linear dependence of 

Inf with lne is evident, indicating a power law dependence as in equation 5.2. We find 

that for F=0.05 that d=1.03, indicating a good approximation to the value of unity that 

we expect for a smooth, non-fractal boundary before the homoclinic tangency. At 

F=0.08 we have a slight curve, and taking the slope at the right hand end, which 

corresponds to the smallest £ values and will therefore give the best estimate for the 

dimension, we obtain d=1.805. This is then the fractal dimension of the phase-space 

boundary just beyond the homoclinic tangency.

The variation of the phase space dimension with F is shown in figure 5.4 where the 

correspondence with the engineering integrity curve is clearly seen. Within the accuracy 

of our results, we see that the dimension d remains at unity corresponding to a smooth 

boundary up to the homoclinic tangency at FM when it jumps to a high, non-integer 

value characteristic of a fractal boundary. The subsequent fall back towards unity may 

well be due to the coarseness of our grid, which cannot deal adequately with the 

increasingly fine fractal structure.

The log-log plot for our analysis of the *(0) = x(0) = 0 control- space boundary of 

C32 * CMis shown in Figure 5.5. Here we have a good straight line, yielding the estimate
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d=1.38 for the fractal dimension.

5.6 Transient basins as a new approach to ship capsize

To illustrate the potential relevance of the current study to wider problems of 

engineering analysis and design, we give appraisal of the ship capsize problem that has 

attracted a lot of attention in recent years (Bird & Morall, 1986; Miller et al, 1986; 

Virgin, 1987). The ideas that we outline here are developed in more detail in the next 

chapter.

5.6.1 Ship capsize as the escape from a potential well

A boat that can capsize corresponds to a damped mechanical oscillator whose 

underlying total potential energy has a minimum in the upright state and a saddle 

point (a maximum in the simplest one-degree of freedom idealization) beyond which 

the system can escape to a capsized equilibrium state. The problem of capsize is 

therefore a straight-forward example of an escape from a potential well.

In beam seas, a worst-case excitation scenario would seem to correspond to a short 

train of regular waves, reducing the capsize problem to that of escape, in a finite 

time, from a potential well under a pulse of periodic forcing. The starting conditions 

of a boat are essentially unknown, but might be close to the ambient floating state 

in still water.
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5.6.2 Relevance of the current study

Our work on the escape from a cubic potential well is a thorough scientific study 

of a specific, carefully chosen archetypal equation, highlighting phenomena that are 

likely to be typical of the wide class of capsize problems of concern to the naval 

architect. Additional features of more realistic capsize models that in no way should 

invalidate any of our general overall conclusions are: added hydrodynamic mass: 

complex nonlinear damping functions; periodic but non-sinusiodal forcing; more 

complex forms of the potential function, including in particular the symmetric or 

near symmetric potentials typical of an unbiased boat that could capsize either way; 

more than one degree-of-freedom, allowing for example, the coupled heaving and 

rolling motions of a boat to be considered; and a periodic component in the stiffness 

function, allowing a consideration of Mathieu phenomena in the heave motions. 

Indeed, in the next chapter we make a detailed analysis of ship roll motion which 

includes some of the features outlined above.

5.6.3 Computer time integrations must replace analysis

We feel that in the future, theoretical studies should be predominantly based on 

computer time integrations of the modelled nonlinear equation of motion. Nonlinear 

analysis, using for example averaging or perturbation techniques, can give some 

rough idea of the response in restricted parameter regimes, but cannot begin to 

unravel the intricate harmonic, subharmonic and chaotic solutions and their 

bifurcations that govern the escape process (Thompson, 1989). Moreover the thrust
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of our argument is that attention should be focussed on basins of attraction, and here 

nonlinear analysis is even less of an option: Liapunov methods are likely to be 

hopelessly arbitrary and conservative, while the validity of Melnikov’s perturbation 

analysis, which is the only technique for predicting the onset of the fractal structure 

that concerns us here, is restricted to small parameter regimes (it is moreover too 

complex for routine application by naval architects to realistic potential functions). 

We therefore conclude that the only sensible procedure is to use the great computing 

power and excellent-time integration algorithms now widely available to simply 

solve the governing nonlinear equations numerically to find the real solution from 

a given starting condition, structuring the investigation from an ensemble of starts 

in the light of the powerful new phase space concepts of dynamical systems theory 

(Thompson & Stewart, 1986).

5.6.4 Complexity and irrelevance of the steady states

The problem with any driven nonlinear oscillator is that it is likely to have a large 

number of alternative steady state post-transient solutions including harmonic 

oscillations at the driving period, subharmonics at the driving period, and chaotic 

non-repeatable motions. Analysis and supercomputers can be equally helpless in 

locating all the steady states, although computers programmed to search for the 

stable solutions can be expected to pick up all those with a sizeable attracting basin. 

Rather than search for all the attractors, it is indeed conventional to follow the 

continuous trace of solutions as one of the control parameters, say F or co, is slowly
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varied. Thus in our own studies we have kept co constant and slowly increased F 

from zero. At co=0.85, for example, this yields a path of harmonic oscillations, 

involving a jump to resonance within the potential well, followed by an infinite 

cascade of period-doubling flip bifurcations running through subharmonics of order 

2, 4, 8, 16 ,...°° which generates a chaotic attractor. This stable attracting solution 

of steady-state chaos finally loses its stability at FE. Repeating this study at different 

co values allows us to build up the bifurcation diagram in the (F,co) parameter space, 

and in particular determine the escape boundary as in the first picture of Figure 5.1.

This complex and time-comsuming numerical investigation is clearly out of the 

question for the naval architect, and it is our thesis that it is for him both unnecessary 

and irrelevant. The steady states, beloved by the perturbation analyst, are only 

approached after perhaps fifty forcing cycles, so for a realistic assessment of vessel 

safety we are obliged to pay more attention to the transient responses, which are 

governed by the basins of attraction. Doing this not only gives us an easier 

investigation, but the results show that by assuming a boat is safe so long it has a 

stable mode of oscillation, with F<FE, is extremely dangerous because the basin of 

attraction is very rapidly eroded at a value just above FM, which can be quite a small 

fraction of FE. So we feel that preference should be given to our transient basin 

approach which is both easier and more relevant than the conventional emphasis 

on infinitesimally-stable attracting steady states.
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5.6.5 Transient basins and engineering integrity curves

Running integrations from a grid of starts in the space of the starting conditions, 

we can readily map out the basin of non-capsizing starts in the space of the initial 

conditions. In the case of a one-degree-of-freedom model this is particularly easy, 

because the space is two-dimensional spanned by *(0) and *(0). We can then 

conviently quantify the size of the safe basin, within the window represented by our 

grid, by recording the proportion of starts, Pm, that do not lead to capsize within m 

wave periods. We need moreover only let the system run for only say M=8 forcing 

periods, since our results show that if the boat does not capsize within 8 wave periods 

it is unlikely to capsize at all.

We can see that this is a very simple procedure, both conceptually and 

conmputationally, requiring essentially no knowledge of advanced dynamics, and 

suitable for routine design studies: and yet we feel is in fact more relevant than more 

sophisticated approaches.

Transient basins, and the integrity measures, Pm, which give us the probability of 

survival of the boat in a given sea state, are thus readily determined at any desired 

value of forcing magnitude, F, and frequency, co. Fixing one of these, co, we can 

then plot Pm against F for various appropriate m values to give us what we have 

called an engineering integrity diagram, as shown in figure 5.4. It is the dramatic 

reduction of engineering integrity at a value of F well below FE that we must now 

address.
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5.6.6 Dramatic and dangerous erosion of the safe basin

Our findings as summarised by Figure 5.4a are of considerable interest from both 

a theoretical and practical point of view. Here the case of co=0.85 is of considerable 

interest as it is close to the worst wave frequency that gives, due to the softening of 

the nonlinear resonance characteristic, capsize under the minimum forcing 

magnitude. We see that the safe basin (for m=8 or 16, say) undergoes very little 

change of shape or area up to a value of f  = F/FE ~ 0.58, and shortly after which it 

is rapidly eroded by the incursion of finger-like striations which cover the entire 

basin. By f=0.0725, over half the basin area has been lost, and the integrity of the 

boat would be in serious doubt, especially as the basin is no longer a simple shape, 

but infinitely straited as a result of the homoclinic tangency. This tangency, 

predictable for a restricted parameter range, by Melnikov’s perturbation analysis, 

is known to be a feature of all escape situations. This phenomena that we are outlining ^

here is therefore a feature of all capsize problems and not just a peculiarity of our 

simple, archetypal equation. This is confirmed in the next chapter.

As a consequence of this tangling, the basin above FM becomes fractal with an 

infinite number of thin fingers protruding into the safe basin. This in itself might 

not be too serious, but as we have shown, these whiskers rapidly grow into thick 

fingers that penetrate the bulk of the basin, giving us a rapid erosion that we have 

just described.

An important observation is that upto FM the integrity measures P2,Pat,P%,P\fj<r P-) 

are almost coincident, so that if a boat does not capsize within 2 wave periods it is 

unlikely to capsize at all. However when Pm decreases dramatically just after FM 

there is a notable splitting of the integrity curves, so the above rule ceases to hold,
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due to what are called chaotic transient motion. From a practical point of view, 

however, the dramatic erosion of the safe basin can be detected quite adequately by 

the P8 curve, so computer runs from a grid of starts need be pursued for only 8 forcing 

cycles.

5.6.7 Control space basin as a transient capsize diagram

Because the phase-space basin is so swiftly eroded across its entire central region, 

the sudden loss of integrity at / -  0.7 could be detected by time integrtaions from a 

small number of starting conditions. Indeed for many practical purposes an adequate 

assessment could be made by observing the behaviour from one central start from 

x(Q) = *(0) = 0. Our control-space cross-sections of figure 5.1 thus take the role of 

transient capsize diagrams showing the safe and unsafe parameter regimes of wave 

period (corresponding to co) and wave magnitude (corresponding to F).

The direct determination of this, involving just a grid in (F, co) space with all runs 

from the ambient state, is a highly economical yet relevant procedure, which again 

has the merit of being suitable for use in routine design studies.

5.6.8 Implications for experimental wave-tank simulations

All that has been said about computer simulations applies with equal force to 

laboratory experiments on model vessels (Rainey & Thompson, 1990) where it is 

equally important to try to assess the safe basin in the space of the starting conditions.
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Clearly the number of different starts that can be made in a given wave excitation 

will be even less than can be contemplated in computer studies, so the idea of a 

single transient test from the ambient still-water state is even more appealing.

5.7 Design against earthquake damage

An earthquake shock can for some purposes be regarded as precisely the pulse of 

periodic loading that we have envisaged in this chapter, exciting a structure resting in 

its equilibrium ambient state. The trace of the Mexican earthquake was, for example, 

remarkably sinusoidal in form: an even if the ground motion is itself not sinusoidal, the 

excitation reaching a structural component will have a greatly enhanced sinusoidal 

component at the natural frequency of the main structure due to the filtering action. 

These considerations, together with the fact that our metastable cubic potential is just 

the form that would be exhibited by a component with an explosive, shell-like 

post-buckling characteristic, make our present fractal control-space basin of some 

immediate relevance to earthquake engineering.

5.8 Summary of chapter

We have seen that our results may have considerable relevance both to ship capsize in 

ocean waves, and to building collapse under earthquake loading. In these fields the
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phenomena that we have outlined give a qualitative guide to behaviour, rather than 

specific quantitative results. This is done in the next chapter.

The fine details of the fractal structure are indeed unlikely to be important in an 

engineering context, especially since they will vary with the starting phase, all our 

present results having been done at a phase of 180 degrees as we have described. Rather 

it is the rapid erosion of the bulk of the phase-space basin ( a feature that is independent 

of the starting phase) that we feel is of vital concern to engineers designing systems 

subjected to periodic of near periodic forcing.
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Figure 5.1 Fractal basin boundaries in the (F, co) control-space corresponding to runs from 

the ambient state *(0) =*(0) = 0. Diagram (a) shows the corresponding bifurcation curves. 
Diagrams (b) to (d) show the progressive enlargements of the control basin with black denoting 
no escape within M forcing cycles, grey denoting escape between 4 and M forcing cycles, and 
white denoting escape within 4 cycles: (b) grid is 100 by 100, M=16; (c) grid is 100 by 100, 

M=32; (d) grid is 200 by 200, M=32.
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CHAPTER 6: APPLICATION TO SHIP CAPSIZE

6.1 Introduction

Ships are subjected to a variety of environmental forces arising for example from sea 

waves, wind, formation of ice on the hull, as well as on-board changes such as a shift 

in cargo or passengers, damage or flooding. One or a combination of these factors 

may cause large amplitude motions which may be a threat to both the safety of the 

ship and those on board. They can result in structural failure, loss of control or capsize. 

Although capsizing is often a very complicated event, in which a variety of sources 

can take an active part, the ability to predict and understand the mechanisms of large 

amplitude motion or capsize is of great practical importance. Existing stability 

criteria, are expressed in terms of minimum values for certain key features of the 

righting arm or the GZ curve. Static stability standards based on statistical and other 

analyses of the intact static stability criteria, serve a useful purpose in that under 

certain conditions they will be sufficient, and can give a qualitative understanding 

for the naval architect. However as many authors have shown, when the external 

dynamic influences are severe in relation to ship safety, it is no longer adequate to 

rely on the righting arm alone but rather on the dynamics of the ship in its environment 

(Bishop and Price, 1974; Wright and Marshfield, 1980; Nayfeh, 1988). The 

environmental conditions which have been found to be the main causes of extreme 

rolling are sea waves, but wind also plays a key role, and the worst conditions assumed 

in the design of a ship are usually specified in terms of a combination of these 

(Lloyd7l989).

Although sea states are essentially random processes (but not necessarily stationary 

ones), a short train or pulse of regular waves that can excite resonant motions, can 

usefully be viewed as a worst-case scenario when considering capsize. For practical

94



purposes a long train of regular waves can be considered to have a probability of 

zero. Despite this, most researchers in the extensive literature on ship capsize under 

regular forcing, focus on just the single predominant steady state motion, be it 

harmonic, subharmonic or even chaotic. In this, they follow the tradition of classical 

analysis, despite the fact that for a boat, with its relatively light damping, regular 

waves will manifestly never persist long enough for transients to decay substantially. 

Not only is steady state analysis inapplicable, for this reason, but we show that it is 

also grossly non-conservative.

In this chapter we focus attention on the transient motions of a ship which we 

investigate against the background of the steady-state behaviour. Firstly, we present 

a steady state bifurcation diagram, in the control space of a wave height parameter, 

H, against wave frequency,co, at which distinct local bifurcational phenomena take 

place. These typically include a jump to resonance at a cyclic fold bifurcation 

(saddle-node); a build-up of subharmonic oscillations at a flip bifurcation, as well as 

a stability boundary of capsize conditions.

Secondly, we consider the transient motions of a ship subjected to a short pulse of 

regular waves: and since starting conditions of a ship at the beginning of a pulse may 

vary widely, and in any event are unknown, we look at all possible transient motions. 

The simplest and most direct way to do this is to take a grid in the starting conditions 

of roll angle,0O, and angular roll velocity,0O. Running simulations from each grid 

point, we can easily map out the safe basin from which transient motions do not lead 

to capsize within the specified duration of the pulse. Now as Soliman and Thompson 

(1989) have identified and quantified for an archetypal driven oscillator there can 

arise a loss of engineering integrity accompanying the rapid erosion and stratification 

of the safe basin as a control parameter is varied. We show here that this behaviour 

does indeed take place in the analytical models of two real ships giving a critical
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wave height, Hl, at which the ship loses the bulk of its calm water stability. We use 

engineering integrity curves and transient capsize diagrams to quantify this 

behaviour.

6.2 Mathematical modelling and the general roll equation

In order to begin a scientific investigation into ship motion and capsize a mathematical 

model which represents the essential aspects of the vessel and sufficiently describes 

the relevant dynamics of the system must be obtained. The formulation of such a 

model begins with approximations and assumptions, based on experiment and 

observation, that are necessary to simplify the almost infinite complexity of a real 

ship in a real environment. The solution of the problem and interpretation of the 

mathematical results in the context of practical experience can then lead to a revised 

and improved model leading to a more realistic correlation between the observed and 

predicted results, as well as a greater understanding of the diverse mechanisms of 

ship motions such as capsize.

To analyze the dynamics of a ship it is convenient to define the ship motion from a 

fixed co-ordinate system with the origin at the centre of mass of the ship. To 

completely define the motions of the ship all six-degrees of freedom must be 

considered; pitch, surge, heave, roll, yaw and sway (Rawson & Tupper, 1968). The 

first three are often referred to as symmetrical motions and are usually considered to 

be uncoupled from the other three which are referred to as unsymmetrical motions. 

The rolling motion is the most difficult to model mathematically but as many authors 

have shown it is often possible to de-couple the equation for roll motion from the 

other equations of motion by a suitable choice of co-ordinates. Numerical as well as

96



experimental observations have shown that at least in beam seas this is a reasonable 

approximation.

We consider then, in common with many authors, that the roll motion of a ship, when 

subjected to wave and wind moments, can be modelled by the non-linear differential 

equation

70 + B (0) + C (0) = M(t) + Wm(Q, t ) (6.1)

where I is the roll inertia (included added hydrodynamic inertia), 0 is the roll angle

(6,0 being the angular roll velocity and acceleration respectively), £(6) is the 

non-linear damping moment and C (0) is the non-linear restoring moment.

The left hand side of the equation represents the stabilizing moments; the inertia 

moment is proportional to the angular acceleration of the motion. The damping 

moment originates from non-potential flow effects, vortex shedding around the hull, 

etc. A linear-plus-quadratic form of the damping moment, originally proposed by 

Froude, has been shown to give a very good fit to free decay experimental results 

from ship models, and has been supported by theoretical analyses (Gawthrop, 

Kounteris & Roberts, 1988). The restoring moment is created by the weight and 

buoyancy forces. It can be approximated by curve fitting to an experimentally 

obtained righting arm curve.

On the right hand side of the equation are the disturbing (de-stabilizing) moments; 

the wind moment, WM(0,r), can arise from a steady wind or a gust or a combination 

of both. The wave moment, M(t), arises from the inclining moment whose value 

varies, in regular seas, harmonically according to the different positions of the ship 

in the travelling wave. Both these moments occur randomly in real seas but from the 

sake of simplicity, and for a worst case scenario, they can be considered to be 

deterministic quantities.
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In order to illustrate the ideas presented in this chapter we have considered two 

different ships which have been well documented and researched following their 

capsizes. Both have the following specific equation of motion:

6 + * ,e + 6 2|6 |6 + c 1e + c 2 |0 i e + c 303+ c4 i e i e 3+ c 505= !7 ^ + ^  (6.2)

The first is the Gaul (Morrall,1980), with a GZ curve and damping characteristics 

(taken from Cadwell and Yang, 1986) as shown in figure 6.1. (Here 

by = 0.0555, b2 = 0.1659, cx = 0.2227, c2 = 0.0, c3 = -0.0694, c4 = 0.0, c5 = -0.0131, / = 64489 

). The second is the Edith Terkol (Kure and Bang, 1975). Here 

bx = 0.0043, b2 = 0.0225, cx = 0.385, c2 = 0.1300,c3 = 1.0395, c4 = ̂ .070,c5 = 2.4117,7 = 1174 

(taken from Odabassi, 1976). We have approximated from these that their linear 

natural frequencies,Q)n, are 0.47 and 0.62 radians per second respectively and their 

equivalent linear damping ra tio s ,a re  0.075 and 0.01. We have assumed in common 

with other authors that

M(t) = A sin coEt (6.3)

where co£ is the wave frequency and A is the amplitude of the wave moment which

in general will be a function both of the wave frequency and height. We have also 

assumed for the sake of simplicity that the wind moment is a constant value 

independent of roll angle and time: it is zero unless otherwise stated. We refer to the
CO E

ratio of the forcing frequency to the linear natural frequency as co, such that co = — 

and refer to a wave height parameter H, such that H=-^.
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6.3 Background theory

Before summarizing the results, a brief review of the dynamics theory, mapping 

techniques and terms employed is appropriate (Thompson and Stewart, 1986). 

Considering the single-degree-of-freedom system (6.1) it is well known that to 

completely define the motion of a ship under given environmental conditions (such 

as wave height, period, etc) and from certain initial conditions (roll angle and angular 

velocity), the three dimensional trajectory in (0,0, t ) phase-space must be determined. 

Trajectories which do not lead to capsize, will eventually settle down to a bounded 

stable motion (for example periodic or subharmonic oscillations). Such stable steady 

state motion is called an attractor. All starting conditions which generate trajectories 

that tend towards an attractor, thus define its safe basin or domain o f attraction. There 

may be alternative co-existing attractors, depending on the starting conditions, but 

we shall define the union of the basins of all the non-capsizing attractors as the safe 

basin.

In the case of a ship rolling in regular waves, the concept of phase space is extended 

by the Poincare map, for which the continuous trajectory is replaced by a succession 

of points obtained by stroboscopically sampling the motion of the ship at the wave 

period. This sampling technique produces a sequence of points (Poincare points) in 

the (0,0) plane which may converge to a fixed point corresponding to a stable periodic 

state, converge to alternating points for subharmonic motion (a period N attractor 

with N points visited in sequence) or possibly to a chaotic attractor. Such sampling 

techniques have been employed extensively in the field of non-linear dynamics for 

their obvious advantages of summarizing the motion in a relatively simple fashion. 

For example they are very convenient for testing the stability of a given steady state 

as we shall show later in this chapter.
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6.4 Steady State Behaviour

6.4.1 Steady state roll response

A ship can often be subjected to a train of regular waves with a given height and 

frequency. Often one (or both) of these parameters may gradually increase or 

decrease in magnitude, corresponding to a slowly evolving sea state. Such excitation 

can lead to resonance or large amplitude rolling as shown, in figure 6.2a, by the 

typical resonance curve for the Gaul. As we slowly vary the frequency, so that 

transients have always effectively decayed, we see that the roll response is a smooth 

function of co at all but two values. At co=0.77 there exists a dangerous but not fatal 

jump to resonance, in the sense that the ship restabilizes at a greater amplitude of 

oscillation. At co = 0.70 there is a jump from  resonance. The dashed line shows the 

unstable steady state solutions, and although they are not physically realizable, and 

indeed will not appear in the direct time domain simulations, they provide useful 

information about the global behaviour and for example play a key role in 

determining domains of attraction (Alexander, 1989). Figure 6.2b shows a typical 

resonance curve for the Edith Terkol. Here we observe four discontinuities in the 

stable steady state response. This higher degree of complexity is due to the local 

changes in stiffness (initial hardening then softening) of the GZ curve. However 

in both resonance curves it is observed that due to the overall softening nature of 

the restoring moment curve the peak amplitude of oscillation occurs below the 

linear natural frequency. Such observations clearly illustrate that resonant 

frequencies should be avoided, as apart from anti-rolling devices, there is little 

possibility of roll reduction in beam seas once the ship has been built. Such resonant 

behaviour can also be observed by gradually increasing the wave height from the 

fundamental H  = 0 = 6 = 0 state until the ship capsizes for a fixed value of wave
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frequency. Complex bifurcations of the steady states were observed as shown in 

Table 1. For example at co=0.80 there is a jump to resonance at HA=0.21 and then 

a flip to an n=2 subharmonic at H°=0.44. A further increase in H results in a 

period-doubling cascade and chaotic motion leading to capsize at Hs=0.45. It can 

be seen that the optimal capsize condition, corresponding to capsize under a 

minimum H, occurs at about co=0.70 as indicated by the bold figures.

Table 1 : Steady state bifurcation values for the Gaul

8 II
>e

Ue Ha

(jump to 

resonance)

angle of restab

ilization(degre

es)

(flip to n=2 

subharmonic)

Hs

(final Steady 

state capsize)

0.60 0.41 capsize - 0.41

0.65 0.35 capsize - 0.35

0.70 0.31 47 0.32 0.32

0.75 0.37 71 0.37 0.38

0.80 0.21 60 0.44 0.45

0.85 - - 0.53 0.54

0.90 . 0.63 0.63

0.95 - - 0.74 0.75

1,00 - - 0.85 0.86

Having outlined that steady states can undergo various complicated bifurcations 

including folds, flips and ultimate capsize, we show, using a refined technique, 

how the ship motion in a slowly evolving sea state may be summarised using a
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steady state bifurcation diagram. Such an analysis may help in predicting 

instabilities and capsize. Regions showing when and how the ship capsizes may 

be determined. Dangerous and fatal jumps to resonance, subharmonic oscillations 

and chaotic behaviour may be determined, all of which can add to the overall 

understanding of ship behaviour and capsize phenomena. We give a brief review 

of the analysis used, using the sampling techniques described in section 6.3.

6.4.2 Steady state Bifurcation Diagram

The relationship between two consecutive Poincare points in the Poincare map 

will be governed by a complex non-linear relationship, but close to a fixed point 

(whether it be periodic or subharmonic) we may approximate the Poincare map by 

a 2-dimensional linear map in the form

0I + i = a 0 , + H  

fy + i = c0, + <ify

in which 0, + i,6l + 1 can be evaluated numerically for any (0,,6t) by making a

numerical time integration through one forcing period. The nature of the stability 

of the system may be determined by calculating the eigenvalues,^,^, of the 

Jacobian matrix

a b 
_c d_

For stability both of these must be less than one in modulus. The stability can be 

characterized by the position of the eigenvalues in the complex plane (Thompson

1 0 2



and Stewart, 1986).

In a changing sea-state both the fixed point and the coefficients of the linear map 

will vary so that the eigenvalues will describe a path in the complex plane. If the 

eigenvalues are real one of them can cross the stability boundary at +1, a cyclic 

fold (a saddle-node bifurcation), or at -1 producing a flip bifurcation (a transition 

to resonance of order n=2). These events are clearly of interest to the naval architect 

(Bishop, Leung & Virgin, 1986). The fold point (points A and B in figure 6.2a) 

corresponds to a resonant hysteresis jump which may cause the ship to capsize if 

the resulting transients are large enough to carry the ship beyond its righting moment 

limit, or may cause the ship to oscillate at a different (and often considerably larger) 

amplitude. The crossing at -1 results in the ship oscillating in a n=2 subharmonic 

manner. This, as has been shown, is often the precursor of chaotic oscillations and 

hence capsize (Virgin, 1987).

Using such stability properties we have drawn a steady state bifurcation diagram 

which summaries the bifurcational behaviour of the ship over a whole range of 

frequencies and wave heights. We focus most attention just below co= 1 as resonant 

phenomena will normally govern ship safety. Figure 6.3a shows the bifurcation 

diagram for the Gaul such that WM=0. Bifurcations such as those shown in table 1 

can easily be seen from this diagram; at co = 0.75 the ship initially oscillates in a 

periodic manner, but as H is increased the ship makes a dangerous but not fatal 

jump to resonance at in which the ship starts to oscillate at an increased 

amplitude. A reduction of H at this stage would cause a jump from resonance at 

Bj, giving rise to a region of resonant hysteresis as typically shown in figure 6.2a. 

A further increase of H beyond A x results in a flip bifurcation at C and as can be 

seen the ship capsizes shortly afterwards at Hs=0.38. By keeping H constant and 

varying the frequency also allows us to determine the regions of resonant hysteresis
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in the frequency plane. Indeed in real situations both the wave frequency and height 

change simultaneously and such behaviour can be interpreted by this diagram. The 

steady state stability boundary, (Hs, co) indicates the region of inevitable capsize. 

Figure 6.3b shows the bifurcation diagram for the same ship subjected to a steady 

wind moment by incorparating a static bias term in eqn (1). Fig 4 shows the effect 

of this on the potential energy content of the ship. The ship can be thought of as a 

ball rolling in the potential well defined by the potential energy curve. It can be 

seen that this asymmetry increases the likelihood of capsize by lowering the steady 

state stability boundary. At co = 0.85, Hs=0.26 for the biased system, whereas 

Hs=0.54 for the unbiased case.

6.5 Transient Behaviour

6.5.1 Safe basins

As has been shown in the previous sections, a ship subjected to a train of regular 

waves can exhibit a multitude of modes of capsize (Kuo & Odabassi, 1975) as well 

as having various types of stable steady states. Indeed these steady states can 

undergo intricate bifurcating patterns.until they reach the point,of capsize 

(Thompson, 1989).

In this section we consider the transient motions of a ship.subjected to a short 

pulse of waves, by making safe basin studies, as they are both easier to perform, 

and at the same time more relevant to ship capsize than the steady state analyses. 

There are several reasons for this.

Firstly, for a ship with its relatively light damping, regular waves will evidently
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never persist long enough for transients to have decayed substantially for steady 

state behaviour to take place. A short pulse of regular waves can thus be viewed 

not only as a worst-case scenario, but as a more realistic representation of a sea 

state than a long train of regular waves.

Secondly since the starting conditions of a ship at the beginning of a pulse may 

vary widely, and are indeed unknown, we must look at all motions rather than 

focus obsessively on one predominant steady state.

Finally we show that by making such a transient analysis the area of the safe basin, 

A(H,co), can fall dramatically at a steep cliff at H \ which can often be at a small 

fraction of Hs> the wave height at which the final attracting steady state loses its 

stability.

By acknowledging that a ship from 90,0O can experience various combinations of 

wave height, wave frequency and wind moments, we can say that the five 

dimensionalphase-control space spanned by (00,60, / / ,  co, WM) defines the ensuing 

motion. (Poincare phase space has already been defined as 0,0 space while control 

space refers to the external environmental parameters such as H, co or WM). To 

determine a safe basin, we use fourth order Runge Kutta numerical 

time-integrations from a simple grid of starts, typically 100 by 100. Each integration 

is continued until either the roll angle exceeds a capsizing criterion,0C, at which 

point the ship is deemed to have capsized, or the maximum allowable number of 

cycles, m(=16), is reached, in which case it is assumed that the ship will remain 

upright under these conditions (Rainey & Thompson, 1990). In this way we can 

define a set of points in the five dimensional space that do not capsize in m cycles 

and hence define a transient safe basin (Thompson & Soliman, 1990). In this study 

we have chosen 0C = n for the Gaul and 0C = 0V = 0.88 for the Edith Terkol. 

Specifying the controls and taking a grid in the (00,0O) plane allows us to draw the
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conventional cross-sections in the phase-space of the starting conditions: while 

specifying 00, 60 (say (0,0) in the case of the ship starting originally in its equilibrium 

position in calm water) and taking a grid in ( H ,co) plane allows us to draw the 

cross-section of the transient basins in the two-dimensional control space.

In contrast to the steady state analysis, we are making no note of the final steady 

state motion (attractor) of the ship to which the non-capsizing motions might settle, 

whether it is harmonic, subharmonic, small amplitude, large amplitude or chaotic 

oscillations. At many control settings there can be of course many competing 

attractors, as in a region of resonant hysteresis, some with exceedingly small regions 

of attraction.

6.5.2 Erosion of the safe basins

Keeping co=0.85, a value of the forcing frequency that is of considerable interest 

because it is close to the optimal capsize condition for the Gaul, the safe basins are 

shown in phase-space (figure 6.5a) for fifteen equally spaced values of the 

normalised wave height parameter, h(— ). It can be seen that there little change inH
size or position of the transient basins up to h~0.60. However after that the basin 

boundary becomes fractal (infinitely textured) due to a homoclinic tangling at HM 

in the underlying dynamics ( Grebogi, Ott & Yorke,1987). Starts within this fractal 

zone lead to chaotic transients which oscillate hesitatingly for an arbitrary length 

of time before the ship either capsizes or settles to a safe steady state harmonic 

rolling; Moreover, fractal zones are particularly sensitive to initial conditions; 

external forces such as an impact load or random noise can often push trajectories 

across basin boundaries and thus cause a ship oscillating originally in a safe basin 

to oscillate in an unsafe basin and hence cause capsize ( Gwinn & Westervelt, 1986,
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Soliman & Thompson, 1990). This phenomena is not serious in itself, provided 

that the fractal zone to which it is confined remains as a thin layer around the edge 

of the boundary, as it does for H just above HM. However as H is further increased 

the fractal boundary soon becomes incursive with thick finger-like striations 

penetrating into the very heart of the central zone resulting in a dramatic erosion 

of the safe basin. Here we can quantify the size of the basin, A, within the window 

represented by our grid, by recording the proportion of starts that do not capsize 

within m wave periods. As can be seen from the integrity curves ( figure 6.6a ) the 

ship retains practically all of its still water stability up to a critical value Hl (=0.32), 

and thereafter loses almost all of it. Here we loosely define Hl as the largest wave 

height in which the ship retains its calm water stability. In the next section we make 

a more formal definition of H\

This behaviour clearly illustrates how the steady state analysis that predicts the 

final capsize at Hs (=0.54) dangerously over-estimates the overall stability of the 

ship. Such results clearly display, for a designer, that H* should be adopted in 

preference to Hs in defining the operational locus in the (H,co) domain.

Similar studies were made for the biased system as shown in figures 6.5b and 6b. 

The effect, as expected is to reduce the value of Hl as exemplified by the integrity 

curves. We have also made a safe basin study for the Edith Terkol (figures 6.5c, 

6.6c). Here we observe that unlike the previous cases considered, the erosion of 

the safe basin is both less dramatic and starts to take place at a relatively small 

value of H. The reasons for such behaviour are discussed later on.
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6.5.3 Transient capsize Diagram

Figure 6.7 shows the safe domain in control space assuming that the ship was 

originally in its equilibrium position, 0O = 0O = 0. As can be seen the minimum H 

required to cause the ship to capsize occurs around the resonant frequencies. The 

combination of a steady wind moment is to further destabilize the ship, in that the 

basin boundary seems to become lower. Such diagrams clearly summarise the type 

of environmental conditions a calm ship subjected to a train of regular waves and 

wind can sustain.

Indeed by choosing 0O = 0O = 0 gives us an approximate locus for the (Hl,co) curve. 

As shown from the previous section, the phase-space basin is often swiftly eroded 

across its entire central region resulting in a well defined loss of area at H\ To 

pin-point the latter we do not need to employ a massive grid of starts but can make 

just a small number of trial simulations (or model tests) in which a relatively calm 

ship is suddenly subjected to a short pulse of regular waves. Indeed a trial simulation 

from the ambient state at the origin might be adequate to locate the cliff at Hlwith 

sufficient precision for practical purposes.

However, as shown earlier the value of Hl in which the ship loses most of its calm 

water stability is sometimes not so well defined. It is thus more convenient to plot 

in the (H,co) plane, contours of (HP, co) where we define HP as the value of wave 

height in which the ship has lost P% of its calm water stability. Indeed, the 

three-dimensional (A ,H ,co) surface completely defines the area of the safe basin 

for any given H and co. By fixing co, and taking a crossection in the (A,H) plane 

gives us the typical integrity curves, whereas fixing A we may obtain a contour of 

transient stability (HP, co). (//(00,co) then represents the contour in which the ship 

has lost all of its calm water stability i.e. H just above Hs, whereas (H‘0, co) represents

108



the contour in which the ship retains all of its calm water stability. These two 

contours represent upper and lower bounds on the transient stability; (//', co) can 

then be chosen for the required margin of safety. Figure 6.3a shows several transient 

contours. It can be seen that steepest cliff occurs at about co=0.70.

6.6 Roll Damping

As is to be expected, both the steady state and transient behaviour of the Gaul and 

the Edith Terkol were different, as each was designed to withstand different 

environmental conditions. However by examining the the normalised integrity curves 

of each ship we may make a relative, if not completely justified, comparison. As can 

be seen the Edith Terkol loses its stability at a much lower value of H/Hs than the 

Gaul. We believe, that this feature is mainly due to the fact that the Edith Terkol was 

much more lightly damped than the Gaul.

Indeed making numerical simulations of an archetypal capsize model with both linear 

and nonlinear stiffnesses and linear damping ratios of £=0.005,0.025,0.05 and 0.15 

reveals that the damping level determines the process of the erosion of the safe basin 

(see figure 6.8) and hence the transient capsize diagram. This study uses the canonical 

escape equation of Thompson (1989) both with and without the stiffness nonlinearity, 

the linearized system being deemed to fail if the displacement x exceeds unity: more 

details o f this comparative analysis will be given in a forthcoming paper (Thompson, 

Rainey & Soliman, 1990). This type of behaviour, although difficult to analyze 

practically due to the nonlinear damping effects, can help the naval architect in his 

design. Bilge keels can be designed such that a minimum damping level can be
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achieved for a given ship.

6.7 Conclusions

(a) Using steady state analysis, we have drawn an ( / / ,co) bifurcation diagram. We 

have defined regions of inevitable capsize; dangerous and fatal jumps to resonance 

as characterised by a fold point; and subharmonic instabilities as characterised by a 

flip bifurcation. The optimal capsizing wave height occurs at about 70% of the linear 

natural frequency and obviously that frequency should be avoided. This behaviour 

is obviously very important to the naval architect and such a diagram would obviously 

be helpful to his dynamic analyses of ship stability.

(b) We have used a simple and direct method for finding the critical wave height by 

analysing the transient basins and engineering integrity curves. We have shown that 

using this method several important deductions can be made.

Roll stability analysis using the classical methods, such as harmonic balance, which 

locates the main attractor, tests its stability (using a perturbation or Liapunov analysis) 

and then follows the evolution of daughter attractors, abandoning each in turn as it 

becomes unstable, is both a daunting, if not impossible prospect (strictly impossible 

in detail due to the inevitable appearance of subharmonics of infinitely higher order). 

We have used numerical path following routines to overcome this problem. However 

whichever technique is used the results can be misleading in terms of ship stability. 

We have shown that the ship up to H‘ retains all its calm water stability, and thereafter 

loses almost all of it, as exemplified by the integrity curves. Classical methods would
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find the ship stable up to Hs which is obviously, for practical purposes, grossly 

non-conservative. Using Liapunov functions, in estimating the domains of attraction, 

would also be quite impossible due to the homoclinic tangencies and hence the 

extremely complex shape of the safe basins.

(c) By plotting (H‘P, co) contours we can make a critical judgement for the safe 

operational locus (//', co) of a ship subjected to a short pulse of regular waves. The 

sudden loss of safe basin does moreover suggest that a transient capsize diagram can 

offer a useful and repeatable index of capsizability, that might have important 

implications for naval architects (Rainey & Thompson, 1990).

(d) We have also summarized the behaviour of the ship in parameter space. We found 

that when a ship is subjected to a train of regular waves, from its equilibrium position, 

safe and capsizing combinations of wave height and frequency may be specified. It 

was observed that resonant frequencies were particularly dangerous as small wave 

heights were required to cause capsize.

(e) The roll damping plays a most critical part in the erosion of the safe basins. This 

was illustrated by making a safe basin study on both linear and nonlinear archetypal 

capsize models. Such behaviour demonstrates, that as well as designing a ship with 

a minimum criterion for certain characteristics of its righting lever arm, a minimum 

damping level should be included to ensure greater stability.

(f) The stability analysis considered using both phase space and parameter space 

diagrams can equally be applied for non-capsizing but dangerous motions. For 

example we have considered that the Edith Terkol loses its stability at the angle of
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vanishing stability (qk ~ 45°): however for practical purposes motions can become 

dangerous to both the passengers and the structure of the ship when the ship executes 

large amplitudes. So for a more reasonable analysis the ship can be deemed dangerous 

once the motion exceeds a given angle of roll (such as 25°) and that angle rather than 

the angle of vanishing stability can be chosen as a limiting criterion. Indeed by 

comparing a realistic approach with the extreme limiting condition gives a feel for 

the margin o f safety made in this transient analysis; analogues to elastic and plastic 

design in the field of structural engineering can be observed here.

(g) Several ship phenomena such as the capsize mode can be understood in terms of 

the advances made in recent research in the field of nonlinear dynamics



Figure 6.1

Figure 6.1 Details of the ship characteristics for the Gaul.
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Figure 6.2 Resonance response curves for the
(a) Gaul (H=0.24)
(b) Edith Terkol (H=0.01)
Solid lines represent stable steady state response; arrows indicate a jump to and from resonance. 
Dashed lines represent the unstable steady state response.
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A Î Ul t

Figure 6.3 Steady state Bifurcation diagrams for the Gaul depicting: 
Dangerous folds (jumps to resonance (At); from resonance (B,))
Fatal folds (instantaneous capsize (A2))
Subharmonic instabilities (period doubling (C))
Capsize from a chaotic attractor 
Regions of inevitable capsize.
(a) Unbiased system (WM=0)
(b) Baised system (WM=2000)
Contours of transient stability, (//^, w), are also shown in figure 6.3a.
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Figure 6.4
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Figure 6.5
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Figure 6.6 Integrity curves representing the erosion of the safe basin described in figure 6
(a) Integrity curves for figure 6.5a
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(b) Integrity curves for figure 6.5b
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(c) Integrity curves for figure 6.5c
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Figure 6.7 Safe basins in (H y to) control space for the Gaul.
0(0) = 6(0) = O,0C = 1.57

Black represents no capsize within 16 forcing cycles 
Grey represents capsize between 4-16 cycles 
White represents capsize within 4 cycles 

The dashed lines represent the steady state bifuraction values as described in figure 6.3.

(a) Unbiased system (WM=0)
(b) Baised system (WM=2000)
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Figure 6.8

Figure 6.8 The effect of damping on the erosion of the safe basins for linear and nonlinear 
archetypal capsize models. Here the canonical escape equation and its linearization are 
considered with © = 0.85 and p = 2£.
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CHAPTER 7 :  CONCLUSIONS

Although nonlinear dynamical systems exhibit extremely complex phenomena, we 

conclude that a nonlinear analysis has important engineering relevance, particularly 

when simplicity can be derived out of such complexity.

Indeed as many engineering systems are neither linear nor nearly linear, and are 

modelled by nonlinear equations for which closed-form analytical solutions are 

unobtainable, a detailed numerical analysis may be a daunting prospect for the typical 

engineer. A reliance on linear equations may indeed be simpler but would not give a 

realistic representation of his system.

This was outlined in chapter 2 where it was shown that typical nonlinear systems can 

exhibit complex steady state and transient behaviour. Steady state attractors, of which 

there can be many co-existing at the same parameter values, can typically include point 

equilibria, periodic oscillations (harmonic and subharmonic), quasi-periodic solutions 

and chaotic attractors. The variation of a system parameter can result in complex 

bifurcations of these attractors. The mechanisms include the well-known local 

bifurcations (such as the well-known jumps to and from resonance), together with 

subharmonic cascades, intermittencies, crises, etc. In addition it is important to 

recognize that in typical dynamical systems several attractors often coexist at fixed 

parameter values. This has lead to much interest in basins of attraction, and how they 

too undergo changes and metamorphoses. Under the variation of a control parameter, 

as the attractors move and bifurcate, the basins also undergo corresponding changes 

and metamorphoses.

Indeed the main conclusion of this thesis is that the study of basins of attraction has 

important engineering relevance as there can exist a rapid loss of engineering integrity 

accompanying the rapid erosion and stratification of the basin.
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In chapters 3 and 4 we explored the theoretical and engineering significance of the 

basin erosions that occur under increased forcing. Various measures of engineering 

integrity of the constrained attractor were introduced: a global measure assesses the 

overall basin area; a local measure assesses the distance from the attractor to the basin 

boundary; a velocity measure is related to the size of impulse that could be sustained 

without failure; and by introducing a superimposed noise excitation, we quantify the 

response in terms of a stochastic integrity measure.

Since engineering systems may be subjected to pulse loads of finite duration, attention 

should be given to both the absolute and transient basin boundaries. The significant 

erosion of these at homoclinic tangencies was particularly high-lighted in this study, 

the fractal basins having a severely reduced integrity under all four criteria. Our 

conclusions were as follows;

(a) Global integrity curves clearly indicate basin boundary changes in terms of the size 

of the basin of attraction. A homoclinic tangency of the stable and unstable manifolds, 

resulting in a fractal basin, dramatically enhances the erosion of the basin of attraction.

(b) A hysteresis jump or movement of the attractor as a system parameter is varied can 

cause the attractor to move much closer to the basin boundary without any change in 

the size of the basin of attraction. This is clearly indicated by the local integrity curves 

and the impact integrity curves.

(c) The addition of noise can cause qualitative changes in the appearance of an attractor. 

Increasing the noise intensity increases the sensitivity of attractors to noise-induced 

hopping (in our case usually causing trajectories to escape). The stochastic integrity 

measure clearly quantifies such behaviour as well as the relative response of different
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attractors subjected to the same noise level. Stochastic integrity curves give the relative 

response of a naturally occurring sequence of attractors subjected to a fixed noise 

intensity.

In chapter five we discussed how these results and ideas may have considerable 

engineering relevance. It was argued that in engineering design, against boat capsize 

or earthquake damage, for example, a study of the safe (transient) basins should 

augment, and perhaps entirely replace, conventional analysis of the steady state 

attracting solutions. This is particularly important for engineering systems which are 

subjected to a short pulse of regular forcing, which will manifestly never persist long 

enough for transients to have decayed. In these fields the phenomena that we have 

outlined give a qualitative guide to behaviour, rather than specific quantitative results. 

The fine details of the fractal structure are indeed unlikely to be important in an 

engineering context, especially since they will vary with the starting phase. Rather it 

is the rapid erosion of the bulk of the phase-space basin ( a feature that is independent 

of the starting phase) that is of vital concern to engineers designing systems subjected 

to periodic of near periodic forcing.

In chapter 6 we applied the ideas presented in the previous chapters to the problem 

of ship capsize. Here we made a detailed numerical analysis of the steady state and 

transient motions of the semi-empirical nonlinear differential equations, which have 

been used to model the resonant rolling motions of two ships. Examination of the safe 

basin in the space of the starting conditions showed that transient capsizes can occur 

at a wave height that is a small fraction of that at which the final steady state motions 

lose their stability. It was seen that the basin is eroded quite suddenly throughout its 

central region by gross striations, implying that transient capsize might be a reasonably 

repeatable phenomenon, offering a new approach to the quantification of ship stability
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in waves. Such an approach has the twin advantages of being both conceptually simpler, 

and at the same time more relevant, than one based on the steady state rolling motions. 

The latter analysis was shown to be dangerously non-conservative.

The ideas developed during the course of this thesis could be extended on both the 

theoretical and practical levels. On the theoretical side more research should be made 

into the microscopic dynamics of the erosion process itself. The effect of system 

parameters, such as the damping, on basin erosion can then be considered. This would 

then lead to an overall assessment on how the erosion process may be suppressed by 

changing certain parameters, such that engineering systems may be designed 

accordingly. Such an analysis can then be refined by investigating the erosion 

phenomena on higher degree-of-freedom models which would give a more realistic 

representation of a real engineering system operating in a real environment. The solution 

of the problem and the interpretation of the mathematical results in the context of 

practical experience can then lead to an improved and revised model leading to a more 

realistic correlation between the observed and predicted results, as well as a greater 

understanding on the mechanisims of the nonlinear dynamics of engineering structures.
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