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Abstract
Background  68Ga-DOTA0-Tyr3-octreotide (68Ga-DOTATOC) 
positron emission tomography–CT (PET-CT) has superior 
diagnostic performance compared to the licensed tracer 
OctreoScan single photon emission CT–CT in patients with 
gastroenteropancreatic neuroendocrine tumours (GEP-NETs). 
A new preparation of 68Ga-DOTATOC using a new ‘ready-
to-use’ 68Ga-DOTATOC formulation for injection has been 
developed (68Ga-DOTATOC (SomaKIT TOC)).
Objectives  This study aimed to assess the safety and 
tolerability of 68Ga-DOTATOC (SomaKIT TOC) and evaluate the 
feasibility and robustness of implementing it in a NET clinical 
imaging service.
Methods  A first-in-human phase I/II multicentre, open-label 
study of a single dose of 68Ga-DOTATOC (SomaKIT TOC) 2 
MBq/kg±10% (range 100–200 MBq) in patients with biopsy-
proven grade 1–2 GEP-NETs. PET-CT was performed post 
injection. Patients were followed up for 28 days. We next 
implemented this new synthesis methodology in a clinical 
service assessed over 11 months.
Results  Twenty consenting patients were recruited; 14 
males, 6 females; mean (SD) age 58 years (12); NET grade 1 
(70%), grade 2 (30%); and 75% with stage IV disease. Twelve 
patients experienced at least one adverse event (AE) during 
the study with no grade 3–4 toxicities. Only four AEs were 
classified as possibly (headache (n=1; 4%), nausea (1; 4%)) 
or probably (dysgeusia (1; 4%), paraesthesia (1; 4%)) related 
to the study preparation. One hundred thirteen vials of 68Ga-
DOTATOC (SomaKIT TOC) were synthesised with the ‘kit’ 
over a period of 11 months for clinical utility. Only 2/113 vials 
(1.77%) were rejected.
Conclusions  The new ready-to-use preparation of 68Ga-
DOTATOC (SomaKIT TOC) for injection was safe and well 
tolerated. This has led to the world’s first (EMA) licensed 
68Ga-DOTATOC (SomaKIT TOC) radiopharmaceutical for 
the utility of PET imaging in patients with NETs. This 
preparation can be robustly implemented into routine 
clinical practice.

Key questions

What is already known about this subject?
►► Staging and assessment of patients with neuroen-
docrine tumour (NET) is markedly improved with 
somatostatin receptor imaging especially in patients 
with NET of grades 1 and 2. OctreoScan (soma-
tostatin receptor scintigraphy (SRS)) has been the 
predominant licensed tracer to image these tumours 
until recently. The development of somatostatin pos-
itron emission tomography (PET) tracers has further 
improved the sensitivity and specificity of the soma-
tostatin imaging performing better than SRS, which 
has led to significant changes in the patients’ man-
agement pathway. However, these somatostatin PET 
tracers until now have been unlicensed tracers with 
differing synthesis methodologies.

What does this study add?
►► This is a phased safety and tolerability prospec-
tive study using a simplified methodology to 
synthesise somatostatin PET tracer 68Ga-DOTA0-
Tyr3-octreotide (68Ga-DOTATOC) using a ‘kit’ which 
also standardises the production of this tracer. This 
is a first in man safety and tolerability study. It was 
then implemented into clinical practice.

How might this impact on clinical practice?
►► Following the results of this first in human study, the 
EMA approved the kit product making this the first 
in the world licensed 68Ga-DOTATOC PET tracer. We 
then successfully implemented this new synthesis 
methodology into our routine clinical practice. This 
licensed product will increase the availability of this 
tracer to patients safely with a standardised ap-
proved production methodology, hence, improving 
the clinical management of future patients with NET.
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Figure 1  Radiolabelling scheme of 68Ga-DOTA-peptides using an automatic synthesis module. HCl, hydrochloric acid; PBS, 
Phosphate-buffered saline.

Introduction
The incidence of neuroendocrine neoplasms (NENs) has 
increased over several decades.1 NEN constitutes a heter-
ogeneous group of malignancies originating from cells of 
the endocrine (hormonal) and nervous systems. These 
entities may be functioning or non-functioning, and 
differentiation from other types of malignancies is based 
on pathological findings.2 Well-differentiated, grade 1 
and grade 2 NENs are commonly referred to as neuroen-
docrine tumours (NETs) as per WHO 2010 classification,3 
and this term will be used for the purpose of the present 
study.

A unique feature of NETs is somatostatin receptor 
(SSTR) overexpression on the cell membrane, which 
make SSTRs a suitable molecular target for specific diag-
nostic and therapeutic ligands.4 Grade 1 and 2 NETs3 5 6 
are more sensitive to SSTR imaging.7

Historically, the majority of NETs have been investi-
gated by indium-111 (111In)-pentetreotide (OctreoScan), 
which was the only approved agent for the scintigraphic 
localisation of primary and metastatic NETs until very 
recently.8

The positron emitter gallium-68 (68Ga) has gained great 
interest in nuclear medicine because of its suitable phys-
ical characteristics such as the high positron yield (89%), 
and the clinically useful half-life (68 min). This increased 
interest has triggered the development of many target-
specific 68Ga-based clinical trials.9 10

Targeting SSTR with 68Ga has been particularly pursued 
for proof-of-principle clinical studies using positron emis-
sion tomography (PET).11 In 2016, (gallium-68-DOTA0-
Tyr3)-octreotate (68Ga-DOTATATE (NETSPOT)) was 
approved by the Food and Drug Administration (FDA) 
in the USA.12 Other promising SSTR PET radiopharma-
ceuticals, such as (gallium-68-DOTA0-Tyr3)-octreotide 
(68Ga-DOTATOC) and (gallium-68-DOTA0-1NaI3)-
octreotide (68Ga-DOTANOC) are currently used for 
NET imaging13 14 and have become the new standard for 
SSTR imaging using PET instead of 111In-pentetreotide.15 

Effectively, the DOTA peptide SSTR compounds have a 
similar diagnostic performance.16–18

There are at the moment a wide range of different 
automatic synthesis modules available, with variability 
in radiochemistry strategies, reagents and starting mate-
rials (figure  1) to produce these DOTA peptide SSTR 
compounds. Licensing these production methodologies 
with the regulatory authorities is therefore likely to be 
challenging.

The present phased study tested for the first time in 
humans diagnosed with grade 1 and 2 gastroentero-
pancreatic (GEP)-NET the safety and tolerability of a 
novel preformulated 68Ga-DOTATOC kit with the eluate 
provided by commercially available germanium-68 
(68Ge)/68Ga generators. Subsequently, we assessed the 
feasibility and robustness of implementing this new 
production methodology in a clinical service.

Materials and methods
First in human investigational medicinal product (IMP) phase
A phase I–II clinical trial was carried out at two Euro-
pean Neuroendocrine Tumour Society (ENETS) Centres 
of Excellence (The Christie NHS Foundation Trust 
(Manchester, UK) and The Royal Free Hospital (London, 
UK). Written informed consent was obtained from each 
patient participating in the study.

Patients
Eligible patients were those who met all the following 
criteria: (1) patients with histologically confirmed GEP-
NET; (2) grade 1 or 2 NET as per WHO 2010 classi-
fication,3 confirmed by pathology central review; (3) 
previously assessed by CT/MRI within 3 months prior 
to enrolment; (4) age ≥18 years old; and (5) Eastern 
Cooperative Oncology Group (ECOG) Performance 
Status≤2.19 Patients who were pregnant, had hypersensi-
tivity to the investigational drug or any of its components 
or had significant ECG abnormalities at screening were 
excluded.
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Figure 2  Radiolabelling scheme for 68Ga DOTATOC 
(SomaKIT TOC).

Investigational medicinal product
The full name of the IMP was ‘68Ga-DOTA0-Tyr3-
octreotide for intravenous injection SomaKIT TOC’ 
(Advanced Accelerator Applications, New York, New York, 
USA), referred to as 68Ga-DOTATOC for the purposes 
of this manuscript. The IMP was available as a 2-vial kit 
which consisted of a lyophilised formulation (vial 1) and 
a suitable buffer (vial 2) to be used in combination with 
a solution of 68Ga in hydrochloric acid (HCl) as gallium 
chloride (68GaCl3) provided by a 68Ge/68Ga generator 
to obtain 68Ga-DOTATOC as a radiolabelling imaging 
product for intravenous injection. Each monodose kit 
contained an amount of the active substance and excipi-
ents suitable for preparing up to 1110 MBq of injectable 
68Ga-DOTATOC. The kit was produced and supplied by 
the study sponsor (Advanced Accelerator Applications).

68GaCl3 eluate was obtained from a 68Ge/68Ga generator 
that had been eluted within the previous 24 hours. For the 
study, the Galliapharm 68Ge/68Ga generator (Eckert & 
Ziegler, Berlin, Germany) was used. In particular, and in 
accordance with the specifications indicated in the mono-
graph, the potential release of the parent nuclide (68Ge) 
must be guaranteed to be lower than 0.001% during 
the declared life of the generator. The eluate from the 
generator used was sampled and checked for 68Ge break-
through, iron and zinc content, bacterial endotoxins 
and tested for sterility every week in order to meet with 
the specifications indicated in the European Pharmaco-
poeia Monograph ‘Gallium (68Ga) chloride solution for 
radiolabelling’.20 21 This postproduction assessment was 
performed partly by the study sites and the sponsor as per 
the requirement of the regularity authorities.

Each kit used for the study was prepared, packaged 
and released according to study protocols, local Standard 
Operating Procedures, Good Manufacturing Practice 
guidelines, International Council for Harmonisation and 
Good Clinical Practice (GCP) guidelines, and applicable 
local laws/regulations.

68Ga-DOTATOC was prepared on the day of the 
administration using as the reaction vial containing a 
lyophilised formulation of 40 µg of DOTATOC (vial 1) 

to be radiolabelled with 68GaCl3 (5 mL HCl 0.1 N solu-
tion—maximum activity 1110 MBq). Immediately after 
the elution, 0.5 mL of reaction buffer (vial 2) was added 
to vial 1. Vial 1 was then placed in a preheated dry bath 
(Labnet Accublock digital dry bath). After at least 7 min 
(but no more than 10 min) at 95°C, the final labelled 
68Ga-DOTATOC product was ready for the formal release 
after quality control (QC) testing. Visual check, pH, 
radiochemical purity (ITLC and radio-HPLC) and radio-
nuclidic purity tests were performed in all the batches 
before release (figure  2). Mean finger doses of staff 
members working with the IMP production was 0.18 mSv 
(left) and 0.31 mSv (right) per production including 
quality control. This was similar to the synthesis modules. 
Axial body dosimetry measurements were also within 
safety thresholds.

Dose and mode of administration
Each patient was allocated a single treatment kit. The 
dose of 68Ga-DOTATOC administered to each patient was 
calculated as 2 MBq/kg±10%, but not less than 100 MBq 
and not more than 200 MBq. The weight of the patient, 
amount of dose injected and the estimated time of injec-
tion were recorded. The dose was measured using a 
radionuclide dose calibrator (Capintec CR-15). 68Ga-DO-
TATOC was administered intravenously by qualified staff.

For patients receiving treatment with long-acting SSAs 
somatostatin analogues), 68Ga-DOTATOC administra-
tion was performed at least 4 weeks after the last admin-
istration of SSA. Treatment with short-acting SSAs was 
interrupted for 24 hours before the administration of 
68Ga-DOTATOC.

Whole-body PET-CT imaging acquisition
All patients underwent a whole-body PET-CT, at 40–60 min 
after administration as per the recommended guide-
lines.13 Patients voided their urinary bladders immedi-
ately before imaging.

The patients were placed on the scanner table (either 
GE Discovery STE or Siemens Biograph mCT) to allow 
a vertex to mid-thigh low-dose CT scan without contrast 
(used for anatomic localisation and attenuation correc-
tion), followed immediately by emission imaging. Emis-
sion imaging was performed from vertex to mid-thigh, 
with 2–4 min per bed position (the range of bed position 
emission imaging took into account the different imaging 
equipment at the clinical trial sites) in 3-D acquisition 
mode.

Emission images were reconstructed using the propri-
etary VuePoint HD implementation of the 3-D ordered-
subset expectation maximisation algorithm with two 
iteration of 28 subsets and a postreconstruction Gaussian 
filter of 6 mm.

Final images were stored using a 128×128 matrices set 
covering a 70 cm field of view at 3.27 mm slice separation. 
Emission data were corrected for dead time, scatter and 
decay, and resulting voxels were stored in units of Bq/
ml. As per standard practice, all images were normalised 
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Figure 3  Schematic diagram of the study phases.GMP, Good Manufacturing Practice.

Table 1  Adverse events and relationship to study drug administration

Adverse events
Possible
N (%)

Probable
N (%)

Unlikely
N (%)

Unrelated
N (%)

Headache 1 (4 %) 1 (4 %)

Nausea 1 (4 %) 1 (4 %)

Dysgeusia 1 (4 %)

Paraesthesia 1 (4 %)

Flushing 1 (4 %) 1 (4 %)

Lethargy 1 (4 %)

Oropharyngeal pain 1 (4 %)

Rhinorrhoea 1 (4 %)

Vomiting 1 (4 %)

Abdominal pain 2 (7 %) 1 (4 %)

Diarrhoea 2 (7 %) 2 (7 %)

Abdominal discomfort 1 (4 %)

Eye irritation 1 (4 %)

Influenza-like illness 1 (4 %)

Pancreatic insufficiency 1 (4 %)

Proctalgia 1 (4 %)

Upper respiratory tract infection 1 (4 %)

Back pain 2 (7 %)

Total 2 (7 %) 2 (7 %) 9 (33 %) 14 (25 %)

to the injected dose and patient weight to be expressed 
in the standardised uptake value. Attenuation correc-
tion was performed with CT using 120 kVp, with smart 
mAs (range, 30–440, with a noise index of 40) to ensure 
consistent image quality. Corresponding CT images were 
reconstructed into a 512 matrices covering 50 cm for 
anatomical information and also extended to 70 cm for 
attenuation correction

Diagnostic report
All study cases were reported as per standard of care by 
expert nuclear medicine physicians or oncology radiol-
ogists/nuclear medicine physicians (dually accredited).

Safety assessment and follow-up
Adverse events (AEs) were assessed using the Common 
Terminology Criteria for Adverse Event Classification 
version 4.03. The assignment of the causality for every 
AE was made by the investigator responsible for the care 

of the participant (clinicians with expertise in the filed 
were delegated for this task as per GCP). Haematology, 
biochemistry and urinalysis were monitored before and 
after 68Ga-DOTATOC injection (at baseline/screening 
visit, day 0 visit, day 7 visit and day 28 visit). Any AEs 
post injection were recorded and followed until resolu-
tion. Physical examination was performed prior to the 
injection and an ECG (12-lead) was recorded immedi-
ately after the administration. Vital signs were assessed 
before and at the end of the PET-CT examination.

After administration of the study product, two safety 
follow-up visits were performed at day 7 (±2 days) and day 
28 (±3 days). All concomitant medications received from 
2 weeks prior to the first administration date through the 
end of study were recorded at all study visits, including 
NET-related treatments.

The safety assessments were performed in all enrolled 
patients after a single administration of 68Ga-DOTATOC. 



Open access

5Manoharan P, et al. ESMO Open 2020;5:e000650. doi:10.1136/esmoopen-2019-000650 Manoharan P, et al. ESMO Open 2020;5:e000650. doi:10.1136/esmoopen-2019-000650

Table 2  Radiolabelling results for 68Ga-DOTATOC

Batch

Radiochemical purity—ITLC

pH Activity (MBq)Free 68Ga (%) 68Ga colloids (%) 68Ga DOTATOC (%)

1 0.38 0.19 99.43 3.5 748

2 0.90 1.23 97.87 3.6 714

3 0.82 0.33 98.85 3.5 710

4 0.08 0.18 99.74 3.5 652

5 0.39 0.59 99.02 3.6 545

6 0.20 0.55 99.25 3.5 419

7 0.32 0.39 99.29 3.5 408

8 1.70 0.28 98.02 3.5 473

9 0.08 0.22 99.70 3.6 544

10 0.37 0.59 99.04 3.5 526

11 0.66 0.40 98.94 3.8 506

12 0.80 0.25 98.95 3.5 496

13 1.41 0.21 98.38 3.5 696

14 0.72 1.28 98.00 3.2 575

15 1.07 0.40 98.53 3.2 470

16 0.79 0.01 99.20 3.2 494

17 0.41 0.15 99.44 3.2 488

18 1.14 0.33 98.53 3.2 895

19 1.16 0.72 98.12 3.2 840

20 0.90 1.02 98.08 3.2 701

Average 0.72 0.47 98.82 3.4

Max 1.70 1.28 99.74 3.8

Min 0.08 0.01 97.87 3.2

SD 0.43 0.34 0.58 0.2

ITLC, Instant Thin-Layer Chromatography.

Safety and tolerability were primarily evaluated by the 
incidence of 68Ga-DOTATOC-related AEs, clinical labo-
ratory values (haematology, biochemistry and urinal-
ysis), vital signs (blood pressure and heart rate (HR)), 
ECG and physical examination findings. For analysis 
purposes, baseline for a given assessment was defined 
as the last non-missing value prior to the administration 
of 68Ga-DOTATOC.

Implementing 68Ga-DOTATOC SomaKIT TOC in a NET clinical 
service phase
One of the ENETS (The Christie NHS Foundation 
Trust) site then assessed the feasibility and robustness 
of this production methodology over a period of 11 
months.

Using this new synthesis methodology post EMA 
licensing, 113 vials of 68Ga-DOTATOC SomaKIT TOC 
were synthesised at The Christie NHS Foundation Trust 
between 21 November 2017 to 9 November 2018. Quality 
assurance and control parameters were identical to the 
first in human IMP phase. Figure 3 depicts the phases of 
the study.

Statistical methods
Sample size calculation
The target sample size considered sufficient to provide 
data to assess the safety and tolerability of 68Ga-DO-
TATOC using this new methodology of synthesis was 20 
evaluable patients (ie, patients who had completed the 
imaging protocol).

Analyses
Summary statistics were provided for demographic and 
baseline characteristics (sex age, weight, height, body 
mass index (BMI), NET type, grade and TNM stage). 
Descriptive statistics for continuous variables included 
the number of non-missing values, mean, SD and range. 
For categorical variables, descriptive statistics included 
counts and percentages per category.

Safety variables were tabulated at each measuring time 
and for change from baseline together with descriptive 
statistics, if appropriate.

For the clinical implementation phase, descriptive 
summary statistics of the number of vials that passed 
quality assurance check are reported.
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Figure 4  Patient example (coronal maximum intensity 
projection) demonstrating intense uptake within multiple 
liver metastases (red arrow), small bowel primary (horizontal 
black arrow) and focal midline uptake within nodal 
metastases (blue arrow).

Results
First in human IMP phase
Twenty patients were screened and enrolled between 
June 2015 and June 2016. All twenty enrolled patients 
completed the study. There were no screen failures.

Baseline characteristics
Most of the patients were male (14 males; 6 females), and 
Caucasian (90%) with a mean (SD) age of 58 (12) years 
and mean (SD) BMI of 26 (4.5) kg/m². The mean (SD) 
time between first diagnosis of NET and enrolment in 
the study was 2.7 (3.3) years. Most patients had grade 1 
NET (14 patients; 70%); 5 patients (25%) had grade 2; 
1 patient not known. Fifteen (75%) had stage IV disease 
(stage I in one patient (5%), stage II in one patient (5%) 
and stage III in the remaining three patients (15%)). 
ECOG Performance Status was 0 and 1 in 15 (75%) of 
patients and 5 (25%) of the patients, respectively.

Fourteen (70%) patients had a primary tumour arising 
from the midgut. Three (15%), two (10%) and one (5%) 
patients had primary tumours arising from the foregut, 
pancreas and unknown primary (suspected gastrointes-
tinal tract), respectively.

The most frequent prior and concomitant medications 
included: proton pump inhibitors (11 patients; 55%), 
SSA (9 patients; 45%) and pancreatic enzyme replace-
ment preparations (7 patients; 35%).

Safety analysis
Twelve (60%) patients experienced at least one AE 
during the study. All the 27 AEs were classified as grade 
1 (85%) or grade 2 (15%) severity. None of these AEs 
were considered by the investigators as serious or led to 

discontinuation of study procedures. No grade 3–4 AEs 
were identified.

The most commonly reported AEs were gastrointestinal 
disorders (n=14; 52%). Only two AEs were classified as 
‘possibly related’ to the study drug administration (head-
ache and nausea). In addition, another two AEs were clas-
sified as ‘probably related’ (dysgeusia and paraesthesia). 
See table 1 for complete details. Two (7%) AEs were unre-
solved at the end of the trial (both classified as not related 
to study drug).

The haematology and blood biochemistry values at 
each visit were compared with baseline levels. Despite 
statistically significant decreases between day 0 (day 
of imaging) and baseline of some of these parameters 
(decrease of mean red blood cells, haematocrit, haemo-
globin, mean corpuscular volume, albumin and protein), 
the biological values remained within the normal ranges 
and the fluctuations were judged as not clinically signif-
icant (online supplementary file 1). No changes were 
observed between day 7 visit and day 28 visit compared 
with baseline. No liver or kidney function dyscrasia were 
identified.

Comparison between baseline (screening) ECG and 
ECG performed following 68Ga-DOTATOC injection 
showed a significant increase in mean QT (p=0.0433) and 
PR (p=0.0187) intervals. However, these changes were 
not found to be clinically significant. No changes in QTcF 
interval were identified (p=0.6215).

No statistically significant changes in vital signs 
compared with baseline were observed; one patient expe-
rienced a significant decrease in the HR between base-
line (screening) and following 68Ga-DOTATOC injection 
and day 28 visits which was deemed to be not clinically 
significant.

68Ga-DOTATOC kit preparation and administration
The results of QC testing of the kits released for injec-
tion were in compliance with the European Pharmaco-
poeia Monograph ‘Gallium (68Ga) edotreotide injec-
tion’ guidelines. The mean radiochemical purity due to 
68Ga-DOTATOC was 98.82% (SD=0.58%, max=99.74%, 
min=97.87%; table 2).

In total, 23 kits were prepared for the study. In spite 
of optimising the labelling technique, three of these kits 
were not released as they did not meet the product speci-
fication. The procedure for the preparation of the kit was 
thus optimised during the duration of the study.

The final volume and activity (up to 1110 MBq) of the 
radiolabelled product provided a sufficient amount of 
solution for QC testing and for the subsequent admin-
istration (table  2). The stability studies performed on 
the drug product performed by the sponsor (outside the 
scope of this study) had demonstrated that the 2-vial kit 
(lyophilised formulation and buffer) is stable for 1 year 
when stored below 2°C–8°C. Once radiolabelled, the 
final 68Ga-DOTATOC solution is stable for 4 hours when 
stored below 25°C.

https://dx.doi.org/10.1136/esmoopen-2019-000650
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Figure 5  Comparison of techniques. RP, 
radiopharmaceutical; MA, Marketing authorisation

Figure 6  Comparison between production by synthesis 
module and SomaKIT TOC.

All the doses administered were in accordance with 
standard clinical practice for 68Ga-DOTA peptides of 
100–200 MBq, and following current European guide-
lines.11 All patients received the radiopharmaceutical 
as per protocol except one patient who received a dose 
of 204 MBq and one patient who received a dose of 103 
MBq (less than 2 MBq/kg±10%). Such deviations did not 
impact either safety or image quality.

Results from 68Ga-DOTATOC PET imaging
The mean time of PET-CT scan was 58 min (SD=12) after 
the 68Ga-DOTATOC injection, which was compliant with 
the protocol requirements.

All cases demonstrated normal physiological distri-
bution of tracer as expected in 68Ga-DOTATOC PET 
imaging with physiological uptake detected in the pitu-
itary gland, adrenals, spleen, liver and uncinated process 
of the pancreas.

Two out of 20 (10%) PET scans were assessed as nega-
tive by the investigator which means that no tumour 
lesions were observed; both of these patients had under-
gone curative surgery and negative scans were antici-
pated. A maximum intensity projection image of a patient 
with metastatic disease involving both lobes of the liver, 
mesenteric nodal disease and a small bowel primary in 
situ with physiological distribution is illustrated as an 
example (figure 4).

Implementing 68Ga-DOTATOC SomaKIT TOC in a NET clinical 
service phase
Results
Of the 113 vials of 68Ga-DOTATOC SomaKIT TOC synthe-
sised, only 2/113 were rejected due to detection of higher 
than permitted 68Ga impurities (online supplementary 
file 2). After further investigation, the reason for the two 
vials containing higher than permitted 68Ga impurities 

was due to contact of the elute with components of the 
primary package (stopper). Production methodology was 
further optimised to make sure that the contents of the 
kit is not shaken or inverted during the labelling process.

The synthesised tracer was then safely used to image 
patients with grade 1/2 in the NET clinical service.

Discussion and conclusion
This phased study has demonstrated the safety and 
tolerability of a new ‘ready-to-use’ kit for preparation of 
68Ga-DOTATOC for injection in patients with GEP-NETs. 
The new synthesis methodology was also successfully 
implemented in the clinical service for NET imaging with 
a satisfactory toxicity profile.

The advent of SSTR scintigraphy has revolutionised 
the understanding of the pathophysiology of NETs and 
staging of this disease. The development of this targeted 
tumour tracer imaging technique was further advanced 
with numerous SSTR PET radiopharmaceuticals that 
have been proven to be more sensitive, specific and more 
importantly has led to a change in the clinical decision-
making process when compared with the SSTR scinti-
graphic technique.22–24 In the last decade, several clinical 
studies have compared the diagnostic role of different 
68Ga-DOTA-peptides (using PET-CT image acquisition) 
to 111In-pentetreotide (OctreoScan) (using single photon 
emission CT (SPECT)/SPECT-CT image acquisition) 
in patients diagnosed with NETs; results favoured the 
use of these 68Ga-DOTA-peptides in: (1) detecting small 
tumours or tumours bearing only a low density of SSTR, 
(2) offering excellent imaging properties and very high 
tumour/background ratios, (3) better intrinsic spatial 
resolution and (4) detecting additional lesions and 
altering clinical management.25–30

In addition to imaging with diagnostic purposes, SSAs 
labelled with beta emitters such as lutetium-177 (177Lu) 
or yttrium-90 (90Y) are used for targeted treatment (the 
so-called peptide receptor radionuclide therapy or 
PRRT31) of patients diagnosed with advanced NETs. Haug 
et al demonstrated that a decrease in 68Ga-DOTATATE 
uptake in tumours after the first cycle of PRRT predicted 
improved time to progression and correlated with an 
improvement in clinical symptoms among patients with 
well-differentiated NETs.32

Interestingly, the above-mentioned peptides may be 
labelled with either diagnostic (γ and positron emitters 
(such 68Ga)) or therapeutic (α and β emitters (such 
as 213Bi/ 225Ac and 177Lu/90Y)) radiopharmaceuticals, 
providing an integrated ‘theranostic’ management 
protocol for NETs.33 Such a theranostic approach allows 
the identification of specific tumour biological targets, 
in order to select the optimal therapeutic radio-labelled 
ligands for individual patients.

The PET radiopharmaceuticals fit better into a thera-
nostic pathway for patients with NET due to their superior 
sensitivity, specificity and imaging technology. However, 
for many years, unlicensed PET radiopharmaceuticals 
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have been produced with ‘in-house’ synthesis modules and 
techniques that were based on a multistep process. Multi-
step processes that could and do lead to multiple points 
of failure and errors. Due to the different approaches to 
producing the final injectable PET SSTR radiopharma-
ceutical, the final product using these synthesis modules 
was difficult to or nearly impossible to be licensed by 
the pharmaceutical licensing agencies (FDA and EMA; 
figure 5).

There are some limitations worth mentioning regarding 
this study. First, the limited samples size was adequate 
to address the primary and secondary end-points and 
provide descriptive analysis; however, there was limited 
power for inferential statistics (ie, 95% CI). In addition, 
this study explored the safety profile of a single injection 
of the tracer; safety of repeat dose administration cannot 
be commented on.

Based on the results of this first-in-human study, the 
EMA approved the IMP kit in December 2016, which 
has led to the world’s first licensed 68Ga-DOTATOC 
radiopharmaceutical for the utility of PET imaging in 
patients with NETs. This product is now available as the 
licensed gallium-labelled DOTATOC NET PET radio-
pharmaceutical. In the light of these data, the analysis of 
our 68Ga-DOTATOC study provide convincing results to 
further pursue the clinical use of the kit for the prepara-
tion of 68Ga-DOTATOC for injection.

The kit used in our study circumvents the need for insti-
tutional production of imaging tracers with the inherent 
quality risks and represents the next revolution in the 
evolution of PET radiopharmaceuticals. This markedly 
simplified production methodology has been proven to 
be safe in our study. The production methodology was 
then successfully implemented into clinical practice. We 
demonstrated that this licensed product has a robust 
synthesis methodology and is similar with regards to 
synthesis of the final radiopharmaceutical product for 
patient utility when compared with unlicensed synthesis 
module (figure 6). This practice-changing development 
will allow a larger group of clinical team’s patients’ access 
to a licensed product without the need for a synthesis 
module.
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