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Abstract
Magnetic particle imaging is an emerging quantitative imaging modality, exploiting the unique nonlinear magneti-
zation phenomenon of superparamagnetic iron oxide nanoparticles for recovering the concentration. Traditionally
the reconstruction is formulated into a penalized least-squares problem with nonnegativity constraint, and then
solved using a variant of Kaczmarz method which is often stopped early after a small number of iterations. Besides
the phantom signal, measurements additionally include a background signal and a noise signal. In order to obtain
good reconstructions, a preprocessing step of frequency selection to remove the deleterious influences of the noise
is often adopted. In this work, we propose a complementary pure variational approach to noise treatment, by
viewing highly noisy measurements as outliers, and employing the l1 data fitting, one popular approach from
robust statistics. When compared with the standard approach, the resulting optimization problems can be solved
by standard stand-alone optimizers, e.g., L-BFGS-B. Experiments with a public domain dataset, i.e., Open MPI
dataset [1], show that it can give accurate reconstructions, and is less prone to noisy measurements, which is illus-
trated by quantitative (PSNR / SSIM) and qualitative comparisons with the Kaczmarz method. We also investigate
the performance of the Kaczmarz method for small iteration numbers quantitatively.

I. Introduction

Magnetic particle imaging (MPI), invented by Gleich and
Weizenecker in 2005 [2], is a relatively new medical imag-
ing modality. It exploits the unique nonlinear magnetiza-
tion behavior of super-paramagnetic iron oxide nanopar-
ticles in an applied magnetic field. In the experiment, a
static magnetic field (selection field), given by a gradient
field, generates a field free point (FFP) (or a field free line
(FFL) [3]), and its superposition with a spatially homoge-
neous but time-dependent field (drive field) moves the
field free region along a predefined trajectory defining

the field-of-view. The change of the applied field causes a
change of the nanoparticle magnetization, which can be
measured for recovering the spatially dependent concen-
tration of nanoparticles. See the surveys [4–6] for relevant
physics, instrumentation and mathematical modeling.

In comparison with more traditional imaging modali-
ties, e.g., ultrasound, MRI and PET, MPI has a number of
distinct features: high temporal / spatial resolution, high
sensitivity and free from the need of harmful radiation.
Thus it is especially attractive for in-vivo applications,
and the list of potential medical applications is long and
fast growing, including imaging blood flow [7], long-term
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x -coil y -coil

Figure 1: Mean and variance of the background measurement provided with the “shape” phantom from Open MPI dataset,
computed from 1000 empty scans when using a 3D excitation in the preclinical Bruker MPI system. Visualized individually for x
and y receive coils with respect to the frequency; real part (top), imaginary part (bottom).

tracer monitoring [8], estimating potential flow [9], track-
ing medical instruments [10], tracking and guiding in-
struments for angioplasty [11], cancer detection [12] and
cancer treatment by hyperthermia [13].

Hence, the MPI reconstruction problem is of great
importance, and has received much attention [7, 14–24]
(see [5] for an overview). Roughly, existing approaches
can be categorized into two groups, i.e., data-based v.s.
model-based, dependent of the description of the for-
ward map. The former uses a measured forward map,
whereas the latter employs a mathematical model to de-
scribe the forward map, where the equilibrium model
based on Langevin theory is popular [6, 25]. The data-
based approach is predominant in practice, since it can
deliver better quality reconstructions.

The starting point of this study is the following em-
pirical observation: the recorded signal often contains a
significant amount of frequency-dependent anomalies.
In Figure 1, we show mean and variance of background
measurements provided with the “shape” phantom from
Open MPI dataset [1] (available at www.tuhh.de/
ibi/research/open-mpi-data.html, accessed on
September 20, 2019) acquired at x - and y -receive coils.
It is observed that the variance of some data points is
huge and deviate enormously from the bulk (noting the
log scale for y -axis) in both real and imaginary parts
and do not follow an independent and identically dis-
tributed (i.i.d.) Gaussian model. In practice, they are
often deemed data “noise”, and an important question
in image reconstruction is how to deal with such noise.

In data-based approaches, this noise contributes to
two important components in the MPI reconstruction
setup, i.e., calibrated system matrix and phantom mea-
surement. In both cases one needs to distinguish three
components in the individual measurements: the phan-
tom/system matrix signal, the background signal, and
a noise signal. Note that the variance in Figure 1 illus-
trates the statistical characteristics of the noise signal,
while the presented absolute mean illustrates the mean
estimate of the background signal. The mean is char-

acterized by some dominant peaks at higher harmon-
ics of the corresponding excitation frequency (i.e., each
excitation frequency corresponds to a certain space di-
mension like the respective receive coil, particularly for
a transmit-receive configuration). The interested reader
is referred to Figure 12 in the supplementary material,
where this is highlighted for the x receive coil from Fig-
ure 1. Surprisingly, the relationship between large peaks
in the variance and the higher harmonics of the excita-
tion frequency remains unclear. On the system matrix
side, there exist different approaches to address the back-
ground removal issue, e.g., subtraction methods [26, 27]
prior the reconstruction or joint reconstruction meth-
ods [21, 28]. Particularly, in [28], the authors performed a
joint reconstruction of the same background signal in the
system matrix and the phantom measurement. However,
while the works [26, 27] include signal drift assumptions
on the background signal and a Gaussian assumption
on the phantom measurement noise the other works [21,
28] incorporate a Gaussian assumption on the noise dis-
tribution for the phantom measurement as well as for
the background measurement (in terms of a l2 norm in
a Tikhonov-type functional). Even if one includes drift
assumptions on the background signal, it is not guaran-
teed that the noise characteristic is taken into account
properly, when using a Gaussian assumption (often im-
plicitly by using an l2 data fitting term, see also further
specifications below). Thus, it is of interest to develop sta-
tistically consistent MPI reconstruction under the given
circumstances.

The data-based image reconstruction in MPI (given
a background-corrected system matrix) often proceeds
as follows. First, one selects a number of frequencies in
a background-corrected phantom measurement based
on a suitable “signal-to-noise ratio (SNR)” criterion [19,
29], and discards the remaining frequencies; see Sec-
tion II.I for details. This step partly removes the non-
gaussian component of the noise. The reconstruction
is performed using only the selected frequencies, often
formulated into a penalized least-squares problem with
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nonnegativity constraint and solved by a variant of Kacz-
marz method [30]. This strategy has achieved great em-
pirical success, and is now a standard MPI reconstruction
algorithm.

Nonetheless, there are still several issues on the over-
all reconstruction procedure. First, frequency selection
as a noise treatment procedure is ad hoc in nature, since
the threshold τ is nontrivial to set due to its dependence
on noise, while exerts big effect on imaging quality. A too
largeτmay throw away informative data points, whereas
a too small τmay invalidate i.i.d. Gaussian assumption
of the l2 fitting. Second, the performance relies on hy-
brid regularizing effects of both penalty and early stop-
ping of Kaczmarz iteration (e.g., a few sweeps over the
data), and the delicate interplay has not been fully ex-
posed. The hybridization greatly complicates the choice
of the regularization parameter and the stopping index.
Third and last, the background signal and its noise dis-
tribution in the measured forward map is often not fully
accounted for, even though there are important efforts
in that direction [21, 22, 28]. This issue is also related to
the proper mathematical modeling in MPI and is funda-
mental towards an accurate model-based reconstruction
algorithm as one commonly needs to solve a parameter
identification problem to determine a model-based sys-
tem function (see [31] for recent progress).

Common methods for image reconstruction in MPI
aim at minimizing a Tikhonov-type functional. Given
an ill-posed operator equation Ax = y , the standard
Tikhonov functional reads

1

2
‖Ax − y ‖2

2+
α

2
‖x‖2

2

where the first term is the data fitting or discrepancy term
incorporating a certain noise model and where the sec-
ond term is the regularization or penalty term incorpo-
rating a priori knowledge on the solution. While several
methods applied to MPI focus on various choices of a
priori knowledge on the solution [7, 15, 20, 21, 32, 33] (see
also the review [5]), i.e., formulations for the penalty term,
in the present work the focus is on the data fitting term.
In this work, we present a complementary approach to
noise treatment by SNR type frequency selection which
partly addresses the first challenge raised above. It is
based on the standard l1 data fitting (i.e., using the l1
norm in the data fitting term), or equivalently a Laplace
model on the noise (see Section II.II for details), which
has been popular in several areas, e.g., signal process-
ing [34] and image processing [35], but it has not been ap-
plied to MPI reconstruction yet, to the best of our knowl-
edge. The rational is that the nonselected frequencies
deviate largely from the bulk of the signals and thus can
be viewed as outliers, and l1 fitting is known to be more
robust with respect to outliers than the l2 fitting [36]. The
approach allows adaptive use of the data and thus full
exploitation of the given data for better reconstructions.

Numerically, l1 fitting leads to a convex but nonsmooth
optimization problem, which can be solved efficiently
by many modern stand-alone optimization solvers. We
employ a popular variant of the limited memory BFGS
algorithm, i.e., L-BFGS-B [37, 38]. We carry out extensive
numerical experiments with Open MPI dataset. Our
findings include that the l1 approach can indeed yield
excellent reconstructions both quantitatively in terms of
PSNR and SSIM and qualitatively in terms of background
and sharpness. The l1 approach is able to compete with
the standard iterative Kaczmarz-type approach which
yields high quality MPI reconstructions when using small
numbers of iterations, while the variational l2 approach
fails. However, when the thresholdτ is low, the Kaczmarz
method with optimally tuned regularization parameter
and stopping index performs better than the proposed
L1 scheme with a tuned regularization parameter. Thus,
these techniques may facilitate fast and accurate MPI re-
construction using variational regularization techniques.
To the best of our knowledge, this is the first work pre-
senting quantitative results in terms of standard image
quality measures (PSNR/SSIM) for phantom MPI data
(using the Open MPI dataset).

Note that one should not mix l1 (data) fitting with l1
norm penalty that has been widely used in compressed
sensing [39] and recently also in MPI reconstruction (see,
e.g., [20, 21, 40]). The latter assumes the sparsity of the
solution instead of noise, and thus is drastically different
from l1 fitting of this work.

The rest of the paper is organized as follows. In Sec-
tion II, we motivate and develop the robust formulation,
and describe the limited-memory BFGS algorithm. In
Section III, we present extensive quantitative and qual-
itative numerical results to showcase the performance
of the proposed approach and to investigate the inter-
play of regularization methods in a standard method.
In Section IV, we give concluding remarks and further
discussions. In the supplements, we provide additional
numerical results.

II. Methodologies

In this part we describe the standard approach and de-
velop the l1 approach.

II.I. Standard approach

The now standard preprocessing approaches to treat the
noise is frequency selection, including band pass ap-
proach and SNR-type thresholding. The description of
these approaches below largely follows [23]. Let JBP =
{ j ∈ Z| b1 ≤ | j |/T ≤ b2} be the indices for frequency
band limits 0 ≤ b1 < b2 ≤∞ and measurement time T .
This step is to further filter out remaining signal contri-
butions of the analogously filtered direct feedthrough
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induced by the applied magnetic field. For SNR-type
thresholding, one standard quality measure is the ratio
of mean absolute values from individual measurements
v (i )` (for the i -th calibration scan at the `-th receive coil)

and empty scanner measurements {v (k )`,0 }
K
k=1 [29]. Specif-

ically, let ISNR ⊂ {1, . . . , N } be the index set of individual
measurements. Let {ψ j } j∈N be an orthonormal basis,
e.g., discrete Fourier basis, for L 2(I ), where I is the time
interval for measurement. Then we define

d`, j =
1
|ISNR |
∑

i∈ISNR
|〈v (i )` −µ

(i )
` ,ψ j 〉|

1
K

∑K
k=1 |〈v

(k )
`,0 −µ`,ψ j 〉|

, (1)

where µ` =
1
K

∑K
k=1 v (k )`,0 is the mean background mea-

surement, and µ(i )` = κi v (ki )
`,0 + (1−κi )v

(ki+1)
`,0 is a convex

combination of the ki -th and ki + 1-th empty scanner
measurements for the i -th calibration scan. The param-
eters κi ∈ [0,1] are chosen to be equidistant for all cali-
bration scans between two consecutive empty scanner
measurements. That is, if there are Q calibration mea-
surements between the ki -th and the ki + 1-th empty
scanner measurement, then κi ∈ {0, 1

Q−1 , 2
Q−1 , . . . , 1}. For

a given threshold τ≥ 0, we define

J` = { j ∈ JBP |d`, j ≥τ}, `= 1, . . . , L , (2)

which comprises all frequency indices within a certain
frequency band and fulfilling an SNR-type measure for
the `-th receive coil. The threshold τ determines the
size of the reduced system and its accuracy: with a large
τ, the procedure is more conservative but may erro-
neously remove informative data, whereas with a small
τ, it may risk including highly corrupted data points. In
Figure 2, we present the SNR-type frequency selection
with three thresholds. With a proper τ, the number of
outliers is reduced, but not completely removed, even for
τ = 5, which may still greatly influence the reconstruc-
tion. Note the logarithmic scale on the vertical axis.

After applying band passing, thresholding, and split-
ting real and imaginary part of the Fourier-transformed
and background-subtracted measured system matrix,
we obtain a (reduced) linear system

Ax = y , (3)

where A is the (processed) calibrated system matrix (and
thus contains noise) and y is the noisy background-
subtracted phantom data. For a detailed description
of the processing chain we refer to [23, Sec. 2.1] The
standard reconstruction approach in the MPI literature
employs an l2 data fitting, which leads to the following
constrained approach

min
x≥0

1
2‖Ax − y ‖2+ α2 ‖x‖

2, (4)

where ‖ · ‖ denotes the Euclidean norm, and α> 0 is the
penalty parameter, controlling the tradeoff between data

fitting and penalty [41]. The constraint x ≥ 0 is inter-
preted componentwise. Problem (4) is often minimized
by a variant of Kaczmarz method [5]which is often used
with a small number of iterations to obtain reasonable
reconstructions. Indeed, a fixed small iteration number
does not guarantee convergence to a minimizer of the
functional, i.e., it is rather a hybrid regularization method
including an iterative mechanism with early stopping
than a pure variational Tikhonov regularization. In prac-
tice, dimension reduction techniques (via SNR type cri-
terion or randomized SVD) and proper weighting [19, 23]
may also be incorporated to accelerate and enhance the
reconstructions.

Note that the discussion so far assumes that back-
ground subtraction has been carried out so that the noise
has a zero mean, which is also assumed below. This con-
dition is implicit in the standard formulation (4). If the
mean of the noise is nonzero, then the l2 fitting should in-
corporate the mean as a drift term. The influence of back-
ground subtraction differs from calibrating the noise
statistics, e.g. whitening and heavy-tailed modeling. In
practice, background subtraction is not always direct;
see the works [21, 26–28] for in-depth study, including
joint estimation of the background and foreground.

II.II. L1 fitting

Statistically, the formulation (4) assumes an i.i.d. Gaus-
sian noise with zero mean. This is often justified by ap-
pealing to a version of central limit theorems, i.e., the
Gaussian is suitable for data that are formed from the
sum of a large number of independent components. A
well known limitation of the Gaussian model formula-
tion is its lack of robustness against outliers, i.e., data
points that lie far away from the bulk of the data: A single
aberrant data point can greatly influence all the parame-
ters in the model, even for these with little substantive
connection to the outlying observations [36, p. 443].

Thus, the validity of the approach (4) resides on valid-
ity of the i.i.d. Gaussian assumption on the noise. How-
ever, not all data in MPI can be adequately described by
a Gaussian model. From Figure 1, Gaussianity at best
holds true only for some frequencies, whereas for the oth-
ers, the data contains a significant amount of error, with
outlier like noise. The precise mechanism for the noise
remains largely elusive, and there are multiple sources,
related to unmodeled physics of the experimental pro-
cess, e.g., imperfect analog filter, direct feedthrough, and
unexpected magnetization of scanner components. In
practice, the electronic noise is often assumed to be Gaus-
sian [42], which is then weighted with a transfer function,
and also there exist (generally nongaussian) noise ar-
tifacts; see [43] for a study on the noise sources in the
receive chain of an MPI scanner. It is known in image
processing [44], signal processing [34] and statistics [45]
that noise with outliers is more adequately described by
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τ= 1 τ= 3 τ= 5

Figure 2: Variance of the background measurement provided with the “shape” phantom from Open MPI dataset, computed
from 1000 empty scans when using a 3D excitation in the preclinical Bruker MPI system. Visualized for the receive coil in
x -direction for different thresholds τ versus frequency indices jk ∈ J1; real part (top), imaginary part (bottom).

heavy-tailed distributions. In the presence of outliers,
an inadvertent adoption of the Gaussian model can seri-
ously compromise the reconstruction accuracy [36], and
often does not allow full extraction of the information
provided by the data. This calls for methods that are
robust to outliers.

There are several ways to derive robust estimators.
One classical approach is to first identify outliers with
noise detectors, e.g., by adaptive median filter and non-
local mean filter [46, 47], and then to perform inversion
on the dataset with outliers excluded [36]. Frequency
selection in Section II.I is a special noise detector (with
an SNR type criterion). This approach depends on the
accuracy of the noise detector. It can be highly nontrivial
to accurately identify all outliers, and misidentification
can adversely affect the reconstruction quality. See Fig-
ure 2 for an illustration. These observations necessitate
developing more systematic strategies for handling out-
liers, which can be achieved by modeling them explicitly
with a heavy-tailed distribution, e.g., Laplace, Student
t and Cauchy [48]. Laplace distribution is one of most
popular choices, with its density p (ξ) in one-dimension
given by

p (ξ) = λ
2 e −λ|ξ−µ|,

where µ and λ > 0 denote the mean (location) and (in-
verse) scale, respectively.

The proposed approach is based on an i.i.d. Laplace
distribution with zero mean assumption on the noise,
so as to allow outliers in the data. Assuming a Gaussian
prior (for the solution x ) in the Bayesian formalism as
in (4) and then considering the maximum a posteriori
estimator lead to

min
x≥0
‖Ax − y ‖1+

α
2 ‖x‖

2, (5)

where the notation ‖ · ‖1 denotes the `1 norm, i.e.,

‖z‖1 =
∑

i

|zi |,

and the scalar α> 0 is the corresponding regularization
parameter. In the absence of nonnegativity constraint,
this model was analyzed in [35].

The difference of (5) from (4) is that it employs the l1
fitting, which is more robust to outliers, i.e., the outliers
influence less the reconstructions, instead of the usual
l2 fitting. It partly avoids the frequency selection step in
the two-step procedure, and allows using more system-
atically the given data. In passing, one may also employ
alternatives, e.g., student t likelihood or Huber’s robust
statistics, but they will not be explored below.

II.III. Numerical algorithm

The formulation (5) involves solving a convex but nons-
mooth constrained optimization problem, and it can
be solved efficiently in several different ways, e.g., it-
eratively reweighted least-squares [49], alternating di-
rection method of multipliers [50], semismooth New-
ton method [35] and limited-memory BFGS. These algo-
rithms are easy to implement and converge steadily, if
relevant tuning parameters are properly chosen. We em-
ploy a version of limited-memory BFGS, i.e., L-BFGS-B
[37, 38]. It can ensure that problem (5) is solved accu-
rately in the sense of optimization, i.e., finding a near
global minimizer, so as to avoid extra regularizing effect
from the optimizer due to early stopping.

Limited-memory BFGS-B is a popular quasi-Newton
type method using a limited amount of computer mem-
ory for a differentiable objective function, approximat-
ing the inverse Hessian matrix using the BFGS approx-
imation, and handling the simple box constraint (i.e.,
upper and lower bounds) by an active set type strat-
egy [37]. It also includes a line search step to safeguard
the progress, and speeds up the computation using a
compact representation of the BFGS Hessian approx-
imation. It is well suited for large-scale optimization
problems with simple constraint, and there are sev-
eral well tested implementations [38] (see https://
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github.com/stephenbeckr/L-BFGS-B-C for a MAT-
LAB wrapper).

Since the l1 fitting is nondifferentiable, we approxi-
mate (5) by

min
x≥0
‖Ax − y ‖1,ε+

α
2 ‖x‖

2,

where ε> 0 is small, and ‖ · ‖1,ε is defined by

‖v ‖1,ε =
∑

i

q

v 2
i +ε2.

Note that the parameter ε controls the tradeoff between
the smoothness and accuracy, and in practice, it is often
taken from the range [1×10−14, 1×10−6]. Upon smooth-
ing, the objective function is differentiable, and thus the
limited memory BFGS-B can be applied directly. This
smoothing is simple and easy to implement.

III. Numerical experiments
Now we present numerical results to illustrate the poten-
tial and performance of the proposed l1 fitting on real
data. The experimental setup is as follows. We employ a
measured system matrix, where a band pass filter is ap-
plied (with b1 = 80 kHz and b2 = 625 kHz) and frequency
selection (with discrete Fourier basis {ψ j } j∈N) with a SNR
threshold τ is optionally applied, which yields a system
matrix Aτ ∈Rn×m for the L = 3 receive channels (see [23,
Sec. 2.1] for the description). Optionally, Aτ can also
be whitened [23, Sec. 2.3], where background measure-
ments are used to obtain a diagonal whitening matrix
Wτ ∈Rn×n . System matrices and measurements are con-
catenated and background-subtracted [23, Sec. 2.1]. For
frequency selection, we consider four thresholds, i.e.,
τ = 0,1,3,5, and the corresponding number n of rows
of Aτ is 70446, 68566, 9564 and 6146. All forward maps
are scaled to have a unit operator norm and phantom
measurements y are obtained analogously.

Below we compare results obtained from the follow-
ing reconstruction methods.

• [l1-L]: The l1 fitted reconstructions xl1 and xW ;l1 are
respectively obtained by

xl1 = arg min
x≥0
‖Aτx − y ‖1,ε+

α
2 ‖x‖

2 and

xW ;l1 = arg min
x≥0
‖WτAτx −Wτy ‖1,ε+

α
2 ‖x‖

2,

where the minimization is performed with L-BFGS-
B.

• [l2-K, l2-L]: The reconstructions xl2 and xW ;l2 are
respectively obtained by

xl2 = arg min
x≥0

1
2‖Aτx − y ‖2+ α2 ‖x‖

2 and

xW ;l2 = arg min
x≥0

1
2‖WτAτx −Wτy ‖2+ α2 ‖x‖

2,

where l2-K denotes minimization by Kaczmarz
method (see, e.g., [23, Algorithm 1]) with N itera-
tions (i.e., one loop over the entire matrix); respec-
tively l2-L denotes minimization by L-BFGS-B.

These methods are evaluated on a public 3D dataset
open MPI dataset (downloaded from https://www.
tuhh.de/ibi/research/open-mpi-data.html,
accessed on September 20, 2019) provided in the MPI
Data Format (MDF) [51]. The system matrix data
{v (i )` }

m
i=1, ` = 1,2,3, is obtained using a cuboid sample

of size 2 mm × 2 mm × 1 mm and a 3D Lissajous-type
FFP excitation. The calibration is carried out with
Perimag tracer with a concentration 100 mmol/l. The
field-of-view has a size of 38 mm × 38 mm × 19 mm
and the sample positions have a distance of 2 mm in
x - and y -direction and 1 mm in z -direction, resulting
in 19× 19× 19 = 6859 voxels, which gives the number
m of columns in the full matrix A. The entries of A
are averaged over 1000 repetitions and empty scanner
measurements are performed and averaged every 19
calibration scans. The measurements are averaged
over 1000 repetitions of the excitation sequence, and
with each phantom, an empty measurement with
1000 repetitions is provided, which are used for the
background correction of the measurement and A
[23, Sec. 2.1] and also for approximating the diagonal
covariance C respectively the whitening matrix W [23,
Sec. 2.3]. For the comparison below, the Kaczmarz
method [23, Algorithm 1] is run up to 200 iterations
(one iteration means one loop over the entire matrix),
without randomization and preconditioning, since
randomization does not affect much the reconstruction
for the dataset. The L-BFGS-B algorithm in l1-L and l2-L
is used with 20 limited-memory vectors, 1e-10 for pgtol
(tolerance for the `∞ norm of the projected gradient),
and 10000 for maximum number of iterations, and for
l1-L, ε= 10−12 is chosen.

We validate the proposed method on the “shape” and
“resolution” phantoms in the dataset. The “shape” phan-
tom is a cone defined by a 1 mm radius tip, an apex angle
of 10 degree, and a height of 22 mm. The total volume
is 683.9 µl. Perimag tracer with a concentration of 50
mmol/l is used. See Figure 3 for a schematic illustration,
where the plots are adapted from Open MPI dataset.
The “resolution” phantom consists of 5 tubes filled with
Perimag tracer with a concentration of 50 mmol/l. The
5 tubes have a common origin on one side of the phan-
tom, and extend in different angles from the origin within
the x -y - and y -z -planes. In the z -direction, the angles
in the y -z -plane are chosen smaller (10 deg and 15 deg)
than in x -y -plane (20 deg and 30 deg); see Figure 4 for the
illustration. In all the reconstructions below, the concen-
tration unit is mmol/l. See Figure 5 for the visualization
structure of the 3D reconstructions below.

In the Open MPI dataset, CAD drawings of the
phantoms are provided; see Figures 3 and 4. From these
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(a) photo (b) CAD drawing (c) 3D voxel image

Figure 3: “Shape” phantom from the open MPI dataset.

(a) photo (b) CAD drawing (c) 3D voxel image

Figure 4: “Resolution” phantom from the open MPI dataset.

Figure 5: Visualization structure for the 3D reconstructions (left) and the ground truth “shape” (middle) and “resolution” (right)
phantoms on the spatial grid.

drawings we extracted the support Γ ⊂R3 of the the re-
spective phantom. Together with the known tracer con-
centration c̃0 > 0, it allows extracting voxel images as a
ground truth reference. However, there is uncertainty
with the actual phantom position, and also the robot
arm moving the phantom in the bore has an unknown
standard deviation. Thus, we formulate an image qual-
ity measure as follows. First we estimate the phantom
position from the reconstructed image to define a rea-
sonable estimated reference image c0 :R3→R+. Then
we account for position uncertainty by shifts ∆r ∈ R ,
where R is the set of all possible position shifts in the
neighborhood [−3mm, 3mm]3 with a step size 0.5mm in
each direction (|R| = 2197). The L 2 scalar products of
c0(r +∆r ) = c̃0χΓ+∆r (r ) and the piecewise constant basis
functions {ψ j } j with respect to the voxel grid yields the
reference image xref,∆r , which is then used to define the

following uncertainty-aware image quality measures

εPSNR(x ) = max
∆r∈R

PSNR(x , xref,∆r ) (6)

εSSIM(x ) = max
∆r∈R

SSIM(x , xref,∆r ) (7)

exploiting the standard image quality measures, i.e.,
peak-signal-to-noise-ratio (PSNR) and structural similar-
ity measure (SSIM) [52]. Two example reference images
are illustrated in Figure 5. These two metrics are used for
quantitative comparisons below.

III.I. Algorithmic performance,
quantitative comparison and the
influence of SNR-type thresholding

First, we compare the performance of the methods quan-
titatively and qualitatively. To this end, we employ the
best image quality measure for each method and SNR-
type threshold τ, using the corresponding “optimal” reg-
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Table 1: The εPSNR values for l1-L, l2-L, and l2-K. The numbers in brackets refer to α, respectively α and the iteration number N
for l2-K.

“Shape” phantom
non-whitened whitened

τ l1-L l2-L l2-K l1-L l2-L l2-K
0 19.687 (2−5) 19.848 (2−7) 28.615 (2−17, 2) 19.379 (2−5) 20.139 (2−7) 29.430 (2−16, 2)
1 23.997 (2−4) 21.327 (2−6) 29.075 (2−15, 2) 24.240 (2−2) 24.475 (2−6) 29.866 (2−13, 2)
3 27.738 (2−2) 25.305 (2−8) 29.233 (2−14, 2) 27.888 (2−1) 26.152 (2−7) 29.702 (2−13, 2)
5 27.669 (2−3) 25.680 (2−8) 28.907 (2−14, 2) 27.616 (2−2) 26.443 (2−7) 29.393 (2−13, 2)

“Resolution” phantom
non-whitened whitened

τ l1-L l2-L l2-K l1-L l2-L l2-K
0 29.713 (2−3) 29.488 (2−11) 31.673 (2−18, 1) 29.812 (2−3) 29.512 (2−10) 31.880 (2−17, 1)
1 30.765 (2−2) 29.534 (2−10) 31.812 (2−18, 37) 30.990 (2−2) 30.248 (2−9) 32.419 (2−17, 84)
3 31.634 (2−2) 30.426 (2−11) 31.908 (2−17, 27) 31.707 (2−1) 30.875 (2−9) 32.160 (2−16, 26)
5 31.510 (2−3) 30.432 (2−11) 32.152 (2−18, 56) 31.544 (2−2) 31.243 (2−12) 32.134 (2−16, 53)

non-whitened whitened
l1-L l2-L l2-K l1-L l2-L l2-K

τ= 0

τ= 1

τ= 3

τ= 5

Figure 6: “Shape” phantom reconstructions, PSNR-optimized α and iteration number N (for l2-K only) according to Table 1.
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non-whitened whitened
l1-L l2-L l2-K l1-L l2-L l2-K

τ= 0

τ= 1

τ= 3

τ= 5

Figure 7: “Resolution” phantom reconstructions, PSNR-optimized α and iteration number N (for l2-K only) according to
Table 1.

ularization parameter α, respectively α and iteration
number N for l2-K, and then visualize the respective re-
constructions for a qualitative comparison. We analyze
the measures PSNR and SSIM separately.

PSNR

The PSNR results are given in Table 1; see Figures 6 and 7
for the reconstructions. First, we compare the two pure
variational regularization approaches, i.e., l1-L and l2-L.
Clearly, l1-L greatly outperforms l2-L in all cases, show-
ing robustness of the l1 fitting with respect to outliers.
Second, we compare l1-L to l2-K. The comparison with
l2-K is more difficult due to the presence of two differ-
ent sources of regularizing effect, i.e., variational and
iterative, controlled respectively by the regularization
parameter α (in all methods) and iteration number N .
Using a fixed and small N , as often done in practice, l2-K

does not reach convergence in the sense of optimization
(i.e., finding a global minimizer to (4)), and instead is
actually early stopping in the spirit of iterative regular-
ization [53]. Nonetheless, for a sufficiently large N , the
result by l2-K is similar to that by l2-L. The behavior of l2-
K with regard to the early stopping issue will be examined
more closely below. Here, we choose the optimum with
respect to the tuple (α, N ). Now we examine the PSNR
results more closely. For both phantoms l2-K yields the
best reconstruction for all SNR thresholds. The overall
optimum is found in the whitened case for τ= 1 for both
phantoms. In particular, the “resolution” phantom re-
sults obtained with l1-L yields comparable PSNR values
when using larger τ.

Qualitatively, the reconstructions in Figures 6 and 7
(corresponding to the PSNR-optimal α, resp. N ) exhibit
severe background artifacts for l2-K; The artifacts are
more visible in the inverted map shown in Appendix C.
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Table 2: The εSSIM values (dynamic range 100 mmol/l) for l1-L, l2-L, and l2-K. The numbers in brackets refer to α, respectively α
and the iteration number N for l2-K.

“Shape” phantom
non-whitened whitened

τ l1-L l2-L l2-K l1-L l2-L l2-K
0 0.844 (2−6) 0.830 (2−8) 0.933 (2−12, 38) 0.846 (2−8) 0.845 (2−8) 0.949 (2−11, 16)
1 0.915 (2−4) 0.868 (2−6) 0.947 (2−13, 11) 0.918 (2−3) 0.925 (2−6) 0.963 (2−10, 5)
3 0.970 (2−3) 0.905 (2−9) 0.929 (2−13, 3) 0.972 (2−2) 0.943 (2−6) 0.946 (2−9, 3)
5 0.972 (2−4) 0.897 (2−8) 0.944 (2−12, 4) 0.973 (2−3) 0.942 (2−7) 0.964 (2−10, 3)

“Resolution” phantom
non-whitened whitened

τ l1-L l2-L l2-K l1-L l2-L l2-K
0 0.939 (2−3) 0.931 (2−10) 0.977 (2−17, 22) 0.943 (2−2) 0.939 (2−10) 0.980 (2−16, 16)
1 0.964 (2−3) 0.942 (2−10) 0.980 (2−16, 20) 0.968 (2−1) 0.957 (2−9) 0.981 (2−13, 12)
3 0.981 (2−1) 0.957 (2−9) 0.980 (2−15, 12) 0.981 (20) 0.968 (2−9) 0.980 (2−13, 10)
5 0.980 (2−1) 0.957 (2−9) 0.980 (2−15, 18) 0.981 (20) 0.970 (2−10) 0.981 (2−13, 15)

non-whitened whitened
l1-L l2-L l2-K l1-L l2-L l2-K

τ= 0

τ= 1

τ= 3

τ= 5

Figure 8: “Shape” phantom reconstructions, SSIM-optimized α and iteration number N (for l2-K only) according to Table 2.
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non-whitened whitened
l1-L l2-L l2-K l1-L l2-L l2-K

τ= 0

τ= 1

τ= 3

τ= 5

Figure 9: “Resolution” phantom reconstructions, SSIM-optimizedα and iteration number N (for l2-K only) according to Table 2.

In particular, l2-L fails to give reasonable results, and
l1-L gives far more reasonable reconstructions for τ≥ 1.
For both phantoms, l1-L and l2-K give similar results for
τ≥ 3, and both outperform l2-L.

SSIM

The SSIM results are given in Table 2 and the recon-
structions in Figures 8 and 9. Similar to the PSNR case,
l1-L and l2-K outperform l2-L in all cases. In the non-
whitened case, l1-L performs best for both phantoms
phantom for large τ ≥ 3. For both phantoms, the over-
all best possible SSIM is obtained with l1-L in the non-
whitened. In the whitened case, l1-L and l2-K yield the
best possible SSIM.

In contrast to the PSNR results, the reconstructions in
Figures 8 and 9 indicate less severe but still pronounced
background artifacts for l2-K. For small thresholds, l2-L
fails to give reasonable results, while l1-L can give good

reconstructions for τ≥ 1. For the “resolution” phantom,
l1-L and l2-K give similar results for τ≥ 3, and both per-
form superior to l2-L.

Influence of SNR-threshold and general
observations

Now we study the behavior of the quality measures with
respect to the SNR threshold τ by examining Tables 1
and 2 columnwise more closely. For PSNR, the observa-
tions vary across the methods. For l2-L, PSNR increases
monotonically with τ in all cases, for l2-K, it does not
show a steady trend, and for l1-L, it reaches a maximum
before decreases again for τ= 5. In contrast, SSIM in Ta-
ble 2 first increases and then decreases for l1-L and l2-L
in most cases, while l2-K does not show a steady trend
like in the PSNR case. Thus, frequency selection with a
proper τ benefits all variational methods and is recom-
mended for MPI reconstruction, but a too large τmay
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compromise imaging quality, as observed earlier [23].
With whitening, for both phantoms, the performance

of l2-L and l2-K can be improved in almost all cases, but
l1-L benefits less from whitening in most cases. Statisti-
cally, whitening ensures that the i.i.d. assumption in the
least-squares formulation is more adequately fulfilled (if
the variance estimate is accurate), and thus it is more
beneficial to the standard approach (4). l1-L is more
resilient to noise type, and thus whitening plays a less
important role.

The worse performance of l1-L for τ= 0 indicate that
solely l1 fitting without SNR thresholding is not able to
compensate all data outliers. Visually inspecting Fig-
ure 1 allows identifying severe outliers when no SNR-
type thresholding is applied. Thresholding still results
in a background signal with a variance structure and
large outliers, but the maximum variance is several or-
ders smaller in magnitudes than the no-thresholding
case, cf. Figure 2. In sum, frequency selection is benefi-
cial for all variational methods when done carefully: A
minimum τ is necessary but a too large τ can compro-
mise image quality.

III.II. The influence of multiple
regularization techniques in the
standard approach

Now we present a more detailed comparative study of l2-
K, which is one of the most commonly used techniques in
MPI. Since both variational and iterative regularizations
contribute to l2-K, we test different iteration numbers
N in l2-K to shed further insights, and present the PSNR
and SSIM results for “shape” and “resolution” phantom
in Figures 10 and 11 for the whitened case. For the non-
whitened case one can make analogous observations (see
Figures 13 and 14 in the appendix). This shows the deli-
cate interplay of the different regularization techniques:
The smaller α (vertical direction) is, the less is the recon-
struction influenced by the variational regularization.
The influence of an iterative regularization mechanism
decreases with larger iteration numbers (horizontal di-
rection).

For the “shape” phantom, PSNR and SSIM results give
similar pictures. In terms of PSNR, one already obtains
an optimal value after two iterations (i.e., N = 2) and
also for the SSIM case the necessary iteration numbers
to reach the optimum are all below 20. For the “reso-
lution” phantom we can make analogous observations
for SSIM but we observe larger iteration numbers up to
100 to reach the optimal PSNR. Nevertheless, 100 iter-
ations are still insufficient to reach convergence of the
Kaczmarz methods as the l2-L results (if l2-K does reach
convergence) still deviate largely. In particular, for τ≥ 3
the trend of the solid lines already indicates the optimal
α values found for l2-L, showing the beneficial regulariz-
ing effect built into l2-K due to early stopping. However,

Figures 10 and 11 indicate that sole iterative regulariza-
tion is not enough as l2-K fails for small α tending to zero
(see trend from bottom to top in each plot). Interestingly,
sole variational regularization also fails, since the image
quality decreases for larger iteration numbers in l2-K (ap-
proaching the worse l2-L results for sufficiently large N ).
This indicates the need of tuning multiple parameters,
which is in practice undesirable. Provided that the opti-
mal stopping index (and α) is found, l2-K yields superior
PSNR values and at least superior SSIM values for smallτ.
For τ≥ 3 l1-L is a pure variational alternative depending
on one single parameter only.

Finally, the computing time for the methods is sum-
marized in Table 3, which shows that computationally
l1-L is comparable with l2-K for N = 50. Curiously, the
computing time for l1-L withτ= 0 is smaller than that for
τ> 0, indicating that the problem might be not properly
solved, concurring with the poor numerical results for
τ = 0 by l1-L in Tables 1 and 2. Note that in the litera-
ture the Kaczmarz method is also sometimes exploited
for online reconstruction [19, 23]. This can be realized
using a dimension reduction technique together with a
sufficiently small number of iterations.

IV. Concluding remarks and
comments

In this work we have investigated the potential of the
l1 data fitting for MPI reconstruction and compared it
with the standard method l2-K in MPI. After applying a
bandpass filter only, one can observe severe outliers in
the MPI signal which are of orders of magnitudes larger
and prevent obtaining reasonable reconstructions. A
data fidelity term based on the l1 norm has been success-
fully applied to various applications, where the noise is
characterized by severe outliers. However, within MPI,
the l1 fitting can only solve the problem to a certain ex-
tent, and the recommendation is to combine it with the
established SNR-type frequency selection (which still
results in an MPI signal with large outliers). Then the
l1 fitting can compete with the standard method’s re-
construction performance for both non-whitened and
whitened cases in terms of the popular PSNR and SSIM
measures and visual quality. However, the l1 fitting only
relies on one tunable parameter compared to two in the
standard method, which is advantageous for the devel-
opment of one-click solutions for applicants. To the best
of our knowledge, we have presented a first quantitative
study on phantom MPI data with respect to image qual-
ity measures for Open MPI dataset, which shows the
benefits of using l1 fitting for pure variational methods,
and we quantitatively explored the beneficial interplay
between iterative and variational regularization in the
standard method. There is strong implicit regularization
built into the popular l2-K, whose precise mechanism is
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PSNR SSIM
τ= 0

τ= 1

τ= 3

τ= 5

Figure 10: Image quality measures with respect to α values and iteration number of l2-K visualized for the “shape” phantom in
the whitened case. The “x” marks the optimum. The solid line highlights the contour of the maximum image quality over α
values for fixed iteration number N (highlights the maximum of each column). The dashed line highlights the contour of the
maximum image quality over iteration numbers N for fixed α values (highlights the maximum of each row).

to be ascertained.

In the context of l2 fitting, whitening is known to be
beneficial for the reconstruction [23]. This suggests that
whitening might adjust the noise characteristic such that
it is closer to the i.i.d. Gaussian case, for which the l2
fitting is most suitable. Numerically, this clearly allows
enhancing the reconstruction quality. The influence of
whitening on the l1 fitting is less dramatic due to its ro-
bustness with respect to outliers. Variational regulariza-
tion methods need to respect the MPI noise character-
istic in order to compete with l2-K, which is confirmed

by the failure of l2-L and the success of l1-L for larger
SNR-thresholds in terms of SSIM. Besides MPI recon-
structions, these findings also can have implications for
the calibration procedure in the model-based approach.
Whenever model parameters have to be identified for
the purpose of system calibration, the noise character-
istic should be properly accounted for. Furthermore, si-
multaneous background-removal and image reconstruc-
tion approaches [21, 28] have only exploited Gaussian
assumptions on the noise so far and might also benefit
from an extension taking into account the noise charac-
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PSNR SSIM
τ= 0

τ= 1

τ= 3

τ= 5

Figure 11: Image quality measures with respect to α values and iteration number of l2-K visualized for the “resolution” phantom
in the whitened case. The “x” marks the optimum. The solid line highlights the contour of the maximum image quality over α
values for fixed iteration number N (highlights the maximum of each column). The dashed line highlights the contour of the
maximum image quality over iteration numbers N for fixed α values (highlights the maximum of each row).

teristic by l1 fitting terms in the respective variational ap-
proach. The identification of the noise in the system and
its proper modeling are also related but they are different
directions of research and deserve further research.

This study has only focused on the influence of the
data fidelity, and does not touch the important issue
of penalty for best possible image reconstruction. Ad-
vanced variational penalties [21, 40], e.g., l1, total varia-
tion and their variants and more recent learning based
approaches [24], promise highly desirable features, e.g.,
edge preservation, at the expense of increased compu-

tational efforts, but largely remain to be systematically
explored, naturally also with the l1 fitting. In addition the
development of a larger phantom dataset or extension
of the existing one as a benchmark for reconstruction
methods is highly desirable. We leave these important
issues to future works.
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non-whitened
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A. Supplementary material: Higher harmonics in the background
signal

Real part (x receive coil)
fx

fy fz

Imaginary part (x receive coil)
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fy fz

All (x receive coil)
Real part Imaginary

Figure 12: Mean and variance of the background measurement provided with the “shape” phantom from Open MPI dataset,
computed from 1000 empty scans when using a 3D excitation in the preclinical Bruker MPI system. Visualized for the x receive
coil with respect to the frequency; real part and imaginary part. The higher harmonics of the excitations are highlighted by
vertical lines for excitation frequencies fx , fy , fz (from left to right), and all at the bottom.
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B. Supplementary material: Standard approach iteration results -
non-whitened
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Figure 13: Image quality measures with respect to α values and iteration number of l2-K visualized for the “shape” phantom in
the non-whitened case. The “x” marks the optimum. The solid line highlights the contour of the maximum image quality over α
values for fixed iteration number N (highlights the maximum of each column). The dashed line highlights the contour of the
maximum image quality over iteration numbers N for fixed α values (highlights the maximum of each row).
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Figure 14: Image quality measures with respect to α values and iteration number of l2-K visualized for the “resolution” phantom
in the non-whitened case. The “x” marks the optimum. The solid line highlights the contour of the maximum image quality over
α values for fixed iteration number N (highlights the maximum of each column). The dashed line highlights the contour of the
maximum image quality over iteration numbers N for fixed α values (highlights the maximum of each row).
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C. Supplementary material: Method comparison - inverted
colormap
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Figure 15: Figure 6 with inverted colormap: “Shape” phantom reconstructions, PSNR-optimized α and iteration number N (for
l2-K only) according to Table 1.
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Figure 16: Figure 7 with inverted colormap: “Resolution” phantom reconstructions, PSNR-optimized α and iteration number
N (for l2-K only) according to Table 1.
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Figure 17: Figure 8 with inverted colormap: “Shape” phantom reconstructions, SSIM-optimized α and iteration number N (for
l2-K only) according to Table 2.
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Figure 18: Figure 9 with inverted colormap: “Resolution” phantom reconstructions, SSIM-optimized α and iteration number N
(for l2-K only) according to Table 2.
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