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Structured abstract  

Purpose of review:  

Community-acquired bacterial meningitis is a continually changing disease. This review 

summarises both dynamic epidemiology and emerging data on pathogenesis. Updated 

clinical guidelines are discussed, new agents undergoing clinical trials intended to reduce 

secondary brain damage are presented.  

Recent findings:  

Conjugate vaccines are effective against serotype/ serogroup-specific meningitis but vaccine 

escape variants are rising in prevalence. Meningitis occurs when bacteria evade mucosal 

and circulating immune responses and invade the brain: directly, or across the blood-brain 

barrier. Tissue damage is caused when host genetic susceptibility is exploited by bacterial 

virulence. The classical clinical triad of fever, neck stiffness and headache has poor 

diagnostic sensitivity, all guidelines reflect the necessity for a low index of suspicion and 

early LP. Unnecessary cranial imaging causes diagnostic delays. CSF culture and PCR are 

diagnostic, direct next-generation sequencing of CSF may revolutionise diagnostics. 

Administration of early antibiotics are essential to improve survival. Dexamethasone partially 

mitigates CNS inflammation in high-income settings. New agents in clinical trials include C5 

inhibitors and daptomycin, data are expected in 2025. 

Summary:  

Clinicians must remain vigilant for bacterial meningitis. Constantly changing epidemiology 

and emerging pathogenesis data are increasing the understanding of meningitis. Prospects 

for better treatments are forthcoming. 
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Introduction  

Acute bacterial meningitis (ABM) is a disease with rapid onset, outbreak and epidemic 

potential, and high rates of mortality and morbidity[1, 2]. Considerable advances have been 

made in the last 30 years towards epidemic management and disease control through 

vaccination, and understanding the contributions of both host and pathogen to clinical 

outcomes. In this review we will summarise the rapidly changing epidemiology of ABM in the 

context of new vaccines. We will show how new unbiased genomics technologies are 

revealing specific host-pathogen interactions that cause inflammation and brain damage. 

Additionally, we will summarise which new adjunctive treatments are in development and 

describe how the current SARS CoV2 pandemic may impact on the WHO’s efforts to defeat 

meningitis by 2030. 

 

Main text  

Epidemiology & impact of vaccination  

Community acquired bacterial meningitis is predominately caused by three pathogens, 

Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type B. 

Additionally, Streptococcus suis in Southeast Asia, Listeria monocytogenes, Group B 

Streptococci, and Gram negative bacteria such as Escherichia coli and Klebsiella 

pneumoniae, cause meningitis in specific groups, including neonates, pregnant women, 

transplant recipients and older adults[3]. World-wide, the number of reported cases of 

bacterial meningitis to global surveillance sites rose between 2006-2016, with incidence 

strongly related to poverty (SDI)[3]. However, geographical incidence varies significantly. In 

well-resourced settings, ABM incidence has fallen to below 0.5-1.5/100,000 population[4-6]. 

Contrastingly, in countries in the African Sahel region, where epidemic meningitis due to 

Neisseria meningitidis and Streptococcus pneumoniae persists, incidence reaches 

1000/100,000 cases[7, 8],[3, 9]. Beyond the meningitis belt, incidence in Africa approaches 

2.5-25/100,000 per population[10, 11]. 
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Bacterial meningitis is globally associated with cooler, drier seasons[9]. It is likely that 

climate change will impact on meningitis incidence but modelling data are lacking[11]. Social 

distancing measures introduced to mitigate spread of SARS CoV2 during the COVID-19 

pandemic are also predicted to lead to a 20-30% decrease  in meningitis incidence[12] [13]. 

 

 

Global meningitis epidemiology is highly dynamic; changes in the last 25 years amongst 

adults and children have been influenced by widespread use of conjugate vaccines[14-16], 

the HIV-1 epidemic[17-19], roll-out of antiretroviral and antibacterial treatment including 

prevention of mother-to-child transmission[20],[21], and significant progress on development 

and poverty reduction strategies (SDG), including improved maternal and neonatal care[22]. 

Vaccination remains the most important pillar of the WHO-led roadmap towards defeating 

meningitis by 2030[23]. A summary of all available vaccines against the three common 

pathogens is given in Table 1. 

 

Streptococcus. pneumoniae 

S. pneumoniae is the commonest cause of ABM world-wide. Reports of reduction in 

paediatric invasive pneumococcal disease (IPD), following PCV introduction in higher 

income countries, were rapidly followed by evidence of herd immunity in the wider adult 

population, particularly the elderly[24-26]. Incidence of S. pneumoniae meningitis is 

estimated to have fallen by 48% in children [14, 16, 27]. However, parallel reports have 

emerged of IPD, including meningitis, caused by non-vaccine serotypes[14, 28-30]. To 

mitigate against serotype replacement and better prevent meningitis, new approaches to 

pneumococcal vaccine design are under development, including whole capsule and protein 

vaccines[31-35].   

 



Version: 6  
Date:  04.03.2021 
 

5 

N. meningitidis 

Conjugate meningococcal vaccines are highly effective in preventing meningitis caused by 

individual serogroups. Serogroup C Incidence has declined dramatically following the 

introduction of Men-C vaccine in children in many high-income countries[36-38]. Epidemic 

meningitis caused by serogroup A in the Sahel region of Africa has been dramatically 

reduced by low-cost MenAfriVac serogroup A conjugate vaccine by 92%[39, 40]. However, 

virulent clones of other serogroups have subsequently emerged (C, W, X) and epidemics of 

meningococcal meningitis continue to occur in the Sahel[41, 42].  

 

As serogroup C disease declined, serogroup B emerged as the leading cause of 

meningococcal meningitis in high SDI countries[15]. In 2015, the UK government introduced 

protein-based serogroup B vaccine 4CMenB (Bexsero) to all children under 2 years. UK 

cases of invasive serogroup B in children have declined 75% with estimated overall vaccine 

efficacy of 54%[43]. However, disease due to other serogroups including W and Y remains 

problematic. MenC conjugate vaccine has now been replaced with quadrivalent MenACWY 

vaccine for all teenagers and young adults in the UK[38]. 

 

H. influenzae 

Hib vaccination in 1989 led to dramatic reductions in paediatric meningitis between 75-

95%[44, 45]. Subsequently, Hib meningitis has virtually been eliminated globally in 

countries with effective Expanded Programme of Immunisations (EPI), but persists where 

vaccination coverage is poor including India, Nigeria, Pakistan and the Democratic Republic 

of Congo[16],[44, 46, 47]. Hib conjugate vaccines are estimated to have reduced Hib 

meningitis by 49% globally 2000-2016[3], and paediatric deaths by 90% over the same time 

period[16]. However, it is concerning that non-type b stains such as Hia are emerging[42]. 

 

Group B Streptococcus 
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Streptococcus agalactiae (Group B Streptococcus, GBS) primarily causes meningitis in 

neonates but also causes sepsis in older adults with co-morbidities and young adults who 

have consumed contaminated fish[48].  Serotypes Ia, Ib, II, III, and V account for 98% of 

human carriage serotypes isolated globally [49]. Clonal complex 17 (CC17) strains have 

been shown to be hypervirulent, accounting for more than 80% of disease[50, 51]. GBS 

disease-causing lineages have distinct niche adaptation and virulence characteristics[52, 

53]. The most promising strategy to eliminate neonatal meningitis caused by GBS is 

vaccination in pregnancy, trials are ongoing[54-56] [57].  

 

Pathogenesis  

 

The pathogenesis of most ABM follows a sequential pattern: nasopharyngeal colonization, 

bloodstream invasion across the mucosa, circulation of bacteria to the central nervous 

system (CNS), and subsequent CNS entry [58],[59]. In ABM caused by L. monocytogenes, 

GBS and S. suis, bacteraemia has a GI or GU tract source[52, 60, 61]. Occasionally, ABM is 

acquired through direct CNS invasion through the cribriform plate[62, 63]. In the majority of 

immunocompetent individuals, colonisation of the nasopharynx by S. pneumoniae and N. 

meningitidis is cleared by mucosal immunity, despite epithelial invasion [58]. Co-infection 

with S. pneumoniae and respiratory viruses such as influenza causes a heightened 

inflammatory state associated with both pneumococcal and meningococcal invasion[64-66], 

indeed preceding influenza is associated with seasonal ABM[11, 67].  

 

Bacteraemia usually precedes translocation across the blood-brain and/or blood-

cerebrospinal fluid barriers into the CNS.  Under basal conditions the CNS environment is 

under continuous immunological surveillance[68].  This is achieved through the complexity 

of the BBB, where pericytes, astrocytes, microglia and specialised endothelial cells work in 

synergy to both resist pathogen invasion and kill bacteria on entry[68] (Fig 1). Bacteria 
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breach the BBB by interacting with laminin receptors and exploiting endocytic pathways, for 

example via PAFR signalling[69-72] (Fig 1). However, mechanisms by which ABM-causing 

bacteria subvert CNS barriers to cause meningitis are not fully described. 

 

In the 10-30% of ABM cases without concurrent bacteraemia[73],  bacteria may interact with 

gangliosides, adhere to the olfactory bulb, invade the olfactory epithelium and directly 

translocate to the brain[63, 74-77]. Pneumococcal strains causing non-hematogenous 

meningitis tend to be less frequently studied using bacteraemia-based animal models[75-

77].  

 

Inflammation and exacerbation of tissue damage in ABM 

Bacteria replicate rapidly in the relatively immune-privileged CNS compartment[78], 

releasing PAMPs that bind to toll-like receptors including 2,3,4 and 9, triggering the release 

of DAMPS via NFkB activation[79-82]. The subsequent release of extracellular cytokines 

and chemokines including CXCL8 and CSF-3 drives a rapid influx of neutrophils to the CSF 

compartment[83, 84].  

Bacterial PAMPs and virulence proteins exert direct damage on the delicate structures of the 

CNS. Pneumococcal virulence factors, including capsule and pneumolysin, reduce microglia 

motility and chemotaxis[85]. Pneumolysin, a cytolysin and TLR4 agonist is implicated in 

directly toxic effects on host cells, particularly within the BBB and hippocampus[86, 

87].Others stimulate CERB binding protein (CBP) and Receptor for Advanced Glycation End 

Products (RAGE), increasing TNF-a levels and promoting BBB disruption[88, 89].  

Host-detection of bacteria within the CNS triggers a highly inflammatory, and predominately 

ineffective host response, associated with further tissue damage. Sustained inflammation 

exacerbates tissue damage, leading to death or irreversible neurological damage[73, 90, 

91]. Neutrophil infiltration is important for bacterial elimination[92]. However, neutrophils can 

directly damage the CNS[93]. Neutrophil extra-cellular traps (NETs) unexpectedly impaired 
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CNS pneumococcal clearance and increased inflammatory damage in an experimental 

model[83]. Damaging DAMPS released both from neutrophil degranulation and NFkB 

signalling include myeloperoxidase, matrix-metalloproteinases, TNF- and 

prostaglandins[94-97]. Neutrophil-mediated inflammation is strongly associated with 

dysfunctional coagulation and fibrinolytic cascade in the CNS, including excess of the 

anaphylatoxin complement C5[98].  

Clinical improvement with dexamethasone adjunctive therapy in both Hib and pneumococcal 

meningitis demonstrates the importance of host-mediated inflammation in ABM[99, 100]. 

Dexamethasone may reduce NFkB signalling and cytokine release[101].  

 

Leveraging new technology to interrogate ABM pathogenesis 

Bacterial genome wide association studies (GWAS) have revealed loci that are implicated in 

invasiveness, tissue tropism and the ability to cause CNS disease[102-104],[105]. SNPs in 

the raf operon determine pneumococcal tropism for ear/brain or lungs in an intranasal 

challenge model[106, 107]. Additionally, SNPs in raf modulated neutrophil recruitment, 

leading to strain-dependent clearance[106].  

Gene expression in S. pneumoniae is niche dependent, highlighting the importance of 

bacterial metabolism in pathogenesis[108, 109]. In a quantitative proteomics studies of ABM, 

the abundance of pneumococcal protein EF-Tu in CSF associated with severity in human 

disease[97]. In a murine model, proteins AliB and competence peptides were implicated in 

pathogenesis[110]. Joint human-pathogen GWAS studies of meningitis patients suggest that 

genetic differences in the host response exerts greater effects on susceptibility and disease 

severity than bacterial genotype. This GWAS identified variants in the CCDC3 gene 

associated with disease severity[102]. CCDC3 is a multi-function gene involved in 

metabolism and suppression of NFkB- TNF activation in endothelial cells[111]. 

 

New directions in diagnostics and clinical management  
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Early recognition and initiation of appropriate antimicrobials are essential to minimise death 

and complications from ABM. The differential diagnosis in patients presenting with 

headache, fever, neck stiffness or altered mental state is broad: the classical meningitis triad 

has limited diagnostic sensitivity[112]. A high index of clinical suspicion is thus required to 

diagnose ABM[113]. Lumbar puncture is essential, and should be undertaken promptly 

before CSF is rendered sterile by broad spectrum antibiotics[114]. 

 

Many patients with ABM present with an altered level of consciousness, leading clinicians to 

frequently request cranial imaging prior to diagnostic lumbar puncture. Early LP is strongly 

associated with higher diagnostic yield from the CSF; delays in LP for cranial imaging lead to 

substantial reductions in yield from either CSF bacterial culture or PCR[114].  Delays to 

diagnosis are linked to worse clinical outcomes[114-116]. Cranial imaging (either CT or MRI) 

in patients with clear clinical signs and symptoms of meningitis without focal neurology is 

thus not recommended in the majority of patients with suspected ABM[117, 118]. CT has 

poor inter-reporting reliability to predict the risk of cerebral herniation in ABM[119]. The 

American, British and European infection societies meningitis guidelines all recommend 

immediate LP in cases of suspected ABM without delay for CT/MRI in immunocompetent 

adults with suspected ABM who have a stable GCS of >= 12/15 without seizures[120-123]. 

Important contraindications to LP include shock, respiratory compromise, or coagulopathy. 

 

The diagnosis of ABM is dependent on analysis of CSF. The leukocyte count remains the 

strongest predictive value of ABM. Diagnostic models including clinical, CSF and blood data 

show little additional benefit beyond clinical judgement[112]. Antibiotic administration prior to 

LP commonly renders the CSF sterile, thus clinicians are increasingly dependent on 

diagnostic polymerase chain reaction (PCR). Recent data suggest that while small multiplex 

panels targeting Hib, meningococci and pneumococci are highly sensitive and specific[124], 

larger panels that include viral, nosocomial and rarer community acquired pathogens have 
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varying sensitivity and specificity and are not currently recommended[125]. More recently, 

direct next generation sequencing (NGS) and metagenomics of CSF have been proposed to 

detect pathogens in cases with high index of clinical suspicion of ABM but negative PCR 

tests[126]. While this approach is promising, constraints around cost, bioinformatic expertise 

and clinically-relevant turnaround times have limited clinical use of NGS to date[125].  

 

All guidelines recommend patients with suspected ABM should receive parenteral antibiotics 

within 1 hour. However, only 46% of patients in a clinical research study were reported to 

meet this target, limited by delays in the emergency department[127, 128]. Antibiotic choice 

should be determined by patient risk group, patient allergies, and local guidelines informed 

by epidemiology, including antimicrobial resistance. Penicillin resistance in S. pneumoniae is  

15-20% in some settings, but remains <5% in N. meningitidis [129, 130]. However, 

quinolone resistance in N. meningitidis reaches 70% in SE Asia[15, 131]. Diagnostic 

uncertainty in culture negative meningitis often leads to prolonged dual antibiotic and anti-

viral therapies, which may be associated with nosocomial complications[114, 132]. 

 

Adjunctive therapies 

Adjunctive treatments are designed to reduce secondary inflammation in ABM and decrease 

the morbidity associated with CNS tissue damage. Inflammation is associated with 

secondary complications of ABM, including death, deafness, stroke, epilepsy and learning 

difficulties[91, 132-135]. Delayed cerebral thrombosis is a rare complication of ABM that can 

occur up to 2 weeks post admission[136, 137].  

In hospitals in high-income settings, patients presenting with suspected pneumococcal 

meningitis should receive adjunctive dexamethasone to reduce mortality[90, 138]. In low-

income settings, dexamethasone is only indicated in cases of suspected S. suis meningitis 

in SE Asia to reduce deafness[138, 139]. In other settings, particularly in LMICs in Africa, 

dexamethasone is ineffective and should not be given[140]. 
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Other previously tested adjuncts, including hypothermia and glycerol, have been shown to 

be potentially harmful and should not be administered[141, 142]. 

 

   

Emerging therapeutic targets  

Empirical antibiotic treatment in most centres for suspected ABM is the third generation 

cephalosporin, ceftriaxone[92]. However, bacterial lysis by ceftriaxone releases DAMPs that 

may prolong damaging inflammation even as bacteria killed[88]. Research in animal models 

have strongly suggested bacteriostatic antibiotics are associated with less CNS inflammation 

and improve outcomes[143]. In clinical practice, there are little data to suggest different 

clinical outcomes occur between bacteriostatic vs bactericidal antibiotics[144]. As such, 

there are continued efforts to develop alternatives that reduce sequalae in survivors. A 

phase 2 clinical trial evaluating the adjunctive use of a nonlytic antibiotic, daptomycin, for 

pneumococcal meningitis is currently underway (ClinicalTrials.gov identifier NCT03480191). 

Adjunctive administration of daptomycin may dampen the inflammatory effects of ceftriaxone 

through currently unknown mechanisms[145].  

The damaging coagulation and fibrinolytic cascade in CSF is triggered partly by excess 

complement C5[98]. Inhibition of C5 improved outcomes in a murine model, clinical trials of 

C5 antagonists are currently underway[146]. 

Newer therapeutic agents with intriguing survival data in animal models are not yet in clinical 

trials. These include DNAse-1, targeted at disrupting ineffective NETosis, the possible 

neuro-protective effects of metformin, and matrix-metalloproteinase inhibitors targeted on 

preventing enzymatic tissue breakdown[83, 147-149]. Proposed adjunctive anti-

pneumococcal therapy includes targeting pneumolysin and P4, a pneumococcal peptide that 

may inhibit replication [150, 151].  

 

Conclusions  
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Community-acquired bacterial meningitis presents ongoing formidable epidemiological and 

clinical challenges. The ability of meningitis-causing pathogens to evolve in the ecological 

niche of the nasopharynx during carriage, and escape serotype-specific vaccines has led to 

new strategies to eliminate disease carriage through serotype-independent vaccination. The 

outcome of CNS host-pathogen interactions determines clinical sequelae, influenced by host 

genetic susceptibility.  

CSF analysis is essential to make a diagnosis of ABM, leukocyte count remains the most 

effective predictor of ABM over newer models. Non-indicated cranial imaging introduces 

significant diagnostic delays. Multiplex PCR panels have increasing utility in ABM 

diagnostics, however NGS remains a research tool.  

Patients with ABM continue to experience significant complications, including death, stroke 

and deafness. Adjunctive dexamethasone improves survival in high income countries only, 

the results of clinical trials of more targeted approaches are awaited. Effective and 

affordable, pan-serogroup vaccination remains a crucial goal if we are to eliminate this 

devastating disease. 

 

Summary bullet points 

• The epidemiology of bacterial meningitis is regional and highly dynamic, influenced 

by vaccines, climate, latitude, population movement, viral infections and poverty. 

• Serotype/serogroup specific conjugate vaccines are highly effective in preventing 

meningitis, but serotype replacement is increasing, effectively limiting the impact of 

conjugate vaccines on disease incidence 

• Host and pathogen factors influence clinical outcomes, host genetic susceptibility to 

poor outcome from pneumococcal meningitis is linked to genes involved in NFkB 

signalling and endothelial integrity.  

• Dexamethasone improves outcome in pneumococcal meningitis in high-income 

settings only, new agents targeted on the host response are currently in clinical trials 
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Figure titles & legends 

 

Figure 1. Model of BBB environment during bacterial meningitis. 

ABM pathogen (depicted here as blue diplococci) in the bloodstream cross the capillary 

endothelium using both transcellular and paracellular routes. Bacteria may also be carried 

across the BBB by infiltrating phagocytes (Trojan Horse strategy). Recognition of the 

pathogen via sensing of PAMPs leads to the activation of resident immune cells such as 

microglia, macrophages, astrocytes and pericytes and production of DAMPs. These cells 

produce a coordinated inflammatory response to contain bacteria and recruit more 

neutrophils to the CSF compartment. This host response, while important for killing bacteria, 

activates a fibrinolytic and coagulation cascade. When advanced, these processes lead to 

sustained tissue damage, BBB breakdown and leakage, causing death or lifelong 

neurological sequalae in survivors.  

 

Tables 

Table 1: Currently available vaccinations against meningitis-pathogens 
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