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Abstract
For a graph H , its homomorphism density in graphs naturally extends to the space
of two-variable symmetric functions W in L p, p ≥ e(H), denoted by t(H ,W ).
One may then define corresponding functionals ‖W‖H := |t(H ,W )|1/e(H) and
‖W‖r(H) := t(H , |W |)1/e(H), and say that H is (semi-)norming if ‖ · ‖H is a (semi-)
norm and that H is weakly norming if ‖ · ‖r(H) is a norm. We obtain two results that
contribute to the theory of (weakly) norming graphs. Firstly, answering a question of
Hatami, who estimated the modulus of convexity and smoothness of ‖ · ‖H , we prove
that ‖ · ‖r(H) is neither uniformly convex nor uniformly smooth, provided that H is
weakly norming. Secondly, we prove that every graph H without isolated vertices is
(weakly) norming if and only if each component is an isomorphic copy of a (weakly)
norming graph. This strong factorisation result allows us to assume connectivity of H
when studying graph norms. In particular, we correct a negligence in the original
statement of the aforementioned theorem by Hatami.
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1 Introduction

One of the cornerstones of the theory of quasirandomness, due to Chung et al. [1] and
to Thomason [10], is that a graph is quasirandom if and only if it admits a random-
like count for any even cycle. A modern interpretation of this phenomenon is that the
even cycle counts are essentially equivalent to the Schatten–von Neumann norms on
the space of two variable symmetric functions, which are the natural limit object of
large dense graphs. Indeed, Lovász [7] asked the natural question whether other graph
counts can also induce a similar norm, which motivated Hatami’s pioneering work [5]
in the area. Since then, graph norms have been an important concept in the theory of
graph limits and received considerable attention. For instance, Conlon and the third
author [2] obtained a large class of graph norms, Král’ et al. [6] proved that edge-
transitive non-norming graphs exist, and very recently, the first author with Doležal et
al. [4] linked graph norms to the so-called step Sidorenko property.

The current note contributes further to this emerging theory of graph norms. We
recall the basic definitions given in Hatami’s work [5] with slight modifications taken
from [8]. Let � be an arbitrary standard Borel space with an atomless probability
measure ν.Wheneverwe consider a subset of�,we tacitly assume that it ismeasurable.
We denote by W the linear space of all bounded symmetric measurable functions
W : �2 → R. Also let W≥0 ⊆ W be the set of non-negative functions in W . Recall
that functions in W≥0 that are bounded above by 1 are called graphons, and arise as
limits of graph sequences [9]. Let H be a graph on the vertex set {v1, . . . , vn}. Given
a symmetric measurable real-valued function W on �2, set

t(H ,W ) :=
∫

x1∈�

. . .

∫

xn∈�

∏
{vi ,v j }∈E(H)

W (xi , x j ) dν⊗n . (1.1)

LetWH (resp.Wr(H)) be the set of those symmetricmeasurable functionsW : �2 → R

for which t(H ,W ) (resp. t(H , |W |)) is defined and finite. Obviously, WH is a sub-
space ofWr(H), and Hölder’s inequality immediately proves that L p(�2) is contained
in Wr(H) whenever p ≥ e(H).

We then say that H is (semi-)norming if ‖ · ‖H := |t(H , · )|1/e(H) is a (semi-)norm
on WH . Likewise, we say that H is weakly norming if ‖ · ‖r(H) := t(H , | · |)1/e(H) is
a norm on Wr(H). Since W is a dense subset of the Banach space1 (WH , ‖ · ‖H ), this
definition does not depend on whether we work in the Banach space (W , ‖ · ‖H ) or
(WH , ‖ · ‖H ). Analogously, in the definition of weakly norming property, Wr(H) can
be replaced byW . Note that, as the names suggest, norming graphs are semi-norming
and semi-norming graphs are weakly norming.

Prominent examples of norming graphs are even cycles C2k and complete bipartite
graphs K2n,2m with an even number of vertices per partite set. Seminorming graphs
that are not norming are stars with an even number of edges. Examples of weakly
norming graphs that are not (semi-)norming are complete bipartite graphs Kn,m with
m > 1 being odd. We refer the reader to [2,5,8] for more details and examples.

1 By the topological equivalence between the cut norm and graph norms (see, for instance, [2, Sect. 5.2])
and completeness of W under the cut norm, ‖ · ‖r(H) and ‖ · ‖H also define Banach spaces.
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Inwhat follows,we shall give short proofs of two results concerning (weakly) norm-
ing graphs. Firstly, we study basic geometric properties of the space (Wr(H), ‖ · ‖r(H)).
The definitions of uniform smoothness and uniform convexity will be precisely given
in the next section.

Theorem 1.1 Let H be a weakly norming graph. Then the normed space
(Wr(H), ‖ · ‖r(H)) is neither uniformly smooth nor uniformly convex.

This answers a question of Hatami, who proved that (W , ‖ · ‖H ) is uniformly smooth
and uniformly convex whenever H is semi-norming and asked for a counterpart of his
theorem for weakly norming graphs.

Theorem 1.1 not only answers a natural question arising from a functional-analytic
perspective, but is also meaningful in the theory of quasirandomness. In [4], Hatami’s
theorem about uniform convexity and smoothness (see Theorem 2.2 for a precise
statement) is the key ingredient in proving that every norming graph has the ‘step
forcing property’. By inspecting the proof in [4], one may see that the same conclusion
forweakly norminggraphs H (except forests) could also beobtained if‖ · ‖r(H) defined
a uniformly convex space. However, Theorem 1.1 proves that such a modification is
impossible.

Secondly, we prove a strong ‘factorisation’ result for disconnected weakly norming
graphs.

Theorem 1.2 A graph H is weakly norming if and only if all its non-singleton con-
nected components are isomorphic and weakly norming. The same statement with
weakly norming replaced by either semi-norming or norming also holds.

The ‘if’ direction is obvious, since |t(H ,W )|1/e(H) = |t(H ′,W )|1/e(H ′) whenever
W ∈ W and H is a vertex-disjoint union of copies of H ′ and an arbitrary number of
isolated vertices, but the converse is non-trivial. Theorem 1.2 corrects a negligence that
assumes connectivity of graphs without stating it, which in fact appeared in Hatami’s
work [5] and Lovász’s book [8] which study graph norms. We also remark that for
Sidorenko’s conjecture, a major open problem in extremal combinatorics, even a weak
factorisation result—such as each component of a graph satisfying the conjecture also
satisfies it—is unknown, even though weakly norming graphs satisfy the conjecture.
In fact, Conlon and the third author [3, Corr. 1.3] proved that the weak factorisation
result, if it exists, implies the full conjecture.

2 Moduli of Convexity and Smoothness

Webegin by recalling the definitions ofmoduli of convexity andmoduli of smoothness
of a normed space.

Definition 2.1 Let (X , ‖ · ‖) be a normed space. The modulus of convexity of X is a
function dX : (0, 2] → R defined by

dX (ε) := inf

{
1 −

∥∥∥∥ x + y

2

∥∥∥∥ : x, y ∈ X , ‖x − y‖ ≥ ε, ‖x‖ = ‖y‖ = 1

}
. (2.1)
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The modulus of smoothness of X is a function sX : (0,∞) → R defined by

sX (ε) := sup

{‖x + y‖ + ‖x − y‖ − 2

2
: x, y ∈ X , ‖x‖ = 1, ‖y‖ = ε

}
. (2.2)

The normed space (X , ‖ · ‖) is uniformly convex if dX (ε) > 0 for each ε > 0 and
is uniformly smooth if sX (ε)/ε → 0 as ε ↘ 0. For convenience, we write dH , sH ,
dr(H), and sr(H) instead of dWH , sWH , dWr(H)

, and sWr(H)
, respectively.

Hatami [5] determined dH and sH for connected norming graphs H up to a multi-
plicative constant by relating them to the moduli of convexity and of smoothness of
�p-spaces, which are well understood.

Theorem 2.2 ([5, Thm. 2.16]) For each m ∈ N, there exist constants Cm,C ′
m > 0

such that the following holds: let H be a connected semi-norming graph with m
edges. Then the Banach space (WH , ‖ · ‖H ) satisfies Cm · d�m ≤ dH ≤ d�m and
s�m ≤ sH ≤ C ′

m · s�m .

Since for each p ∈ (1,+∞) it is well known that the �p-space is uniformly convex
and uniformly smooth, one obtains the following.

Corollary 2.3 Let H be a connected semi-norming graph. Then the Banach space
(WH , ‖ · ‖H ) is uniformly convex and uniformly smooth.

The connectivity of H in Theorem 2.2 was in fact neglected in the original statement
in [5], but it is certainly necessary. For example, by taking a disjoint union of two
isomorphic norming graphs with m/2 edges (assume m is even), one obtains another
norming graph with m edges that gives exactly the same norm, whose correct param-
eters in Theorem 2.2 are dH = �(d�m/2) and sH = �(s�m/2). Indeed, in Theorem 4.1
below we obtain a general statement without assuming connectivity, by using Theo-
rem 1.2. But first, let us point out the negligence in [5] which causes that the proof of
Theorem 2.2 does not work for disconnected graphs. This subtle error lies in proving
dH ≤ d�m and s�m ≤ sH by claiming that the Banach space (WH , ‖ · ‖H ) contains
a subspace isomorphic to (�m, ‖ · ‖m). Here we give a full proof of the claim, which
in turn reveals where the connectivity of H is used. To this end, we introduce the
following notation, which will also be useful in Sect. 3.

Definition 2.4 Let � be partitioned as � = �1 � �2 � . . . with countably many parts
such that ν(�i ) = 2−i for every i ∈ N. For eachm ∈ N,γ > 0,a = (a1, a2, . . .) ∈ �m ,
Wγ,a denotes the function satisfying Wγ,a(x, y) = 2iγ ai whenever (x, y) ∈ �2

i and
Wγ,a = 0 outside

⋃
i �

2
i .

Suppose that H is a norming graph with n vertices and m edges. In particular this
implies that m is even (see [8, Exer. 14.8]). The map a 
→ Wn/m,a is linear, and thus,
proving that this map preserves the respective norms is enough to conclude that the
subspace spanned by Wn/m,a is isomorphic to �m . For each a = (a1, a2, . . .) ∈ �m ,

‖a‖mm =
∑
i

ami =
∑
i

(2in/mai )m

2in
= t(H ,Wn/m,a).
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Indeed, if x1, . . . , xn do not fall into any single �i , connectedness of H implies that
the product in (1.1) evaluates to 0. Otherwise, if (x1, . . . , xn) ∈ �n

i for some i ∈ N,
then ν⊗n(�n

i ) = 2−in and the product in (1.1) evaluates to constant (2in/mai )m , which
proves the last equality. This is exactly where the proof of the claim relies on H being
connected.

Now, turning to weakly norming graphs, Theorem 1.1 is a direct consequence of
the following result.

Theorem 2.5 Let H be a weakly norming graph. Then for each ε ∈ (0, 1),

(a) dr(H)(ε) = 0, and
(b) sr(H)(ε) ≥ ε/2.

For the proof, we introduce a random graphon model that generalises graphon repre-
sentations of the Erdős–Rényi random graph. Let D be a probability distribution on
[0, 1] and let� = �1� . . .��n be an arbitrary partition of� into sets of measure 1/n.
Denote by U(n,D) the random graphon obtained by assigning a constant value gen-
erated independently at random by the distributionD on each (�i ×� j )∪ (� j ×�i ),
1 ≤ i ≤ j ≤ n. Although U(n,D) depends on the partition �1 � . . . � �n , we shall
suppress the dependency parameter as different U(n,D)’s are ‘isomorphic’ in the
sense that there exists a measure-preserving bijection that maps one partition to the
other. We use the term asymptotically almost surely, or a.a.s. for short, in the standard
way, i.e., a propertyP of U(n,D) holds a.a.s. if the probability thatP occurs tends
to 1 as n → ∞. We write a = b ± ε if and only if a ∈ [b − ε, b + ε].
Proposition 2.6 Let D be a probability distribution on [0, 1] and let d = E[D]. Then
for any fixed graph H, U ∼ U(n,D) satisfies t(H ,U ) = de(H) ± on(1) a.a.s.

We omit the proof, as it is a straightforward application of the standard concentration
inequalities to subgraph densities in Erdős–Rényi random graphs (see, for example,
[8, Corr. 10.4]).

Proof of Theorem 2.5 Throughout the proof, we briefly write ‖ · ‖r(H) = ‖ · ‖. For
x ∈ [0, 1], denote by 1{x} the Dirac measure on x . Set

D1 := 1

2
· 1{0} + 1

2
· 1{1}.

Let U1 and U2 be two independent copies of U(n,D1). Proposition 2.6 then implies
a.a.s.

‖Ui‖ = t(H ,Ui )
1/e(H) = 1

2
± on(1), for i = 1, 2. (2.3)

For each i = 1, 2, let U∗
i :=Ui/(2‖Ui‖) be the normalisation of Ui which satisfies

‖U∗
i ‖ = 1/2. Then by substituting Ui = 2‖Ui‖ ·U∗

i and using (2.3) we get that

‖U∗
i −Ui‖ = |1 − 2‖Ui‖| · ‖U∗

i ‖ = on(1). (2.4)
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Since the random graphon |U1 − U2| is also distributed like U(n,D1), we
again have ‖U1 − U2‖ = 1/2 ± on(1) a.a.s. Thus, by the triangle inequality
and (2.4), 2U∗

1 and 2U∗
2 are two symmetric functions with ‖2U∗

1 ‖ = ‖2U∗
2 ‖ = 1

whose linear combination is always close to the corresponding one ofU1 andU2, i.e.,
for any fixed α, β ∈ R,

∣∣‖αU1 + βU2‖ − ‖αU∗
1 + βU∗

2 ‖∣∣ ≤ |α| · ‖U1 −U∗
1 ‖ + |β| · ‖U2 −U∗

2 ‖ = on(1).
(2.5)

In particular, α = 2 and β = −2 give ‖2U∗
1 − 2U∗

2 ‖ ≥ ‖2U1 − 2U2‖ − on(1) =
1 ± on(1). That is, 2U∗

1 and 2U∗
2 are points on the unit sphere that are ‘far’ apart.

Setting α = β = 1 in (2.5) gives |‖U1 +U2‖ − ‖U∗
1 +U∗

2 ‖| = on(1), and therefore,
for any 0 < ε < 1,

dr(H)(ε) ≤ 1 −
∥∥∥∥2U

∗
1 + 2U∗

2

2

∥∥∥∥ = 1 −
∥∥∥∥2U1 + 2U2

2

∥∥∥∥ ± on(1). (2.6)

Now let

D2 := 1

4
· 1{0} + 1

2
· 1

{
1

2

}
+ 1

4
· 1{1}.

Then, since (U1 + U2)/2 has distribution U(n,D2) and E[D2] = 1/2, we have by
Proposition 2.6 a.a.s. ‖U1 +U2‖ = 1± on(1). Substituting this into (2.6) proves that
the modulus of convexity of ‖ · ‖ is 0 for each ε ∈ (0, 1). For ε ∈ (0, 1) given in (b),
let

D3 := 1

4
(1{0} + 1{ε} + 1{1 − ε} + 1{1}) and

D4 := 1

4

(
1{0} + 1

{
ε

2

}
+ 1

{
1

2

}
+ 1

{
1 + ε

2

})
.

The distributions of |U1 −εU2| and |U1 +εU2|/2 areU(n,D3) andU(n,D4), respec-
tively. As E[D3] = 1/2 and E[D4] = (1 + ε)/4, Proposition 2.6 yields that, a.a.s.,
‖2U1 − 2εU2‖ = 1± on(1) and ‖2U1 + 2εU2‖ = 1+ ε ± on(1). Therefore, by (2.5),
‖2U∗

1 − 2εU∗
2 ‖ = 1 ± on(1) and ‖2U∗

1 + 2εU∗
2 ‖ = 1 + ε ± on(1) a.a.s. Hence,

substituting 2U∗
1 and 2εU∗

2 into (2.2) gives

sX (ε) ≥ ‖2U∗
1 + 2εU∗

2 ‖ + ‖2U∗
1 − 2εU∗

2 ‖ − 2

2
= ε

2
± on(1),

which proves (b). ��
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3 Disconnected (Semi-)Norming andWeakly Norming Graphs

To be precise, we expand Theorem 1.2 to two parallel statements, also omitting any
isolated vertices from H (this operation does not change t(H , ·)1/e(H)).

Theorem 3.1 (restated) For a graph H without isolated vertices, the following holds:

(a) A graph H is weakly norming if and only if all connected components of H are
isomorphic and weakly norming.

(b) A graph H is (semi-)norming if and only if all connected components of H are
isomorphic and (semi-)norming.

To prove this theorem, we need some basic facts about weakly norming graphs.
Given a graph H and a collectionw = (We)e∈E(H) ∈ W E(H), define thew-decorated
homomorphism density by

t(H ,w) :=
∫

x1∈�

. . .

∫

xn∈�

∏
e=i j∈E(H)

We(xi , x j ).

That is, we assign a possibly different We to each e ∈ E(H) and count such ‘mul-
ticoloured’ copies of H . In particular, if We = W for all e ∈ E(H), we obtain
t(H ,w) = t(H ,W ). Hatami [5] observed that the (weakly) norming property is
equivalent to a Hölder-type inequality for the decorated homomorphism density.

Lemma 3.2 ([5, Thm. 2.8]) Let H be a graph. Then:

(a) H is weakly norming if and only if, for every w ∈ W E(H)
≥0 ,

t(H ,w)e(H) ≤
∏

e∈E(H)

t(H ,We).

(b) H is semi-norming if and only if, for every w ∈ W E(H),

t(H ,w)e(H) ≤
∏

e∈E(H)

|t(H ,We)|.

As the second inequality is more general than the first one, it immediately follows
that every semi-norming graph is weakly norming. Another easy consequence of this
characterisation is that, for a weakly norming graph H , its subgraph F , andW ∈ W≥0,
we have the inequality

t(F,W ) ≤ t(H ,W )e(F)/e(H). (3.1)

Indeed, one can easily prove this by setting We = W for e ∈ E(F) and We ≡ 1
otherwise. For yet another application, we use Lemma 3.2 to prove that a weakly
norming graph essentially has no subgraph with larger average degree.
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Lemma 3.3 Let H be a weakly norming graph without isolated vertices and let F be
its subgraph. Then e(F)/v(F) ≤ e(H)/v(H).

Proof We may assume F has no isolated vertices either, as adding isolated vertices
only reduces the average degree. Let X ⊆ � be a subset with ν(X) = 1/2 and let
U : �2 → [0, 1] be the graphon defined by U (x, y) = 1 if x, y ∈ X and 0 otherwise.
Then, for any graph J without isolated vertices, t(J ,U ) = 2−v(J ). ChoosingWe = U
for e ∈ E(F) and We ≡ 1 otherwise, for w ∈ W E(H)

≥0 then gives

t(F,U )e(H) = t(H ,w)e(H) ≤ t(H ,U )e(F)t(H , 1)e(H)−e(F) = t(H ,U )e(F).

Comparing t(F,U )e(H) = 2−v(F)e(H) and t(H ,U )e(F) = 2−v(H)e(F) concludes the
proof. ��
Remark 3.4 This is reminiscent of [5, Thm. 2.10(i)]. It states that e(F)/(v(F) − 1) ≤
e(H)/(v(H) − 1) whenever H is weakly norming and F is a subgraph of H with
v(F) > 1. However, this theorem is only true if H is connected and hence also needs
to be corrected. To see this, let H be a vertex-disjoint union of two copies of K1,2,
which is a norming graph. Then e(H)/(v(H) − 1) = 4/5 but e(F)/(v(F) − 1) = 1
for F = K1,2.

Suppose now that a weakly norming graph H without isolated vertices consists of two
vertex-disjoint subgraphs F1 and F2. If e(F1)/v(F1) > e(F2)/v(F2), then

e(H)

v(H)
= e(F1) + e(F2)

v(F1) + v(F2)
<

e(F1)

v(F1)
,

which contradicts Lemma 3.3. By iterating this, we obtain the following fact.

Corollary 3.5 Every component in a weakly norming graph without isolated vertices
has the same average degree.

Before proceeding to the next step, we recall some basic facts about �p-spaces. For
0 < p < q ≤ +∞ we have ‖ · ‖p ≥ ‖ · ‖q . Furthermore, there exists c ∈ �∞ such
that

‖c‖p > ‖c‖q . (3.2)

Lemma 3.6 In a weakly norming graph H without isolated vertices, every connected
component has the same number of edges.

Proof Let F1, . . . , Fk be the connected components of H and let γ := v(F1)/e(F1).
ByCorollary 3.5, 2/γ is the average degree of all Fi , i = 1, . . . , k. Recall the definition
of Wγ,a given in Definition 2.4. For each a = (a1, a2, . . .) ∈ �∞ and each connected
graph F also having average degree 2/γ , and, say, m edges, we have

t(F, |Wγ,a|) =
∑
i

|ai |m = ‖a‖mm . (3.3)
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Suppose that not all the components have the same number of edges. Let p =
min j e(Fj ). We may assume that p = e(F1). Let q > p be the number of edges
in a component with more edges than F1 and let c ∈ �∞ be given by (3.2). Define the
collection w = (We)e∈E(H) by We = |Wγ,c| for e ∈ E(F1) and We ≡ 1 otherwise.
Lemma 3.2 then gives

t(F1, |Wγ,c|)e(H) = t(H ,w)e(H) ≤
∏

e∈E(H)

t(H ,We) = t(H , |Wγ,c|)p. (3.4)

Expanding the term t(H , |Wγ,c|) on the right-hand side of (3.4) using (3.3) yields

t(H , |Wγ,c|) =
k∏
j=1

t(Fj , |Wγ,c|) =
k∏
j=1

‖c‖e(Fj )

e(Fj )
.

On the left-hand side of (3.4), we have by (3.3) that t(F1, |Wγ,c|) = ‖c‖p
p. Substituting

these back to (3.4) gives

‖c‖p·e(H)
p ≤

⎛
⎝ k∏

j=1

‖c‖e(Fj )

e(Fj )

⎞
⎠
p

,

which contradicts the fact that ‖c‖p ≥ ‖c‖e(Fj ) for each j ∈ [k] with at least one of
the inequalities being strict. ��
Lemma 3.7 For a weakly norming graph H without isolated vertices, all the compo-
nents of H are isomorphic.

Proof Suppose that there are at least two non-isomorphic graphs amongst all the
components F1, . . . , Fk . By Lemma 3.6 we may assume that all Fi have the same
number of edges, say m. In particular, e(H) = mk. By [8, Thm. 5.29], there exists a
graphon U such that the numbers t(F1,U ), . . . , t(Fk,U ) are not all equal. We may
assume that t(F1,U ) attains the maximum amongst t(F1,U ), . . . , t(Fk,U ). Then we
have t(H ,U ) = ∏k

i=1 t(Fi ,U ) < t(F1,U )k , in contradiction with

t(F1,U ) ≤ t(H ,U )m/e(H) = t(H ,U )1/k,

which follows from (3.1). ��
Proof of Theorem 1.2 Suppose first that H is weakly norming. Let F be the graph given
by Lemma 3.7, which is isomorphic to every component of H , and let k be the number
of components of H . Now enumerate the edges in H by (e, i) ∈ E(F) × [k], where
each (e, i) denotes the edge e in the i-th copy of F . Then each w ∈ W E(H) can be
written as (w1, . . . ,wk), wherewi = (We,i )e∈E(F), so that t(H ,w) = ∏k

i=1 t(F,wi ).

Let u = (Ue)e∈E(F) ∈ W E(F)
≥0 be arbitrary. Then Lemma 3.2 together with the choice

w1 = · · · = wk = u, i.e., We,i = Ue, implies

123



Discrete & Computational Geometry

t(F,u)k
2·e(F) = t(F,u)k·e(H) = t(H ,w)e(H) (3.5)

≤
∏

(e,i)∈E(H)

t(H ,We,i ) =
∏

(e,i)∈E(F)×[k]
t(F,Ue)

k =
∏

e∈E(F)

t(F,Ue)
k2 .

Taking the k2-th root proves that F is weakly norming.
When H is semi-norming, we can still apply Lemma 3.7 to obtain a graph F

isomorphic to each component, since H is alsoweakly norming. Thus, the enumeration
E(F) × [k] of E(H) and the factorisation t(H ,w) = ∏k

i=1 t(F,wi ) for each w =
(w1, . . . ,wk) ∈ W E(H) remain the same. Now let u = (U f ) f ∈E(F) ∈ W E(F) be
arbitrary. Then, again by taking w1 = · · · = wk = u in Lemma 3.2, we obtain

t(F,u)k
2·e(F) = t(H ,w)e(H) ≤

∏
(e,i)∈E(H)

|t(H ,We,i )| =
∏

e∈E(F)

|t(F,Ue)|k2 ,

which proves that F is semi-norming. If H is norming, then |t(F,W )| = |t(H ,W )|1/k
must be nonzero for each nonzero W ∈ W . Thus, F is also norming. ��

4 Concluding Remarks

As mentioned in Sect. 2, Theorem 1.2 yields a full generalisation of Theorem 2.2.

Theorem 4.1 For each m ∈ N, there exist constants Cm,C ′
m > 0 such that the fol-

lowing holds: let H be a semi-norming graph with m edges in each (isomorphic)
non-singleton component. Then the Banach space (WH , ‖ · ‖H ) satisfies Cm · d�m ≤
dH ≤ d�m and s�m ≤ sH ≤ C ′

m · s�m .

As a consequence, the connectivity condition in Corollary 2.3 can also be removed,
i.e., (WH , ‖ · ‖H ) is always uniformly convex and uniformly smooth whenever H is
semi-norming.

There is more literature in the area that has been imprecise when it comes to
connectivity, but which can be corrected with Theorem 1.2 to hold in full generality.
For instance, [8, Exercise 14.7 (b)] states that every semi-norming graph is either a star
or an Eulerian graph, which is true only if the semi-norming graph is connected. To
correct the statement, we may replace a star by a vertex-disjoint union of isomorphic
stars by using Theorem 1.2. Likewise, whenever studying properties of graph norms,
one can invoke Theorem 1.2 and focus on connected graphs. We finally remark that
the theorems used in our proofs have no errors concerning connectivity. In particular,
[5, Thm. 2.8] is still valid regardless of connectivity.

In [6], the step Sidorenko property is defined to prove that there exists an edge-
transitive graph that is not weakly norming (for the precise definition we refer to [6]),
where the proof relies on the fact that every weakly norming graph is step Sidorenko
(see [8]).Moreover, it is shown in [4] that the converse is also true for connected graphs,
i.e., every connected step Sidorenko graph is weakly norming. However, Theorem 1.2
proves that the converse no longer holds for disconnected graphs, as a vertex-disjoint
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union of non-isomorphic step Sidorenko graphs is again step Sidorenko but not weakly
norming.
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