
www.sciencedirect.com

c o r t e x 1 3 7 ( 2 0 2 1 ) 1 3 8e1 4 8
Available online at
ScienceDirect

Journal homepage: www.elsevier.com/locate/cortex
Research Report
Age impairs mnemonic discrimination of objects
more than scenes: A web-based, large-scale
approach across the lifespan
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a b s t r a c t

Recent findings suggest that the effect of aging on recognition memory is modality-

dependent, affecting memory for objects and scenes differently. However, the lifespan

trajectory of memory decline in these domains remains unclear. A major challenge for

assessing domain-specific trajectories is the need to utilize different types of stimuli for

each domain (objects and scenes). We tested the large sample required to cover much of

the adult lifespan using a large stimulus range via web-based assessments. 1554 partici-

pants (18e77 years) performed an online mnemonic discrimination task, tested on a pool of

2708 stimuli (Berron et al., 2018). Using corrected hit-rate (Pr) as a measure of performance,

we show age-related decline in mnemonic discrimination in both domains, notably with a

stronger decline in object memory, driven by a linear increase in the false recognition rate

with advancing age. These data are the first to identify a linear age-related decline in

mnemonic discrimination and a stronger, linear trajectory of decline in the object domain.

Our data can inform basic and clinical memory research on the effects of aging on memory

and help advancing the implementation of digital cognitive research tools.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of memory and aging has taken on particular sig-

nificance due to the increased longevity resulting from an

improved ability to extend life in the face of major diseases.

Neurodegenerative diseases such as Alzheimer’s disease (AD)
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have become a major cause of death and increased costs for

society, sparking a quest to find early and easily accessible

markers of memory decline and age-related pathology. When

trying to detect significant changes in memory in elderly

people, mnemonic discrimination is a promising candidate as

it is known to be particularly sensitive to age-related cognitive
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decline (Holden, Toner, Pirogovsky, Kirwan,&Gilbert, 2013). In

mnemonic discrimination tasks, older adults are typically

more prone to falsely recognize similar stimuli as old, with no

difference in the correct identification of old stimuli, which is

often explained with a bias towards pattern completion in

older age (Stark, Stevenson, Wu, Rutledge, & Stark, 2015;

Vieweg, Stangl, Howard, & Wolbers, 2015; Yassa et al., 2011).

Moreover, memory decline might vary depending on infor-

mation content. The Posterior Medial Anterior Temporal

(PMAT) framework (Ranganath& Ritchey, 2012; Ritchey, Libby,

& Ranganath, 2015) defines two information processing and

memory pathways in the brain, which receive input from two

separate visual streams: A posterior-medial system (PM),

including parahippocampal (PHC) and retrosplenial (RSC)

cortex, involved in the processing of and memory for spatial

layouts, context and scenes; and an anterior-temporal system

(AT), including the perirhinal cortex (PRC), predominantly

involved in the processing and memory of objects and con-

tent. Importantly, the transentorhinal region, which entails

part of the PRC and entorhinal cortex (ERC), and subserves

object and content information processing, is among the

earliest regions affected by tau accumulation (Braak & Braak,

1991). In a recent paper using tau positron emission

tomography (PET), Maass et al. (2019) showed that the

anterior-temporal system was predominantly affected by tau

accumulation, which in turn was related to age-related defi-

cits in mnemonic discrimination of objects. Similarly, cere-

brospinal fluid (CSF) levels of phosphorylated tau have been

shown to be related to object mnemonic discrimination in

cognitively unimpaired older adults (Berron et al., 2019).

Taken together, the pattern of tau deposition in aging would

suggest an earlier decline in object memory as compared to

spatial or scene memory. Recently, several studies have

focused on the investigation of age-related decline as a func-

tion of stimulus domain. In rodents, Johnson et al. (2017) re-

ported greater impairment in mnemonic discrimination of

objects than spatial configurations in aged rats. Other groups

have developed tasks to directly assess age-related decline in

mnemonic discrimination of objects and spatial configura-

tions in humans. Reagh et al. (2018) used a task in which

stimuli either changed in terms of their identity or location.

The authors reported a weaker ability for correct rejections of

objects than spatial configurations in the elderly. In line with

these findings, Stark and Stark (2017) observed generally

worse discrimination of similar objects as well as scenes in

the elderly group. Since age-related decline in object and

scene discrimination was tested in independent models, the

question of preferential decline for objects could not be

answered directly, however. In fact, the question of domain-

specific decline is far from being resolved and certainly war-

rants close examination, as age-related decrease has been

reported for spatial memory in a host of other studies (Borella,

Meneghetti, Ronconi,& Beni, 2014; Newman& Kaszniak, 2000;

Rosenbaum, Winocur, Binns, & Moscovitch, 2012). Using the

present object-scene task, Berron et al. (2018) found no age

interaction for the mnemonic discrimination ability of objects

versus scenes. However, they observed an imbalance in
domain-specific blood-oxygen-level-dependent (BOLD) activ-

ity (scene minus object activity) in the PRC of older adults. It

should be noted that the object-scene task (Berron et al., 2018)

differs from othermnemonic discrimination tasks such as the

onesmentioned above (Reagh et al., 2018; Stark& Stark, 2017).

Importantly, stimulus presentation and test phases are

alternating in blocks of 2 stimuli, whereas the learning and

test phase are separated by several minutes in the former

tasks.

Previous research on mnemonic discrimination exhibits

two major shortcomings regarding the generalizability of

domain-specific effects: the limited size of stimulus sets as

well as the age groups under study. Regarding the former, the

small size of stimulus sets used in previous studies might

limit the generalizability of the observed effects. For the latter,

age-related domain-specificmemory decline has so farmostly

been studied in a categorical fashion, contrasting young and

old participants, even though the underlying decline is a

fundamentally continuous process (Nyberg, L€ovden, Riklund,

Lindenberger, & B€ackman, 2012). One open issue with

testing various item sets is that it is expected to require

significantly larger sample sizes than can typically be

recruited in a lab-based setting. This problem is even more

apparent when studying the entire adult age-range rather

than confined age groups. A promising and increasingly used

remedy to the problems of small samples is web-based

research. In the social sciences, recent years have already

seen a surge of recruitment via crowdsourcing platforms such

as Amazon Mechanical Turk (Mturk), with a rise of yearly

publications from 50 to 500 between 2011 and 2015 (Chandler

& Shapiro, 2016). Other than the opportunity to collect data

from large samples from a pool of roughly 7000 active

workers, Mturk also offers access to more demographically

diverse samples than typical undergraduate populations

(Buhrmester, Kwang, & Gosling, 2011; Casler, Bickel, &

Hackett, 2013). Furthermore, Mturk data quality in terms of

participants’ attention to the task seems to be equal or

partially even better than in typical studies using un-

dergraduates (Chandler & Shapiro, 2016; Hauser & Schwarz,

2016). However, the benefits of large pools of online data do

not come without potential shortcomings, which will be dis-

cussed below.

In the present study, we investigated the phenomenon of

age-related, domain-specific mnemonic discrimination

decline in a web-based large-scale sample across a very wide

age-range. We addressed methodological limitations of lab-

based studies that use small item sets by presenting stim-

ulus subsets out of a very large item pool. The present study

aims to replicate and expand on lab-based findings regarding

age-related domain-specific memory decline in a web-based

sample that largely differs in size and diversity from previ-

ous studies. Using a version of the object-scene task (Berron

et al., 2018) and treating age as a continuous variable, we

investigated domain-specific age-related change. Based on

the existing literature, we hypothesized that accuracy for

object discrimination would decline in a steeper fashion than

scene discrimination across age. We also tested the modality-

https://doi.org/10.1016/j.cortex.2020.12.017
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independent hypothesis that the ability to reject similar lures,

specifically, declines in aging.
2. Methods

2.1. Participants

Participants were recruited through the online crowdsourcing

platform Amazon Mechanical Turk (Mturk) (https://www.

mturk.com/). The experiment advert was hosted via Psiturk

(https://www.psiturk.org/), a platform that facilitates per-

forming behavioral experiments on Mturk. Each participant

was asked to provide demographic information such as age,

handedness and gender prior to the experiment. Before per-

forming the task, participantswere instructed to pay attention

to the task and informed that insufficient engagement with

the task could lead to the exclusion from the study. After

excluding participants based on criteria reported below, a

sample of 1554 adults (18e77 years, M ¼ 37.19, SD ¼ 11.61, 61%

females) was analyzed. Sample size was previously deter-

mined based on the minimum amount of evaluations that we

wished to collect for each stimulus (pair). In accordance with

general pay on the platform, a remuneration of 2.50$ was paid

upon successful participation. The study was approved by the

ethics committee of the Otto-von-Guericke University, Mag-

deburg. All subjects gave informed consent for their partici-

pation by explicitly ticking an “I agree” box on the consent

form, in accordance with ethics and data security guidelines

of the Otto-von-Guericke University.

2.2. Materials and stimuli

The stimuli consisted of computer-generated (3ds Max,

Autodesk Inc., San Rafael, USA) and isoluminant images

depicting everyday indoor objects or scenes (1486 and 1222

stimuli respectively). Most images were paired into two very

similar versions that only differed in specific features, for the

objects, or the spatial configuration or shape of boundaries,

for the scenes. For a subset of stimuli, object (17.8%) and scene

stimuli (4.4%) only consisted of one version, without a similar

counterpart. In order to have a better control of balanced

stimulus exposure, we randomly divided the entirety of

stimuli into 10 distinct sets. This process was repeated 3

times, resulting in a total of 30 sets. The sets were not all equal

in length, given that the amount of pairs and single stimuli for

objects and scenes differed and we aimed to make balanced

use of all available stimuli. In order to keep the repeat/lure-

ratio and the object/scene-ratio within a close range across

sets, and further making sure that all stimuli were presented

equally often, we had to set up an elaborate partition of sets.

An item set would thereby define the set of scene and object

items, which themselves consisted of either a pair of similar

stimuli or a single stimulus. During test, one of four random

sequenceswas used to assign the role of lure or repeat to every

stimulus pair, while single stimuli were always shown as re-

peats. The balanced combination of test sets with randomized
sequences was achieved via the inbuilt Psiturk functionality,

which keeps track of and counterbalances database entries.

Each participant was tested on 72e76 objects and 58e60

scenes, the exact amount depending on the stimulus set that

was assigned. The focus in the present study was to test

participants on a maximum amount of different stimuli.

While this meant not having equally difficult sets for scenes

and objects, we believe that the diversity of stimuli employed

strengthens the generalizability of the results. That is,

demonstrating that a domain-effect emerges across a large

pool of different stimuli reduces the risk of obtaining

stimulus-specific effects unrelated to their domain, and in-

creases the chances of replicability.

2.3. Task and procedures

The task, which had a total duration of up to 30 min, was

adapted from Berron et al. (2018) and consisted of a 2-back

design (Fig. 1). In trials of 4 stimuli, participants were shown

pictures of either objects or scenes. The first 2 stimuli (pre-

sentation phase) of a trial were always new images, whereas

the following 2 (test phase) could be either an exact repetition

(repeat) or a very similar version of the previous ones (lure).

Stimuli were presented for 3 sec each, separated by a blank

page of 1 sec. The end of a trial was marked by a 1 sec fixation

cross, followed by .5 sec blank page. Subjects had to respond to

each test stimulus with old/new judgments pressing the left

or right arrow key. In order to avoid widely differing answer

strategies, participants were asked to respond both as

correctly and as fast as possible. Object and scene trials con-

tained, respectively, only object or scene stimuli. Two optional

breaks of 60 sec were included for participants to rest. There

were 4 possible trial types: two test types (“First e Repeat”/

“First e Lure”); and two presentation orders, where either of

two picture versions could be shown as a “First”. The trial

types were then: Version 1e Repeat, Version 1e Lure, Version

2 e Repeat, Version 2 e Lure. In order to balance the proba-

bility for a given stimulus to be presented as a “repeat” or

“lure”, 4 randomized sequences were created for the paired

stimuli, to which participants were pseudo-randomly

assigned. Using only paired stimuli would therefore have led

to an equal distribution of all trial types. But owing to addi-

tional unpaired stimuli, further “First-Repeat” trials were

included, the amount of total trials therefore varying as a

function of the stimulus set. In order to test stimuli in both

directions, an additional set of “mirror” sequenceswere added

that reversed the above sequences in terms of presentation

order. In order to avoid confounds of stimulus order, paired

and unpaired stimuli were pseudo-randomly assigned to tri-

als. In addition, trial order was shuffled, creating a pseudo-

random sequence of object and scene trials of the four

different trial types. Although we used the object-scene task

from Berron et al. (2018), there were the following differences:

The item pool used in the present study was considerably

larger. Related to this, the task length could vary as a function

of the item set, whereas item set and duration were fix in

Berron et al. (2018). We instructed participants not to respond

https://www.mturk.com/
https://www.mturk.com/
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Fig. 1 e Task sequence and stimuli. Sequences used during the object and scene paradigm. For each trial, 2 object (A) or

scene (B) stimuli were either identically repeated (correct response: old) or presented again in a very similar but not identical

version (correct response: new). Lure and repetition stimuli only differed in shape or geometry (C).
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during a presentation phase, while they had been instructed

to respond “new” also in this phase in the original task. This

allowed participants to unequivocally indicate presentation

phases. We also shortened the pauses between stimulus

presentations, from 1.63 sec on average to 1 sec, and between

trials, from 2.43 sec on average to 1.5 sec. Pauses between

stimuli were not jittered, as such an optimization with regard

to fMRI-analysis was not necessary in the present task.

Finally, we indicated within-trial pauses (blank page) differ-

ently from between-trial pauses (fixation cross followed by

blank page), in order to help orientation during the task. After

finishing the task, participants had to fill out a short ques-

tionnaire asking about the perceived difficulty of the task, the

correct display of all stimuli as well as the overall time the

experiment took them. Prior to the experiment, participants

were given detailed instructions and had to complete a short

training session in order to get familiarized with the task.

Furthermore, a simple arrow task asking to discriminate be-

tween a set of left and right arrowswas administered, in order

to assess baseline reaction time (RT) and check for any

obvious visual impairments (Stark & Squire, 2001).

2.4. Data preprocessing and exclusion

While recent work has shown that data collected via

crowdsourcing platforms such as Mturk can provide easy
access to high quality data, it has been emphasized that

rigorous (data-based) exclusion criteria need to be applied

(Downs, Holbrook, Sheng,& Cranor, 2010; Thomas & Clifford,

2017). Inclusion/exclusion criteria were established

following data collection and based on previous literature as

well as performance measures considered to be reasonable

by the authors (see below). First, following previous work on

memory recognition, we excluded all individual trials that

had RTs below 200 msec (Berry, Shanks, Speekenbrink, &

Henson, 2012). We collected a total of 2352 datasets, of

which 1554 were finally analyzed, due to exclusions for

different reasons: in a first step, 60 data sets had to be dis-

carded because either subject information was missing, or

performance could not be computed due to a lack of response

data. Furthermore, the very simple arrow task was used as a

criterion, with more than one active mistake leading to the

exclusion. Due to technical problem, arrow task data from

122 participants were not available. In general, missing re-

sponses were not considered and did not lead to exclusion.

Moreover, we excluded data based on performance mea-

sures, taking the median of the absolute deviations from the

data’s median (MAD) to measure variance. The exclusion

threshold was set at the standard value of 3 MAD, meaning

that participants exceeding this value on any of the given

measures were discarded, and calculated with the R package

univOutl (D’Orazio, 2019). The following measures were

https://doi.org/10.1016/j.cortex.2020.12.017
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used: percent of wrong answers during the presentation

phase (“new” responses were accepted), the ratio of “old”

versus “new” responses, task performance in corrected hits,

percent of total responses. The above criterion was applied

concurrently to all measures (failing on multiple criteria was

possible), and the number of participants not meeting them

was distributed as follows: arrow task (121), “old/new”-ratio

(75), wrong presentation responses (432), corrected hits (20),

total responses (339). Finally, two participants were excluded

for pressing only one button.

2.5. Statistical analysis

As performance measures, hit rates (HR), false alarm rates

(FAR) and corrected hit rates (hit rates e false alarm rates)

were calculated for the object and scene conditions sepa-

rately. The corrected hit-rate sensitivity measure is also

known as Pr and provides an unbiased measure of oldenew

discrimination, with higher values corresponding to more

accurate recognition memory (Snodgrass & Corwin, 1988). In

addition, we evaluated response times (RT) for each answer

type.

Given the nested nature of the design, with repeated

measures for each subject, we used a linear mixed effects

model (LME) to assess effects of age, stimulus domain and

the age � stimulus domain interaction, in addition to cova-

riates. The LME included random intercepts for each partic-

ipant, accounting for variance due to individual performance

differences between subjects. The analysis was performed

using the lme4 package in R (Bates, M€achler, Bolker, &

Walker, 2015). One potential confound to account for was
Fig. 2 e Age £ Domain interaction trend in person ability

Pr. While negative age effect is significant for both

domains, the effect is more robust for objects (red) than

scenes (blue). Plot shows prediction line, partial residuals

and confidence band of linear mixed-effects model.
that participants were tested on different object and scene

sets, which could vary in difficulty. Even though stimulus

sets, randomized sequence and presentation order were all

pseudo-randomly assigned to participants, they could by

chance have been unevenly distributed across age. We

therefore included these design features and all their higher

order interactions as further regressors into the model.

Furthermore, we added the potential demographic cova-

riates gender and handedness. In addition, we accounted for

differences in technical equipment such as browser and

operating system used (e.g., Mac or Windows). This same

model was tested on all outcome measures mentioned

above. All effects were tested via F-statistics from a type III

Anova using Satterthwaite’s method.

Finally, an empirical analysis of effect power was per-

formed for the effect of age and the age � domain interaction.

To do so, 1000 random subsamples were drawn for each level

of N¼ 150 up to N¼ 1550 in incremental steps of 50. To each of

these subsamples an LME was fitted. For every level of N,

power was then approximated as the proportion ofmodels for

which p < .05.
4. Results

4.1. Mnemonic discrimination performance declines
with age

We observed a significant negative main effect of age on Pr,

indicating that performance worsened as a function of

higher age (F(1, 1304) ¼ 11.08, p ¼ .0009). Pr also differed as a

function of domain. That is, on average Pr was higher for

objects (M ¼ .34, SD ¼ .18) compared to scenes (M ¼ .17,

SD ¼ .15), leading to a significant main effect of domain

(F(1552) ¼ 172.15, p < .0001).

4.2. Stronger age-related decline for objects than scenes

We found a significant age � domain interaction (F(1,

1552) ¼ 5.38, p ¼ .0205; Fig. 2), driven by a steeper decrease in

object performance compared to scene performance. A

subsequent simple slope analysis using the R package

reghelper (Hughes, 2020) revealed that the negative effect of

age was significant for objects (t(2141.782) ¼ �4.0451,

p < .0001), while merely a negative trend was found for the

scenes (t(2141.782) ¼ �1.6989, p ¼ .0895).

4.3. Performance decline is driven by change in false
alarms but not hits

Next, we investigated what was driving the age � domain

interaction in performance. More precisely, we were inter-

ested to know whether the HRs, the FARs or a combination of

both caused the decline in accuracy. We therefore analyzed

these measures separately. Keeping the same model, we first

used hit rates as our outcome measure which did not yield a

significant effect of age (F(1, 1304)¼ 1.48, p¼ .2237), but amain

effect of domain (F(1, 1552)¼ 13.18, p¼ .0003), driven by higher

hit rates in response to object stimuli (M ¼ .83, SD ¼ .12) as

compared to scene stimuli (M¼ .80, SD¼ .14). Importantly, the

https://doi.org/10.1016/j.cortex.2020.12.017
https://doi.org/10.1016/j.cortex.2020.12.017


Fig. 3 e Age£ Domain interaction in hit rates (HR) and false

alarm rates (FAR). False alarms increase with age, but there

is no age effect on HR. Positive age effect on FAR is stronger

for objects (red) than scenes (blue). Plot shows prediction

line, partial residuals and confidence band of linear mixed-

effects model.
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age � domain interaction was not significant (F(1, 1552) ¼ .04,

p ¼ .8371).

We next looked at FARs. In contrast to the HRs, we found a

positive main effect of age (t(1, 1304) ¼ 19.37, p < .0001),

revealing an increase in the FAR with age. Furthermore, as

was the case for the hit rates, we found a main effect of

domain (F(1, 1552) ¼ 140.03, p ¼ <.0001). As we expected from

previous experience with the task, FARs were generally lower

for objects (M ¼ .50, SD ¼ .17) than scenes (M ¼ .63, SD ¼ .16),

that is, participants hadmore problems in rejecting lure scene

stimuli, again revealing the overall greater difficulty of scene

stimuli.

Interestingly, we found a significant age � domain

interaction (F(1, 1552) ¼ 6.94, p ¼ .0085), driven by a greater

increase in FARs across age for object stimuli: the simple

slope analysis revealed a steeper and more robust increase

in false alarms for object performance (t(2038.911) ¼ 5.1246,

p < .0001) than scene performance (t(2038.911) ¼ 2.608,

p ¼ .0091). To summarize, the age � domain interaction on

overall performance was driven by changes in the FARs

across age, namely a stronger increase in false alarms for

objects (Fig. 3).

Furthermore, we tested whether the greater difficulty of

scenes might have led to floor effects causing the interaction.

Given that average accuracy for scenes and objects was well

above chance level, we believed this to be unlikely, however.

Nevertheless, in order to account for possible floor effects, we

reran the analyses excluding participants with negative cor-

rected hit rates (chance level). The resulting pattern of effects
still remained unchanged. Neither average false alarm nor hit

rateswere near ceiling, both in general, or for either domain in

particular. We therefore believe that the effect is mainly

driven by a specific decline in object processing.

4.4. RT changes with age depend on stimulus domain
and answer type

We observed a linear effect of age on RT (F(1, 1303.3) ¼ 16.24,

p ¼ .0001), driven by an increase in RT (in ms) with age

(estimate ¼ 2.94).

We also found a significant domain effect (F(1,

10725.6) ¼ 20.97, p < .0001), caused by lower RTs to objects

(M ¼ 1471.56, SD ¼ 339.16) than scenes (M ¼ 1503.80,

SD ¼ 347.24). Furthermore, there was a significant effect of

condition (F(3,10727.1) ¼ 47.33, p < .0001). That is, RTs were

lowest for hits (M ¼ 1383.70, SD ¼ 311.91), similar for false

alarms (M ¼ 1502.21, SD ¼ 340.97) and correct rejections

(M ¼ 1509.94, SD ¼ 309.25), and highest for misses

(M ¼ 1557.31, SD ¼ 384.77).

Looking at interactions, we found a significant

age � domain interaction (F(1, 10725.9) ¼ 3.87, p ¼ .0492). The

effect was driven by greater increase in RTs to objects

(estimate ¼ 3.03) compared to scenes (estimate ¼ 2.41).

We also observed an age � condition effect (F(3,

10726.1)¼ 2.97, p ¼ .0306), driven by a stronger increase in RTs

for FA (estimate ¼ 3.30) and H (estimate ¼ 2.94), compared to

CR (estimate ¼ 2.63) and M (estimate ¼ 2.01) with age. How-

ever, when performing pairwise tukey-correct post-hoc con-

trasts with the emmeans package (Lenth, 2020), only the

slope-difference between FA and M remained significant

(t(10725) ¼ 2.866, p ¼ .0216).

4.5. Covariates of no interest

Of the remaining factors, only the experimental control

factors stimulus set (F(29, 1304) ¼ 1.87, p ¼ .0035) and stim-

ulus presentation order (F(1, 1304) ¼ 42.03, p ¼ <.0001)
exhibited main effects on performance. Post-hoc analysis of

the effect of presentation order revealed a significant pre-

sentation order � domain interaction (F(1, 1551) ¼ 95.65,

p < .0001). Pairwise contrasts showed that while presenting

the original item version at test resulted in worse perfor-

mance for objects (t(2195) ¼ 10.622, p ¼ <.0001), this order did
not affect scene performance (t(2195) ¼ .455, p ¼ .6495).

Importantly however, including the interaction in the model

did not change the remaining pattern of results. Regarding

the higher order effects, we obtained a significant stimulus

set � presentation order interaction (F(29, 1304) ¼ 1.53,

p ¼ .0358), meaning that the effect of presentation order

depends on the set of item pairs being tested. Also, the

stimulus set � randomized sequence interaction was sig-

nificant (F(87, 1304) ¼ 1.35, p ¼ .0200), showing that the ran-

domized sequence would affect performance within each set

by defining which stimulus was shown as lure or repeat.

None of the remaining experimental control effects was

significant. As a side note, the above effects were more

related to the false alarm rates, where the main effects were

significant (stimulus set: F(29, 1304) ¼ 1.69, p ¼ .0125; pre-

sentation order: F(1, 1304) ¼ 40.33, p ¼ <.0001) and the
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interactions trended (stimulus set � presentation order: F(29,

1304) ¼ 1.36, p ¼ .0971; stimulus set � randomized sequence:

F(87, 1304) ¼ 1.27, p ¼ .0513), while no notable effect on hit

rates was observed. Moreover, no effect on Pr was found for

either of the remaining variables: gender, handedness,

browser or the operating system used.

Regarding RTs, only the operating system had a significant

effect (F(4, 1302) ¼ 2.53, p ¼ .0388), with Android (M ¼ 1855.43,

SD¼ 206.39) andMacOS (M¼ 1511.99, SD¼ 327.54) users giving

slower responses than Windows (M ¼ 1484.36, SD ¼ 345.71),

Linux (M ¼ 1442.15, SD ¼ 335.13) and ChromeOS (M ¼ 1426.35,

SD ¼ 370.87) users. It should be mentioned that the apparent

outlier Android only consisted of 16 users.

4.6. Power analysis

We report values of N for which power was >.8 (see

Supplementary Fig. 2). Regarding the main effect of age, a

power of .835 was obtained for N ¼ 1000. As for the

age� domain effect, we obtained a power of .875 for N ¼ 1450.

Generally, we see that given the current design, data and

model structure, a considerable N is necessary to reliably

detect the observed effects.
5. Discussion

We tested a large sample of participants (n ¼ 1554) across a

very wide adult age-range (18e77 years) using a web-based

mnemonic discrimination task (Berron et al., 2018). Using Pr

as a bias-corrected discrimination ability measure (Berron

et al., 2018), we found that mnemonic discrimination perfor-

mance declines across age, in line with previous research in

humans (Holden, Toner, Pirogovsky, Kirwan, & Gilbert, 2013;

Stark, Yassa, Lacy,& Stark, 2013; Toner, Pirogovsky, Kirwan,&

Gilbert, 2009). Moreover, we found that age-related linear

decline of mnemonic discrimination ability was stronger for

objects than scenes. Supporting previous research on domain

specific decline, we found that worse performance in general

(Berron et al., 2018), and a stronger decline in discrimination

ability for objects (Reagh et al., 2016, 2018), were driven by an

increase in false recognition. The RT results presented a

similar pattern, with an age-related linear increase in RTs,

which was stronger for objects than scenes.
5.1. Domain-specific age-related differences across tasks

To our knowledge, the present study is the first to show such a

linear trajectory of decline in mnemonic discrimination along

a continuous andwide age-range. This is all themore relevant

as age-related changes are assumed to occur in a gradual

fashion over time rather than in a stepwise manner (Nyberg,

L€ovden, Riklund, Lindenberger, & B€ackman, 2012). The

pattern of more robust decline for mnemonic discrimination

of objects than scenes in aging fits well with previous studies

using a variety of methods. Reagh et al. (2018) used a different
task, showing an entire block of stimuli before the test phase,

extending the time between encoding and retrieval. Accord-

ingly, they employed much more dissimilar stimuli than in

our task. That is, their spatial lures consisted of objects

changing their location on the screen, whereas in our scenes,

the shape or geometry of spatial boundaries would change

(see Fig. 1C). Finally, they classified subjects into two distinct

age groups. Still, they obtained very similar results, finding no

age-related decrease in hit rates and a more pronounced

deficit in correct rejections for objects than scenes in the

elderly. Moreover, they found no significant difference in false

alarms for spatial memory. While we did find significantly

increased false alarms and a trend for decreased overall ac-

curacy for scenes with age, the effect is far less robust than for

the objects, lending support to the idea that scene perfor-

mance is less affected in aging. Stark and Stark (2017) reported

a similar pattern of results using the MST. However, as noted

earlier, the MST and the object-scene task differ in several

ways. The duration of presentation and test blocks is consid-

erably larger in the MST, while the object-scene is a 2-back

task. Also, the object-scene task only uses similar lures,

while the MST additionally employs totally dissimilar foils.

Accordingly, participants have two answer options (“old”

vs “new”), instead of three answer options in the MST (“old”,

“similar”, “new”). Another important difference is that stimuli

in the MST vary on more dimensions than ours, and that

scenes contain varying objects, making it more difficult to

separate domain-specific contributions.While Stark and Stark

(2017) found an age-related decrease in the discrimination

ability of object and scene lures, the effect seemed to be

stronger for objects. However, they did not explicitly test for

an age by domain interaction. All in all, the fact that studies

using differentmnemonic discrimination tasks showa similar

pattern of results suggests that age does have a domain-

specific impact unrelated to individual task-requirements.

Importantly however, we do not claim that spatial memory

is unaffected by aging. In addition to the effects on scene

memory found here, a host of other studies have reported

robust age-related decline of spatial memory (Newman &

Kaszniak, 2000; Rosenbaum, Winocur, Binns, & Moscovitch,

2012; Borella, Meneghetti, Ronconi, & Beni, 2014). Generally,

the varying findings on spatial memory decline might be due

to differences in the tasks employed (Borella, Meneghetti,

Ronconi, & Beni, 2014). Compared to the present task for

instance, many studies have used more complex spatial

stimuli such as virtual environments (Antonova et al., 2009;

Etchamendy, Konishi, Pike, Marighetto, & Bohbot, 2012; Head

& Isom, 2010; Rodgers, Sindone, & Moffat, 2012), whose pro-

cessing might be more sensitive to age-related changes. Also,

the onset of memory decreasemay be domain-dependent and

occur later for spatial memory. This might mirror underlying

brain changes, where in AD for instance, PRC is affected

earlier by atrophy than PHC. Importantly, most studies in

humans have focused on domains separately (however see

Berron et al., 2018; Reagh et al., 2018), whereas we directly

compare them in one model. Taken together, future studies
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on domain-specific memory decrease need to further inves-

tigate its reliance on stimulus properties as well as its tem-

poral progression in AD and healthy aging. In order to improve

our understanding of domain-specific temporal progression,

the study of longitudinal data will prove invaluable.

5.2. Presentation order and stimulus similarity

The fact that task performance was not purely driven by the

objective difference between two images is an interesting

finding. The stimulus pairs were created in a way that certain

changes were made on one stimulus e which we might call

the original stimulus e in order to obtain an altered version. It

was taken care that changes were realistic and plausible.

However, the effect demonstrates that showing the original

first and the altered version at test leads to less false alarms

than the reversed direction (altered version first and original

at test). The effect was also stronger for objects than scenes.

While only speculative, we hypothesize that the original

version is generally closer to an existing mental prototype,

and might therefore facilitate completion to such a prototype

(pattern completion) at test, which could have induced the

higher false alarm rates found for this direction. This is in line

with recent results from Naspi et al. (2020), who found

increased false recognitions for stimuli that were better ex-

amples of a conceptual prototype. While we did not assess

this directly, we would argue that our objects contain more

concrete semantic information than the scenes, with specific

attributes being expected from them (e.g., a sofa is more likely

to be rectangular than round), which may in turn explain the

stronger presentation order effect for objects. Interestingly,

Pidgeon and Morcom (2014) observed generally higher mne-

monic discrimination performance for stimuli that contain

familiar semantic information as compared to abstract stim-

uli, which may explain generally higher performance for ob-

jects in our task. In contrast, we found that scene trials were

generallymore difficult even though the amount of perceptual

changeswithin a pair is larger for scenes, speaking against the

importance of simple perceptual similarity. In addition,

Pidgeon and Morcom (2014) observed an age-related increase

in false alarms that was linked to the semantic rather than

perceptual similarity of stimuli. In their view, reliance on

conceptual structure may contribute to older adults’ bias to-

wards pattern completion. Such an effect might play a role in

the stronger age � domain interaction for objects found here.

All in all, while the present results seem related to research

regarding stimulus similarity, we are hesitant to make any

conclusive statements, since our stimuli were not directly

assessed in that regard. We do believe, however, that further

investigation into the effect of stimulus features and simi-

larity dimensions will be worthwhile.

5.3. Potential influence of sample properties

Importantly, despite using the present task and testing for the

interaction specifically, Berron et al. (2018) did not find

domain-specific group differences for either hits or false

alarms. Still, their functional imaging data showed dimin-

ished object-specific activity in PRC for older adults, which in

turn was related to decline in object performance exclusively
in that age group. Nevertheless, the fact that the same task did

not show any behavioral ageedomain interaction previously

is somewhat surprising, and exemplifies the importance of

considering other factors involved, such as the population

being tested. For instance, average age in their old group was

around 5 years lower (68.6 years) than in Reagh et al. (2018)

(73.6 years), who also used a two-groups design. It might be

that decline for one domain accelerates around that age

(R€onnlund, Nyberg, B€ackman, & Nilsson, 2005; Schaie, 2005),

which could explain the differing results. Our sample in-

corporates quite a large and continuous age-range (18e77),

while our model captures the variance in age, potentially

making it more sensitive to age-related change and circum-

venting problems associated with dichotomous age groups. A

further difference is the sample size, which was considerably

larger in the present study compared to Berron et al. (2018),

with 1554 versus 93 participants respectively. Given the rather

modest effect size of the ageedomain interaction found in our

data, the lack of such a finding for Berron et al. (2018) might

also simply be due to a lack of statistical power.

5.4. Challenges and opportunities of internet-based
testing

The previous section touched on a few challenges when

inferring age effects from cross-sectional samples. A note of

caution regarding our online-sample has to be raised, in this

matter. For instance, we did not control for neuropathologies,

cognitive impairment, depression, perceptual acuity or tech-

nical devices used, all of which might influence memory

performance. Indeed, limitations to clinical assessment of the

sample are a major challenge for internet-based research.

This is all the more relevant, as there seem to be systematic

differences between age subgroups of the Mturk worker pop-

ulation. For instance, old Mturkers seem to differ more from

the general population than the young, compared to their

respective age peers (Huff & Tingley, 2015). Assessing cogni-

tive impairment in online samples does pose several prob-

lems, however. First, participants’ diagnoses and clinical tests

employed might vary widely. Moreover, some participants

may not have been diagnosed with cognitive impairment

despite being affected, others might not want to share this

information. We therefore decided to stick to objective per-

formance measures to filter out problematic data, but do

acknowledge the importance of finding ways to assess

cognitive impairment in future studies. As for depression,

Mturkers do exhibit a higher prevalence of anxiety and

depression disorders compared to the general population,

which in turn have been linked to deficits in mnemonic

discrimination performance (Camfield, Fontana, Wesnes,

Mills, & Croft, 2017). It seems unlikely to us, however, that

the age effects found in the present study were driven by

depression. First, old Mturkers seem to exhibit less clinical

symptoms than their young counterparts (Arditte, Çek, Shaw,

& Timpano, 2016). Moreover, while younger Mturkers (<50)
exhibit a higher prevalence of depression than the general US

population, this effect is in fact reversed for older Mturkers

(<50) (Walters, Christakis, & Wright, 2018), being less

depressed on average. Thus, if depression had an effect in the

present study, we would expect it to improve memory with
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age, contrary to the effect found here. As for visual acuity, it is

known to decline with age and might have contributed to the

observed age-related decline on performance. In this case, the

effect would be more perceptual than mnemonic in nature.

We did not directly assess visual acuity in the present study,

but administered a simple arrow task, which wewould expect

to reveal more pronounced visual impairment. It is unclear,

however, to what extent the task is able to detect subtle visual

impairment, as average performance was quite high (93%

correct). However, Berron et al. (2019) did apply a visual

screening procedure on elderly participants (mean age ¼ 66

years), using the object-scene task and a subset of the stimuli

used here. They found no effect of visual acuity on task per-

formance for either objects or scenes. We therefore do not

expect visual acuity to have had a major effect on the present

results. Finally, while Mturk allowed us to obtain data on

technical equipment such as the browser and operating sys-

tem used, we did not assess the exact device type (laptop,

tablet, etc.) or screen size, which may affect memory perfor-

mance and also vary with effects of interest such as age. It

would therefore be important to collect this information and

to explicitly control for those factors in future web-based

studies.

While it is important to find ways of better characterizing

internet-based participants, Mturk data is not by default less

valid. For one thing, a whole variety of classical psychological

findings have already been replicated using Mturk (Chandler

& Shapiro, 2016). Furthermore, Mturk workers are more

diverse than the typically studied college students and more

representative of the overall population (Berinsky, Huber, &

Lenz, 2012), which may thus enhance the generalizability of

findings beyond confined demographics. Finally, the problem

of selection bias is not unique to internet-based samples, but

its recent surge in popularity seems to highlight its impor-

tance. Indeed, systematic differences between age groups are

likely to exist in the classical lab-based setting as well, where

the young group is typically exclusively made up of college

students, and the old group is usually recruited from local

elderly people that are either already in close contact with a

hospital or research institute, or that show increased interest

in clinical assessment. While we underline the importance of

characterizing the sample under study in the future, we do

believe that the statistical power that comes with large,

internet-based data is a promising way to account for a host

of further covariates. More generally, the ease with which

large sample data can today be collected from mobile de-

vices, in some cases combined with biological markers

serving as ground truth, offers a unique opportunity to

develop ever more sensitive behavioral markers for memory

decline.

5.5. Limitations

One important goal of the present study was to assess item

difficulty by using a very large number of different items,

which led to stimulus difficulties not being balanced across
domains. However, we argue that this does not account for the

age-interaction found in our study. If the effect was due to

overall higher difficulty in one domain, we would rather

expect a sharper decline for the scenes in aging, given that

they are generally more difficult. Still, future studies investi-

gating domain-specific decline should aim to balance diffi-

culty across domains in order to control for confounds

unrelated to domain-specific processing.

One further shortcoming of the present study is that no

brain data were available to directly inspect the relation be-

tween modality-dependence and region- or network-specific

brain changes. Future studies using molecular biomarkers

and MRI should investigate whether the pattern of stronger

decline for object memory can indeed be directly attributed to

brain changes in the anterioretemporal pathway. Further-

more, a meaningful design improvement would be the study

of longitudinal cohorts: in the search for behavioral markers

of age-related brain changes, it is imperative for these brain-

behavior links to be reliably observed on an individual rather

than merely on a population level.
6. Conclusion

In conclusion, we found stronger age-related decline in the

mnemonic discrimination of objects as compared to scenes.

This association was mainly driven by an increase in false

alarms with aging, with the effect being more pronounced for

objects than scenes. We discuss several pros and cons of

memory research using web-based assessment. Importantly,

the present study demonstrates the feasibility of testing large

online samples on a previously lab-based mnemonic

discrimination task. We were able to replicate and expand on

previous research of mnemonic discrimination, and further-

more control for a wide variety of covariates. While research

on online-samples certainly introduces new challenges, we do

believe that the availability of large, lifespan data from

crowdsourcing platforms such as Mturk opens up new possi-

bilities of exploring and buildingmore comprehensivemodels

of memory decline in aging. Importantly, we believe that

large-scale approaches provide a greatmeans to developmore

sensitive behavioral markers for the early diagnosis of AD,

given that AD pathology particularly and differentially affects

functional memory systems in the medial temporal lobe.
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