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A simple model is presented for the evolution of a dipolar vortex propagating horizontally
in a vertical slice model of a weakly stratified inviscid atmosphere, following the model of
Flierl & Haines (Phys Fluids 6, 3487-3497, 1994) for a modon on the S-plane. The dipole
is assumed to evolve to remain within the family of Lamb-Chaplygin dipoles but with
varying radius and speed. The dipole loses energy and impulse through internal wave
radiation. It is argued, and verified against numerical solutions of the full equations, that
an appropriately defined centre vorticity for the dipole is closely conserved throughout
the flow evolution. Combining conservation of centre vorticity with the requirement that
the dipole energy loss balances the work done on the fluid by internal wave radiation gives
a model that captures much of the observed dipole decay. Similar results are noted for a
cylindrical dipole propagating along the axis of a rotating fluid when the dipole axis is
perpendicular to the axis of rotation and for a spherical vortex propagating horizontally
in a weakly stratified fluid. The model extends to fluids of small viscosity and so provides
an estimate for the relative importance of wave drag and dissipation in dipole decay.

1. Introduction

Compact vortices can be remarkably long-lived features of many fluid flows. Nycander
& Isichenko (1990) observe that although monopolar vortices tend to be more commonly
observed, vortex dipoles (consisting of two strongly bound, oppositely signed vortices),
due to their ability to self-propagate over large distances, could be just as important for
transport. Velasco Fuentes & van Heijst (1994) note that dipoles occur in stratified fluids
(Fl6r & van Heijst 1994), in rotating fluids (Flierl et al. 1983), in the wake of a cylinder
moving through a soap film (Couder & Basdevant 1986) and in magnetohydrodynamic
flows (Nguyen Duc & Sommeria 1988). Questions then arise as to how long lived the
dipoles are, and through what mechanism they decay. In many experiments viscous
effects are the dominant dissipative effect: F16r & van Heijst (1994) and Flér et al. (1995)
discuss the viscous decay of dipoles in a strongly stratified fluid and Nielsen & Rasmussen
(1997) present numerical integrations showing viscous decay in a homogeneous fluid.
Nycander & Isichenko (1990) consider the general problem of dipoles moving in a weakly
inhomogeneous medium and present two mechanisms for dipole decay through the loss
of enstrophy. First, a vortex moving in the direction of the gradient of the inhomogeneity
(north-south on a rotating sphere or vertically in a stably stratified fluid) generates
“ghost vortices” (McWilliams & Zabusky 1982) and hence loses enstrophy to conserve
total enstrophy. Second, when a dipole oscillates along the background gradient its size
changes and enstrophy is lost through the separatrix between the dipole and the ambient
fluid. Brion et al. (2014) show that an instability also leads to fluid being shed from the
rear of a dipole. Shedding is shown to be important in the analysis below.

This paper aims to demonstrate briefly another mechanism for dipole decay present
when a dipole propagates in a weakly dispersive medium that extracts energy from
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Figure 1: A schematic showing the cross-sections of the dipole configurations considered.
below. In each case the dipole cross-section has radius a and the vortex is advancing
along the z-axis at speed U. (a) A cylindrical vortex in a vertical slice stratified flow
model with Oz vertical. The cross-section lies in the Oxz plane and the flow is invariant
in the Oy direction (§2). (b) A S8-plane modon in the horizontal Ozy plane invariant in
the Oz direction with Oy northward (§3). (c) A cylindrical vortex in a frame rotating at
angular velocity 2 about the z-axis. The cross-section lies in the Oxy plane and the flow
is invariant in the Oz direction (§5.1). (d) A spherical vortex in a stratified flow with Oz
vertical (§5.2).

the vortex through the work done by the wave drag. Section 2 describes the motion
in a two-dimensional vertical-slice weakly stably stratified model. Nielsen & Rasmussen
(1997) show that the Lamb-Chaplygin vortex dipole (Meleshko & van Heijst 1994) (LC-
dipole) arises naturally in a flow initialised by a jet and so the the problem is posed
in §2 in terms of a modified LC-dipole. Section 3 shows that the analysis translates
directly to the problem of a modon (Larichev & Reznik 1976; Flierl 1987) propagating
westwards under the (-plane quasigeostrophic approximation for a barotropic ocean,
reproducing results obtained using an adjoint method in Flierl & Haines (1994) (FH)
— in particular the algebraic decay of the radius and speed of the modon. Numerical
solutions are presented that confirm the numerical integrations in FH and the close
conservation of an appropriately defined centre vorticity for the modon. Section 4 returns
to discussion of the slow evolution of the LC-dipole in stratified flow using the requirement
of conservation of centre vorticity to derive the decay rate of the dipole radius and speed
and the numerical model of §3 to test the model assumptions and predictions.

Section 5 notes, following Bretherton (1967), that the stratified results translate
immediately to the problem of an LC-dipole propagating parallel to the axis of rotation
of a weakly rotating homogeneous fluid and gives equivalent results for the decay of a
Hill’s (Hill 1894) vortex propagating horizontally in a weakly stratified flow. Figure 1
gives a schematic of the cases considered. Positive vorticity is shown in red and negative
vorticity blue. The sign of the dipole is chosen so that the dipole propagates in the
positive z-direction. This means that the dipole sign reverses between parts (a) and (b)
as the vortex (y) axis in (a) points into the page whereas the vortex (z) axis in (b)
points out of the page. Horizontally propagating dipolar vortices in a vertical slice model
similar to (a) have been observed experimentally as mode-two solitons at the diffuse
interface of two-layer stratified flows. Kamachi & Honji (1982) show closed streamline
patterns in the co-moving frame and Salloum et al. (2012) and Carr et al. (2015) present
vorticity plots clearly showing the dipolar structure. In these experiments, however, the
fluid is homogeneous away from the interface and so no energy is radiated away from
the interface. Provided it travels faster than the linear mode-two wave, the dipole also
radiates no energy along the interface and any decay is due to viscous effects.
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Section 6 extends the model to include viscous dissipation, relating the results to the
homogeneous-fluid results of van de Fliert (1996) and Nielsen & Rasmussen (1997), and
§7 discusses the results briefly.

2. Two-dimensional stratified flow

Consider a uniformly stratified inviscid, diffusionless fluid which in its undisturbed
state has constant buoyancy frequency N. Introduce Cartesian axes Ox'yz fixed in the
fluid with Oz vertical and take the motion to be two-dimensional in the sense that the flow
is independent of the coordinate y, being the same in all vertical slices y = constant with
all quantities treated below as two-dimensional but corresponding to three-dimensional
quantities taken per unit width in the y-direction. Let the fluid be disturbed by a circular
LC-dipole of radius a propagating in the Oz’ direction at speed U, such that the inverse
Froude number, the ratio of the vortex scale to the scale of internal waves that can
stand behind the propagating vortex, ey = Na/U, is small (figure 1a). Now consider the
leading order flow in the limit e — 0 so that on the scale of the vortex the leading order
flow is nonlinear but unaffected by stratification. On the scale of the internal wave wake
the vortex appears as a forcing region of area €% and so is governed by linear dynamics.
The internal wave pressure field acts over a length of order ey to exert a drag of order €3
on the vortex. This weak drag causes the vortex to be modified over a timescale €3a/U,
long compared to the advection time a/U. As a modelling hypothesis it will be supposed
that the response of the vortex to this drag is to evolve so as to remain an LC-dipole
but with radius and speed varying slowly in time. The internal wave wake is set up in
times of order a/U and so can be taken as quasi-steady during the vortex evolution. The
solution requires three components described briefly below: the dipole energy (§2.2), the
wave drag (§2.3) and an appropriate vortex centre (§2.4).

2.1. The governing equations

Let the velocity relative to the fixed axes Oz'yz be u = u&’ + w2 and buoyancy
acceleration be b. For two-dimensional flows in an otherwise static, stably stratified flow
of buoyancy frequency N, the equations of motion can be written in coordinates moving
at the vortex speed U as

(O — U0z )u + uug + wu, = —(1/p)pa, (2.1a)

(0 = U0p)w + vw, +ww, —b=—(1/p)p-, (2.10)
(0 — Uy)b + uby + wh, + N*w =0, (2.1¢)
Uy +w, = 0. (2.1d)

where p is a constant reference density and x = 2/ — [ ‘U (t")dt’. This system gives an
energy conservation equation in the form

(0, —UO0z)Ep + V - (Epu + pu) = 0, Ey = 1p(u® +w?) + pb* /N> (2.2)

Introducing the streamfunction v, defined by (u,w) = (¢,, —1,), and eliminating the
pressure then gives for steady flow,

a(_UZ + 11)777) —b, =0, (2.3&)
O(~Uz+1p,b+ N?2) =0, (2.30)

where 77 = V21 is the y-component of vorticity and d(.,.) denotes the Jacobian. Simple
nonlinear solutions of (2.3) follow by looking for Long’s model solutions (Long 1955)
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where the total density b4 N2z is a linear function of the total streamfunction —Uz + 1),
ie. b+ N2z = a(—Uz + 1), for some a. For streamlines originating upstream, where b
and 1) vanish, this form requires that o = —N?/U but within the vortex « is arbitrary.
Then (2.3a) can be written

O(-Uz+1,n—az)=0. (2.4)

A simple nonlinear solution is again given by choosing 1 — @z to be a linear function of
—Uz+1,ie.n—az =~v(—Uz+1)), for some 7. For streamlines originating upstream this
form requires that o = U~ but within the vortex ~ is arbitrary. The governing equation
outside the vortex thus becomes

V23 4+ k%) = 0, (2.50)
b= —N?p/U, (2.50)

where k = N/U is the wavenumber of the standing internal wave wake. Multiplying
(2.5a) by ¥ and integrating over the region exterior to the vortex shows that the energy
in the internal wave wake is equipartitioned between kinetic and potential energy as
expected,

Jerswty = [wreuty = [o2 = [/ (2.6)

Now suppose that relationship (2.5b) between the density and streamfunction continues
to hold within the vortex (so in the absence of stratification the perturbation density
vanishes). Then the governing equation inside the vortex can be written

V2 + K*p = U(K? — %)z, b= —N%)/U, (2.7)

where K is the internal wavenumber of the vortex. For K # k the energy of the vortex
does not satisfy (2.6) and is not equipartitioned between kinetic and potential energy.
Larichev & Reznik (1976) and Flierl (1987) derive system (2.5), (2.7) with x? replaced
by —(8/U) as the governing equation for eastward propagating dipolar vortices, modons,
in a barotropic rigid-lid ocean under the S-plane approximation and give solutions for
circular dipoles surrounded by an exponentially decaying disturbance field. This form
of solution requires the modon speed U to be positive so as to lie outside the range of
Rossby wave phase speeds. Westward propagating modons, U < 0, have a speed that
coincides with a Rossby wave phase speed. This permits standing Rossby lee-wave wakes
that remove momentum and energy from the modon and FH quantify the subsequent
modon decay. As there is no preferred horizontal direction for internal waves the dipoles
in the stratified flow here decay irrespective of their direction of propagation.

2.2. The Lamb-Chaplygin dipole

In the absence of background stratification (k = 0) system (2.1) reduces to the Euler
equations. Equations (2.5), (2.7) have the LC-dipole solution (Meleshko & van Heijst
1994),

Uz+ CJ(Kr)z/r, r<a
) = { o o (2.8)
Ua®z /7, r>a,
where 7 = (22 + z2)1/ 2, and the dipole boundary is the circle r = a. The smallest

wavenumber K satisfying the no-normal-flow condition, —Uz + ¥ = 0 on r = a, i.e.
J1(Ka) =0, is given by Ka = v where  is the first positive root of J; so vy & 3.8317. Once
a is determined K is known. Continuity of tangential velocity at the dipole boundary
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gives C = —2U/K Jo(Ka). The flow outside the dipole can be written

= UaQ%[arctan(x/z)], r>a. (2.9)
Along the line z = 07, (2.9) gives
Y= ﬁUaQG— sgnz = tUa?0(x) z2=0" (2.10)
2 Oz ’ ’ '

showing that the velocity field in r > a is precisely that of an irrotational source doublet
of strength 27pUa? at the origin directed in the positive-z direction.
The impulse of the dipole follows as in (A 2) as

W= —p/zn = 21pUd?, (2.11)

where the integral is taken over the compact support of n (here the disc r < a), and
matches the doublet strength. The energy associated with the dipole is simply the kinetic
energy

1
E = —ip/dm = 21pa’U? = Up, (2.12)

again noted in the appendix. Under the hypothesis that the dipole remains within the
LC-dipole family as it evolves, (2.2) shows that the dipole potential energy remains a
small perturbation to the total energy density of the dipole for sufficiently small «.

2.3. The internal wave wake

The propagating dipole appears in the outer field as a source doublet of strength pu
propagating to the right at speed U. The wave drag on the dipole is weak and so over times
of order of the advection time, the time taken for the internal wave wake to be established
in the neighbourhood of the dipole, the dipole radius and speed are unaltered. The wave
field can be thus taken as steady in the frame moving with the dipole. The nonlinear
terms are negligible in (2.1), the material derivative is simply —UJ,, and the governing
equations again reduce to (2.5) showing, incidentally, that the wavefield derived here
satisfies the full nonlinear steady equations. For sufficiently small x, z the buoyancy term
in (2.5) is negligible so the inner region of the internal wave field is irrotational, joining
smoothly to the irrotational outer part of the LC-dipole solution (2.8). The linear solution
for horizontally propagating dipoles in a weakly stably stratified flow has been solved in
both two and three dimensions by Gorodtsov & Teodorovich (1983). The solution for
two dimensional flow is summarised here and that for three dimensions is simply quoted
where needed in §5. Equation (2.5) is solved in z > 0 subject to the boundary condition
(2.10) and the solution smoothly extended into z < 0 by taking 1 to be odd in z. This
gives the Fourier transform solution,

W(x, 2) = % /_Oo O (k, z) exp(ikz) dk, (2.13a)

exp[—(k? — k%)V/2 2] |k| > K

2.13b
exp[—isgn(k)(k? — k?)1/2 2] |k| < K, ( )

where @(k, z) = nUa? {

and the sign in the second exponential has been chosen to give upward group velocity.
The drag D exerted on a material surface at height z is given by the component of the
pressure force in the negative-z direction. Let ((x, z9) be the displacement from height
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zp of a particle originally at height z = zy far upstream. Then

D=- /OO pCy de. (2.14)

— 00

This force is positive, corresponding to a drag on the material surface, when there is a
positive upward flux of z-momentum. Substituting w = —U(, from the definition of ¢
and p = pUu from (2.1a) gives

D= p/ uw dr = —p/ V), do = —2£/ @@* dk (2.15a)
o0 — 00 ™ — 00

K

—LmpU?a* {/ ik(k? — k2)1/2 exp[—2(k2 — K212 z} dk +/
|k|>K

—K

—|k|(k? — K*)1/? dk}

(2.15b)
— —%WpU2a4[(/£2 _ k2)3/2]g _ éﬂpU2a4/€3. (2156)

Here (2.15a) follows from Plancherel’s theorem and * denotes complex conjugate. The
first integrand in (2.15b) is odd in & so the integral vanishes, as expected for evanescent
waves, and the second integrand is even giving (2.15¢). Waves are radiated both upwards
and downwards from the dipole and so the total drag on the dipole is twice that given
by (2.15¢).

The vertical energy flux is given by the flux of pressure, as in (A1),

F = / wp dz = / (=U¢)pde =UD, (2.16)
the work done by the drag force.

2.4. The vorter centre

As the flow evolves, dipole fluid escapes the boundary of the dipole, in particular
from the neighbourhood of the rear stagnation point. The central regions of the vortices
comprising the dipole maintain their integrity and so we follow FH and consider the
vorticity contained within these regions, defining the instantaneous vortex centre at a
given time as the point within the vortex in z > 0 where the total streamfunction,
U = —Uz+1, at that time attains its maximum. Consider a total streamline sufficiently
close to the vortex centre that it is closed. Integrating the vorticity over the region
enclosed by this streamline gives, from (2.1a) and (2.1b),

/nt dzdz + ?{n(u.ﬁ)ds = /bw dzdz = %b dz, (2.17)

where ds is the element of length along the streamline. Integrating the buoyancy over
the same region gives, from (2.1c),

/bt dzdz + f{(b + N?2)(u.f)ds = 0. (2.18)

As the velocity normal to the streamline is zero, the line integral on the left sides of (2.17)
and (2.18) vanish. Now allow the streamline value to increase towards the maximum
so that the integration area converges on the vortex centre. Provided the maximum
buoyancy perturbation at times ¢ > 0 lies at the vortex centre, as it does initially, then
the buoyancy terms on the right side of (2.17) vanish faster than the vorticity term
on the left to give in the limit that n; vanishes at the vortex centre: the instantaneous
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Figure 2: (a) The normalised maximum value of streamfunction within the
quasigeostrophic modon: the streamfunction value at the vortex centre, 1., and (b) the
normalised modon energy, F, as functions of time, ¢ for the background vorticity gradients
B listed in the legend. The solid lines show the present computations, the dashed lines
the computations of FH and the dotted lines the analytical predictions.

rate of change of the vorticity at the vortex centre is zero. The numerical simulations in
8§83, 4 below confirm that the vorticity at the vortex centre, denoted herein by 7. and
described for brevity as the centre vorticity, remains approximately constant throughout
the evolution. Similarly (2.18) shows that the perturbation buoyancy at the vortex centre,
denoted herein by b. and described as the centre buoyancy, is constant throughout the
evolution, again borne out by the numerical integrations of §4.

3. Modon decay through Rossby wave radiation

Before considering the slow evolution of the stratified flow it is useful to relate the
analysis of §2 to that for the decay of modons due to Rossby wave radiation described
by FH. The S-plane approximation consists of taking Cartesian axes Oxy in a horizontal
plane with Oy northwards, corresponding velocity components (u,v), streamfunction
1 such that (u,v) = (=g, %,) and B as the local poleward gradient of the vertical
component of the Earth’s rotation (figure 1b ). This gives the quasi-geostrophic potential
vorticity equation in a frame moving at speed U to the west, as in FH, as

(0 — Uda) V2 + 01, V24) + i, = 0. (3.1)

Equation (3.1) has the same dynamics as that in §2 on setting k = (—3/U)"/? for U < 0.
The drag computation in §2.3 applies directly to give the same expression (2.15¢) for the
total drag due to Rossby wave radiation and (2.16) for the work done by the wavefield:
the wave drag method of §2 gives the same results as the adjoint method of FH.

Equating the rate of change of dipole impulse to the drag force acting on the dipole
gives the slow evolution equation, taking into account that U < 0,

CCIT’: =-2D, e %(%Ua?) = —%U%%”. (3.2)

Similarly balancing the rate of change of vortex energy against the work done by the
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Figure 3: (a) The streamfunction ¢ in the horizontal g-plane forced by a westward
propagating quasigeostrophic modon for 8 = 0.4 at time ¢ = 25. The modon, marked by
‘47, moves west from an initial position marked with ‘4’ , generating the Rossby wave
wake. (b) The relative vorticity V2% for 8 = 0.8 at t = 15, showing vorticity escaping
from the rear of the modon.

wavefield gives

dE d 2

o = 2F=-2UD, e a(%U%ﬂ) = —ng%%B. (3.3)
Equations (3.2) and (3.3) combine to require that U remains constant and so

a=ao(1+ 5 |Ult/ao)™"/?, €= es0 = (—Paj/Uo)"?, (3.4)

where ag and Uy are the initial values of a and U. This is the same result that FH obtain
by combining energy conservation with enstrophy conservation. They point out that the
peak vorticity within the modon is proportional to U/a and so would increase as the
modon shrank, violating Lagrangian conservation of peak vorticity. FH note also that
streamers of vorticity are shed from the rear of the dipole, consistent with the instability
described by Brion et al. (2014), and so it is reasonable to expect that dipole enstrophy
is not conserved. Enforcing the conservation of centre vorticity, defined as in §2.4 is
equivalent to requiring that U/a remains constant throughout the evolution. Requiring
U/a to remain equal to its initial value while relaxing conservation of enstrophy or,
equivalently, the drag — modon impulse balance (3.2), and retaining the work — modon
energy balance (3.3), gives the decay rate

ai(t) = ao(1 + 1€*|Uo|t/ao) /3. (3.5)

FH present numerical integrations that strongly support the determination through
conservation of centre vorticity. The agreement of the decay rate of various quantities
with (3.5) is excellent, particularly in the relevant range of small 8, even though the
accompanying wavefield seems not to take precisely the asymptotic form. This deviation
and the large fluctuations at larger 8 appear to be due to the necessarily finite size of the
computational domain. To test this hypothesis equation (3.1) was discretized spectrally
using Fourier series on a doubly periodic domain as in FH, but with twice the resolution
and four times the domain size (2048 x 2048 points on a grid of size 102.4x 102.4 initialised
with an LC-dipole vortex of radius one and speed one) and integrated using the Dedalus
package (Burns et al. 2020) with a timestep of 2 x 10~2 and hyperdiffusion included to



A dipolar vortex in a dispersive environment 9

absorb the downscale enstrophy cascade and ensure numerical stability. The total energy
in the domain was conserved to within 1% over 25 time units for all 8 considered and the
centre vorticity to within 5%. The position of the maximum streamfunction value, ¥.(t),
i.e. the vortex centre, is known accurately at each time step and so the instantaneous
speed U(t) can be obtained by differencing the z-coordinate of the vortex centre. The
instantaneous dipole radius a(t) is more difficult to measure directly. The assumption
that the dipole evolves to remain an LC-dipole means however, from (2.8), that

te(t) = Pa(t)U (1), (3.6)

for some constant P. By direct evaluation of the maximum of (2.8), FH show that P ~ 1.3
and so a(t) follows from (3.6). The initial dipole adjusts rapidly at early times altering
slightly both the initial speed and radius of the modon. We follow FH and evaluate ag
and Uj from the flow field at some time t = ¢ after this initial adjustment. These values
then determine e through (3.4), which thus differs slightly from 8/2. For definiteness the
integrations are labelled by the value of 3.

Figure 2(a) compares the present results for the maximum value of the streamfunction
within the modon, the streamfunction value at the vortex centre as defined in §2.4, with
those of FH showing that decreasing the effect of westward-radiated waves re-entering
from the eastern boundary, and decreasing wave reflection at the zonal boundaries, due
to spatial periodicity, suppresses the fluctuations present on the smaller computational
domain. Figure 2(b) shows the decay of modon energy E, calculated here as the kinetic
energy within a circle of radius a(t) about the translating origin of the dipole. The small
[ results capture the qualitative behaviour even for = 1 where the modon has lost
almost 80% of its energy by ¢ = 25. The values for the determination for ag and Uy are
to =1in (a) and tp = 5 in (b) as the streamfunction appears to fall into its asymptotic
behaviour sooner. The values plotted have been normalised by their value at ¢t = tg.

Figure 3(a) shows the wavefield at time ¢ = 25 for § = 0.4 in an inertial frame
propagating to the west at unit speed. The initial modon position is marked by ‘4’
(and thus is at X = 2’ + ¢ = 25 at ¢ = 25) and the current position by ‘+’. The wake
behind the modon is established between the initial and current modon positions as the
modon moves away. Slowly propagating transient waves can be seen originating from
the neighbourhood of the initial modon position. As noted by FH, the modon initially
accelerates through the S-effect to move slightly faster than unity but then slows due to
wave drag and so by t = 25 lies just in X < 0. The wavefield has the expected asymptotic
form with no clear signature of boundary effects. These features of the solution can be
seen more clearly in the movie (Moviel.mp4) of the temporal development of v, included
as supplementary material. Figure 3(b) shows the vorticity expelled from the rear of the
modon as expected from the LC-dipole stability analysis of Brion et al. (2014) and from
the viscous LC-dipole computations of Nielsen & Rasmussen (1997).

4. The slow evolution of the stratified flow
The equations corresponding to (3.2) and (3.3) for stratified flow, where Kk = N/U are
the impulse-drag equation
d .
a(Uaz) = —N3a*/3U. (4.1)
and the energy-work equation
d

&(UQQQ) = —N3a*/3. (4.2)
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Figure 4: The streamfunction v for a rightward propagating dipole in the vertical-slice
stratified model for N = 0.4 at times (a) ¢ = 30, (b) t = 50. The dipole, marked by
‘47, moves to the right from an initial position marked with ‘4’ | generating the internal
wave wake.

Figure 5: Scatter plots showing the functional relations in the flow at time ¢t = 30 for
buoyancy N = 0.4. (a) The total vorticity H = (N2/U)z + V%9 as a function of of the
total streamfunction ¥ = —Uz + 9 over the whole flow field. (b) A detail of part (a) in
the neighbourhood of the dipole. (¢) The perturbation buoyancy b as a function of the
perturbation streamfunction 1 over the whole flow field. The dashed lines in each part
give the theoretical relations discussed in the text.

Again equations (4.1) and (4.2) combine to require that U remains constant, giving (3.4)
with here e = exg = Nag/Up, and so contradicting the conservation of centre vorticity
of §2.4. Relaxing the dipole impulse equation (4.1) while requiring the centre vorticity to
be conserved, i.e. U/a to remain constant, and the energy equation (4.2) to hold, gives

a1(t) = ag exp(—ex|Uolt/ao). (4.3)

The decay rate is exponential here in contrast to the slower algebraic decay rate for the S-
plane modon because of the different power of U in the definition of x. The conservation of
centre vorticity also implies that the instantaneous value of the inverse Froude number,
en = ka = Na/U, remains equal to its initial value, ey, in contrast to the S-plane
modon where the instantaneous value of eg slowly decreases with time, as a/?, and so
the flow becomes progressively less nonlinear. As expected from §2 the decay timescale
is of order ¢~ times the advection timescale.

Equations (2.1) in streamfunction-vorticity form, i.e. the unsteady version of equations
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(2.3), were integrated using the code of §3, including the additional buoyancy field, with
the initial condition for the vorticity taken to be an LC-dipole, the initial streamfunction
obtained from the vorticity by inverting the periodic Laplacian, and the initial buoyancy
to be given by (2.5b) so as to be continuous and have continuous normal derivative at
r = a. The flow pattern developed more slowly than on the S-plane and so the equations
were integrated to ¢ = 50, with the total energy again conserved to within 1% over all
integrations. The dipoles again evolve slightly but rapidly initially and so ag and Uy are
computed at time ¢t = to after this initial evolution with the integrations labelled by the
value of N.

Figure 4 shows the wavefield for N = 0.4 at times ¢ = 30 and ¢ = 50 in an inertial frame
propagating to the right at unit speed. The initial dipole position is marked by ‘+’ (and
thusisat X =2’ —¢t = —30 at t = 30 and at X = —50 at ¢t = 50) and the current position
by ‘+’. As for the S-plane modon of §3, the wake behind the dipole is set up between the
initial and current dipole positions as the dipole moves away; slowly propagating transient
waves can be seen originating from the neighbourhood of the initial modon position; and
the dipole initially accelerates, here through buoyancy effects, to move slightly faster
than unity but then slows due to wave drag and so lies just in X > 0 at ¢ = 30,50. The
wavefields are well developed, particularly in the neighbourhood of the dipole, boundary
effects are negligible, and the wavelength of the disturbance remains constant with time,
as expected. These features can be seen more clearly in the movie (Movie2.mp4) of the
temporal development of ¢ and b, included as supplementary material.

The model here assumes that throughout the evolution the dipole remains an LC-
dipole, though with varying speed and radius, and that the streamfunction and buoyancy
are linearly related. Figure 5 tests these relations at time ¢t = 30 for N = 0.3 for the 4 x 10°
computational points. Figure 5(a) gives a scatter plot of the vorticity H = (N?/U)z+V?)
as a function of the total streamfunction ¥ = —Uz + ¢ over the whole flow field and
figure 5(b) gives a detail of 5(a) in the neighbourhood of the dipole. From (2.5a) and (2.7)
the points outside the dipole should lie along a line through the origin with slope x? and
points inside the dipole along a line with slope K2 —x2, shown dashed in 5(a) and (b). The
closeness of the computed values even at large times shows that the dipole remains close
to an LC-dipole. A scatter plot of the total density against the total streamfunction (not
shown here) shows that these quantities are very closely linearly related, satisfying (2.3b)
closely. A more stringent test is shown in figure 5(c) where the perturbation buoyancy b
is plotted as a function of the perturbation streamfunction 1 over the whole flow field.
The general behaviour accords with the relations (2.56) and (2.7), with the slope of the
theoretical relations reproduced accurately. The blue points correspond to computational
points lying outside the dipole and lie accurately along the line of (2.50). The red points
are points lying within the dipole. They show a slightly steeper slope near the geometric
centre of the dipole at the co-moving-coordinate origin and a small offset over the majority
of the dipole. The points near the ends of the red groups correspond to computational
points near the vortex centre. This behaviour cannot be captured by the model presented
here but appears to be sufficiently small that it does not alter the qualitative behaviour of
the flow. This will be discussed briefly in §7. The green points are computational points
near the dipole boundary affected by the computational hyperdiffusion which smooths
otherwise discontinuous higher gradients there.

Figure 6 shows the centre vorticity 7. and the centre perturbation buoyancy b. as
functions of time ¢ for different strengths of the background buoyancy gradient, N. The
values are normalised on their value at t = ¢y, where here ¢y = 10, reflecting the longer
time required for the stratified dipole to adjust to its asymptotic form. For small N, 7.
is closely constant and even for N = 0.4, 7. decreases only by approximately 1.5% over
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Figure 6: The normalised maximum value of (a) the centre vorticity, 7., and (b) the
centre perturbation buoyancy, b., as functions of time, ¢ for the values of the background
buoyancy frequency, N, listed in the legend.
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Figure 7: Normalised values of (a) the maximum value of the streamfunction . at the
vortex centre and (b) the dipole energy E as functions of time ¢ for the values of the
buoyancy frequency N listed in the legend. The axes are log-linear. Solid lines give the
values from the numerical integrations, dotted straight lines those from the dipole theory
and dashed straight lines the values from the cylindrical approximation.

the integration. The centre perturbation buoyancy, b., remains within 3% of its value
at t = tg provided N < 0.3. The buoyancy fluctuations for larger N appear related to
stirring at the vortex centre, discussed briefly in §7. Figure 7 shows the streamfunction
1. at the vortex centre and the dipole energy E during the dipole evolution and figure
8(a) the dipole impulse p, normalised by their values at ¢t = ty = 10. The dipole model
results appear to capture the decay here with comparable accuracy to §3 even over the
longer integration time.

Gorodtsov & Teodorovich (1983) point out that approximating a finite body by a
dipole overestimates the drag by including finite contributions from arbitrarily large
wavenumbers which are not forced by the body. By approximating a cylinder of radius a
by a distributions of sources Gorodtsov & Teodorovich (1983) obtain the drag formula,
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Figure 8: (a) As in figure 7 but for the dipole impulse p. (b) The relative vorticity
n = V2 in a vertical (z, 2) slice for N = 0.5 at time ¢ = 15, showing vorticity escaping
from the rear of the dipole.

in the notation of §2.3,
D¢ = (8/3)npU?a?k[J1 (ka)]?, (4.4)

which they argue is a more accurate estimate of the wave drag as it takes into account
the finite size of the forcing region. Substituting U D¢ for the work done by the vortex
on the fluid in the work-energy equation and imposing conservation of centre vorticity
then gives the modified decay formula

ag(t) = Qo eXp(—%EN[Jl(EN)]2|U0|t/(10). (45)

Expression (4.5) reduces to (4.3) in the limit ey — 0 and is not correct to any higher
order in ey than (4.3). To assess whether accounting for the finite vortex size through this
cylindrical approximation gives a more accurate model than the dipole model at small
but finite ex the values of ¢, F and p derived from (3.5) are included in figures 7 and
8(a) as dashed lines. The cylindrical approximation gives a slower decay as expected but
the effect for these values of N is negligible compared with the effect of unavoidable small
variations in the estimation of ag and Uy and so finite size effects are not the leading order
omitted effect for stratified dipoles. The same argument applies to the modon decay of §3
but since the instantaneous inverse Froude number, €5 = ka = (—Ba?/U)/?, decreases
during the evolution the simple form of solution (3.5) is lost. Approximating the Bessel
function in (4.4) by its first two terms gives the radius decay, with the first correction,
as

ax(t) = aor[l + 2 (1 =), 7= (1+ Lelo|Uplt/ao) /%, (4.6)

As for (4.5), (4.6) reduces to (3.5) in the limit egg — 0 and is not correct to any higher
order in ego than (3.5). Comparison with the dipole model (not plotted here) show again
that finite size effects are not the leading order omitted effect for S-plane modons.

Figure 8 (b) shows the relative vorticity n = V21 in a vertical (x, z) slice for buoyancy
N = 0.5 at time ¢t = 15. As for the 8-plane modon, vortical fluid escapes from the rear
of the dipole as expected from the LC-dipole stability analysis of Brion et al. (2014) and
from the viscous LC-dipole computations of Nielsen & Rasmussen (1997).
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5. Other geometries
5.1. A cylindrical dipole in a rotating frame

The correspondence between two-dimensional rotating and stratified flows noted by
Bretherton (1967) means that the results above apply directly to rotating flow. Consider
the geometry of §2 with a LC-dipole of radius a and axis aligned with the y axis advancing
in the z-direction with speed U and take the fluid to be of constant density but rotating
at angular velocity {2 about the z-axis (figure 1c). The governing equations in a frame
moving with the vortex can then be written

(8, — Udy)u+202% xu=—(1/p)Vp,  V-u=0. (5.1)

Writing b = —202v and N = 22 reduces (5.1) to (2.1). The results for a stratified flow
carry over directly on taking € = e, = 2f2a9/Uy, the inverse Rossby number, to be small.
The internal wave field of the stratified flow becomes a large-scale, weak, inertial wave
wake. The buoyancy field maps to the cross-flow velocity field, v, in the y-direction.

5.2. Hill’s vortex in a stratified fluid

The model put forward in §2 extends straightforwardly to three dimensions. Let the
nonlinear inner dipole be the Hill’s spherical vortex of radius a advancing in the z-
direction with speed U (figure 1d). As with the LC-dipole this gives an inner vortical
flow surrounded by irrotational flow. The energy of the vortex is 10mpa®U?/7 (Lamb
1932, Art. 165). For small inverse Froude number, €, the outer field is the internal wave
field behind a sphere of radius a moving at speed U. This field exerts a drag on the
sphere equal to, in the notation of §2.3, Dg = (7/8)pa* N2?e3,(—logey + 7/4 — ), where
~v = 0.577 is Euler’s constant, (Gorodtsov & Teodorovich 1983) doing work at a rate
UDg. The energy-work-done equation is thus

%(U%?’) = —(7/80)UN?%a*e% (—logen +7/4 — 7). (5.2)
Lamb (1932, Art. 165) notes that the conserved scalar vortical quantity is the azimuthal
(around the z-axis) component vorticity divided by distance from the z-axis. The
argument of §2.4 then shows that the vortex centre value of the azimuthal vorticity
is constant throughout the motion, and so U/a and the instantaneous value of € remain
constant. Combining this with (5.2) gives a predicted decay for the vortex radius as

a(t) = ag exp[f(7/400)ej1\,(f logen +7/4 — 'y)UOt/aO]. (5.3)

Similarly to §2, a pressure perturbation of order €3, acting over an area of order €% gives
a decay timescale of order 6]7\,4 times the advection timescale.

The model here also extends to the motion of Hill’s vortex along the axis of a weakly
rotating fluid although the axisymmetric geometry introduces technical differences in
both the analytical and numerical methods (Crowe et al. 2021).

6. Viscous dissipation

Viscosity and density diffusion are present in real fluids. For the weak stratification
limit considered here the leading order effect of these, for Prandtl and Schmidt numbers
of order unity or greater, is the viscous dissipation of the LC-dipole. The Navier-Stokes
equations for an incompressible fluid give the dissipation rate of the kinetic energy as
vp € where v is the kinematic viscosity, £ = [ n? dV is the enstrophy, and the integral is
taken over a region sufficiently large that the vorticity is vanishingly small on its surface
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Figure 9: Simulation and predicted values for the maximum streamfunction, ., centre
vorticity, 7., vortex speed U and vortex radius a, normalised on their initial values, and
the dispersion/viscosity ratio D normalised on its maximum value, for a S-plane modon
with = 0.6. (a) v = 0.001, giving a value at t =t; = 5 of D &~ 178. (b) v = 0.01 giving
a value at at t =t of D & 45. Legend as in (a).

(e.g. Nielsen & Rasmussen 1997). Retaining the two leading order small effects for a
weakly viscous, weakly stratified flow in the energy equation (A 3) gives

E
d—:—j{pu-ﬁds—vpg. (6.1)
dt c

For the LC-dipole, (2.8) gives £ = K2E and so, as in (3.3) and (4.2),

%(U‘Za?) = —(U3a/3)(e® + 37*Re ™), (6.2)
where € = ak is the inverse Froude number and Re = Ua/v is the Reynolds number.
The importance of wave drag relative to dissipation, for small € here, is measured by the
parameter D = e¢3Re. The two effects are of the same order in (6.2) when D ~ 3% ~
44; when D > 1 wave drag dominates the decay and when D 1 viscous dissipation
dominates. The stratified dipole, with D = N3a*/vU?, is more sensitive to dipole speed
than the S-plane modem where D = 33/2a* /v(—U)'/2. As a and U evolve the value of
D changes and the dominant decay mechanism can change.

van de Fliert (1996) combines the dispersionless (e = 0) version of (6.2) with con-
servation of the impulse p and Nielsen & Rasmussen (1997) combine the dispersionless
version of (6.2) with an equivalent equation for the viscous decay of enstrophy. Both
derive equivalent models where the LC-dipole slows with speed U ~ t~! but radius
expanding with a ~ t'/2. These match closely numerical results in Nielsen & Rasmussen
(1997) although subsequent longer integrations (van Geffen & van Heijst 1998; Delbende
& Rossi 2009) differ more due to the dipole structure deviating from the LC-dipole form.
Neither closure is suitable for the dispersive problem. Section 4 shows that including the
dispersive impulse-drag equation leads to the erroneous prediction of constant vortex
propagation speed U, as does the inclusion of dispersive enstrophy decay on the -
plane, shown by FH. This suggests considering rather the dissipation of centre vorticity,
7e. Applying the argument of §2.4 shows that the advective contribution to temporal
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Figure 10: As for figure 9, but for a stratified dipole with v = 0.001 (a) N = 0.2, giving a
value at t =tg =5 of D = 8. (b) N = 0.4, giving a value at at ¢t =ty of D ~ 58. Legend
as in figure 9.

changes to 7. vanishes, giving the vorticity diffusion equation
(e —vV?n)e = 0. (6.3)
For the hypothesised LC-dipole form (2.8) this gives

&(U/a) = —*U/a®. (6.4)
Closing the specification of a and U by combining (6.2) and (6.4) gives a model that
reproduces the results of §3 and §4 in the inviscid limit, v = 0. In the dispersionless
limit, e = 0, (6.2) and (6.4) give

a(t) = ap(1 4+ v2vt/2a2)V/?, U(t) = Up(1 + ~vt/2a2)~3/2. (6.5)

These formulae fit the numerical results in Nielsen & Rasmussen (1997) and van Geffen &
van Heijst (1998) reasonably well, deviating most in the prediction for a where, although
(6.5) has the correct t'/2 behaviour, the coefficient is too small. For general ¢ and v, the
presence of two effects in (6.2) appears to preclude a simple analytical solution for the
model but solutions are smooth and so can be obtained rapidly by standard numerical
integration.

Figure 9(a) shows the maximum streamfunction, v, centre vorticity, 7., vortex speed
U and vortex radius a (estimated as ¢./U) from numerically integrating the S-plane
equations, as in §3, with the inclusion of Navier-Stokes dissipation. Here § = 0.6 and
v = 0.001. The initial adjustment of the vortex appears complete by t = t; = 5 when
Up =~ 1.15 and ag ~ 0.8, giving an initial dispersion/viscosity ratio of D =~ 178. The
accuracy of the predictions from integrating equations (6.2) and (6.4) is comparable to
that for inviscid flow in §3. Viscous effects become relatively stronger as the vortex slows
with D decreasing to D = 90 by ¢t = 25, when the dipole has lost 90% of its initial energy.
Figure 9(b) shows the equivalent simulation for » = 0.01. This gives an initial value of
D =~ 45 and the stronger viscous effects cause the dipole to decay far more rapidly, losing
90% of its initial energy by ¢ = 12, and subsequently deviating from the LC-dipole form.

Figure 10 shows the quantities of Figure 9 for a stratified dipole from numerically
integrating as in §4, including Navier-Stokes dissipation with » = 0.001. In figure 10(a),
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where N = 0.2, the initial adjustment appears complete by ¢t =ty = 5 when Uy ~ 1 and
ap ~ 1, giving an initial dispersion/viscosity ratio of D = 8. Viscous diffusion dominates
the flow initially and the dipole expands. However the strong dependence of D on U in
stratified flow means that D increases rapidly as the dipole slows so by t = 50, when the
dipole has lost 45% of its initial energy, D & 32, wave drag contributes comparably and
the dipole ceases to expand. Figure 10(b) shows the equivalent simulation for N = 0.4.
This gives an initial value of D ~ 58 so wave drag is stronger and the dipole decays more
rapidly, losing 95% of its initial energy by ¢ = 50, when D a 161. The accuracy of the
predictions from integrating equations (6.2) and (6.4) is comparable to that for inviscid
flow in §4, capturing in particular the viscosity-induced decay of the centre vorticity, 7.

7. Discussion

A model for the decay of dipolar vortices in weakly dispersive, inviscid, diffusionless
flows has been put forward based on the hypothesis that the vortex remains a LC-
dipole, but of varying radius and speed, during its evolution. The decay is estimated
here from balancing the loss of dipole energy against the work done by wave drag and
using the conservation of centre vorticity, 7., based on an argument of FH. For a -
plane modon the results reproduce those obtained by FH using an adjoint analysis.
Numerical integrations of the full equations show reasonable agreement with the model
predictions both for the 8-plane flows and in a vertical-slice stratified flow. Figures 5(c)
and 6(b) show that the leading order effect omitted from the stratified model appears to
be the inviscid stirring of density within the vortex. The perturbation density remains a
function of the perturbation streamfunction but is displaced a small but finite amount
at finite N. Ford et al. (2000) discuss higher-order surface-wave effects on the advection
of potential vorticity and it appears that similar higher order effects on the advection of
dipole buoyancy contribute here.

The model is extended to weakly viscous flows in §6 by including viscous dissipation of
vortex energy and viscous dissipation of centre vorticity. In the dispersionless limit this
model approximates the results of van de Fliert (1996) and Nielsen & Rasmussen (1997)
for a homogeneous fluid but unlike their determinations, based on impulse conservation
and enstrophy decay respectively, also reproduces the inviscid, dispersive results. The
relative importance of the two effects, for small € here, is measured by D = e*Re: when
D > 1 wave drag dominates and when D $ 1 viscous dissipation dominates.

The effect on the radiated wavefield of finite vortex size has been shown to be negligible
compared to inaccuracies in the estimation of the initial dipole radius ag and speed Ujp.
The dipole moments of the vorticity and density fields appear to dominate higher order
moments even at moderate nonlinearity leading to the reasonable qualitative behaviour
of the model.

Supplementary data. Supplementary material and movies are available at
https://doi.org/10.1017/jfm.2019...
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Appendix A. The inertial frame

The analysis above considers the fluid velocity u relative to the static inertial Ox'yz
frame in terms of the coordinate x moving with the dipole. It may be of value to briefly
note how the results above conform to standard results in the inertial frame. For the
two-dimensional slice model of §2 consider a region R composed always of the same
fluid elements bounded by the closed curve C and sufficiently large to bound the region
occupied by the LC-dipole throughout the motion. Then the transport theorem shows
that

i/pudvz—%p@-ﬁds, i/l(pu2+pb2)dvz—]fpu.ﬁds, (A1)
dt g c dt [ 2 o

where the decay of the dipole velocity field ensures that the leading order momentum and
energy integrals are bounded, although the momentum integral depends on the shape of
C (Batchelor 1967). For sufficiently large domains the momentum and energy integrals
can be written as

1 1
uz/pude—/zndV, E:/prQdV:—f/wndV. (A2)
R R 2 2

The boundary integral terms omitted in deriving the energy integral in (A 2) vanish at
large distance to give a unique definition. The momentum integral requires an interpreta-
tion in terms of the impulse required to set up the flow from rest (Lamb 1932; Batchelor
1967). Combining (A 1) and (A 2) gives the results used in the weak stratification limit

here
d dFE

Since the LC-dipole is an exact solution of the Euler equations it suffers no drag in
inviscid flow and so the sole contribution to the drag force integrals in (A 3) comes from
the internal wave drag which gives a contribution to the integrals of (A 3) that remains
constant at large distances. The slower decay of the momentum boundary terms in (A 2)
may lend support to the energy-work balance being more fundamental in §§3,4.
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