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Abstract. We present a system-level anaysis for drone mobile networks
on a finite three-dimensional (3D) space. A performance boundary de-
rived by deterministic random (Brownian) motion model over Nakagami-
m fading interfering channels is developed. This method allows us to cir-
cumvent the extremely complex reality model and obtain the upper and
lower performance bounds of actual drone mobile networks. The valid-
ity and advantages of the proposed framework are confirmed via exten-
sive Monte-Carlo(MC) simulations. The results reveal several important
trends and design guidelines for the practical deployment of drone mobile

networks.
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1 Introduction

The exponential growth of wireless data services driven by mobile smart devices

(e.g., smartphone, pad) has triggered the investigation of assisted terrestrial
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networks in the era of the Internet of Things (IoT) [1]. However, it’s a crucial
task under the circumstances of large-gatherings (e.g., sports games, concerts)
and natural or man-made disasters (e.g., floods, earthquake).Due to the ad-
vantages of Unmanned aerial vehicles (UAVs),UAVs assisted cellular network is
considered a prominent solution for enhancing or recovering terrestrial cellular
networks, which has attracted great attention in both academia and industry
recently. Therefore, the fifth-generation (5G) communication system also consid-
ers the application of low-altitude drones in the system [2].

Among current wireless network researches, there are many published works
related to the UAVs assisted networks, many works in the literature consider
simplified movement models (e.g., fixed height around a circle). However, the re-
ality is more complicated than these models and we can only obtain drone system
performance in simple cases using these models. In [3], Poisson cluster process
was applied to distribute user and drone hover in a certain height above cluster
center in order to compare the performance of millimeter wave (mmWave) and
sub-6 GHz. The work in [4] converted the problem of three-dimensional space
into two-dimensional plane by distributing drones in a fixed altitude. In [5] the
authors concluded that a cellular network with an omnidirectional antenna can
support drone base stations downlinks and control channels in a low altitude,
but a high altitude is still struggle. The authors in [6] investigated the coverage
probability and average achievable rate in the post-disaster area by using two
cooperative drones in a fixed height. This paper provides a unifed model for
performance analysis of drone mobile networks and obtain the lower and up-
per bounds of actual drone mobile networks by introduced deterministic motion
model and 3D Brownian motion model. We explicitly account for certain con-
straints, such as small-scale and large-scale fading characteristics depending on

line-of-sight (LOS) and non line-of-sight (NLOS) propagation, and the impact
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of drone mobility based on 3D deterministic random (Brownian) motion. The

analytical formulations are validated via Monter-Carlo (MC) simulations.

Notation

X is a matrix; x is a vector; T, T, and + are the transpose, Hermitian, and
pseudo-inverse operations; E,[.] is the expectation; Pr[.] is the probability; F[.]
is the cumulative distribution function (CDF); P,[.] is the probability density
function (PDF); £,[.] is the Laplace transform (LT) function; |z| is the modulus;
x| is the Euclidean norm; I is the identity matrix; #(.) is the Heaviside
step function; 4(.) is the Delta function; CN (u,v?) is the circularly-symmetric
complex Gaussian distribution with mean p and variance v?; I'(.) and I'(.,.) are
the Gamma and incomplete (upper) Gamma functions; G(k,0) is the Gamma

distribution with shape parameter x and scale parameter 0, respectively.

2 Preliminaries

In this word, we consider a large-scale UAV network in which K BSs (i.e., drones)
are deployed on the finite 3D ball of radius R according to a homogeneous PPP &
with spatial density A at time ¢ = 0. Let Kpog and Knp,og respectively denote the
number of drones experiencing LOS and NLOS propagation (i.e., K = Kpos +
KnLos) at time ¢t = 0. Based on the stationary property of PPP, and Slivnyak’s
theorem [7], the analysis is carried for a typical user o assumed to be located at
the origin.

The drones, equipped with M transmit antennas, are considered to be serv-
ing a user per resource block. Let h] ~ CA(0,Iy) denote the small-scale fading
channel between the typical user o and its serving drone b. Here, we utilize
the Nakagami-m distribution, which can capture a wide range of small-scale

fading conditions through tuning of the parameter m. Considering the drones
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apply conjugate-beamforming (CB), the intended (from drone b) small-scale fad-
ing channel power gains under LOS and NLOS propagation are distributed as
g~ G (ml\/l7 %) and g, ~ G (l\/l, %), respectively. The interfering (from drone ¢)
small-scale fading channel power gains under LOS and NLOS propagation are
distributed as g; ~ G (m7 %) and g; ~ G (1,1) , respectively [8].

The path-loss function is defined as
L(r) = max (50, Blr_a) (1)

where r is the distance, 5y is the minimum coupling loss, 8, is a constant pa-

rameter of the path-loss function, and « is the path-loss exponent. All channels

2
undergo free-space path-loss, i.e., @ = 2. Moreover, 31 = %(4;1‘. ) , where

¢ = 3 x 10® m/s is the light speed, and f. is the carrier frequency. For LOS
(LLOS(T)) and NLOS (LNLOS(T)) linS, € = €L,0s = 1 dB and € = ENLOS = 20
dB, respectively [9].

We utilize the following function for the probability of LOS propagation

1 ifr€0,D)
Pr [LOS, 7“(.) = T] = (2)

0 ifre[D,R]

where D denotes the critical distance. Under this model, given the drones follow
from a homogeneous PPP @, the average number of LOS and NLOS drones in a
3D ball of radius R are respectively KLos = %WDB)\ and KnLos = %w (R3 — D3) A

We consider the cellular association strategy in which the typical user o

connects to the drone b which provides the greatest received SINR.

Lemma 1 Considering there are Ki,og LOS drones (i.e., Kpos > 0) uniformly-
deployed on the finite 3D ball of radius D, the CDF and PDF of the distance

between the typical user o and its serving LOS drone, 11,05, are respectively
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given by
r3 Kros
‘FTbL()S(T):l_(l_g) , 0<r<D (3)
’ D
37“2 KLOS 7‘3 Kros—1
PTb,LOS (’I“) = T 1- ﬁ , 0<r<D. (4)

Proof: The result follows from [10, Theorem 2.1] with n =1, d = 3.

Lemma 2 Considering there are Knp,os NLOS drones (i.e., Kos = 0) uniformly-
deployed on the finite 3D ball double-bounded by radii D (< R) and R, the CDF
and PDF of the distance between the typical user o and its serving NLOS drone,
Tp,NLOS, are respectively given by

f

Tb,NLOS

3 _ D3 KnLos
(T)_1(1R3—D3) , D<r<R (5)

<r<R. (6)

37‘2 KNLOS r3 — D3 Kawos—1
PTb,NLos (r) = R3 _ D3 1- R3 — D3 , D

Proof: The proof, ommitted due to space limitations, follows from the probability

distribution of a double-bounded random process given in [11, Eqn. (3)].

3 Unified Framework

In this section, we present a stochastic geometry-based model for performance
analysis of drone mobile networks. By introducing Slivnyak’s theorem, the anal-

ysis is carried for a typical user o assumed to be located at the origin.
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3.1 3D Brownian Motion

The drones are considered to be mobile according to a 3D Brownian motion
(BM). At time ¢ > 0, the movement of an arbitrary drone can be captured

through the following stochastic differential equation (SDE) [12].

di(t) = o db(t) (7)

where I(t) = {l4(t),ly(t),1.(t)} is a vector for the Cartesian coordinates at
time ¢, b(t) = {bg(t),by(t),b.(t)} represents the standard BM (i.e., Wiener
process) vector at time ¢, and o is a positive constant (e.g., representing av-
erage velocity). Here, we consider b, (t),by,(t),b.(t) ~ N(0,t). The correspond-

ing Euclidean distance with respect to the origin at time ¢ can be formulated

as 7#(t) = \/l%(t) +12(t) + 12(t). Here, the mobility model should account for
the finite volume of the 3D ball as well as the LOS/NLOS propagation condi-
tions. Hence, we consider the case where (i) the mobile LOS drone cannot be
at a distance larger than D with respect to the origin at any given time, i.e.,
rLos(t) = max (0, min (D, #(¢))), and (ii) the mobile NLOS drone cannot be at
a distance smaller than D and larger than R with respect to the origin at any

given time, i.e., rnpLos(t) = max (D, min (R, 7(¢))).

Lemma 3 With the 3D BM mobility model under consideration, the CDF and
PDF of the mobile LOS drone distance with respect to the origin at time ¢ (i.e.,

rLos(t) = max (0, min (D, #(t)))) are respectively given by

Frowo) = (14220 (3 2) Hw-D) ) Hw) )

and

Prios(ty(w) = (1 + %F (2, ZZ) (H(w — D) — 1)) S(w)+
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2 3 w? w? w?
—I{=-,— |é(w—-D)— — —— | (H(w—D)—-1) | H(w).
(Er(32) e 2 om0 1)
9)

Lemma 4 With the 3D BM mobility model under consideration, the CDF and
PDF of the mobile NLOS drone distance with respect to the origin at time ¢

(i.e., rNnpLos(t) = max (D, min (R, #(¢)))) are respectively given by

Frevontr () = <1 +2r (3 w? ) (H(w—R) — 1)> Hw-D)  (10)

Vo \2 4ot
and
Pryros () (w) = (1 + %F (g Zi) (H(w—-R) — 1)> §(w — D)

( w—R))H
_ (2\/1%) <Zi>gexp <_U;t> (H(w — R) _1)> H(w — D).

(11)

Next, we aim to characterize the distribution of the reference transmitter-
receiver distance based on the 3D BM mobility and LOS/NLOS propagation

models under consideration.

Corollary 1 The closest transmitter-receiver distance for the serving LOS drone
becomes equivalent to the 3D BM mobility model with the following drones spa-

tial density [13]

~3log (1= M2 (on(w - D)1 (3,452 ) =20 (3. ) + V7))

\ = )
4w D3log (1 — g—i)

(12)

Corollary 2 The closest transmitter-receiver distance for the serving NLOS

drone becomes equivalent to the 3D BM mobility model with the following drones
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spatial density

A=

B 3log (1 — H(%;D) (27—[(11) —R)I (
g

3.2 Deterministic Motion

Next, we consider the case where the movement of the drones is deterministic
such that they move at a constant speed towards a target. At time ¢ > 0, the

corresponding Euclidean distance with respect to the origin is given by
7(t) =19 — vt (14)

where r( is the distance at time ¢ = 0 and v is the constant speed, respectively.
Note that a negative value for v indicates movement in the opposite direction and
vice versa. Here, we need to account for the finite volume of the 3D ball as well
as the LOS/NLOS propagation conditions. Hence, we consider the case where (i)
the mobile LOS drone cannot be at a distance larger than R with respect to the
origin at any given time, i.e., rLos(t) = max (0, min (D, #(¢))), and (ii) the mobile
NLOS drone cannot be at a distance smaller than D and larger than R with

respect to the origin at any given time, i.e., rNpos(t) = max (D, min (R, #(t))).

Lemma 5 With the deterministic mobility model under consideration, the CDF
and PDF of the mobile LOS drone distance with respect to the origin at time ¢

(i.e., rLos(t) = max (0, min (D, #(¢)))) are respectively given by

v w)3 Kros
ﬂmwmwzﬂwoc+ouw—m—n(1—(ﬂ;)) ) (15)

and

(vt +w)? Kros
D3

PmmMW=5W%HHWﬁW—D%HHW—D%4WW»G—
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 H(w) (H(w — D) — 1) Krosvt+w)® (1 _ (“t+w)3> e

D3 D3
(16)

Lemma 6 With the deterministic mobility model under consideration, the CDF
and PDF of the mobile NLOS drone distance with respect to the origin at time

t (i.e., rNnLos(t) = max (D, min (R, 7(¢)))) are respectively given by

3 _ (v w)3 KxLos
]:TNLos(t)(w) = H(U) - D) (1 + (H(w - R) - 1) (W) )

(17)

and

R3 _ D3

Rg e w 3 KnLos
+ H(w — D) (5(wD) (Rs_(’}-[(u(; fj;)—)1)[)?’) )

2 KnLos—1
— H(w - D) <3KNLos(vt+w) (RB—(tv—i-w)?’) >

3 _ (v w)3 KnLos
P’"NLOS(t)(w) =6(w — D) (1 +(H(w—-R)—-1) <R(t+)) )

R3 _ D3 R3 _ D3
(18)
3.3 SINR Formulation
The received SINR at the reference user o is given by
SINR — % (19)

where

X = pgpL(rs) (20)
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and

I= > pglL(r) (21)

1€d\{b}

with p and o2 respectively used to denote the transmit power and noise variance.

3.4 SE Formulation

Theorem 1. The average rate (in nat/s/Hz) of the typical user is given by

Foo +oo ]- - f ry=T
E [log (1 + SINR)] = / / SiNRir=r ] dy Py, (r) dr (22)
0 0 I+~

where FgiNg|r,—=r[Y] and Py, (r) denote the CDF of the SINR conditioned on
ry = r and the PDF of the transmitter-receiver distance (given in Lemma 1),

respectively.

4 Numerical and Simulation Results

In this section, we evaluate the performance of 3D deterministic random (Brow-
nian) motion model. To confirm our framework, we use MC methods to obtain

simulation result in different scenarios.

4.1 Impact of number of antennas

To gain insight into the effect of diffferent number of antennas, we provide results
using deterministic model, stationary model and 3D Brownian model via MC
simulation in Fig.1. A key point to note is that due to the deterministic model is
the most ideal movement model and the 3D Brownian model is the most worst
movement model, so in Fig.1 the deterministic model curves are the upper bound

of reality and the 3D Brownian model curves are the lower bound of reality. Also,
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SE increases as the number of antennas increases and we can obtain the better

performance of drone mobile networks by adjusting the number of antennas.

The number of antennas impact on SE
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10

8 -
= = BMt=1s
== DM t=1s

6 =——©— Stationary t=1s

= = BMt=3s
e DM t=3s
=—©— Stationary t=3s

0 20 40 60 80 100 120 140
Number of Antennas

Fig. 1. Spectral efficiency against different number of antennas, m=2, R=100m,
D=18m, A = 107°/m?>, v=3m/s, p=20W.

4.2 Impact of Nakagami-m fading parameter

We evaluate the Nakagami-m fading parameter’s impact on spectral efficiency.
Fig.2 shows the drone mobile networks performance with different Nakagami-
m fading parameter. We observe that when the Nakagami-m fading parameter
increase s, some curve’s SE decrease and the other curve’s SE increase. The
reason is that when the serving drone move three second baesd on deterministic
movement model, the channel of serving drone b becomes LOS, but other curve’s

channels are still NLOS (i.e., the channel function is different), and we can find
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that the performance of SE at time ¢ = 3 is better than time ¢ = 0. We can

derive the SE of drone mobile networks in different channel cases.

Nakagami-m fading impact on SE

7r = — — = £

= == BMt=1s
4 r e DM t=1s
=——©— Stationary t=1s
= = BMt=3s
3+ === DM t=3s
=—©— Stationary t=3s

Spectral Efficiency,nat/s/Hz

0 2 4 6 8 10
Nakagami-m Fading

Fig. 2. The Nakagami-m fading impact on Spectral efficiency, M=4, R=100m, D=18m,
A =10"%/m?3, v=3m/s, p=20W.

4.3 Impact of different drone velocity

We explore the influence of different drone velocity under different movement
strategies at time ¢ = 0 and time ¢t = 3 in Fig.3. A key point we can find that the
drone velocity has a huge impact on SE, especially on deterministic movement
model and 3D Brownian movement model. So we can obtain the performance
boundaries when we change the velocity of drone, but also need to consider the

seurity issues at high velocity.
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Serving drone velocity impact on SE
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Fig. 3. The drone velocity impact on Spectral efficiency, M=4, m=2, R=100m, D=18m,
A =10"°/m3, p=20W.
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4.4 TImpact of different deployment density

We examine the influence of drone deployment density in improving drone mo-
bile networks under various movement model and different time. Since the de-
ployment density of drones largely determines the economic cost and network
performance of drone mobile network, it is necessary to study the impact of
deployment density on system performance. Fig.4 represents the performance of
SE in different drone deployment density and we can find that there is a best de-
ployment density around A = 3 x 1075 /m?. Therefore, in practical applications,
we can optimize the system performance and cost by adjusting the deployment

density.

Deployment density impact on SE
e —

8:;7 —E\ﬂ\ﬂ
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Fig. 4. The serving drone deployment density impact on Spectral efficiency, M=4,
m=2, R=100m, D=18m, v=3m/s, p=20W.
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5 Conclusion

This paper provides a system-level analysis of the drone mobile networks. In
order to make the drone mobile networks model closer to the actual application
scenario, this paper explores the feasibility and performance of the determin-
istic random (Brownian) motion model, and also explicitly account for some
parameters of the drone networks, such as the impact of drone mobility based
on deterministic random (Brownian) motion. Then we derive the expressions
of SINR, average rate through the mathematical tools provided by stochastic
geometry theory. We also validated the theoretical derivation by Monte Carlo
simulation. The simulation results confirm the feasibility of the deterministic
random (Brownian) motion model. In the follow-up study, we will use this as a
basis to analyze the performance of drone mobile networks after the introduction

of MIMO.
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