
1 
 

Machine Learning in Stem Cells Research: 

Application for Biosafety and Bioefficacy 

Assessment 
Wan Safwani Wan Kamarul Zaman, Salmah Karman, Effirul Ikhwan Ramlan, Siti-Nurainie Tukimin, 

Mohd Yazed Ahmad 
 
 

Abstract—The applicability of machine learning-based anal- 
ysis in the field of biomedical field has been very beneficial in 
determining the biological mechanism and validation for a wide 
range of biological scenarios. This approach is also gaining 
momentum in various stem cells research activities, specifically for 
stem cells characterization and differentiation pattern. The 
adoption of similar computational approaches to study and assess 
biosafety and bioefficacy risks of stem cells for clinical application 
is the next progression. In particular where tumorigenicity has 
been one of the major concerns in stem cells therapy. There are 
many factors influencing tumorigenicity in stem cells which may 
be difficult to capture under conventional laboratory settings. In 
addition, given the possible multifactorial etiology of 
tumorigenicity, defining a one-size-fits-all strategy to test such 
risk in stem cells might not be feasible and may compromise stem 
cells safety and effectiveness in therapy. Given the increase in 
biological datasets (which is no longer limited to genomic data) 
and the advancement of health informatics powered by state-of-
the-art machine learning algorithms, there exists a potential for 
practical application in biosafety and bioefficacy of stem cells 
therapy. Here, we identified relevant machine learning approaches 
and suggested protocols intended for stem cells research focusing 
on the possibility of its usage for stem cells biosafety and 
bioefficacy assessment. Ultimately, generating models that may 
assist healthcare professionals to make a better-informed decision 
in stem cell therapy. 

 

I. INTRODUCTION 

Stem cells are undifferentiated cells found in all multicel- 

lular organisms which possess a unique self-renewal ability and 

multi-potential differentiation [1-3]. Stem cells have been 

associated with the fields of regenerative medicine and tissue 

engineering with the goal to improve health and quality of life, 

especially patients with debilitating diseases. Stem cells can be 

divided into three categories: (1) embryonic stem cells (ESC) 

derived (ESC) from early-stage embryos; (2) adult stem cells 

(ASC) and (3) induced pluripotent stem cells (iPSC). These 

cells owe its regenerative capacity to its ability to migrate to the  
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injured part of the body, to divide and produce daughter cells, 

which have the ability to differentiate into other lineages of cells 

in order to repair the damaged tissue under appropriate 

conditions [4]. The ability for stem cells to induce regeneration 

can be influenced by culture condition and the type of 

secretomes released [5]. Stem cells have been studied and even 

applied for the treatment of various clinical conditions. 

However, there are risks which needed for further evaluation 

(before clinical application), such as miss-differentiation of 

cells, miss- targeting of cells, immune rejection and the biggest 

concern is genomic instability or tumor formation [6, 7].  

While the application of stem cells for treatment is on the 

rise, their overall quantity in the body is scarce. Generally, cell 

therapy protocols require hundreds of millions of MSC per 

treatment and this would require cell expansion in vitro for 

about 10 weeks before implantation [8]. In this regard, long-

term expansion or manipulation of stem cells may contribute to 

cellular senescence or even tumorigenesis in vitro, which may 

cause them to be non-viable for clinical usage. This has led to 

concerns of biosafety and bioefficacy of stem cells in clinical 

application [9, 10]. The aforementioned concerns are mainly 

due to poor understanding of stem cells biological mechanism, 

which has prevented it from being used widely in research in 

clinical application. Experimental approaches based on 

phenotypic and genotypic profiling are limited, whereby, they 

can also be expensive and time- consuming [11-13]. 

Furthermore, these approaches would also require subsequent 

validation assays to confirm its accuracy, which apart from the 

small sample size, can also lead to misinterpretation of data. 

The recent development in stem cells research has shown 

that machine learning application can be used to overcome 

some of these limitations, particularly in phenotypic profiling 

of stem cells [14, 15]. Other potential applications that could 

be explored are annotation of stem cell genome [16], 

predictions of protein binding, identification of specific 

markers [17] or key transcriptional factors of stem cells and 

characterization of stem cells transcriptional regulatory 

networks [18]. 

There are datasets generated from experiments to quantify 

molecular variables related to stem cells biosafety and bio- 

efficacy, such as the gene and proteins interactions. However, 

these datasets are complex with an intricate network of molec- 

ular interactions and analysis [19, 20]. To address this com- 

plexity, machine learning could provide next-level analyses
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that would allow better insights and the generation of new 

information for better biosafety and bioefficacy assessment 

[18]. As such, this would also allow medical practitioners to be 

better informed in offering personalized treatment to patients in 

stem cells therapy. A similar approach is seen in cancer 

research, whereby, machine learning has been widely applied in 

the identification and classification of cancer cells. Similar 

machine learning models and approaches can be applied in stem 

cells research [21-24] that could assist in accelerating the 

evaluation of safety and efficacy of stem cells. This could 

potentially bring stem cells to the forefront of personalized 

medicine. The current and future research trends in stem cells 

research are presented as an overview in Figure 1. In this review, 

the advantages and limitations of machine learning in stem cells 

research were presented, including on how next-generation 

machine learning methods could be used to expand our 

understanding of stem cells biology and their biosafety and 

bioefficacy risks. We anticipate that machine learning could 

have substantial impacts on stem cells research and therapy, 

providing a supporting tool in making a personalized clinical 

decision. This includes tailoring treatments for optimization in 

individual patients. 

 
 

II. STEM CELLS BIOSAFETY AND BIOEFFICACY 

PROFILES 

In general, stem cells are unspecialized cells with self- 

renewal and differentiation (into specialized cell) abilities [25]. 

However, each type of stem cells has different characteristics, 

which are attributed by their origin, biological characteristics 

and functionality. The ESC cells are pluripotent stem cells 

originated from the inner mass of blastocyst of the embryo and 

can give rise to the entire body tissue organs except for placenta 

and umbilical cord [26-28]. Meanwhile, ASC cells are somatic 

cells-derived from a certain part of the adult body, which can 

only give rise to stem cell progeny of the original site [29] in 

which they are found. They are known to be multi-potent with 

limited differentiation capacity [30, 31]. Adult stem cells are 

also known as mesenchymal stem cells (MSCs) [32-35].  

[Fig. 1 about here.] 

The iPSCs are capable in giving rise to all kinds of cell types 

in the body but the difference is that iPSCs are reprogrammed 

stem cells, whereby, somatic or primary cells are biologically 

reprogrammed, giving rise to stem cells similar in 

characteristics as ESCs in culture [36-38]. Due to this 

technique, iPSCs have been widely used as it reduced the 

dependency on ESCs and ASCs, which are limited in the cell 

population. The iPSCs have been profoundly utilized not only 

for repair, replenishment and replace the damaged cell, tissue 

and organ but they have also been employed for drug-response 

therapy [39].  Due to the regenerative capacity of stem cells, 

they have been regarded as a powerful tool in regenerative 

medicine, particularly in the treatment of debilitating diseases. 

However, such potential and capability have given rise to other 

clinical concerns, such as adverse effects associated with  

 

 

biosafety and bioefficacy issues. These effects may not 

materialize immediately after receiving stem cell therapy. Post 

therapy monitoring may be difficult as there are no established 

pre- or post-parameters and further, there is no ‘one-size-fits-

all’ protocol to enable such monitoring procedure. To develop 

a stem cell-based therapy, we must first ensure the safety and 

efficacy of stem cells. High efficiency of stem cells is needed 

to have effective homing, engraftment and persistence in 

damaged tissues, which would enable a stable interaction 

between the transplanted and the injured tissues. This is 

important to maximize the therapeutic capacity of stem cells.  

Studies on biosafety and bioefficacy of stem cells have been 

carried out for many years. There have been few reports 

addressing the biosafety and bioefficacy profiles of stem cells 

[10, 40, 41], which showed the importance of addressing these 

issues. As of now, there is no standard or conclusive data that 

can be used to establish a proper protocol for biosafety and 

bioefficacy assessment. Further, any protocols and guidelines 

established would need to be internationally accepted and 

harmonized [42]. The proposed minimal criteria to define 

human mesenchymal stem cells (MSC) was established by the 

Mesenchymal and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy (ISCT). These 

criteria are; 1) MSC must be plastic-adherent when cultured in 

standard culture conditions, 2) MSC must express CD105, 

CD73 and CD90 and lack in the expressions of CD45, CD34, 

CD14 or CD11b, CD79α or CD19 and HLA-DR surface 

molecules and 3) MSC must be able to differentiate to 

osteoblasts, adipocytes and chondroblasts in vitro [43].  

Since then, further investigations on stem cells 

characteristics were carried out, which can be (directly or 

indirectly) used to evaluate the biosafety and bioefficacy 

profiles of stem cells. With regards to adult stem cells (ASC) or 

MSC, studies have shown that these stem cells were reported to 

have low risks of tumorigenicity in long-term culture [4, 44] 

and low risks of abnormalities following long-term 

cryopreservation [45]. While there are no significant changes in 

stem cells differentiation ability, cryopreservation caused stem 

cells to appear less fibroblastic in appearance [46]. Long-term 

culture of stem cells was also reported to alter its stemness and 

differentiation ability [46, 47]. On the other hand, 

tumorigenicity risks of embryonic stem cells (ESC) and 

induced pluripotent stem cells (iPSC) have been reported, 

which pose a hurdle in stem cell therapy [48, 49]. Furthermore, 

the differences in cell microenvironment and culture conditions 

contributed by biophysical and biochemical cues can affect 

stem cells response, for example, cell culture in hypoxia [50-

53], use of serum [54] and fluid shear forces [55]. This evidence 

also showed that stem cells response is affected by both static 

and dynamic interventions. 

Despite the successful clinical application of stem cells, the 

sample size is rather small, which may not be sufficient to 

determine the safety and efficacy of the treatment. The 

application of human allogeneic adipose-derived MSC showed 

feasibility in a pediatric patient with no adverse effects of up to 

12 months following treatment [56]. While Lennmyr et al. [57] 

showed that all adult patients affected by lymphoblastic  

 

 

 

 



3 
 

leukemia was successfully treated with allogeneic 

hematopoietic stem cell transplantation (alloHSCT) with an 

increased overall survival rate of more than 10% in 5 years 

[57]. Meanwhile, Schlenk et al. [58] evaluated alloHSCT 

among patients having acute myeloid leukemia (AML) 

showed a significant beneficial impact after treatment. 

Similarly, Cornelissen et al. [59] reported that AML patients 

that were treated using alloHSCT have a significant beneficial 

impact with the overall increased survival rate of 12% and was 

successfully validated using cytogenetic profiling. However, 

there have been variations in terms of treatment outcomes and 

responses, which can be due to multiple factors that can be 

difficult to ascertain. Examples of these factors include 

different donors [60], age of donors [61] and different culture 

protocol [62], which may contribute to non-standardized 

outcomes and potentially adverse effects in stem cells therapy 

that can be irreversible. This has made it difficult to assess and 

to establish a standardized protocol to evaluate the biosafety 

and bioefficacy risks of stem cells. Therefore, machine 

learning-based predictive analytical methods are desirable to 

accelerate the discovery of new stem cell markers for safety 

assessment and to forecast stem cell therapy efficacy in order 

to minimize the potential adverse effects and to maximize the 

success of treatment.  

 

III. LIMITATIONS IN STEM CELL THERAPY WHICH POSE 

EFFICACY AND SAFETY ISSUES 

Although suitable stem cells safety and efficacy profiles and 

assessment are still not well established, stem cells have been 

used for various disease treatments. Stem cell therapies have 

been applied for the treatment of anemia [63], multiple 

myeloma [64-66], arthritis [67, 68] and even stroke [69, 70]. 

Stem cells therapies have also been applied for blood-related 

cancers, whereby, patients have undergone allogeneic 

hematopoietic stem cell transplantation (alloHSCT) for 

thalassemia [71] and acute myeloid leukemia (AML) [72-75]. 

In some cases, determining post-treatment efficacy and safety 

of stem cell therapy may be restricted due to the difficulty in 

following up after treatment. It might also be due to stem cells' 

dynamic responses in different individual recipient and disease 

models, which lead to variations in the outcome of the 

treatment. In this regard, there have been reports addressing 

post-treatment complications of stem cells therapy within a 

year following the treatment.  

Rovo and Tichelli [76] reported cardiovascular 

complication risk following allogeneic hematopoietic stem 

cell transplantation leading to considerable morbidity and 

mortality, including patients having critical diseases, such as 

dyslipidemia, arterial hypertension, diabetes mellitus and 

kidney disease. There have been reports of undesired 

differentiation and malignant transformation [77] as well as 

the ability to promote tumor growth and metastases, which has 

been a major concern in stem cells therapy [78]. Patients who 

have undergone autologous stem cell transplantation (ASCT) 

for lymphoma have a significant risk of developing therapy-

related acute myeloid leukemia [74, 79, 80] and  

 

 

 

myelodysplasia (t-AML/MDS) [81]. This may be attributed by 

the ASCT procedure that includes priming chemotherapy, total 

body irradiation and the extensive cellular proliferative, which 

occur during engraftment, leading to the development of t-

AML/MDS. Graft-Versus-Host Disease (GVHD) is another 

adverse effect that occurs following stem cell treatment [82-84], 

which can be overcome by the use of a mismatched allograft 

that necessitates T cell depletion. Surprisingly, a greater HLA 

mismatch was associated with a lower risk of GVHD [85]. The 

mismatched donor lymphocyte infusion (DLI) was specifically 

created for prophylactic treatment of T cell depleted 

mismatched allograft recipient [85].  

All of these stem cells donors and recipients’ responses may 

be important factors needed to be considered carefully. 

Biological assays and genetic molecular expression data 

profiling may be able to overcome such limitations and 

challenges, but they may be cost-prohibitive and time-

consuming. Antibiotic matching, biomarker details and 

signaling pathways are all essential information needed but may 

require subsequent validation assays for accuracy. In this 

regard, dependency on biological assays may lead to the 

misinterpretation of data, particularly in terms of the similarity 

in biomarkers and molecular signaling pathways of various 

microenvironment and disease models. Hence, machine 

learning-based characterization and classification profiling 

techniques may be able to capture the genotypic and phenotypic 

differences as well as the changes that occur in a shorter period 

with more accuracy in terms of safety and efficacy of the stem 

cells.  

 

IV. MACHINE LEARNING APPLICATION OPPORTUNITY IN STEM 

CELLS BIOSAFETY AND BIOEFFICACY EVALUATION 

Understanding stem cells behavioral response and changes 

have been mainly carried out through biological assays that 

employed time-consuming and laborious methods [86, 87]. 

Furthermore, just like any biomedical datasets, stem cells 

datasets are generally limited by sample size [88]. To increase 

data for analysis, some investigators used 3D printing to create 

bio-scaffolds to mimic the natural environment of stem cells, 

but this approach was not always successful, whereby, stem 

cells often migrated away from the printed scaffolds or 

locations. Hence, the analysis of stem cells’ intrinsic ability and 

response were not always accurate. To overcome this 

limitation, the machine learning approach to study stem cells’ 

complexity is gaining momentum, particularly on the aspect of 

molecular and genomic changes in pluripotent stem cells.  

Machine learning is a common method in data analytics for 

identification and recognition of patterns, which when applied 

to stem cell biology, will enable the discoveries of new insights 

with reasonable accuracy in a shorter amount of time. This 

approach would also be of advantage as stem cells are known 

to form predictable patterns in their natural environment as they 

mature into tissues. Such analytics are difficult to duplicate in 

the lab, costly to perform, laborious and time consuming to 

execute. For instance, Libby et al. [89] used extended cellular 

Potts model to capture pluripotent stem cell organization  
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dynamics that enabled them to demonstrate morphogenic 

dynamics through a model-driven exploration of stem cells 

behaviors, which is a vital step in organ modelling [89]. 

Understanding that the individual stem cell is different even if 

they are genetically cloned has led to the Allen Cell Explorer 

produced by the Allen Institute for Cell Science in Seattle, 

USA. The Allen Cell Explorer, which complements various 

ongoing projects, is an online catalogue, including the 3D 

images of stem cells as well as the iPSC that were produced 

using deep learning analysis and cell lines altered with the 

gene-editing tool, CRISPR [90]. It is also a growing library 

that charts the uniqueness of single cells at DNA, RNA and 

protein levels [90]. This gives a more holistic and unbiased 

approach to predict and understand multiple aspects of cellular 

structure and behaviors.  

Although machine learning application in stem cells research 

is not a commonality at this stage, a proof-of-concept study has 

been presented previously [91]. Zhang et al. [91] employed 

machine learning and microscopic image analysis to identify 

iPS progenitor cells in their effort to understand the origin and 

underlying mechanism of iPSC particularly at the early stage of 

cell reprogramming, including the biomarkers involved. 

However, the proposed model by Zhang et al. [91] showed 

inconsistencies in their prediction with large fluctuation. The 

model can only predict iPS progenitor cells with a minimum 

precision of 52%. The model is incapable of handling 

additional iPSC features and phases to achieve higher accuracy 

of the prediction performance.  

Machine learning models have been applied in cancer 

diagnostics and prognostics [15, 92-94], whereby, similar 

predictions and interpretation models can be applied in 

understanding stem cells, specifically for its biosafety and 

bioefficacy evaluation. Similar machine learning techniques 

can be used in predicting and studying the dynamic changes of 

stem cells behavior in a particular environment, which should 

be directed towards understanding its impact on biosafety and 

bioefficacy for clinical application. The combination of the 

dataset from cancer research and stem cells research for various 

machine learning models should be considered as an approach 

in understanding stem cells behavior and interactions as well as 

the risks of developing adverse effects following therapy. 

 

1. Image-based Dataset for Machine Learning in Stem Cells 

Research 

The common workflow of image processing consists of the 

preparation of image input data, pre-processing, segmentation, 

feature extraction and classification steps. The microscopic 

image should be prepared by capturing the cell image from cells 

or tissue samples using the microscopic digital camera or 

software. Technical expertise for manual classification may be 

required for image labelling, especially for images that will be 

used for supervised training. For automated application, the 

microscopic images provided by authorized databases can be 

used for training and testing. For simple and efficient methods 

of segmentation and feature extraction steps, techniques such 

as Convolutional Neural Networks (CNN), K-Means and Mean  

 

 

 Shift should be adopted. The SVM, Naive Bayes and Fully 

Convolutional Neural Network (FCNN) are among the 

techniques that have been used for cancer cell classification, 

which has the potential to be applied in stem cell research. 

Image processing or analysis has been beneficial in cancer 

research. Computer vision software based on machine learning 

and deep learning algorithms is making automated analysis 

possible in delivering fast and accurate results. In this regard, 

image processing plays a crucial role in the diagnosis and 

detection of cancers as well as in monitoring cancer progression 

patients [23].  

Similarly, machine learning is capable in overcoming 

limitations in stem cells research, whereby, lab-based 

characterization and classification using chemical reagents and 

biological assays can be labor-intensive, expensive, and time-

consuming as well as less accurate. Most implementations of 

supervised machine learning relied on extensive training data 

using extracts from large and high-throughput biological data 

and features, such as cellular images and genome analysis. 

From the perspectives of cancer diagnosis and stem cells 

therapy, the machine learning approach is useful to understand 

the regulatory genomics. This includes the identification of 

regulatory variants, the effects and origins of mutation using 

DNA sequence, analyzing whole cells, the population of cells 

and tissues through detecting features that can be difficult or 

impossible to uncover in conventional laboratory settings [95]. 

Pattern recognitions and classifications of such biological data 

are important in identifying factors, which pose biosafety and 

bioefficacy risks of stem cells in clinical application.  

While different techniques have been developed for analysis, 

deep learning method provide a more effective strategy due to 

the diversity of the data. It has been used to classify lesions and 

nodules; localize organs, regions, landmarks and lesions; 

segment organs, organ substructures and lesions; by retrieving 

images based on content; generating and enhancing images; and 

combining images with clinical reports [13, 96, 97]. The 

application of deep learning in analyzing images has been 

widely used in cancer stem cell phenotype research. Ke Fan et 

al. [98] demonstrated that the combination of SVM, RF and 

CNN was able to measure morphological dynamic and colony 

formation of iPSCs within 7 days.  The application of SVM by 

Tanaka et al. [99] enabled automated classification of 

adipogenic and osteogenic differentiation as well as 

undifferentiated features of human mesenchymal stem cells 

(hMSC) in RGB color image. Meanwhile, Theagarajan and Bir 

Bhanu [100] have developed and proposed new automated 

detection and classification of human embryonic stem cell 

(hESCs) with an accuracy of 94.46% using the application of 

CNN for phase contrast hESC image analysis.  

 

2. Stem Cells and Cancer Cells Feature Engineering for 

Machine Learning  

Several studies have shown that stem cells and cancer cells 

share some similarities. These similarities can be attributed to 

their functional capability that is conceptually similar in terms 

of their ability to self-renew and to proliferate [101]. However,  
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they are also fundamentally different, whereby, these cells can 

be distinguished by different regulatory mechanisms reflected 

in at least three characteristics; 1) propagation and 

proliferation ability, 2) morphology and 3) cell surface 

markers. These characteristics may be considered for risks 

evaluation associated with the safety and efficacy of stem 

cells. Image-based high-content screening has also become 

increasingly important in stem cells research in monitoring the 

changes in phenotype, such as cell morphology and 

differentiation [102, 103]. 

2.1. Proliferation and propagation ability 

In terms of proliferation ability, it is important to understand 

that normal stem cells are regularly more vigilance in 

controlling their proliferation, but this ability is lacking in 

cancer cells [101]. Cells population doubling time is one of the 

distinguishing factors that can be included as a feature used to 

train the machine learning model. However, it is important to 

also take into account the different models [101] used to 

understand cancer propagation. Cancer stem cells (CSCs) 

model is rare and is a phenotypically distinct group of cells, 

which may hierarchically induce the stable generation of non-

tumorigenic and tumorigenic cells. They can probably be 

generated from normal stem cells or precursor cells within 

tissues after mutations and resistant to conventional 

chemotherapy occurred [104].  

Although they are rare, certain markers have been suggested 

for the identification of CSCs. In the clonal evolution model, 

cancer cells are distinctive in phenotypes with malignant 

potential and ability for disease propagation by undergoing 

additional genetic mutations. While in the interconversion 

model, cells can interconvert between being actively malignant 

and relatively quiescent, which is associated with the 

phenotypic differences between these cells. Although there are 

distinctive differences in the cells in each model, they are not 

mutually exclusive, whereby, tumorigenic cells are able to 

undergo further genetic and epigenetic alterations, depending 

on their microenvironment regardless of which model the cells 

follow [105]. Based on the propagation and proliferation 

ability, specifically associated biomarkers, cell count or 

numbers and time-period depicting cells population growth 

could be the features that can be included in the training models 

to distinguish the characteristics of normal stem cells and 

cancer-associated cells.    

2.2 Cell Morphology 

Morphologically, stem cells and cancer cells may show 

different cell features, which can be viewed microscopically 

(Figure 2). Microscopic images of cells are crucial to extract 

information for the machine learning models to distinguish the 

different features of normal stem cells and cancer cells based 

on their sizes and shapes. Generally, the appearance of normal 

stem cells is more consistent in their shapes and smaller in size 

while cancer cells can be abnormal and vary in shapes and 

sizes, which may be contributed by their heterogeneous nature. 

Although they may exhibit unique differences in their 

morphology, cell features, and motions require laboratory   

 

 

experimental approaches to create sample dataset prior to 

machine learning modeling. Based on a suitable model, the 

identification of cancer progenitor cells can be confirmed based 

on the morphology and motion pattern, which may be different 

from normal cells. 

Zhang et al. [91] used time-lapse microscopic images of iPS 

forming cells in early stage reprogramming and selected 11 

types of cell morphological and motion features, which 

included the area of coverage and speed for modelling to 

perform feature selection. Further analysis of cell motion 

showed that migratory motions for progenitor cells can be 

distinguished by the direction and distance to bring distant 

progenitor cells together. However, the input of cell features 

described by Zhang et al. [91] and Meygola et al. [106] would 

require high-resolution time-lapse imaging to allow the 

detection or tracing of cellular events. With regards to cell 

segmentation and tracking, Dzyubachyk et al. [107] used 

coupled active surfaces algorithm and time-lapse fluorescence 

microscopy images. While Türetken et al. [108] proposed an 

integer programming to track elliptical cell populations in time-

lapse image sequences. In the case of image segmentation, the 

challenge with live-cell imaging is in determining which parts 

of images correspond to which individual cells. Van Valen et 

al. [83] showed that this can be solved by applying CNN that 

can robustly segment fluorescent images of cell nuclei and 

phase contrast images of cells without the use of a fluorescent 

cytoplasmic marker.  

 

[Fig. 2 about here.] 

 

2.3. Cell surface markers 

Cell surface markers are associated with features and changes 

in cell morphology and progression. Some require deep 

epigenetic experimental approaches for input. It is challenging 

in determining specific markers for normal stem cells, cancer 

cells or CSCs as most of these markers can be presented in all 

types of cells, making them non-specific. Otherwise, these 

aspects would require machine learning approach in identifying 

specific cell surface markers. In comparing between normal 

stem cells and cancer cell progression, it is mostly discussed 

within the context of CSCs, as stem cells have also been shown 

to be involved not just in cancer initiation and progression but 

also in CSCs generation [109]. Nevertheless, contradictory 

results on CSCs and stem cells relationships are still very much 

debatable.  

Although both cells share some similarities in terms of self-

renewal and differentiation ability, there are studies Some 

studies showed different characteristics between the two cell 

types and this can be delineated by the existence of specific cell 

markers [101, 110]. This feature can be used for machine 

learning approach to classify and track stem cells progression 

in a particular environment for the risks of them conforming or 

inclining towards cancer-associated cells. An important 

attribute of CSCs is that they have the ability to trans-

differentiate into different phenotypes [111, 112], whereby, 

they can express angiogenic and vasculogenic markers and also  
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be able to organize a pseudo vascular network. Several studies 

have also associated these characteristics to the expression of 

potentially CSC markers in several types of cancer cell lines, 

such as breast cancer cell lines, MDA-MB 453 and MDA-MB 

231 [113-115], non-small cell lung cancers (NSCLCs) [116], 

renal cell carcinoma Cell [117], nasopharyngeal carcinoma 

cell (NPC) [118], colon cancer cells mucoepidermoid 

carcinoma cell lines (YD15) and its derivative (YD15M) 

[119]. From these studies, it can be summarized that the 

characteristics of malignancy and cancer progression were 

typically associated with a panel of surface markers, which are 

𝐶𝐷133+, 𝐶𝐷44+, 𝐶𝐷24−, 𝑂𝐶𝑇3/4 , or/and 𝑁𝐴𝑁𝑂𝐺 [120, 

121]. On the other hand, the 

𝐶𝐷44ℎ𝑖𝑔ℎ  𝐸𝑆𝐴𝑙𝑜𝑤𝑒𝑟  or 𝐶𝐷44ℎ𝑖𝑔ℎ𝐸𝑆𝐴 ℎ𝑖𝑔ℎ expressions 

indicated the presence of CSCs population in squamous cell 

carcinoma in breast through a comprehensive analysis of data 

obtained from flow cytometry, immunohistochemical and real-

time polymerase chain reaction (RT-PCR) [112]. 

   Surface markers regulation leading to the induction of 

epithelial-mesenchymal transition (EMT), which resulted in 

the acquisition of invasive and metastatic properties is also one 

of the characteristics found in CSCs [119, 122]. EMT 

phenomenon in CSCs has been reported as metastasis 

precursor, which enable the cells to acquire invasiveness and 

become extremely resistant to conventional therapies [112, 

117]. The down-regulation of E-cadherin and upregulation of 

N-cadherin, which are termed as cadherin switching cascade, 

is a major hallmark of EMT. The cells which are undergoing 

EMT can be accurately identified through intensive genomic 

profiling for downregulation of cytokeratin (CK) and 

upregulation of vimentin, N-cadherin and fibronectin. This 

may be important markers for the characterization and 

identification of CSCs [119]. 

Currently, image analysis has been employed in the study of 

stem cells reprogramming and its progression using iPSCs. 

Kusumoto et al. [123] employed CNN   to identify endothelial 

cells derived from iPSCs, whereby, the networks were trained 

using phase contrast images of endothelial cells based on 

morphology only. The network performance was then 

assessed by K-fold cross-validation, which confirmed that 

CNN was able to identify endothelial cells based on 

morphology with high performance. On the other hand, 

computer vision-based deep learning was also used to study 

the progress of stem cells differentiation. CNN was also able 

to be trained with transmitted light microscopy images to 

identify pluripotent stem cells from early differentiating cells 

and its ability to recognize the features with more than 99% 

accuracy [124]. Similarly, the classification of light 

microscopic images was used to predict lineage choice and 

cellular movement of primary hematopoietic progenitors 

during differentiation [125].  

Despite limited machine learning application for stem cell 

biosafety and bioefficacy, comparative and classification 

analysis of stem cells can be carried out by comparing the cell 

images of stem cells and cancer cells without having the 

dependency on molecular and biological assays. Depending on 

a particular niche (i.e., whether in vitro or in vivo conditions), 

stem cells can initiate or acquire senescence or cancer  

 

 

 

characteristics. This has been demonstrated in glioblastoma 

multiforme study by Adamski et al. [126], which reported that, 

there is a putative link between cellular dormancy of 

malignancies and stem cell-like characteristics in cancer that 

could be due to the co-expression stem cells markers. Based on  

these studies, the prediction in the risks of stem cells to acquire 

cancer characteristics prior to clinical applications is possible. 

 

 

V. TECHNICAL RECOMMENDATION OF MACHINE LEARNING IN 

STEM CELLS RESEARCH 

Machine learning classification techniques have been applied 

in cancer research to identify and classify the types of cancer 

cells with relatively high accuracy, sensitivity and specificity. 

Some popular applications involved Support Vector Machine 

(SVM), K-Nearest Neighbors (KNNs), Artificial Neural 

Networks (ANNs), Decision Tree (DT), Random Forest (RF) 

and Bayesian Networks (BNs) [121, 122, 127-131]. In addition 

to cancer, the classification of microscopic red blood cells 

images from hematological disorder, such as sickle cell disease 

using deep-CNNs were able to reveal a diverse and any 

alteration in the cell shapes related to their biomechanical and 

bio-rheological characteristics. The deep-CNN employed 

showed good performance, high accuracy and robust 

predictions that enabled clinicians to assess the severity of the 

disease [132]. Similar techniques can be used to assess or 

profile stem cells biosafety and bioefficacy based on image 

analysis.  

 

[Fig. 3 about here.] 

With regards to image analysis, there are typical preliminary 

steps of image processing techniques. The process consists of 

input image data, image pre-processing, image segmentation, 

feature extraction and classification steps (Figure 3). The 

microscopic data is commonly used as an input for the training. 

Segmentation is a critical step that ensures the success of all 

subsequent algorithm steps. This entire approach of 

segmentation can be divided into three steps: image pre-

processing, image segmentation and features extraction. In 

image pre-processing, the process commonly starts with the 

selection of sub-image or panel (usually nuclei or cell). The 

RGB color components and grayscale analysis will then be 

performed for sub-image or panel to find the contrast among the 

sub-image objects. The contrast level of RGB components is 

shown by the colored histogram.  

The further segmentation process will then be performed to 

the sub-images by doing image refining, filling and splitting 

processes to identify the region of interest of the respective sub- 

images. Features such as size, shape and texture can then be 

extracted according to the calculation on the region of interest. 

By comparison, between Mean Shifts segmentation [131] and 

K-Means segmentation [132], the K-Means technique is one of 

the most popular method as it is simple, fast and efficient. 

Technically, K-means makes two broad assumptions, whereby, 

the number of clusters is already known. K-means is fast and 

has a time complexity 𝑂(𝑘𝑛𝑇), where k is the number of  
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clusters, n is the number of points and T is the number of 

iterations [133]. The results of segmentation can then be used 

for the classification process to differentiate between the 

normal and abnormal cell. The typical process of image 

processing shown in Figure 3 has been commonly used in most 

nuclei-based cancer image processing. For example, by 

applying deep learning, patterns from several types of data, 

such as from cancer cell dataset and stem cells dataset can be 

automatically extracted [133]. This includes the detection, 

segmentation and recognition of cell images that can be used 

to predict the risk of cell irregularities that could jeopardize 

stem cells clinical application. The detection of cell 

irregularities is a multistage process, which also includes pre-

processing tasks, such as segmentation and feature extraction 

from microscopic cell images before the application of CNN 

[134]. This approach can be used to observe and evaluate stem 

cells progression, particularly during the expansion phase to 

detect and predict the risk of abnormalities prior to clinical 

application. The expansion of cells is required to increase the 

number of cells to ensure sufficient cells can be used in stem 

cells therapy. It is a cell manipulation procedure, whereby, 

technical manipulation can increase the possibility of 

genotypic and phenotypic alterations [135].  

Naik & Dixit [134] reported detailed technical steps in 

detecting cancer from microscopic biopsy images, comprising 

of the training and testing of the algorithm model. The machine 

learning architecture of cancer detection by Naik & Dixit [134] 

is shown in Figure 4. For both training and testing tasks, the 

sequence of step started by taking image samples using a 

microscope, followed by the segmentation and features 

extraction step using the CNN based image processing and 

finalized by a classification step using the Naive Bayes 

Algorithm. By using the CNN based image processing, the 

microscopic image that contains nuclei, cytoplasm and other 

features are segmented into 12 smaller bricks. In each 

segmented brick, the CNN based interpretation on types of 

cancer was done according to the features of grey level, color, 

texture, Law’s Texture Energy (LTE), wavelet and Tamura’s 

features. This interpretation, which was given in percentage, 

was then subjected to Naive Bayes algorithm to classify 

whether the image indicates the cells to be cancerous or not. In 

this regard, the CNN algorithm may be applied as the basic 

principle of deep learning-based cell identification. As 

reported by Kusumoto et al. [123], the deep learning 

identification is more straightforward and achieves higher 

accuracies compared to the other machine learning techniques 

without the requirement of image labelling. The technical steps 

implemented by Naik & Dixit [134] can be adopted for the 

detection and evaluation of stem cells biosafety and 

bioefficacy risks.  

 

[Fig. 4 about here.] 

 

 

In cancer research, the focus on early detection is important to 

stop or slow down the progression of tumor growth.  Similar  

 

 

motivation can be applied in stem cells research, whereby, 

machine learning approach can be used to observe stem cell 

progression, especially during the expansion phase to evaluate 

the risk of biosafety and bioefficacy. To do this, there should be 

an automated identification system based on cell morphological 

images using the machine learning approach. With the 

enhancement technology of CNN and deep learning algorithm 

on cell image analysis, the nuclei-based analysis seems 

promising. The nuclei-based analysis has been used in cervical 

cancer and blood-related cancer screening. The images can be 

obtained or captured using a light microscope supported by a 

CCD camera in a standard size. These images can be included 

as a dataset, which can technically be classified into categories 

for labeling (such as normal, abnormal, healthy or unhealthy).  

These datasets can be applied for automated machine 

learning approach for abnormality evaluation of stem cells. 

Hussain et al. [136] has simultaneously conducted nuclei 

(nucleus) segmentation and classification from the cervical 

cancer morphological cell image using U-net architecture-

based fully convolutional neural network (FCN).  Figure 5 

shows the nuclei image processing and machine learning 

classification architecture by Hussain et al. [136]. They adopted 

the shape representation model based on auto-encoders which 

act as a network regularizer to increase the strength and 

robustness of the FCN. The U-net architecture-based FCN 

framework was able to predict the type of nucleus class either 

belonging to the normal or abnormal classes from the cervical 

cancer smear images. It worked by assigning pixel-wise labels 

to individual nuclei in a whole slide image, which enabled the 

identification of multiple nuclei belonging to the same or 

different class as individual distinct instances.  

 

[Fig. 5 about here.] 

Wang et al. [137] conducted the nuclei segmentation process 

on cervical cancer morphological cell image using Mean-Shift 

clustering algorithm. Figure 6 shows the nuclei image 

processing and machine learning classification architecture by 

Wang et al. [137]. The classification was carried out based on 

the shape and textural features of the segmented images. The 

color space and Gabor features were extracted from the 

segmented image and put together to obtain a better 

classification performance. The nuclei segmentation-based 

analysis was also conducted by Rawat et. al [138] on leukaemia 

morphological cell image based on the global thresholding and 

histogram equalization. The details of nuclei image processing 

and machine learning classification architecture are described 

in Figure 7. The normal and abnormal classes were classified 

using the support vector machine (SVM) classifier. On the other 

hand, Negm et. al [139] conducted the K-Means clustering-

based segmentation process on nucleus, cytoplasm and whole-

cell of leukaemia morphological cell image to classify the 

normal and abnormal classes based on the decision support 

system classification.  

 

[Fig. 6 about here.] 

[Fig. 7 about here.] 

[Fig. 8 about here.] 
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Figure 8 shows the architecture of nuclei image processing 

and machine learning classification by Negm et al. [139]. As 

described in this figure, K-means clustering segmentation 

process started by segmenting the nuclei or whole cell and the 

images were classified by a representation of three-color 

components, RGB (red, green, blue). The histogram of the color 

components indicates the contrast of the images. The most 

contrasted images were selected for K-mean clustering 

segmentation step. The K-means clustering-based segmentation 

was performed by partitioning the pre-processed image into K-

mean clusters, classifying and grouping items into k groups (k 

is the number of pre-selected groups), minimizing the sum of 

squared distances between the items and the corresponding 

centroid used in grouping [140]. For example, if the grouping 

items are; background, other non-target cells and the cells to be 

extracted, thus, the K number is 3 (K1:  background, K2: other 

non-targeted cells and K3: cells to be extracted).  

Through the K-Means algorithm, the desired region of cells 

(nucleus, cytoplasm and whole-cell) can be separated from the 

unwanted region (background and other non-targeted cells). 

The segmented desired region can then proceed for features 

extraction step, which based on geometry, statistics, textures 

and size ratio. The analysis of these features was then 

performed to differentiate the regions for the classification step. 

Taken together, the techniques and algorithms used in cancer 

research are recommended to be used in stem cells research, 

particularly for biosafety and bioefficacy evaluation as 

summarized in Figure 9. Taking cues from the summary of the 

image processing pipeline in Figure 9, we proposed a 

framework-specific for biosafety and bioefficacy assessment, 

as depicted in Figure 10.  

Ideally, this framework will be applicable to identify stem cells 

abnormality, particularly during the cell expansion phase. 

Following the proven studies in the similar domain, supervised 

learning will be employed where images with known 

normality level will be used as a training data. By utilizing 

CNN based image processing algorithm, the image of stem 

cells from microscope was segmented into smaller sub-image 

of a single cell that contains nuclei, cytoplasm and other 

features. In each segmented sub-image, the CNN based 

interpretation on the type of stem cell normality can be carried 

out according to the cell and nuclei features as exemplified 

previously [134]. The recommended features that should be 

considered are size, shape, grey level, color, texture, Law’s 

Texture Energy (LTE), wavelet and Tamura’s features. The 

performance metric for the model will be based on the 

features’ percentage of stem cell from each single cell sub-

image that showed normal or abnormal conditions. The sum of 

average for each feature will then become a metric for the 

classification using various models, such as Naive Bayes, 

Decision Tree or Random Forest. The summary of current 

machine learning application in stem cell research and cancer 

cell research is shown in Table 1. 

 

 

[Table 1 about here.] 

 

 

 

 

 

[Fig. 9 about here.] 

[Fig. 10 about here.] 

 

VI. THE CHALLENGES AND FUTURE OF PERSPECTIVES 

In summary, the possibilities to adopt the aforementioned 

technical steps in stem cell research, particularly for risk 

evaluation in biosafety and bioefficacy are immense. The 

overlapping aspects of stem cell biology and cancer cell biology 

have led to the increase of large and highly complex datasets 

being generated from biological experiments from quantifying 

molecular variables, such as gene, protein and metabolites 

associated with different cancer and stem cells types. This has 

given insights into further understanding of the biological 

systems. Taken together, their involvement in disease 

progression and mechanism can be realized using machine 

learning and deep learning approaches. These approaches are 

able to address the complexity and heterogeneity of these 

datasets, providing new perspectives and generate novel 

hypotheses, particularly with regards to biosafety and 

bioefficacy risks and concerns in stem cells therapy.  However, 

just as in any biomedical datasets, some of the challenges 

identified that may occur in stem cells research datasets are; 1) 

data requirements, which require large, labeled data to make 

deep learning successful, 2) overfitting in data training may 

inaccurately reflect underlying relationships, particularly in the 

heterogenous dataset and 3) interpretability of deep learning 

models may require better interpreting methods of its output 

[97]. 

Although the size of these datasets is increasing, there is still 

a need for massive, large datasets to reach meaningful 

perspectives and outcomes. Just as any biological system, data 

from stem cells biology can be incredibly complex with 

thousands of variables from different facets of physiological 

conditions.  With suitable machine learning and deep learning 

models, we can assess the aspects of biosafety and bioefficacy 

of stem cells for clinical application. The generated model could 

also be used to identify fundamental design principles to create 

a suitable microenvironment for stem cells growth without 

jeopardizing their mortality and without altering their 

epigenetic components that may lead to cellular abnormality.  

However, to create such large and well-annotated datasets to 

study such complex network would require multi-omics 

datasets, which can be very expensive. 

One of the options that could be utilized to take on this 

challenge is to use imaging data and analysis to characterize 

morphological and phenotypic changes of stem cells. This 

could be carried out by comparing the data from cancer and 

stem cells in various conditions and environmental 

perturbations as well as coupling it with deep learning 

algorithms. The data obtained would present interesting input 

in addressing biosafety and bioefficacy risks in stem cells 

therapy.  

Nevertheless, we still have a long way to go to uncover and 

harnessing the potential of stem cells for therapy and to play a 

bigger role in the clinical settings. Machine learning approaches  
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offer another attractive alternative in understanding stem cells 

biology as well as their biosafety and bioefficacy risks. With 

the emerging developments of machine learning application, 

there will be new interpretation in the model features (as 

proposed in the aforementioned sections in this review). The 

interpretation could give rise to new and meaningful inputs or 

predictions from stem cell biological perspectives, which will 

be a challenge that is worth to explore. 
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FIGURE 1: An overview of the current research trend in stem cells research. Collection of datasets particularly on characterization of stem and cancer cells 
would enable machine learning approach to be applied in stem cells research and subsequently in stem cells therapy. 

 

                     

FIGURE 2: Representative images of human adult stem cells and selected cancer cell lines (10X magnification). A) ADSC (Human adipose-derived stem 
cells), B) MCF-7 (Human breast cancer cell line), C) HGT-1 (Human gastric cancer cell line), D) U937 (Human lymphoma cell line) and E) HEPG2 (Human liver 
cancer cell line). Differences in cell morphology may enable machine learning approach in evaluating the risks of biosafety and bioefficacy in stem cells 
therapy. 
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FIGURE 3: Overview of a typical pipeline of image processing steps for machine learning classification. Adapted from Jyoti Rawat et. al [138]. 

 

 

 

 

FIGURE 4: The machine learning architecture of cancer detection process which can be applied in stem cells biosafety and bioefficacy assessment. 
Adapted from Naik & Dixit [134]. 
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FIGURE 5: Nuclei image processing and machine learning classification architecture using U-net architecture-based fully convolutional neural network 
(FCN). Reproduced from Hussain et al. [136] with permission. 

 

 

FIGURE 6: Nuclei image processing and machine learning classification architecture using mean-shift clustering algorithm. Reproduced from Wang et al. 
[137] with permission 
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FIGURE 7: Nuclei image processing and machine learning classification architecture using support vector machine (SVM) classifier module. Reproduced 
from Jyoti Rawat et. al [138] with permission. 
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FIGURE 8: Nuclei image processing and machine learning classification architecture using K-Means clustering-based segmentation. Reproduced from 
Negm et al. [139] with permission. 

 

Dataset 1, Dataset 2  
(Private, public) 

 

Pre-processing step: 
(Panel selection by 

analysing color 
(RGB) component 

of images) 

                           
 
 
 

Red 

Component 

Green 

Component 

Blue 

Component 

Green 

histogram 

 

Processing step: Nuclei 
Segmentation using K-Mean 
Clustering techniques 

     
 
 

Cell overlapped Cell distortion 

Post Processing step:  
by doing filling object 
and cell splitting 

Object Identification Geometric, chromatic, texture and size 

Feature Extraction Minimum, maximum, and standard deviation 

Classification Neural Network, Decision Tree 



FIGURES 8 
 

 

FIGURE 9: Overview of commonly used image processing-based machine learning techniques in cancer research which can be applied in stem cell 
research for stem cells biosafety and bioefficacy assessment.  
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FIGURE 10: Image processing machine learning architecture proposed for stem cells research particularly for biosafety and bioefficacy assessment using 
microscopy images of human adipose derived stem cells as an example. 
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TABLE 1 

A SUMMARY OF CURRENT MACHINE LEARNING APPLICATION IN STEM CELL RESEARCH AND CANCER RESEARCH. 

Ref. Type of Cell 

 

Task       Learning Method                      Feature Selection                                   Parameters 

 [91] iPSC Live-cell microscopic imaging 
dataset for iPS progenitor cells 
detection. 
 

XGBoost algorithm  
 

11 types of features are extracted (volume, area, 
sphericity, ellipsoid-prolate, ellipsoid-oblate, nucleus-
cytoplasm volume ratio, displacement, speed, 
Intensity-StdDev, Intensity-Max, Intensity-Min) 
using time window and two-step feature selection. 
 

XGBoost setting (learning rate = 0.01, 
n_estimators = 385, gamma = 0, and 5-Kfold 
cross validation).  

[98] iPSC Time-lapse bright field image 
analysis for iPS colony 
formation detection and 
prediction 
 

CNN for iPSC colonies 
recognition, HMM for growth 
curve modelling (Baum-Welch 
and Viterbi algorithms), and 
AlexNet algorithm as classifier. 
 

2 main types of features selected (Colony texture and 
area of growth) using the sliding window method 
with Autolevels (AL) algorithm, Gaussian filter 
(GFP) and Random Walker algorithm for dataset pre-
processing.  

Batch normalized layer training for AlexNet with 
manual human validation.   
 

[123] iPSC Phase contrast and 
immunofluorescence image 
analysis of differentiated 
endothelial cells  

LeNet and 
AlexNet algorithm 

2 types of feature selected (Differentiated feature of 
endothelial cells – vascular tube and CD31 
expression) 
 
 

LeNet and AlexNet architectures are available in 
[123] (Figure 3). 
 
Training was conducted with stochastic gradient 
descent, learning rate = 0.01, and cross-entropy 
error as loss function. 
 
Weight initialization using Xazier algorithm with 
dropout-techniques applied to avoid overfitting. 
 

[100] 

 

Human ESC Phase contrast microscopic 
ESC images classification 

DeephESC 2.0 algorithm 
consisting of CNN, Triplet CNNs 
and Fused CNN-Triplet.  

6 types of features selected (cell clusters, debris, 
unattached cells, attached cells, dynamically blebbing 
cells and apoptically blebbing cells) following the 
image pre-processing with intensity modeling of a 
mixture of two Gaussians. 
 
Generative Multi Adversarial Networks (GMAN) is 
implemented for synthetic hESC images dataset. 

DeephESC 2.0 setting (learning rate = 1.2x10-2, 
momentum = 0.9 and weight decay = 1x10-3), 
variation of architectures to improve hESC 
classification is available in [100] (Table 4). 
 
Two triplets CNN were introduced to perform 
fine-grained classification using the architecture 
presented in Figure 9 [100] with hyper-
parameters setting in Table 6. 
 
GMAN discriminators setting is available in 
Table 7 [100]. 
  

[99] MSC Microphotograph of MSC 
image for differentiation 
analysis 
 

SVM algorithm 3 main types of features selected (Adipogenic 
differentiation, osteogenic differentiation and non-
differentiated) based on the intensity balance of RGB 
channels. 
 

RGB pixel intensities with maximum value of R 
= 255, G = 255, and B = 255. 

[107] Mouse ESC Time-lapse fluorescence 
microscopic image analysis of 
cell foci and cell motion 

Level-set-based cell segmentation 
and tracking algorithm  

1 type of feature selected (time course in cell phase 
transition) using cell segmentation and tracking with 
cell motion correction and foci segmentation and 
pattern recognition. 

Level-set-based cell segmentation and tracking 
hyperparameters (motion compensation 
algorithm, α = 0.5 and β = 0.95; λ of the 
smoothness energy term of the foci segmentation 
algorithm = 10%; focus size = 3-5 voxels; 
expected contrast = 0.05 & 0.2; cell-phase 
classification threshold = 30% of foci at 
boundary) 

[129] Breast cancer  Digital mammography images 
classification 
 

CNN algorithm (fully connected 
(FC) layers involving VGG 
network or Resnet network as 

8 types of feature selected (regional area, major axis 
length, mean intensity, background, malignant mass, 
benign mass, malignant calcification and benign 

CNN setting (First step with 3 training strategy: 
learning rate = 10-3, 10-4, 10-5. Second step with 2 
training strategy: learning rate = to 10−4; weight 
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patch classifier layers).  
 
The complete network design is 
presented in Figure 1 [129]. 
  

calcification). decay = 0.001 and learning rate to 10−5; weight 
decay = 0.01) 
 

[134] Breast cancer  Magnetic Resonance Images 
(MRI) dataset classification 

CNN algorithm for image 
processing and Naïve Bayes as 
classifier 

4 types of colour-based feature selected (grey-level 
texture feature, Law’s Texture energy, Tamura 
feature and wavelet feature) 
 

N/A  

[136] Cervical 
cancer  

Pap smear images 
classification 

FCN algorithm with U-net variant 
comprising of residual blocks 
from Deep Residual Networks 
and dense blocks from Densely 
Connected Networks within the 
shape representation model 
(SRM) encoder. 
  

3 types of feature selected (cell nuclei irregularity 
size, shape and texture). 
 
Stacked auto-encoder (SAE) is implemented to 
construct SRM for segmentation. 
  

FCN network architecture is presented in Figure 
4 [136]. Optimization of the network was 
performed with Adam optimizer. 
 
FCN algorithm hyperparameters (stochastic 
gradient descent, learning rate = 0.01; reduced by 
a factor of 10 every 5 epochs, and momentum = 
0.88 for 200 epochs) 
 

[137] Cervical 
cancer  

Pap smear images 
classification 

SVM algorithm as classifier and 
Mean-shift clustering algorithm 
with mathematical morphology 
for segmentation. 
 
 

5 types of selected features (cell nuclei area, 
perimeter, eccentricity, roundness, circularity) 
 
Optimal feature set is obtained using chain-like agent 
genetic algorithm (CAGA), P-value and maximum 
relevance-minimum multicollinearity (MRmMC). 
 
  

N/A 

[138] Lymphoblastic   
and 

Myeloblastic 
leukemia 

Microscopic blood images 
classification 

Genetic algorithm (GA) for 
feature selection with SVM 
algorithm as classifier. 

3 main types of selected features (colour, statistical 
texture & geometric - area, perimeter, diameter, 
Euler's no, major axis, minor axis, solidity, 
eccentricity, roundness, convex area and extent). 
 
The complete list of the extracted features and 
methods for extraction is available in Table 6 [138]. 

GA setting (size population = 20, number of 
generations = 10, replacement rate = 0.8, 
crossover fraction = 0.5, mutation fraction = 
0.01, fitness scaling = rank, selection function = 
roulette, no of variables = 331), 
SVM hyperparameters (Gamma g = 0.0057/κ, 
Cost C = 15,334). 
 
Various kernel functions and hyperparameters 
configuration were experimented. Details of the 
recommended configurations are available in 
Table 15, with details analysis in Table 8 - 14 
[138]. 
 

[139] Leukaemia Acute leukemia blast cells in 
colored microscopic images 
classification  
 

Artificial Neural Network (ANN) 
and Decision Tree as classifier 
with K-means clustering 
algorithm  

4 main types of selected features (geometry, statistics, 
textures, and size ratio from selected regions in 
nucleus, cytoplasm and whole cell)  

N/A 

Notes; iPSC-induced Pluripotent Stem Cells, MSC-Mesenchymal Stem Cells, ESC-Embryonic Stem Cells, Min-Minimum, Max-Maximum 

 

 

 

 

 


