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Abstract: This study analyses seismic data to investigate the kinematic indicators within the mass transport
deposits (MTDs) of the Donegal Barra Fan complex in the Rockall Trough, along the NW European con-
tinental margin. Five episodes of mega-scale MTDs (DBF-01, -02, -03, -04 and -05) are identified. DBF-
01 is the largest MTD in the NW British continental margin, comprising 1907 km3 of sediments. Fold-
and-thrusts were identified within the MTDs where they attain maximum thickness of c. 300–380 ms
TWT, but not at the toe region. This indicates that local erosion and deceleration caused bulking up of
the MTD volume, but the MTD was not fully arrested due to the high mobility of the mass flow. MTD thick-
ness distribution and thrust fault orientations indicate source areas and flow direction of MTD. The MTDs
show a compensational stacking pattern with earlier deposits influencing the position and flow direction of
succeeding slides, suggesting that glaciogenic debris flows are sensitive to topographic variability. We pro-
pose that increased sediment input associated with at least five expansions of the British–Irish Ice Sheet to
the shelf edge led to the development of these MTDs and that the youngest of them, DBF-05, corresponds to
the Last Glacial Maximum.

Supplementary material: Seismic cross-section showing buttressing of DBF-02 and -03 against DBF-01
(Fig. 7c); thrusts within DBF-01 (Fig. 7c), DBF-04 overlying DBF-03 and its termination (Fig. 7c), DBF-05
buttressing against DBF-01, -02 and -03 (Fig. 3; refer to Fig. 5e for location) are available at https://doi.
org/10.6084/m9.figshare.c.4816911

Submarine mass transport deposits (MTDs) involve
upslope depletion and downslope accumulation of
sediments along a basal shear surface, with the trans-
lated sediments often forming elevated topographic
features on the contemporaneous seafloor (Varnes
1978). MTDs are a common occurrence on continen-
tal margins and are important in margin evolution.
Bull et al. (2009) documented various types of kine-
matic indicators within MTDs including ramps-and-
flats, fold-and-thrusts, which are of great importance
to the understanding of the initiation, dynamic evolu-
tion, flow direction and cessation of MTDs (Frey-
Martínez et al. 2005; Alsop et al. 2017).

MTDs constitute the bulk of sediments in trough
mouth fans (TMFs) (Vorren and Laberg 1997).
TMFs are stacks of glaciogenic debris flows forming
prograding wedges on continental margins in front
of palaeo-ice streams, which drained, among others,
the former European Ice Sheets, the Greenland and

West Antarctic Ice Sheets (Vorren and Laberg
1997; Stow et al. 2002; Rebesco et al. 2006; Dow-
deswell et al. 2008). Hemipelagic or contouritic
interglacial sediments often separate the glaciogenic
debris flow units (Stow et al. 2002; Ó Cofaigh et al.
2003). TMFs of late Pliocene to Pleistocene age are
recognized along the continental margin of NW
Europe (Vorren and Laberg 1997; Dahlgren et al.
2005), and the southernmost of these is the Donegal
Barra Fan (DBF) that was fed by the British–Irish Ice
Sheet (BIIS) (Armishaw et al. 2000).

Two major MTD complexes have been identified
in the Rockall Trough offshore Ireland: the Rockall
Bank Slide Complex (RBSC) (Georgiopoulou
et al. (2019) and references therein), and the DBF
complex (Holmes et al. 1998; Armishaw et al.
2000; Knutz et al. 2002; Stow et al. 2002) (Fig. 1).
The timing, failure mechanisms and number of
slumping events of the RBSC have been studied
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using a wide variety of geophysical data and sedi-
mentary cores (Flood et al. 1979; Georgiopoulou
et al. 2013, 2019; Sacchetti et al. 2013), as well as
simulation modelling studies of the major phases
of slumping episodes during and before the Last Gla-
cial Maximum (Salmanidou et al. 2018). However,
we have a poor understanding of the various slump-
ing events of the DBF complex, and their extent in
the Irish sector of the Rockall Trough.

The objective of this study is to improve our
understanding of the extent and dominant transport
mechanisms of MTDs in the DBF complex by
investigating the geometry, distribution, stacking
patterns and kinematic indicators of individual
MTDs, their interactions with the RBSC and

potential links between MTDs and episodes of
BIIS advances on to the NW European Irish conti-
nental shelf.

Geological setting

The NW European continental margin is character-
ized by a range of submarine features including
TMFs deposited in front of fast-flowing ice streams,
and MTDs formed by failure of accumulated glacio-
genic and marine sediments and moraines (Dahlgren
et al. 2005; Sejrup et al. 2005; ÓCofaigh et al. 2012).
A number of MTDs of various sizes and of Pliocene
to Pleistocene age have been identified, including the
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Fig. 1. Regional overview map of study area offshore Ireland showing key features: extent of Donegal Barra Fan
(DBF), Rockall Bank Slide Complex (RBSC) and small MTDs (Sacchetti et al. 2013); four different slides of the
RBSC (A, B, C and D) described by Georgiopoulou et al. (2019); DBF extent and location of the Barra Fan Ice
Stream (BFIS) modified from Dunlop et al. (2010), Clark et al. (2012), Ó Cofaigh et al. (2012), Peters et al. (2016)
and Callard et al. (2018). HTS, Hebrides Terrace Seamount. White arrows indicate general direction of ice flow.
Basemap source: Esri, DigitalGlobe, GeoEye, CNES/Airbus, USDA, USGS, AeroGRID.
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Storegga Slide Complex, the North Faroes Slide
Complex and the Peach Slide (Haflidason et al.
2004; Evans et al. 2005; Sejrup et al. 2005; Owen
et al. 2018). Most of the slides and debris flows on
the continental slope north of 55° N are associated
with glacial depocentres (Evans et al. 2005).

The Rockall Trough is the largest of the basins
offshore west Ireland, with water depths ranging
from 500 m on the eastern and western margins to
almost 4000 m in the southern opening of the trough
(Fig. 1). The Mid to Late Cenozoic stratigraphic
framework for the Rockall Trough comprises three
megasequences bounded by unconformities C30,
C20 and C10 (Stoker et al. 2001). The C10 uncon-
formity is an early Pliocene angular unconformity
(c. 5 Ma) separating the early Miocene to early Plio-
cene megasequence from early Pliocene to Holocene
sediments (McDonnell and Shannon 2001).

The seafloor and shallow sub-seafloor geomor-
phology of the deep-water Irish continental margin
has been mapped in detail using a wide range of
high-resolution geophysical datasets, revealing fea-
tures such as submarine mass failures of various
sizes and extent, escarpments, canyons and channels,
sedimentary lobes associated with canyon systems,
slab failures and evolved slides, incipient cuspate
slides, etc. (Shannon et al. 2001; Unnithan et al.
2001; Elliott et al. 2010; Sacchetti et al. 2011,
2012, 2013; Georgiopoulou et al. 2013, 2014).
Some of these features are the focus of this study
and are discussed in more detail below.

The Donegal Barra Fan (DBF) and the
British–Irish Ice Sheet (BIIS)

Reconstruction of the advance and retreat of the last
BIIS on the continental shelf NW of Ireland is based
on relatively recent geophysical and sedimentologi-
cal datasets (Dunlop et al. 2010; Ó Cofaigh et al.
2012, 2019; Peters et al. 2016; Callard et al. 2018).
Converging ice flows from NW Ireland and western
Scotland merged on the Malin Sea Shelf in the Barra
Fan Ice Stream (BFIS) (Fig. 1). The BFIS drained 5–
10% of the BIIS (Dove et al. 2015) and fed sedi-
ments and meltwater towards the largest glacimarine
depocentre of the BIIS, known as the DBF (Fig. 1).
The BIIS reached the outer shelf and was grounded
at the shelf break of the Malin Sea on more than
one occasion (Fyfe et al. 1993). Bathymetric and
sub-bottom data show that the ice was grounded
extensively along the shelf edge in the Malin Sea
Shelf and offshore of NW Ireland during the last off-
shore glacial advance (Benetti et al. 2010; Peters
et al. 2015; Callard et al. 2018). Some ice streaming
was also present in Donegal Bay (Greenwood and
Clark 2009; Benetti et al. 2010; Ó Cofaigh et al.
2012), to the south of the Malin Sea, but the

geophysical data on the continental margin do not
show the development of a distinct TMF in this
region (Sacchetti et al. 2012, 2013). The ice sheet
reached its maximum extent at the shelf edge some-
time before 26.5–26 ka BP (Clark et al. 2012; Peters
et al. 2016; Callard et al. 2018). By 25.9 ka BP, the
retreat of the BIIS from the shelf edge was already
underway. The style of retreat was episodic and
characterized by the formation of moraines and
grounding zone wedges across the shelf (Dunlop
et al. 2010; Callard et al. 2018; Ó Cofaigh et al.
2019). The outer continental shelf in the Malin
Sea was free of grounded ice by 23.2 ka BP with
the majority of the shelf ice-free by 19.5 ka BP
(Callard et al. 2018). At this time, while the ice
sheet was no longer grounded at the seafloor, it is
likely that an ice shelf persisted in this region well
into the deglacial period, with meltwater release
and ice rafting occurring at least until 15.9 ka BP
and resulting in episodes of downslope MTD on
the DBF (Tarlati 2018).

The DBF covers an area of about 7000 km2

and locally approaches 700 m in thickness in the
deep-water basin of the Rockall Trough (Fig. 1;
Owen and Long 2016). Armishaw et al. (2000) rec-
ognized a combination of different sedimentary pro-
cesses dominant during the three-stage glacial to
post-glacial evolution of this depositional sys-
tem, which resulted in the composite nature of the
DBF. The first and most significant sediment
input was in the NE of the study area, where the
DBF overlies the Late Miocene and Early Pliocene
sediments and is distal in character. The sedimen-
tary sequence comprises contourites, glaciomarine
deposits and hemipelagic sediments (Armishaw
et al. 2000). Continental uplift later contributed to
the growth of the DBF during the mid-Pliocene;
however, the majority of the DBF sediments were
deposited during the Pleistocene when the fan was
a major depocentre for the BIIS. The Peach Slide
is the largest known MTD situated in the northern
flank of the fan, consisting of four major debrite
units (sediment volume c. 135–673 km3), which
were deposited during the period between 36.5
and 10.5 ka BP (Holmes et al. 1998; Knutz et al.
2001; Maslin et al. 2004). Shallow subsurface and
surface geophysical imaging has allowed recent
mapping and interpretation of contourites, hemipe-
lagites and debrites within the Peach Slide (Owen
et al. 2018).

Slides on the Rockall Trough margins

The RBSC is located along the western margin of the
trough and to the east of the Rockall Bank (Fig. 1). It
covers c. 18 000 km2 of the base of slope and floor of
the Rockall Trough (Elliott et al. 2010). Several stud-
ies have investigated high-resolution-bathymetry
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data, GLORIA and TOBI side-scan sonar data, sub–
bottom acoustic data, multichannel seismic data and
sedimentary core data to study the morphology, mul-
tiple episodes of slumping and their ages (Shannon
et al. 2001; Unnithan et al. 2001; Georgiopoulou
et al. 2012, 2013; Sacchetti et al. 2013). The RBSC
constitutes at least three voluminous episodes of
slope collapse (sediment volume c. 125–400 km3), a
fourth less voluminous event, and possibly a fifth
more localized event, which occurred during 200 to
22 ka (Georgiopoulou et al. 2019). The four larger
MTDs are referred to as RBSC slides A, B, C and
D in Georgiopoulou et al. (2019) and in this paper
(Fig. 1).

Mass wasting on the western margin of the trough
involved larger sediment volumes as compared to
the relatively smaller slope failures of the eastern
margin, where sediment was progressively evacu-
ated towards the deeper basin through canyons
(Georgiopoulou et al. 2014). In the northeastern
Rockall Trough, a large mass transport complex

was identified as the Erris Wedge in the buried sedi-
mentary sequence directly overlying the C30 uncon-
formity (Elliott et al. 2006). The Erris Wedge
pinches out at the southern limit of the DBF.

Data and methods

The data used in this study include three surveys of
2D multichannel seismic data acquired over the
past decades in offshore Ireland (Fig. 2). The most
recent surveys, PAD-13 and PAD-14, were acquired
by R/V BGP Explorer for ENI Ireland BV during
2013–14. The vessel was equipped with a Sercel
G-Gun-II as a source, placed at a depth of 8 m
(+1 m), and towed one streamer of length 10 050 m
placed at 10 m (+1 m) depth. The survey was
acquired with a shot-point interval of 37.5 m, 12 s
record length, 2 ms sample rate and 50 ms recording
delay. The unpublished PAD-13 and PAD-14 lines
are of the best quality, spaced 40–50 km apart, and
are the main dataset analysed for this paper. The

Fig. 2. Extent of previously published Rockall Bank Slide Complex (RBSC) and Donegal Barra Fan (DBF) complex
(Sacchetti et al. 2013), along with the RBSC time thickness map (TWT, ms) calculated in this study, and the extent
of different MTDs comprising the DBF complex in the northeastern part of the Irish Rockall Trough. HTS, Hebrides
Terrace Seamount.
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ERM07 2D seismic survey was acquired by M/V
Lazarev & Shatskiy and M/V Nalivkin in 2007 for
client TGS-Nopec Geophysical. The vessels used
an airgun source placed at a depth of 7–10 m, and
towed an 8090 m long streamer (648/636 channels)
placed at a depth of 12 m. The survey was acquired
using a shot-point interval of 25 m, group interval
of 12.5 m and 9 s record length. The DGER 2D seis-
mic survey was acquired by the M/V Polar Princess
in 1996. The vessel used a source gun array (30 ×
17.2 m) placed at a depth of 7 m, and towed a
streamer 4500 m long placed at a depth of 8 m. The
survey was acquired using CDP (common depth
points) spacing of 6.25 m, shot-point interval of
25 m and 8 s record length. The above three sets of
surveys were processed following standard industry
procedure (Yilmaz 2001). The eastern slope of the
Rockall Trough is covered by both the ERM07 and
DGER surveys with an average spacing of 6–10 km
between each seismic line. The ERM07 survey has
good to moderate quality of seismic lines, especially
in the shallow depths below the seafloor, whereas the
DGER survey shows poor quality of seismic imaging
in the shallow stratigraphic layers. The 50 km line
spacing between the best quality PAD-13 and
PAD-14 lines and closely spaced poor to medium
qualityDGERandERM07 linesmade the correlation
of MTDs challenging in this study. All survey data
have been made available by the Irish Petroleum
Affairs Division (data available on request from
https://www.dccae.gov.ie/en-ie/natural-resources/
topics/Oil-Gas-Exploration-Production/data/regional-
seismic-survey/Pages/Regional-Seismic-Survey.aspx).

The basal shear surface of each MTD, and defor-
mation structures within the MTDs were interpreted
in Petrel software, provided by Schlumberger. There-
after, these surfaces were used to create isochron
thickness maps, which were integrated with previ-
ously published geophysical interpretation using
ArcGIS software for spatial correlation. The sediment
volume of each of the MTDs was calculated by con-
verting two-way time (TWT) into metres using an
average P-wave velocity of 1700 m s−1 for less-
consolidated marine sediments (Hamilton and Bach-
man 1982).

Results and discussion

This section presents and discusses the seismic inter-
pretation of various MTDs that are part of the RBSC
and the DBF (Figs 3–9).

RBSC

One of the MTDs within the RBSC has been mapped
by Sacchetti et al. (2013) using shallow high-
resolution geophysical datasets and corresponds
with ‘Slide C’ of Georgiopoulou et al. (2019) (Figs

1 & 2). The termination of this MTD was mapped in
the northwestern part of the study area. It shows a
varied seismic character. The northern part of the
MTD is characterized by a chaotic reflection pattern
of low to moderate amplitudes (Fig. 3b). In contrast,
the toe of the MTD at the southern end is character-
ized by moderate to high amplitude reflections,
showing compressional features, such as reverse
faults (Fig. 4a–c). The basal shear surface is typically
a continuous, medium-high negative amplitude
reflector, easily identified on the seismic data and
is parallel to the slope stratigraphy (Figs 3b & 4).

Sediments show two main accumulations within
the MTD. The thickness reaches up to 200 ms
(TWT) in the southern portion of the MTD (Figs
2 & 4a), and 230 ms (TWT) 40 km north from the
former location (Figs 2 & 4c). The volume of sedi-
ments calculated for the slide identified in this study
is c. 660 km3. The MTD identified as RBSC in this
study ramps up a stratigraphic unit which is charac-
terized by chaotic seismic facies (Fig. 4c). This cha-
otic seismic facies unit could be part of ‘Slide A’
identified by Georgiopoulou et al. (2019). This is
observed only on one seismic line, and hence its
extent could not be mapped.

DBF complex

After integrated data analysis with previously pub-
lished results (Knutz et al. 2002; Sacchetti et al.
2013; Owen and Long 2016), all the MTD events
interpreted in this study in the northeastern Rockall
Trough were observed to lie above the C10 uncon-
formity and beneath the RBSC, and hence are
assumed to be part of the DBF complex. The MTD
units have been recognized based on criteria estab-
lished from previous studies (Evans et al. 1996;
Frey-Martínez et al. 2005; Gamboa et al. 2011);
each MTD unit was identified as a discrete strati-
graphic unit covering a considerably large area,
which is characterized internally by chaotic, semi-
transparent, highly disrupted seismic facies dis-
tinctly different from the adjacent undeformed
units and underlying stratigraphy. Detailed interpre-
tation of five basal shear surfaces distinguished five
separate MTDs within the DBF complex (Fig. 5).
The basal shear surface for each MTD unit was iden-
tified in a similar way to unconformities, character-
ized by abrupt termination of a continuous
medium-high amplitude reflection that dips parallel
to the underlying chaotic seismic facies of the MTD
units (Figs 3, 4, 6–9). Occasionally the basal shear
surface is observed to ramp up or down the stratigra-
phy forming a step-like geometry (Fig. 8b, c). Most
of the internal facies of the MTDs are chaotic and/or
semi-transparent; however, occasionally, individual
semi-continuous reflections within the MTD allow
identification of internal facies and therefore better

Mass transport deposits in the Donegal Barra Fan
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understanding of the internal architecture. The
majority of these semi-continuous reflections are
slightly tilted to the basal shear surface and the top
of the MTDs. These features are interpreted as
fold-and-thrust systems and described separately in
the section on ‘Flow processes within the DBF’.
The areas and sediment volumes of each of the five
MTDs interpreted in this study, comprising the
DBF complex in the Irish sector of the Rockall
Trough, are shown in Figure 10. They are further
described below.

DBF-01

DBF-01 extends over the largest surface area out
of the five identified MTDs. DBF-01 covers an area
of c. 16 589 km2 and consists of c. 1907 km3 of sed-
iments, making it the largest submarine MTD
described along the NW British continental margin

(Moscardelli and Wood 2016). It stretches over
c. 258 km in length along a NE–SW direction and
is c. 100 km wide in its central part. The present-day
water depth varies from 1668 m in the NE to 2956 m
in the SW over the extent of DBF-01. DBF-01 is not
exposed to the seafloor. Almost 60% of DBF-01 is
draped by succeeding MTDs (DBF-02, -03 and
-04), which are all part of the DBF complex. In the
southwestern region, stratified sediments drape c.
40% of DBF-01 (4790 km2); these sediments could
be either hemipelagic sediments, contourites or sedi-
ment gravity flows related to meltwater pulses. The
stratified sediments are highly continuous and easily
distinguished from the underlying chaotic seismic
facies of the MTD (Fig. 4a, b). Two major depo-
centres have been identified in the central and
southern part of DBF-01 (Fig. 5a). The thickness of
these two depocentres varies from 300 to 350 ms
(TWT) and are characterized by fold-and-thrust
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systems (Figs 5 & 7). The orientation of individual
thrusts is difficult to ascertain in this scenario, as we
observe NW-verging thrusts on only one 2D seismic
line, which is contradicted by a general NE–SW
alignment of thickness map contour lines (Fig. 5a).
However, we speculate that the thrusts might have
formed due to the accumulation of downslope-
translated sediments as part of a slope failure event.
Sediments may have been brought in by the BFIS
in the Malin Sea (NE–SW palaeoflow direction)
and those derived by ice streaming in the Donegal
Bay area (SE–NW palaeoflow direction) (Fig. 1;
Clark et al. 2012).

Ten deformed rafted blocks, as defined by Frey-
Martínez et al. (2005), have been identified within
DBF-01. Nine of them are in the thicker northern
part. One is located 63 km NE from the southern
toe of the slide. The blocks are usually resting on
the basal shear surface of the MTD (Figs 6b & 7a,
b), but occasionally they are observed floating in
the chaotic matrix of the MTD (Fig. 6c). The top of
the rafted blocks are characterized by medium–high
amplitude reflections and demonstrate different
styles of internal deformation (minor, moderate and

major) as classified in Gamboa et al. (2012).
Irrespective of their location in relation to the
main MTD mass, rafted blocks exhibit deformation
with increasing translation or duration of sliding and
tend to become aligned with their long axis parallel
to the direction of flow (Huvenne et al. 2002; Bull
et al. 2009). However, due to the coverage of the
seismic data, we are unable to carry out detailed
analysis of the spatial distribution of blocks or
their internal character. A chaotic seismic unit
underlying DBF-01 was identified on only one seis-
mic line (Fig. 4c). This unit could possibly be part of
the DBF complex and has been named DBF-00, but
no further investigation was possible due to the lim-
ited seismic coverage.

DBF-02

This MTD is 115 km long, stretching along a
NE–SW axis, and 45 km wide in the central part of
the slide, draping the northwestern part of DBF-01
(Fig. 2). DBF-02 covers an area of c. 3653 km2,
draping c. 30% of DBF-01, and comprising
c. 287 km3 of sediments. It has the smallest volume
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Fig. 5. (a–e) Thickness maps (TWT, ms) of different DBF complex MTDs, DBF 01–05. The extent of the RBSC
shown in the above maps is the one mapped in this study. Depocentres are shown in red circles, dashed black lines
represent flow direction of MTDs inferred from their respective thickness maps. ‘Suppl. Fig.’ indicates position of
figure in Supplementary material.
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of all the MTDs identified in this study (Fig. 10). The
basal shear surface of DBF-02 is a continuous high-
amplitude reflector, which separates it from the
underlying DBF-01 unit (Fig. 6a, b). The maximum
thickness of this slide is c. 180 ms (TWT), at a loca-
tion where it meets the elevated morphology of
DBF-01 (Fig. 5b). Most of the slide is draped by
DBF-03, leaving c. 8–10% of the surface area cov-
ered by uniform stratified sediments (Fig. 4c). One
minor deformed rafted block with a width of
5.5 km has been identified resting on the basal
shear surface, within the thickest region of
DBF-02. Undeformed stratigraphic units of stratified
sediments have been identified in between DBF-01
and DBF-02 (Fig. 6a, b).

DBF-03

This MTD is 185 km long and 120 km wide in the
central part of the slide, covering 65% of DBF-01
and most of DBF-02 (Fig. 2). It covers an area of

11 736 km2 and comprises c. 1378 km3 of sedi-
ments. The basal shear surface is a continuous high-
amplitude reflector for most parts of the MTD (Figs
6a, b & 7a), with some exceptions of partially dis-
continuous, medium–high amplitude reflectors
above some of the thrust-and-fold systems identi-
fied within DBF-03 (Fig. 7b). The discontinuous
basal shear surface might be due to compressional
deformation or some sort of seismic data processing
artefacts. DBF-03 has the greatest thickness (c.
380 ms TWT) of all the MTDs identified in this
study. Three depocentres have been identified
(Fig. 5c). The southeastern depocentre is character-
ized by compressional features where it is found to
be buttressed in a downslope position against the
undisturbed sediments along the northeastern
slope of the Rockall Trough (Fig. 9b). The south-
western depocentre is characterized by complex
imbricate thrusts and compressional folding within
the MTD (Fig. 7a, b). The flow direction of the
MTD cannot be easily derived from the thrust

PAD14-019 SE

PAD13-029 NE

Undeformed 
stratigraphy

PAD13-029

Polygonal faults

ThrustsReverse faults
due to compression

Thrusts-and-folds

Deformed 
rafted block

DBF-01 
DBF-02

DBF-03 

DBF-04 

Deformed 
rafted block

Thrusts-and-folds
PAD14-019NW

Top of slump fold

Undeformed stratigraphy

pp

Polygonal fa
ults

PAD14-019

DBF-03 BSS

DBF-02 BSS

DBF-01 BSS

Top of slump folds

DBF-04 BSS

PAD13-029

Reverse faults formed due 
to compressional stress DBF-03 BSS

DBF-04 BSS

c

d

PAD14-019

PAD13-029

NE

DBF-01
DBF-02
DBF-03 

DBF-04

Tilted semi-continuous stratal reflections,
locally deformed

Discontinuity surfaces: 
interpreted as thrusts

Folded geometries
at top of stratal reflections

SW

SW

(-)
(+)

1000 m

( s
m 052

TW
T)

NW

(-)
(+)

1000 m

( s
m 052

TW
T)

SE

(a)

(b)

(c) (d)

Fig. 6. (a, b) Multiple episodes of DBF in the NW part of study area. Compressional features such as
thrust-and-folds within DBF-03 and DBF-04 are shown along with deformed rafted blocks within DBF-01 and
DBF-02. Undeformed stratified sediments are interpreted between DBF-01 and DBF-02, and DBF-02 and DBF-03.
(c, d) Zoom-in of compressional fold-and-thrust features in DBF-03, and top of slump folds in DBF-01 and DBF-03.
Refer to Figure 5d for location of seismic sections.

Mass transport deposits in the Donegal Barra Fan

 by guest on March 19, 2020http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


faults, which are identified using only two seismic
lines, but this is discussed further later. The north-
ernmost depocentre is characterized by compres-
sional features formed over a 20 km long remnant
block (Fig. 8b, c). Two other remnant blocks and
11 rafted deformed blocks have been identified
within the DBF-03. More are expected to be present
in between seismic lines. Their overall distribution
is therefore not very well constrained; however,
they are mostly observed in the central and northern
part of the slide. Remnant blocks do not show any
basal detachment, and hence represent iso-
lated stationary blocks around which MTD material
could have moved slowly. In contrast, rafted
deformed blocks might have been subjected to
faster-flowing MTD mass and have translated lon-
ger distances while being deformed at the same
time (Bull et al. 2009).

DBF-04

This MTD is 118 km long and 80 km wide in the
central part of the slide, covering almost 40%
of DBF-03 (Fig. 2). It covers an area of 5036 km2

and comprises of c. 378 km3 of sediments. The
basal shear surface is a continuous high-amplitude
reflector for most parts of the MTD (Fig. 6a, b). It
is partially discontinuous and characterized as a
medium-high amplitude reflector in the southeastern
part of the seismic section (Fig. 6b). The discontinu-
ous nature of the basal shear surface is most likely
due to the compressional features observed in these
regions (Fig. 6a). However, there are regions of the
MTD that are characterized by compressional fea-
tures lying over a continuous high-amplitude basal
shear surface. This variability in the imaging of the
basal shear surface beneath the compressional
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features could be related to the plasticity of sedi-
ments, degree of compression they have sustained
or dewatering. DBF-04 has a maximum thickness
of c. 200 ms TWT at the northern end of the slide
(Fig. 5d). Considering the thickness distribution of
the other deposits this implies that DBF-04 is sub-
stantially larger, and we are unable to image a large
part of it due to lack of data coverage in that direction.
However, a second depocentre of c. 150 ms TWThas
been identified at the southern toe of the slide
(Fig. 5d), which marks the region where DBF-04 is
buttressed against the thrust faults of DBF-03
(Fig. 7b). A strongly deformed rafted block has also
been identified at this meeting point of DBF-03 and
DBF-04. Another 10.5 km long rafted block has
been identified within this slide in the northern
area where it is found to be thickest. This block is
slightly-deformed as per the deformation styles illus-
trated by Gamboa et al. (2012). Thrust-reverse faults

and compressional folding structures are observed
only in the northern part of the slide (Fig. 6a, b).

DBF-05

This MTD is 91 km long and c. 34 km wide in the
central part of the slide, not overlying or being over-
lain by any of the other MTDs. It covers an area of
1913 km2 and comprises c. 384 km3 of sediments.
Even though it covers the smallest area out of all
the MTDs, it does not have the smallest volume
(Fig. 10). It attains a maximum thickness of c.
340 ms TWT in the northern part of the slide
(Fig. 5e). Similar to DBF-04, the thickness distribu-
tion map suggests that a large part of the DBF-05
could not be imaged due to lack of data coverage
in the north of the study area. The basal shear surface
is a medium-high amplitude semi-continuous
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reflector in the northern part of the slide, and it grad-
ually weakens in amplitude in the southern part. The
contrasting difference between the chaotic semi–
transparent facies of the MTD and the underlying
evenly stratified undeformed layers assist in the
interpretation of the basal shear surface (Fig. 3b). It
has an impact on the underlying stratified layers
and deforms them, as observed from the undulating
reflections beneath the slide (Fig. 3a). This might
have implications on the composition of sediments,
water content and the fact that the DBF-05 toe is con-
strained by the pre-existing DBF-01, DBF-02 and
DBF-03. DBF-05 is observed to truncate parts of
DBF-01, DBF-02 and DBF-03 (Fig. 3a), which
means that it postdates them. The toe of the RBSC
forms a frontal ramp over the DBF-05 in the north-
western part of the study area, which suggests
RBSC Slide C postdates DBF-05 (Fig. 3b).

Flow processes within DBF

The thickness distribution maps (Fig. 5a–e) allow us
to consider how the morphology of each deposit
affected the subsequent events. DBF-02 appears to
occupy the northern area of DBF-01, which is
where DBF-01 is the thinnest. DBF-03 appears to
have ridden over the top of both of them, possibly
because DBF-02 had smoothed out the topography
to some degree. However, the fact that DBF-03’s
depocentre is off towards the base of slope, suggests
that the DBF-02 deposit had probably raised the
northern area enough to cause DBF-03 to be con-
strained to an area closer to the slope. DBF-04 is

relatively small, relatively thin and expands over
the top of DBF-03, suggesting that it might have
been less viscous and more dilute. The depositional
area of DBF-05 that differs from all the other four
deposits suggests that DBF-01 to DBF-04 created a
substantial relief on the seafloor, so that DBF-05
could no longer overcome the topography and had
to flow around the Hebrides Terrace Seamount to
occupy the lower relief in the basin, while still erod-
ing the margins of the previousMTDs (Fig. 11). This
pattern of compensational stacking is derived from
the tendency deposits show to preferentially fill topo-
graphic lows, smoothing out topographic relief.

A group of semi-continuous stratal reflections
are identified extending over c. 15–20 km on multi-
ple seismic sections within DBF-01, DBF-03 and
DBF-04 (Figs 6a, c & 7a). The stratal reflections
are tilted (average: 5–10°) and locally deformed
(Figs 6a & 7a). The tilted, deformed stratal reflec-
tions are observed to have an offset along surfaces
(termed discontinuities) that dip more steeply than
the dip angle of the stratal reflections (Figs 6c &
7a). Further, we also observe small-scale folded
geometries at the tip of the stratal reflections, adja-
cent to the steeply dipping discontinuities (Figs 6c
& 7a). These discontinuities seem to ramp up
from the basal shear surface and steepen as they
propagate upwards (Figs 6c, 7a & b). We interpret
these discontinuity surfaces as thrust faults (Frey-
Martínez et al. 2005; Bull et al. 2009). The maxi-
mum reverse throw of the thrusts is of the order
95 ms TWT, and an average of 40 ms TWT.
Small thrusts terminate within the top of DBF-03

Fig. 10. Area and volume of the MTDs mapped in this study relating to the RBSC and DBF 01–05. Volume of
each MTD was calculated by converting TWT into metres using an average P-wave velocity of 1700 m s−1 in
less-consolidated marine sediments (Hamilton and Bachman 1982).
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and DBF-04 (Fig. 6a, b). However, the largest thrust
faults are observed to terminate at the upper boun-
dary of the DBF-01 and DBF-03 (Fig. 7a, b & c).
In general we do not observe any single thrust to
emerge above the upper boundary of DBF-03,
which is exposed to the seafloor (Fig. 7a, b). How-
ever, in the case of DBF-01, the upper tips of the
thrusts were eroded in some instances by DBF-03
(Fig. 7c). Compressional folding structures and
closely spaced reverse faults are typically observed
basinward of the thrust faults in DBF-01 and
DBF-03 (Figs 6 & 7b, c). Compressional folding
structures are mostly observed above the remnant
blocks (Fig. 8a). Usually compressional toe regions
in submarine MTDs are dominated by thrusts-and-
folds, which are classified as frontally confined
MTDs (Frey-Martínez et al. 2006; Alsop et al.
2017). However, the MTDs of the DBF extend
tens of kilometres beyond the regions dominated
by thrusts-and-folds within the MTDs, implying
that the MTDs still had mobility and were not
fully arrested. This may infer the existence of a
compressional regime within the MTD unrelated
to arrest and freezing. This might also further sug-
gest that the bulking up of the flow with the incor-
poration of extra material from the substrate
changes the flow conditions locally to a more lami-
nar, more plastic flow that causes a local velocity
reduction and causes ‘pile up’ behind it. Similar
examples have been described by Haughton et al.
(2009). This may be similar to the processes that
produce hybrid event beds, i.e. debrites encased in
turbidites, resulting from rapid entrainment of
mud-rich material from the substrate and/or rapid
deceleration and vertical top-down flow transforma-
tion from turbidity current to debris flow which
often lead to thickness increases in the deposits
(e.g. Fonnesu et al. 2018; Pierce et al. 2018).

We observe thrust faults within DBF-01 on only
one seismic line (Fig. 7c), within DBF-03 on five
seismic lines separated by c. 55 km (Figs 6a, b, 7a,
b & 8a), and within DBF-04 on only one seismic
line (Fig. 6a). Frey-Martínez et al. (2006) derived
flow directions of MTDs offshore Israel from the
strike and dip directions of the thrust splays inter-
preted on high-resolution 3D seismic data. The
actual strike and dip directions of the thrusts cannot
be traced in each of theMTDs in this study; however,
a general trend can be concluded from the contour
lines on the thickness maps (Fig. 5). The NW-
verging thrusts within DBF-01 (Fig. 7c) imply flow
direction SE–NW. The BIIS ice stream flow lines
from onshore Ireland had a similar flow direction
(Fig. 11) (Clark et al. 2012). However, the contour
lines corresponding to 200–350 ms TWT in the cen-
tral part of the MTD (Fig. 5a) indicate a flow direc-
tion of NE–SW, which is more likely the general
flow direction of the DBF complex. Thrusts in

DBF-04 are observed in one single seismic line, dip-
ping along the NE direction (Fig. 6a), which implies
flow direction NE to SW. This aligns with the trend
of contour lines corresponding to 90–150 ms TWT
(Fig. 5d). Thrusts within the northern part of
DBF-03 dip NE (Fig. 8a), which aligns with the
general flow direction of the DBF complex and the
contour lines observed. The trend of contour lines
(120–270 ms TWT) of the thickness map in the
northern part of DBF-03 implies two flow directions
from the north (sediment source), i.e. north to SE and
north to SW. However, in the southern part of
DBF-03, two sets of seismic lines provide evidence
of two different dip directions of the thrusts, i.e. SE
and NE directions (Fig. 7a, b). There might be sedi-
ment input from the BIIS in the southern part of
DBF-03, which will support the formation of NW-
verging thrusts. However, given that we are only
looking at one seismic line it might be that the thrusts
are dipping in a direction anywhere within an arc
between SE and NE, which is supported by the thick-
ness map contour lines corresponding to 90–330 ms
TWT in the southern part of DBF-03 (Fig. 5c). More-
over, if we consider that sediments of the MTD are
flowing from SE to NW, then we do not expect to
observe the buttressed toe of the MTD facing SE
direction (Fig. 9b). Possible flow lines derived from
a combined study of thrusts and thickness map con-
tour lines are illustrated in Figures 5 and 11.

Susceptibility and triggering factors of MTDs

Various pre-conditioning factors such as sedimenta-
tion patterns, climatic history and tectonic events
may influence a slope’s susceptibility to failure,
with slope failure events triggered by short-lived
mechanisms such as earthquakes or destabilization
of gas hydrates (Locat and Lee 2002; Masson et al.
2006).

Owen et al. (2007) observed a latitudinal trend
in the occurrence of Late Pleistocene MTDs. In
high-latitudes (. 38°N), deglaciations increase sedi-
ment supply and seismicity related to isostatic uplift,
hence increasing the likelihood of continental slope
failures. The Pleistocene erosional glacial cycles
associated with significant increase in sedimentation,
along with the combined effect of continental uplift
(Stoker et al. 2001), led to the development of
MTDs along the northwestern European continental
margin, including the DBF (Canals et al. 2004; Sul-
tan et al. 2004b; Evans et al. 2005). The sediments
were directly supplied from the BFIS and ice streams
in Donegal Bay reflecting changes in ice sheet
dynamics (Clark et al. 2012). In the North Sea
Trough Mouth Fan, large-scale voluminous glacio-
genic debrites coincide with and reflect periods
when the ice sheet was at its maximum extent
(King et al. 1998). We propose that the BFIS
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oscillated between shelf edge and mid-shelf at least
five times during the Pleistocene glaciations and
that in those five times, it remained close enough
to the shelf edge to deliver significant volumes of
sediment that were then reworked downslope in the
form of the five MTDs (DBF 01–05) documented
in this study. This would suggest that the youngest
of the events, DBF-05 corresponds to the Last Gla-
cial Maximum (LGM), which is probably the last
time the BFIS was at its maximum extent. This is
corroborated by the fact that Slide C of RBSC
ramps up over DBF-05 (Fig. 3b), and that Slide C
of RBSC has been relatively accurately dated to be
21 ka (Georgiopoulou et al. 2019). It is difficult to
assess the ages of the older DBF 01–04 events.
They lie above the C10 unconformity, but we have
demonstrated that there has been substantial erosion
throughout the history of the DBF. Hence any infer-
ence about their ages is speculative without addi-
tional chronological data but can be attempted by
correlation with what (little) is known about the
BIIS dynamics in the Pleistocene. Most published
records about the BIIS go back only to the LGM
and some to Marine Isotope Stage (MIS) 5. Most
of these records present counts of ice-rafted debris
(IRD) over the last glacial periods. Peaks in IRD rep-
resent time of ice wasting rather than times of ice
sheet maxima and maximum ice extent can be
inferred to be from the time just preceding the
peaks to the time of the largest peaks in the records
(Scourse et al. 2009). Based on these published
records, DBF-04 and DBF-05 could represent the
latest ice advances on the shelf during the last glacial
period, likely at some stage between 70 ka and 26 ka
(Peck et al. 2007; Scourse et al. 2009; Hibbert et al.
2010). Another significant IRD peak in MIS6
(175–140 ka) might be related to the deposition of
DBF-03 (Hibbert et al. 2010). Recent reconstruc-
tions suggest extensive glaciation during this time,
known as the Penultimate Glacial Maximum
(PGM), with a global sea-level lower than during
the LGM (Rohling et al. 2017). Before the PGM,
additional shelf-edge glaciations of Scottish ice
are inferred during MIS 8 (300–243 ka) and MIS
10 (374–337 ka) with a first shelf- edge glaciation
duringMIS 12 (c. 0.45Ma) based on a major seismic
unconformity which is traced across the Hebrides
shelf (Holmes et al. 2003; Sejrup et al. 2005). The
resolution of the borehole records precludes unam-
biguous delineation between the age of IRD peaks
between MIS 12 and MIS 8 (Sejrup et al. 2005),
but it seems likely that the deposition of DBF-02
and DBF-01 took place as a result of these early
episodes of glacial advances onto the shelf.

Indirect gas hydrate indicators as well as evi-
dence of shallow gas and gas chimneys (fluid escape
features) along the eastern slope of the Rockall
Trough have been described recently (Minshull

et al. 2020, fig. 9). Hydrates act as a cement between
sediment grains and helps in binding them together
(Clennell et al. 1999), but natural gas hydrates are
very sensitive to changes in sea-bottom temperature
and the pressure exerted by the water column above
the seafloor (Ruppel and Kessler 2017). Any change
of temperature and pressure could lead to the disso-
ciation of gas hydrates which reduces the cohesive
strength between sediment grains, and can lead to
slope failures (Sultan et al. 2004a). Sedimentation
pulses and increased sedimentation rates along glaci-
ated margins can also trigger widespread gas hydrate
dissociation (Karstens et al. 2018). The Gas Hydrate
Stability Zone (GHSZ) thins down to 0–10 m along
the eastern slope of the Rockall Trough (Minshull
et al. 2020). It is possible that either fluid seepage
or dissociation of hydrates along the slope, where
the GHSZ is very sensitive to changes in pressure
and temperature, could have triggered the MTDs in
the Rockall Trough.

Conclusion

Interpretation of new high-resolution 2D multichan-
nel seismic data in the northeastern part of the Rock-
all Trough of the Irish sector has produced a number
of conclusions.

(1) Five episodes of mega-scale mass move-
ments were identified in the Rockall Trough
of the Irish sector, which are part of the
DBF complex.

(2) The largest of the events, DBF-01, comprises
c. 1907 km3 of sediments, is the largest subma-
rine MTD described in the NW British conti-
nental margin. A total volume of c. 5000 km3

of sediments was mobilized by these five
MTDs.

(3) Each of the MTDs may represent a time of
BIIS maximum expansion. This would mean
the BIIS reached maximum extent at least
five times during the Pleistocene glaciations,
and DBF-05 represents the LGM.

(4) TheMTDs attained maximum thickness due to
local deceleration and formation of fold-and-
thrust zones several tens of kilometres before
the MTD toe region.

(5) The slides show a compensational stacking
pattern as the deposition of each MTD modi-
fies the topography of the contemporaneous
seafloor therefore influencing the position
and transport direction of succeeding MTDs.

This study is an example of how improved under-
standing of the transport mechanisms and kinematic
indicators of MTDs can be obtained from high-
resolution 2D seismic data on continental margins.
It also highlights that the investigation of MTDs
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can improve understanding of long-term glacial
histories.
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