
This work is supported by the VCRS Research Student Award from Ulster University.

A new metric for assessing the performance of 2D Lidar

SLAMs

Bingxin Zi, Haiying Wang, Jose Santos and Huiru Zheng

 School of Computing, Ulster University, Belfast, BT37 0QB, UK

hy.wang@ulster.ac.uk

Abstract. Simultaneous Localisation and Mapping (SLAM) is a widely studied

topic in recent years and has a wide potential in the field of unmanned driving

and robotics. Over the past decade, a number of SLAM algorithms have been

developed, each exhibiting unique performance in their applications. This paper

presents a comparative study of the performance of three well-known Light De-

tection and Ranging (LiDAR)-based SLAM algorithms, i.e. Gmapping, Cartog-

rapher and Hector, with an emphasis on the 2D maps constructed by each algo-

rithm. In order to deal with incomplete maps constructed, a new evaluation met-

ric was proposed. To reduce the human error during scene construction and

equipment calibration, all experiments were carried out in the 2D simulation

available within the Robot Operating system (ROS). Three well-designed maps

with different sizes and complexities were introduced to investigate the features

of three SLAM algorithms. Besides, to reduce the impact of randomness, each

dataset was assessed 10 times to obtain the mean value and the standard devia-

tion. The results show that, in comparison to traditional metrics such as a metric

of average distance to nearest neighbour (ADNN), the proposed measurement

can clearly reflect both the quality and completeness of maps built by SLAM

algorithms.

Keywords: SLAM, assessment metric, 2D LiDAR.

1 Introduction

Simultaneous Localisation and Mapping (SLAM) is one of the most widely studied

topics across multiple subjects including robotics, computer vision and machine learn-

ing. In the field of robotics, it gives robots the ability to explore an unknown envi-

ronment by constructing a map [1] and understand the environment by processing the

information from visual sensors [2]. SLAM has been applied in unmanned vehicles,

autonomous driving, augmented reality (AR) among other [2]. According to different

usage environment, SLAM may apply different algorithms and sensors. With the

development of technology, machine learning techniques can also be used to help

SLAM process the sensor information [3][4].

SLAM techniques can be divided into two main types, filter-based and graph-

based. The filter-based SLAM has become the mainstream over the past decades to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/390094064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

achieve localisation and mapping. The algorithm examples used in SLAM applica-

tions include MonoSLAM [5] and Gmapping [6]. MonoSLAM uses an Extended

Kalman Filter (EKF) framework to realise the robot’s status estimation and mapping.

The EKF is a nonlinear extension of the Kalman filter which contains a status equa-

tion and an observation equation. The status equation is used for predicting the ro-

bot’s current status based on the status at the last timestamp, while the observation

equation is used for correcting the prediction by taking the sensor observation into

account. The Gmapping algorithm applies a particle filter, in which each particle rep-

resents a potential trajectory of the robot, to handle the localisation and mapping.

Each particle is associated with a weight and stands for a possible status of the robot.

The final estimation is determined by the weighted mean of all particles. In recent

years, graph-based SLAM has received much attention [7-10]. In this system, there

are two main processes: frontend and backend. The frontend processes sensor data

and calculates the dynamics of the robot while the backend receives the dynamics and

generates a fusion result. At the same time, the backend is also responsible for the

optimisation of the whole system, which is a procedure that the filter-based SLAM

does not have. The Cartographer algorithm [10] is the classic implementation of

graph-based SLAM approaches.

Each of these algorithms has its advantages and limitations. The main problem

arising from their use in robotics is how to evaluate their performance. Attentions

have been traditionally focused on the assessment of the accuracy of the generated

maps and trajectories only. Examples include the use of a metric like average distance

to the nearest neighbour (ADNN)[11-14], or evaluating the trajectory in a probabilis-

tic approach[15]. At the same time, a ground truth independent evaluation was intro-

duced in [16], which counts the features of estimated map to independently assess the

quality of map.

This study proposes a new metric which would evaluate the SLAM’s map results

in terms of both the accuracy and the structural completion of the maps derived. Three

well-known SLAM systems (Gmapping, Cartographer and Hector) were studied with

an emphasis on the analysis of the 2D maps constructed by each algorithm.

The remainder of this paper is structured as follows: the related work is presented

in Section 2, followed by a description of SLAM algorithms in Section 3. In Section

4, the experiment environment is introduced. Evaluation metrics used in the study are

described in Section 5 and experiment results are analysed in Section 6. The paper

concludes with a summary of conclusion and future work discussion.

2 Related works

It could be challenging to analyse and evaluate the performance of various SLAM

systems because they have different sensor sources, algorithm basements and code

frames. For example, Gmapping utilises light detecting and ranging (LiDAR) and an

3

odometer to calculate the journey of the robot and to construct the map. To apply

SLAM to aircraft navigation, instead of using an odometer, Hector [17] combines 2D

LiDAR with an inertial measurement unit (IMU). The Cartographer algorithm re-

leased in 2016 by Google [10] combines data from various sensors e.g. LiDAR, IMU,

and odometer. In order to provide a uniform platform for implementing the multiple

types of robot algorithms, the Robot Operating System (ROS) framework [18] was

introduced in 2007. It defines a uniform standard of interactions among different ro-

bot subsystems. Under the uniformed framework, the different SLAM systems em-

ploy the common data inputs, data flows and outputs standard. This makes it possible

to compare the performance of different SLAM algorithms under the same pattern.

This paper focuses on evaluating the performance of the LiDAR-based 2D SLAMs

including Hector, Gmapping and Cartographer implemented in ROS.

Normally, the evaluation of SLAM results performance can be carried on two as-

pects: the trajectory and the map quality. The trajectory is often evaluated in the vi-

sion SLAM (VSLAM) because the map exists in multiple forms (sparse map, dense

map, semi-dense map). In a VSLAM system, it is hard to directly compare the quality

of a map derived from different systems, for example, Buyval et al. [19] compared the

ability of 4 different VSLAM systems to obtain features and the coverage of point

clouds but did not perform any quantitative analysis. On the aspect of map compari-

son, Xu et al.[20] projected the feature points detected by the camera onto the ground

to fake the LiDAR laser scans. Then they generated the occupied grid map by using

the pseudo laser scans. Therefore, they were able to compare different type of

VSLAM maps by projecting the points onto ground. However, the noises points in the

space may also be projected onto the ground, thereby forming errors. Some extra

procedures are required to provide ground truth data. Yagfarov et al.[11] introduced

the high-precision laser tracker FARO to manually construct a ground truth map.

They used FARO to get the 3D scans of the experiment room. Then they extracted the

intersection lines between the floor plane and the vertical plane. Those lines were

viewed as the 2D projections of the experiment room. Due to the lack of wall width

information, they used some OpenCV functions to thin the SLAM estimated map’s

wall width to one grid. However, lacking wall width information may introduce er-

rors. Sturm et al.[12] introduced an extra high-frequency motion capture system to

provide ground truth. Filipenko and Afanasyev[13] used a much simpler way to get

the ground-truth. They laid some threads on the floor. The robot was manually driven

to follow the treads to obtain the estimations. However, there is no guarantee that the

actual robot trajectory will perfectly fit these threads, especially in the turning areas.

So they only used the straight sections of the threads for comparison. Since they

found the Hector’s result was closest to the ground truth, they used Hector’s result as

reference for the other systems. It should be mentioned that they did not get a valid

Gmapping result. Santos et al. [14]implemented the evaluation in both the simulation

environment STAGE and the real physical world. They evaluated Hector, Gmapping,

KartoSLAM, CoreSLAM and the LagoSLAM. Their simulation experiments show

that “Gmapping algorithm presents exceptional results” while the “KartoSLAM was

the best performing technique in real word”. The Cartographer algorithm was not

4

included in their study. Bayer et al.[21] pointed out that the SLAM ground truth is

hard to construct. Anton et al. [16] pointed out ground truth data are not always fetch-

able even for a lot of open datasets. Instead of comparing with ground truth, they

proposed some novel metrics: the proportion of occupied and free cell, the number of

corners and the number of enclosed areas for independently evaluating the map quali-

ty without acquiring the ground truth. Besides, Le et al.[22] introduced a structural

metric of Structure Similarity Index (SSIM) [23] to evaluate the map quality of differ-

ent SLAM systems in the indoor environment. But the SSIM result cannot provide an

intuitive feeling of the structure completion.

Since the accuracy of a trajectory relies on the accuracy of maps, this study will fo-

cus on the comparison of map quality. Moreover, because it is hard to obtain ground

truth information without introducing some extra interferences, such as the calibration

of a reference equipment and setting artificial markers, all the experiments in this

study have been conducted in 2D simulation available in ROS.

3 2D LiDAR SLAM Algorithms

In this research, three SLAM algorithms: Gmapping, Cartographer and Hector were

investigated. They utilise different algorithm frames and different sensors, as summa-

rised below:

3.1 Gmapping

Gmapping [6] is one of the most typical filter-based SLAM algorithms. It is based on

the Rao-Blackwellized Particle Filter (RBPF). In RBPF, the problem of estimating a

robot pose and map is divided into two steps. In detail, RBPF takes the robot pose

estimating problem as an incremental estimation problem. Based on the robot pose on

the last frame and the robot dynamics on the current frame, the current robot pose can

be predicted. Then the mapping can be solved by providing the current pose and ob-

servations. In naïve particle filter system [24], each particle stands for one possible

status of the robot and one possible representation of the map. All particles contribute

to a weighted mean estimation. To reach a closer representation of the true possibility

distribution, the particle filter requires a large number of particles to expand the sam-

pling range. But after several propagation iterations, the particles’ weights concentrate

on a few specific particles, which makes the other majority of particles barely con-

tribute to the mean result. In Gmapping, a novel way was used to establish a more

accurate proposal distribution by taking the laser observation into account. Further-

more, an adaptive metric was applied to guarantee that the resampling process was

executed only when the weights’ concentration rate was higher than a threshold.

These measures allow the Gmapping algorithm to use fewer particles than the naïve

system which in turn makes it works in real-time.

5

3.2 Hector

Hector [17] is a very straightforward algorithm that estimates the robot status by

aligning the laser scan and map. Every new scan is transformed into the discrete oc-

cupied grid cell by applying the Bresenham algorithm [25]. After that, the approxi-

mate optimal transformation between the current scan and existing map is solved by

applying a Gaussian-Newtown optimization. Hector accumulates each scan to form a

map and to avoid falling into local minima, a multiple-resolution map principle is

applied. Besides, Hector is designed to be applied in 3D spaces, so an IMU is

equipped instead of the odometer.

3.3 Cartographer

Cartographer [10] is one of the most cited open-source graph-based SLAM algorithms

in recent years. The main contribution of the Cartographer algorithm is the realization

of the real-time loop-closure in a LiDAR SLAM system. It proposes the principle of

submap that consists of recent scans. Once a new scan is acquired, the system will

look up recent sub-maps to find a reasonable matching between the scan and a sub-

map. The scan will be inserted in the submap without considering the drift during that

short time. Presently, a loop closure detection will be carried out along all submaps to

minimise the long-term drift. Besides, Cartographer introduces 3 types of the branch

and bound algorithms to speed up the loop closure searching process.

4 Experiment environment set up

The experiments were carried out on the Ubuntu 16.04 distribution with ROS kinetic.

The ROS platform provides related ROS packages to apply all the three algorithms

mentioned above. In ROS, data transmission is achieved by subscribing to and pub-

lishing to certain topics. The topic defines the data structure of interactions. All the

three algorithms are edited to subscribe to the same topic of “/laser_scan” to receive

the laser scans. Besides, all three algorithms subscribe to the same topic of “/tf”. The

“/tf” is an essential ROS topic which provides the transformations among each coor-

dinate reference of the whole system. It should also be pointed out that the Gmapping

subscribes the “/tf” topic to get the odometer information. While the Hector and Car-

tographer subscribe to the “/imu” topic to utilize IMU information instead.

Different from Santos et al.’s method [14], the Gazebo_ROS software, instead of

Stage_ROS software, was used for creating virtual environments because the

Stage_ROS software does not provide the IMU simulation [26]. The algorithms were

tested in three types of maps – a rectangle map, a swirl map and a corridor map. For

the former two types, each type has three sizes respectively: 3m x 2m, 6m x 4m, 9m x

6m and 3m x 3m, 5m x 5m, 7m x 7m (in meter). The size of the corridor map is 2m x

10 m. Fig. 1 shows the image of the virtual environment and the initial position of the

robot.

6

The comparison analysis was carried out using Matlab and for mathematical con-

venience, each map was transformed to a dot map. The dot map keeps the same reso-

lution – 5cm/pixel as the SLAM algorithms’ setting. Therefore, in our experiment, an

error of one pixel is equal to an error of 5 cm.

The robot used for simulation is the Turltlebot3 Burger [27] which has the maxi-

mum linear speed of 0.22m/s, and the maximum rotation speed of 2.84 rad/s. In the

simulation, the robot’s forward speed is gradually increased to the peak, but no rotat-

ing speed exceeds 0.7 rad/s. The ROS bag command is used for recording all topics’

data during the walking. Each algorithm processes these records separately. The map

parameters are 0.65 for occupied, 0.2 for free.

It should be noted that, due to the stochastic behaviour of the algorithms, the output

from Gmapping and Cartographer could be different even with the same inputs.

Therefore, unlike other studies [11][13][14], to mitigate the randomness impact, each

algorithm was tested with the same dataset 10 times in this study. The standard devia-

tion of each metric was then calculated along with their mean values.

Fig. 1. The 7 simulation environments used in the study

7

5 Metric for evaluating

In this paper, two metrics were applied to evaluating the SLAM map quality. The

ADNN metric focus on the accuracy of map while the grid portion metric we pro-

posed assesses both the completion and quality of the estimated map.

5.1 Average distance to the nearest neighbour (ADDN)

ADNN is estimated based on the Iterative Close Point (ICP) algorithm which was

used to align a SLAM map with the ground truth [11][14] and the K-Nearest Neigh-

bours (KNN) search used for finding the correspondence between the ground truth

and the estimated map. The ICP and the KNN iteratively run until the result converg-

es. The metric is computed as the average distance from each SLAM map point to the

nearest ground truth map point as defined below:

 ADNN =
1

n
∑ (Pest

𝑖 − Pgrd
𝑖)n

i=1 (1)

Where n is the total point number of estimated grids, Pest
𝑖 is the position of the ith es-

timated grid and Pgrd
𝑖 is the position of the ith ground truth grid. To avoid falling into

local minima, we manually selected the 4 corner points and their average coordinates

as 5 initial parameters for the ICP algorithm.

However, the ADNN metric does not perform well when dealing with incomplete

estimated maps. For example, if a SLAM algorithm outputs an incomplete map but

every single grid of the map is perfectly located, the ADNN is set to zero which may

provide a misleading assessment.

5.2 Grid Portion Metric

Inspired by Anton et al. [16] in which three metrics of “the portion of occupied" and

free cell”, “the number of corners” and “the number enclosed” are were proposed to

evaluate a SLAM map from the perspective of the grid, we proposed a new metric to

evaluate the map quality in terms of grid portion. Specifically, for each ground truth

map, the number of occupied grids is constant. For any occupied grids, there are

three possible results when aligning a SLAM map with the ground truth: a ground

truth occupied grid was correctly identified as occupied in the SLAM map (True Posi-

tive (TP)); a ground truth occupied grid was wrongly regarded as free in the SLAM

map (False Negative (FN)); a ground truth free grid was wrongly regarded as occu-

pied in the SLAM map (False Positive (FP)). With this definition, the map quality can

be evaluated in terms of sensitivity and precisions as defined below:

 Precision =
TP

(TP+FP)
, Sensitivity =

TP

(TP+FN)
 (2)

The range of these values goes from 0 to 1. The precision value describes the quality

of the estimated map. If every occupied grid in the estimated map is correct, the preci-

8

sion value is set to 1. While 0 means every occupied grid in the estimated is wrong.

Besides, this metric can also indicate the completeness of the map, where sensitivity

value 1 means the estimated map’s structural matches the ground truth map in 100%.

And 0 means their structures are totally different. At the same time, this metric can

provide an intuitive feeling of how correct the estimated map is by drawing each

TP/FP/FN grids.

The metric of precision and sensitivity were widely applied to evaluating the per-

formance in other study areas such as supervised machine learning algorithms. How-

ever, for the best of our knowledge, we are the first to utilise these metrics to evaluate

the completion and the quality of the estimated map of SLAM.

6 Experiment Results and Discussion

We first used ADNN to assess the quality of maps constructed by the three algorithms

as depicted in Table 1. As expected, the deviations between estimated maps and

ground truth represented by ADNN tend to increase as the map’s size increases for all

three SLAM algorithms. As shown in Table 1, 5/7 of Cartographer’s mean errors are

the lowest among the three algorithms. Especially when applied to a large map, Car-

tographer provides fairly low errors of 0.57 and 1.02 in comparison to the errors of

using the Hector and Gmapping algorithms. Hector can produce competitive results in

two medium scenarios. It also has low errors which are close to Cartographer’s result

in small scenarios. However, the performance of the Hector algorithm deteriorates

significantly when it is applied to large area scenarios. This is because Hector does

not utilise the odometer which can provide precise linear dynamics. The error would

accumulate inevitably over time. Unexpectedly, Gmapping always has larger mean

errors then other two algorithms. It only achieves a better result than the Hector algo-

rithm when applied to large scenarios of Rectangle_L, Swirl_L and Corridor.

The similar observation of “Hector’s performance declines in large scenario” can

be found when comparing the results obtained with those presented in [14], where

Hector and Gmapping’s error were 0.46 and 0.42 (0.01meter/pixel) respectively, in a

Table 1. The ADNN mean and standard deviation. the unit is pixel/grid

Rectangle_S Rectangle_M Rectagnle_L Swirl_S Swirl_M Swirl_L Corridor

Gmapping mean 0.44 0.77 3.82 1.28 1.83 2.81 1.57

std 0.11 0.25 0.94 0.57 0.45 0.54 0.17

Cartographer mean 0.07 0.28 0.57 0.11 0.50 1.02 0.83

std 0.03 0.20 0.15 0.01 0.07 0.05 0.12

Hector mean 0.14 0.16 8.91 0.13 0.16 5.16 2.09

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9

about 4m*4m map. But Hector’s error increased to 7.46 in a 12m*11m map while

Gmapping’s error only increased to 5.37. In the study [11], Cartographer is also re-

ported having the lowest error. The error rate of the Gmapping algorithm reached the

2nd place. And Hector was the worst one. Their experiment scenario size was unclear.

They tested four motion patterns (fast/slow move, sharp/smooth rotation). Hector’s

errors go from 20 cm to 50 cm, while all Cartographer’s errors and 3/4 Gmapping’s

errors were less than 10 cm. But it should be noted that in [13], a totally different

result was obtained. In that study, Hector produced the trajectory that closest to the

ground truth. Then, they used Hector trajectory as reference but did not provide the

error of it. Their Cartographer result has an error of 2.4 cm compared with Hector

trajectory. Besides, they did not acquire a valid Gmapping map.

In terms of the standard deviation, Hector achieves the lowest standard deviation.

When applying hector multiple times, the same map was obtained. This is due to the

nature of the Hector algorithm, which relies on scan matching. It stitches together the

aligned frames between consecutive scans. It uses Gaussian-Newtown optimiza-

tion[17] which will always give the constant result as long as the input is the same.

Gmapping, on the other hand, produces the largest variance in most of the cases,

which may be attributed to the randomness feature of the particle filter employed by

the algorithm.

(a) Gmapping map

(b) Cartographer map

(c) Hector map

Fig. 2. Visualisation of SLAM results on the corridor scenario based on the proposed met-

ric. Green grids represent TP estimation, red grids denote FP estimation and yellow grids

represent FN estimation.

10

Evaluation based on ADNN does not well describe the structure completion of a

map. For example, when applied to the corridor scenario. The ADNN errors of

Gmapping, Cartographer and Hector are 1.57, 0.83 and 2.09 respectively. These num-

bers only tell that the Gmapping and the Hector have less accuracy than Cartographer

but it does not reflect the fact that the estimated map’s size is only half of the ground

truth’s size as illustrated in Fig. 2, which was based on the visualisation of the pro-

posed grid portion metric. Together with precision and sensitivity estimation shown in

Table 2, the assessment based on grid portion has a great potential to provide a com-

plete picture of the quality of a SLAM map. On the corridor scenario, the mean preci-

sion, mean sensitivity of the Gmapping are 0.61, 0.50. The 0.5 sensitivity tells that the

Gmapping map only represents half of the ground truth map. And the 0.61 precision

tells that about 61% of the estimated grids are correct. These data on the Hector map

are 0.72, 0.62 respectively, as the Hector map is slightly longer than the Gmapping

map and it has less FP grids. Cartographer reaches 0.92 and 0.90, when using this

metric highlighted the Cartographer map is the most complete one among those three

maps (Fig. 2). It is clear that the precision value intuitively reflects the correction of

the map and the sensitivity value reflects the completion of the structure. Therefore,

the grid portion metric along with the visualisation as illustrated in Fig. 2 is more

effective in representing the quality of a map. In this view, the Hector provides sec-

ond high precision in the small scenarios i.e Rectangle_S, Swirl_S and highest preci-

sion in Rectangle_M and Swirl_M. But its precision and sensitivity dramatically de-

crease in the large scenarios. Similar to the conclusion derived from ADNN, the Car-

tographer can always have relatively high precision and sensitivity in all scenarios

though it has a larger variance when applied to the medium and large scenarios, which

deserves further investigation.

Table 2. The mean and standard deviation of grid portion metric

Rectangle_S Rectangle_M Rectagnle_L Swirl_S Swirl_M Swirl_L Corridor

Gmapping Precision Mean 0.67 0.44 0.09 0.39 0.20 0.13 0.61

std 0.09 0.07 0.08 0.15 0.07 0.04 0.04

Sensitivity
Mean 0.89 0.61 0.12 0.46 0.22 0.12 0.50

std 0.09 0.07 0.08 0.15 0.07 0.04 0.04

Cartographer Precision Mean 0.96 0.78 0.52 0.92 0.63 0.44 0.92

std 0.02 0.17 0.15 0.01 0.06 0.04 0.00

Sensitivity
Mean 0.99 0.79 0.61 0.98 0.69 0.46 0.90

std 0.02 0.17 0.15 0.01 0.06 0.04 0.00

Hector Precision Mean 0.88 0.86 0.23 0.89 0.86 0.17 0.72

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensitivity
Mean 1.00 1.00 0.34 1.00 1.00 0.19 0.62

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11

The last column of Table 2. shows that Cartographer (with highest precision and

sensitivity) is robust to the geometry of corridor environment. Both Gmapping and

Hector do not perform well in the corridor environment which has fewer features. For

Gmapping, the proposed particles are distributed along the direction of the corridor.

However, the observations obtained in the direction of the corridor are still highly

similar, which makes it difficult to estimate the length of a trajectory. Hector uses the

Gauss-Newton method to solve scan matching between two frames. However, similar

structural information obtained in a featureless environment clearly has a big impact

on its performance.

Overall, Hector SLAM algorithm is the 2nd best on small scenarios and the best in

medium scenarios with both ADNN metric and gird portion metric. However, its

performance will significantly drop in larger scenarios. While Cartographer reached

the 1st place in small scenarios and the 2ed place in medium scenarios with both

ADNN metric and gird portion metric. The important thing is, it has the lowest

ADNN error and highest precision and sensitivity in every large scenario. Finally,

Gmapping is worse than the other two algorithms in small and medium scenes and

reaches second place in large scenarios also it has the greatest instability in most cas-

es.

7 Conclusion and future work

In this work, a new grid portion metric was proposed and introduced for the assess-

ment of the performance of SLAM algorithms. Three representative 2D LiDAR

SLAMs were studied. Results show that, in comparison to traditional metrics such as

ADNN, the proposed grid portion-based assessment has great potential to provide a

more complete picture of the quality of SLAM maps. By visualising the SLAM re-

sults on a map, a better understanding of the map can be achieved. The numerical

value of sensitivity and precision representing the proportion of FP and FN results

respectively can be used to indicate the correctness and completeness of a SLAM

map. In order to deal with the potential instability of the SLAM results, the mean and

standard deviation of each metric were calculated which provides additional insight to

the nature of each SLAM algorithm.

It is worth noting that the evaluation was based on simulation environment provid-

ed by ROS. Assessment to be carried out in a real physical world would be part of our

future work. In addition, the research would be expanded to cover 3D LiDAR SLAM

and vision SLAM. Besides, because each SLAM algorithm, under different scenarios,

can be optimised by adjusting the certain parameters. Dynamic determination of op-

timal parameters represents another direction of our research.

References

1. Yuan, W., Li, Z., Su, C.-Y.: RGB-D sensor-based visual SLAM for localization and nav-

igation of indoor mobile robot. 2016 International Conference on Advanced Robotics and

12

Mechatronics (ICARM). pp. 82–87 (2016).

2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leon-

ard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the ro-

bust-perception age. IEEE Transactions on robotics. 32, 1309–1332 (2016).

3. Zhang, F., Guan, C., Fang, J., Bai, S., Yang, R., Torr, P., Prisacariu, V.: Instance seg-

mentation of lidar point clouds. ICRA, Cited by. 4, (2020).

4. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with re-

current crf for real-time road-object segmentation from 3d lidar point cloud. 2018 IEEE In-

ternational Conference on Robotics and Automation (ICRA). pp. 1887–1893 (2018).

5. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single cam-

era SLAM. IEEE Transactions on Pattern Analysis \& Machine Intelligence. 1052–1067

(2007).

6. Grisettiyz, G., Stachniss, C., Burgard, W.: Improving grid-based slam with rao-

blackwellized particle filters by adaptive proposals and selective resampling. Proceedings of

the 2005 IEEE international conference on robotics and automation. pp. 2432–2437 (2005).

7. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate mo-

nocular SLAM system. IEEE transactions on robotics. 31, 1147–1163 (2015).

8. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, ste-

reo, and rgb-d cameras. IEEE Transactions on Robotics. 33, 1255–1262 (2017).

9. Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., Vincent, R.: Effi-

cient sparse pose adjustment for 2D mapping. 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems. pp. 22–29 (2010).

10. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR

SLAM. 2016 IEEE International Conference on Robotics and Automation (ICRA). pp.

1271–1278 (2016).

11. Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of lidar-based 2d slam algo-

rithms using precise ground truth. 2018 15th International Conference on Control, Automa-

tion, Robotics and Vision (ICARCV). pp. 1979–1983 (2018).

12. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the

evaluation of RGB-D SLAM systems. 2012 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems. pp. 573–580 (2012).

13. Filipenko, M., Afanasyev, I.: Comparison of various slam systems for mobile robot in an

indoor environment. 2018 International Conference on Intelligent Systems (IS). pp. 400–407

(2018).

14. Santos, J.M., Portugal, D., Rocha, R.P.: An evaluation of 2D SLAM techniques availa-

ble in robot operating system. 2013 IEEE International Symposium on Safety, Security, and

13

Rescue Robotics (SSRR). pp. 1–6 (2013).

15. Zhang, Z., Scaramuzza, D.: Rethinking Trajectory Evaluation for SLAM: a Probabilistic,

Continuous-Time Approach. arXiv preprint arXiv:1906.03996. (2019).

16. Filatov, A., Filatov, A., Krinkin, K., Chen, B., Molodan, D.: 2d slam quality evaluation

methods. 2017 21st Conference of Open Innovations Association (FRUCT). pp. 120–126

(2017).

17. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam

system with full 3d motion estimation. 2011 IEEE International Symposium on Safety, Se-

curity, and Rescue Robotics. pp. 155–160 (2011).

18. About ROS, https://www.ros.org/about-ros/.

19. Buyval, A., Afanasyev, I., Magid, E.: Comparative analysis of ROS-based monocular

SLAM methods for indoor navigation. Ninth International Conference on Machine Vision

(ICMV 2016). p. 103411K (2017).

20. Xu, L., Feng, C., Kamat, V.R., Menassa, C.C.: An Occupancy Grid Mapping enhanced

visual SLAM for real-time locating applications in indoor GPS-denied environments. Au-

tomation in Construction. 104, 230–245 (2019).

21. Bayer, J., Cizek, P., Faigl, J.: On construction of a reliable ground truth for evaluation of

visual slam algorithms. Acta Polytechnica CTU Proceedings. 6, 1–5 (2016).

22. Le, X.S., Fabresse, L., Bouraqadi, N., Lozenguez, G.: Evaluation of out-of-the-box ros

2d slams for autonomous exploration of unknown indoor environments. International Con-

ference on Intelligent Robotics and Applications. pp. 283–296 (2018).

23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from

error visibility to structural similarity. IEEE transactions on image processing. 13, 600–612

(2004).

24. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., others: FastSLAM: A factored so-

lution to the simultaneous localization and mapping problem. Proceedings of the National

conference on Artificial Intelligence. pp. 593–598 (2002).

25. Black, P.E.: Bresenham’s algorithm, https://www.nist.gov/dads/HTML/bresenham.html.

26. stage_ros summary, http://wiki.ros.org/stage_ros.

27. TurtleBot3 - Specifications,

http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/.

