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Abstract. Simultaneous Localisation and Mapping (SLAM) is a widely studied 

topic in recent years and has a wide potential in the field of unmanned driving 

and robotics. Over the past decade, a number of SLAM algorithms have been 

developed, each exhibiting unique performance in their applications. This paper 

presents a comparative study of the performance of three well-known Light De-

tection and Ranging (LiDAR)-based SLAM algorithms, i.e. Gmapping, Cartog-

rapher and Hector, with an emphasis on the 2D maps constructed by each algo-

rithm. In order to deal with incomplete maps constructed, a new evaluation met-

ric was proposed. To reduce the human error during scene construction and 

equipment calibration, all experiments were carried out in the 2D simulation 

available within the Robot Operating system (ROS). Three well-designed maps 

with different sizes and complexities were introduced to investigate the features 

of three SLAM algorithms. Besides, to reduce the impact of randomness, each 

dataset was assessed 10 times to obtain the mean value and the standard devia-

tion. The results show that, in comparison to traditional metrics such as a metric 

of average distance to nearest neighbour (ADNN), the proposed measurement 

can clearly reflect both the quality and completeness of maps built by SLAM 

algorithms. 
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1 Introduction 

Simultaneous Localisation and Mapping (SLAM) is one of the most widely studied 

topics across multiple subjects including robotics, computer vision and machine learn-

ing. In the field of robotics, it gives robots the ability to explore an unknown envi-

ronment by constructing a map [1] and understand the environment by processing the 

information from visual sensors [2]. SLAM has been applied in unmanned vehicles, 

autonomous driving, augmented reality (AR) among other [2]. According to different 

usage environment, SLAM may apply different algorithms and sensors. With the 

development of technology, machine learning techniques can also be used to help 

SLAM process the sensor information [3][4].  

 

SLAM techniques can be divided into two main types, filter-based and graph-

based. The filter-based SLAM has become the mainstream over the past decades to 
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achieve localisation and mapping. The algorithm examples used in SLAM applica-

tions include MonoSLAM [5] and Gmapping [6]. MonoSLAM uses an Extended 

Kalman Filter (EKF) framework to realise the robot’s status estimation and mapping. 

The EKF is a nonlinear extension of the Kalman filter which contains a status equa-

tion and an observation equation. The status equation is used for predicting the ro-

bot’s current status based on the status at the last timestamp, while the observation 

equation is used for correcting the prediction by taking the sensor observation into 

account. The Gmapping algorithm applies a particle filter, in which each particle rep-

resents a potential trajectory of the robot, to handle the localisation and mapping. 

Each particle is associated with a weight and stands for a possible status of the robot. 

The final estimation is determined by the weighted mean of all particles. In recent 

years, graph-based SLAM has received much attention [7-10]. In this system, there 

are two main processes: frontend and backend. The frontend processes sensor data 

and calculates the dynamics of the robot while the backend receives the dynamics and 

generates a fusion result. At the same time, the backend is also responsible for the 

optimisation of the whole system, which is a procedure that the filter-based SLAM 

does not have. The Cartographer algorithm [10] is the classic implementation of 

graph-based SLAM approaches. 

 

Each of these algorithms has its advantages and limitations. The main problem 

arising from their use in robotics is how to evaluate their performance. Attentions 

have been traditionally focused on the assessment of the accuracy of the generated 

maps and trajectories only. Examples include the use of a metric like average distance 

to the nearest neighbour (ADNN)[11-14],  or evaluating the trajectory in a probabilis-

tic approach[15]. At the same time, a ground truth independent evaluation was intro-

duced in [16], which counts the features of estimated map to independently assess the 

quality of map. 

 

This study proposes a new metric which would evaluate the SLAM’s map results 

in terms of both the accuracy and the structural completion of the maps derived. Three 

well-known SLAM systems (Gmapping, Cartographer and Hector) were studied with 

an emphasis on the analysis of the 2D maps constructed by each algorithm.  

 

The remainder of this paper is structured as follows: the related work is presented 

in Section 2, followed by a description of SLAM algorithms in Section 3. In Section 

4, the experiment environment is introduced.  Evaluation metrics used in the study are 

described in Section 5 and experiment results are analysed in Section 6.  The paper 

concludes with a summary of conclusion and future work discussion. 

2 Related works 

It could be challenging to analyse and evaluate the performance of various SLAM 

systems because they have different sensor sources, algorithm basements and code 

frames. For example, Gmapping utilises light detecting and ranging (LiDAR) and an 
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odometer to calculate the journey of the robot and to construct the map. To apply 

SLAM to aircraft navigation, instead of using an odometer,  Hector [17] combines 2D 

LiDAR with an inertial measurement unit (IMU). The Cartographer algorithm re-

leased in 2016 by Google [10] combines data from various sensors e.g. LiDAR, IMU, 

and odometer. In order to provide a uniform platform for implementing the multiple 

types of robot algorithms, the Robot Operating System (ROS) framework [18] was 

introduced in 2007. It defines a uniform standard of interactions among different ro-

bot subsystems. Under the uniformed framework, the different SLAM systems em-

ploy the common data inputs, data flows and outputs standard. This makes it possible 

to compare the performance of different SLAM algorithms under the same pattern. 

This paper focuses on evaluating the performance of the LiDAR-based 2D SLAMs 

including Hector, Gmapping and Cartographer implemented in ROS. 

 

Normally, the evaluation of SLAM results performance can be carried on two as-

pects: the trajectory and the map quality. The trajectory is often evaluated in the vi-

sion SLAM (VSLAM) because the map exists in multiple forms (sparse map, dense 

map, semi-dense map). In a VSLAM system, it is hard to directly compare the quality 

of a map derived from different systems, for example, Buyval et al. [19] compared the 

ability of 4 different VSLAM systems to obtain features and the coverage of point 

clouds but did not perform any quantitative analysis. On the aspect of map compari-

son, Xu et al.[20] projected the feature points detected by the camera onto the ground 

to fake the LiDAR laser scans. Then they generated the occupied grid map by using 

the pseudo laser scans. Therefore, they were able to compare different type of 

VSLAM maps by projecting the points onto ground. However, the noises points in the 

space may also be projected onto the ground, thereby forming errors. Some extra 

procedures are required to provide ground truth data. Yagfarov et al.[11] introduced 

the high-precision laser tracker FARO to manually construct a ground truth map. 

They used FARO to get the 3D scans of the experiment room. Then they extracted the 

intersection lines between the floor plane and the vertical plane. Those lines were 

viewed as the 2D projections of the experiment room. Due to the lack of wall width 

information, they used some OpenCV functions to thin the SLAM estimated map’s 

wall width to one grid. However, lacking wall width information may introduce er-

rors. Sturm et al.[12] introduced an extra high-frequency motion capture system to 

provide ground truth. Filipenko and Afanasyev[13] used a much simpler way to get 

the ground-truth. They laid some threads on the floor. The robot was manually driven 

to follow the treads to obtain the estimations. However, there is no guarantee that the 

actual robot trajectory will perfectly fit these threads, especially in the turning areas. 

So they only used the straight sections of the threads for comparison. Since they 

found the Hector’s result was closest to the ground truth, they used Hector’s result as 

reference for the other systems. It should be mentioned that they did not get a valid 

Gmapping result. Santos et al. [14]implemented the evaluation in both the simulation 

environment STAGE and the real physical world. They evaluated Hector, Gmapping, 

KartoSLAM, CoreSLAM and the LagoSLAM. Their simulation experiments show 

that “Gmapping algorithm presents exceptional results” while the “KartoSLAM was 

the best performing technique in real word”. The Cartographer algorithm was not 
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included in their study. Bayer et al.[21] pointed out that the SLAM ground truth is 

hard to construct. Anton et al. [16] pointed out ground truth data are not always fetch-

able even for a lot of open datasets. Instead of comparing with ground truth, they 

proposed some novel metrics: the proportion of occupied and free cell, the number of 

corners and the number of enclosed areas for independently evaluating the map quali-

ty without acquiring the ground truth. Besides, Le et al.[22] introduced a structural 

metric of Structure Similarity Index (SSIM) [23] to evaluate the map quality of differ-

ent SLAM systems in the indoor environment. But the SSIM result cannot provide an 

intuitive feeling of the structure completion.  

 

Since the accuracy of a trajectory relies on the accuracy of maps, this study will fo-

cus on the comparison of map quality. Moreover, because it is hard to obtain ground 

truth information without introducing some extra interferences, such as the calibration 

of a reference equipment and setting artificial markers, all the experiments in this 

study have been conducted in 2D simulation available in ROS. 

3 2D LiDAR SLAM Algorithms 

In this research, three SLAM algorithms: Gmapping, Cartographer and Hector were 

investigated. They utilise different algorithm frames and different sensors, as summa-

rised below: 

3.1 Gmapping 

Gmapping [6] is one of the most typical filter-based SLAM algorithms. It is based on 

the Rao-Blackwellized Particle Filter (RBPF). In RBPF, the problem of estimating a 

robot pose and map is divided into two steps. In detail, RBPF takes the robot pose 

estimating problem as an incremental estimation problem. Based on the robot pose on 

the last frame and the robot dynamics on the current frame, the current robot pose can 

be predicted. Then the mapping can be solved by providing the current pose and ob-

servations. In naïve particle filter system [24], each particle stands for one possible 

status of the robot and one possible representation of the map. All particles contribute 

to a weighted mean estimation. To reach a closer representation of the true possibility 

distribution, the particle filter requires a large number of particles to expand the sam-

pling range. But after several propagation iterations, the particles’ weights concentrate 

on a few specific particles, which makes the other majority of particles barely con-

tribute to the mean result. In Gmapping, a novel way was used to establish a more 

accurate proposal distribution by taking the laser observation into account. Further-

more, an adaptive metric was applied to guarantee that the resampling process was 

executed only when the weights’ concentration rate was higher than a threshold. 

These measures allow the Gmapping algorithm to use fewer particles than the naïve 

system which in turn makes it works in real-time. 
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3.2 Hector 

Hector [17] is a very straightforward algorithm that estimates the robot status by 

aligning the laser scan and map. Every new scan is transformed into the discrete oc-

cupied grid cell by applying the Bresenham algorithm [25]. After that, the approxi-

mate optimal transformation between the current scan and existing map is solved by 

applying a Gaussian-Newtown optimization. Hector accumulates each scan to form a 

map and to avoid falling into local minima, a multiple-resolution map principle is 

applied. Besides, Hector is designed to be applied in 3D spaces, so an IMU is 

equipped instead of the odometer.  

3.3 Cartographer 

Cartographer [10] is one of the most cited open-source graph-based SLAM algorithms 

in recent years. The main contribution of the Cartographer algorithm is the realization 

of the real-time loop-closure in a LiDAR SLAM system. It proposes the principle of 

submap that consists of recent scans. Once a new scan is acquired, the system will 

look up recent sub-maps to find a reasonable matching between the scan and a sub-

map. The scan will be inserted in the submap without considering the drift during that 

short time. Presently, a loop closure detection will be carried out along all submaps to 

minimise the long-term drift. Besides, Cartographer introduces 3 types of the branch 

and bound algorithms to speed up the loop closure searching process. 

4 Experiment environment set up 

The experiments were carried out on the Ubuntu 16.04 distribution with ROS kinetic. 

The ROS platform provides related ROS packages to apply all the three algorithms 

mentioned above. In ROS, data transmission is achieved by subscribing to and pub-

lishing to certain topics. The topic defines the data structure of interactions. All the 

three algorithms are edited to subscribe to the same topic of “/laser_scan” to receive 

the laser scans. Besides, all three algorithms subscribe to the same topic of “/tf”. The 

“/tf” is an essential ROS topic which provides the transformations among each coor-

dinate reference of the whole system. It should also be pointed out that the Gmapping 

subscribes the “/tf” topic to get the odometer information. While the Hector and Car-

tographer subscribe to the “/imu” topic to utilize IMU information instead.  

 

Different from Santos et al.’s method [14], the Gazebo_ROS software, instead of 

Stage_ROS software, was used for creating virtual environments because the 

Stage_ROS software does not provide the IMU simulation [26]. The algorithms were 

tested in three types of maps – a rectangle map, a swirl map and a corridor map. For 

the former two types, each type has three sizes respectively: 3m x 2m, 6m x 4m, 9m x 

6m and 3m x 3m, 5m x 5m, 7m x 7m (in meter). The size of the corridor map is 2m x 

10 m. Fig. 1 shows the image of the virtual environment and the initial position of the 

robot. 
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The comparison analysis was carried out using Matlab and for mathematical con-

venience, each map was transformed to a dot map. The dot map keeps the same reso-

lution – 5cm/pixel as the SLAM algorithms’ setting. Therefore, in our experiment, an 

error of one pixel is equal to an error of 5 cm. 

 

The robot used for simulation is the Turltlebot3 Burger [27] which has the maxi-

mum linear speed of 0.22m/s, and the maximum rotation speed of 2.84 rad/s. In the 

simulation, the robot’s forward speed is gradually increased to the peak, but no rotat-

ing speed exceeds 0.7 rad/s. The ROS bag command is used for recording all topics’ 

data during the walking. Each algorithm processes these records separately. The map 

parameters are 0.65 for occupied, 0.2 for free.  

 

It should be noted that, due to the stochastic behaviour of the algorithms, the output 

from Gmapping and Cartographer could be different even with the same inputs. 

Therefore, unlike other studies [11][13][14], to mitigate the randomness impact, each 

algorithm was tested with the same dataset 10 times in this study. The standard devia-

tion of each metric was then calculated along with their mean values.  

 

 

 

Fig. 1. The 7 simulation environments used in the study  
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5 Metric for evaluating 

In this paper, two metrics were applied to evaluating the SLAM map quality. The 

ADNN metric focus on the accuracy of map while the grid portion metric we pro-

posed assesses both the completion and quality of the estimated map. 

5.1 Average distance to the nearest neighbour (ADDN) 

ADNN is estimated based on the Iterative Close Point (ICP) algorithm which was 

used to align a SLAM map with the ground truth [11][14] and the K-Nearest Neigh-

bours (KNN) search used for finding the correspondence between the ground truth 

and the estimated map. The ICP and the KNN iteratively run until the result converg-

es. The metric is computed as the average distance from each SLAM map point to the 

nearest ground truth map point as defined below:  

 ADNN =
1

n
∑ (Pest

𝑖 − Pgrd
𝑖 )n

i=1  (1) 

Where n is the total point number of estimated grids, Pest
𝑖  is the position of the ith es-

timated grid and Pgrd
𝑖  is the position of the ith ground truth grid. To avoid falling into 

local minima, we manually selected the 4 corner points and their average coordinates 

as 5 initial parameters for the ICP algorithm. 

 

However, the ADNN metric does not perform well when dealing with incomplete 

estimated maps. For example, if a SLAM algorithm outputs an incomplete map but 

every single grid of the map is perfectly located, the ADNN is set to zero which may 

provide a misleading assessment. 

5.2 Grid Portion Metric 

Inspired by Anton et al. [16] in which three metrics of “the portion of occupied" and 

free cell”, “the number of corners” and “the number enclosed” are were proposed to 

evaluate a SLAM map from the perspective of the grid,  we proposed a new metric to 

evaluate the map quality in terms of grid portion. Specifically, for each ground truth 

map, the number of occupied grids is constant. For any occupied grids,  there are 

three possible results when aligning a SLAM map with the ground truth: a ground 

truth occupied grid was correctly identified as occupied in the SLAM map (True Posi-

tive (TP)); a ground truth occupied grid was wrongly regarded as free in the SLAM 

map (False Negative (FN)); a ground truth free grid was wrongly regarded as occu-

pied in the SLAM map (False Positive (FP)). With this definition, the map quality can 

be evaluated in terms of sensitivity and precisions as defined below:  

 Precision =
TP

(TP+FP)
, Sensitivity =

TP

(TP+FN)
 (2) 

The range of these values goes from 0 to 1. The precision value describes the quality 

of the estimated map. If every occupied grid in the estimated map is correct, the preci-
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sion value is set to 1. While 0 means every occupied grid in the estimated is wrong. 

Besides, this metric can also indicate the completeness of the map, where sensitivity 

value 1 means the estimated map’s structural matches the ground truth map in 100%. 

And 0 means their structures are totally different. At the same time, this metric can 

provide an intuitive feeling of how correct the estimated map is by drawing each 

TP/FP/FN grids. 

 

The metric of precision and sensitivity were widely applied to evaluating the per-

formance in other study areas such as supervised machine learning algorithms. How-

ever, for the best of our knowledge, we are the first to utilise these metrics to evaluate 

the completion and the quality of the estimated map of SLAM. 

6 Experiment Results and Discussion 

We first used ADNN to assess the quality of maps constructed by the three algorithms 

as depicted in Table 1. As expected, the deviations between estimated maps and 

ground truth represented by ADNN tend to increase as the map’s size increases for all 

three SLAM algorithms. As shown in Table 1, 5/7 of Cartographer’s mean errors are 

the lowest among the three algorithms. Especially when applied to a large map, Car-

tographer provides fairly low errors of 0.57 and 1.02 in comparison to the errors of 

using the Hector and Gmapping algorithms. Hector can produce competitive results in 

two medium scenarios. It also has low errors which are close to Cartographer’s result 

in small scenarios. However, the performance of the Hector algorithm deteriorates 

significantly when it is applied to large area scenarios. This is because Hector does 

not utilise the odometer which can provide precise linear dynamics. The error would 

accumulate inevitably over time. Unexpectedly, Gmapping always has larger mean 

errors then other two algorithms. It only achieves a better result than the Hector algo-

rithm when applied to large scenarios of Rectangle_L, Swirl_L and Corridor.  

 

The similar observation of “Hector’s performance declines in large scenario” can 

be found when comparing the results obtained with those presented in [14], where 

Hector and Gmapping’s error were 0.46 and 0.42 (0.01meter/pixel) respectively, in a 

Table 1. The ADNN mean and standard deviation. the unit is pixel/grid 
 

Rectangle_S  Rectangle_M Rectagnle_L Swirl_S Swirl_M Swirl_L Corridor 

Gmapping mean 0.44 0.77 3.82 1.28 1.83 2.81 1.57 

std 0.11 0.25 0.94 0.57 0.45 0.54 0.17 

Cartographer mean 0.07 0.28 0.57 0.11 0.50 1.02 0.83 

std 0.03 0.20 0.15 0.01 0.07 0.05 0.12 

Hector mean 0.14 0.16 8.91 0.13 0.16 5.16 2.09 

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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about 4m*4m map. But Hector’s error increased to 7.46 in a 12m*11m map while 

Gmapping’s error only increased to 5.37. In the study [11], Cartographer is also re-

ported having  the lowest error. The error rate of the Gmapping algorithm reached the 

2nd place. And Hector was the worst one. Their experiment scenario size was unclear. 

They tested four motion patterns (fast/slow move, sharp/smooth rotation). Hector’s 

errors go from 20 cm to 50 cm, while all Cartographer’s errors and 3/4 Gmapping’s 

errors were less than 10 cm. But it should be noted that in [13], a totally different 

result was obtained. In that study, Hector produced the trajectory that closest to the 

ground truth. Then, they used Hector trajectory as reference but did not provide the 

error of it. Their Cartographer result has an error of 2.4 cm compared with Hector 

trajectory. Besides, they did not acquire a valid Gmapping map. 

 

In terms of the standard deviation, Hector achieves the lowest standard deviation. 

When applying hector multiple times, the same map was obtained. This is due to the 

nature of the Hector algorithm, which relies on scan matching. It stitches together the 

aligned frames between consecutive scans. It uses Gaussian-Newtown optimiza-

tion[17] which will always give the constant result as long as the input is the same. 

Gmapping, on the other hand, produces the largest variance in most of the cases, 

which may be attributed to the randomness feature of the particle filter employed by 

the algorithm. 

   

 

(a) Gmapping map 

 

(b) Cartographer map 

 

(c) Hector map 

Fig. 2. Visualisation of SLAM results on the corridor scenario based on the proposed met-

ric. Green grids represent TP estimation, red grids denote FP estimation and yellow grids 

represent FN estimation. 
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Evaluation based on ADNN does not well describe the structure completion of a 

map. For example, when applied to the corridor scenario. The ADNN errors of 

Gmapping, Cartographer and Hector are 1.57, 0.83 and 2.09 respectively. These num-

bers only tell that the Gmapping and the Hector have less accuracy than Cartographer 

but it does not reflect the fact that the estimated map’s size is only half of the ground 

truth’s size as illustrated in Fig. 2, which was based on the visualisation of the pro-

posed grid portion metric. Together with precision and sensitivity estimation shown in 

Table 2, the assessment based on grid portion has a great potential to provide a com-

plete picture of the quality of a SLAM map. On the corridor scenario, the mean preci-

sion, mean sensitivity of the Gmapping are 0.61, 0.50. The 0.5 sensitivity tells that the 

Gmapping map only represents half of the ground truth map. And the 0.61 precision 

tells that about 61% of the estimated grids are correct. These data on the Hector map 

are 0.72, 0.62 respectively, as the Hector map is slightly longer than the Gmapping 

map and it has less FP grids. Cartographer reaches 0.92 and 0.90, when using this 

metric highlighted the Cartographer map is the most complete one among those three 

maps (Fig. 2). It is clear that the precision value intuitively reflects the correction of 

the map and the sensitivity value reflects the completion of the structure. Therefore, 

the grid portion metric along with the visualisation as illustrated in Fig. 2 is more 

effective in representing the quality of a map. In this view, the Hector provides sec-

ond high precision in the small scenarios i.e Rectangle_S, Swirl_S and highest preci-

sion in Rectangle_M and Swirl_M. But its precision and sensitivity dramatically de-

crease in the large scenarios. Similar to the conclusion derived from ADNN, the Car-

tographer can always have relatively high precision and sensitivity in all scenarios 

though it has a larger variance when applied to the medium and large scenarios, which 

deserves further investigation.  

 

Table 2. The mean and standard deviation of grid portion metric 
 

Rectangle_S  Rectangle_M Rectagnle_L Swirl_S Swirl_M Swirl_L Corridor 

Gmapping Precision Mean 0.67 0.44 0.09 0.39 0.20 0.13 0.61 

std 0.09 0.07 0.08 0.15 0.07 0.04 0.04 

Sensitivity 
Mean 0.89 0.61 0.12 0.46 0.22 0.12 0.50 

std 0.09 0.07 0.08 0.15 0.07 0.04 0.04 

Cartographer Precision Mean 0.96 0.78 0.52 0.92 0.63 0.44 0.92 

std 0.02 0.17 0.15 0.01 0.06 0.04 0.00 

Sensitivity 
Mean 0.99 0.79 0.61 0.98 0.69 0.46 0.90 

std 0.02 0.17 0.15 0.01 0.06 0.04 0.00 

Hector Precision Mean 0.88 0.86 0.23 0.89 0.86 0.17 0.72 

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sensitivity 
Mean 1.00 1.00 0.34 1.00 1.00 0.19 0.62 

std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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The last column of Table 2. shows that Cartographer (with highest precision and 

sensitivity) is robust to the geometry of corridor environment. Both Gmapping and 

Hector do not perform well in the corridor environment which has fewer features. For 

Gmapping, the proposed particles are distributed along the direction of the corridor. 

However, the observations obtained in the direction of the corridor are still highly 

similar, which makes it difficult to estimate the length of a trajectory. Hector uses the 

Gauss-Newton method to solve scan matching between two frames. However, similar 

structural information obtained in a featureless environment clearly has a big impact 

on its performance.  

Overall, Hector SLAM algorithm is the 2nd best on small scenarios and the best in 

medium scenarios with both ADNN metric and gird portion metric. However, its 

performance will significantly drop in larger scenarios. While Cartographer reached 

the 1st place in small scenarios and the 2ed place in medium scenarios with both 

ADNN metric and gird portion metric. The important thing is, it has the lowest 

ADNN error and highest precision and sensitivity in every large scenario. Finally, 

Gmapping is worse than the other two algorithms in small and medium scenes and 

reaches second place in large scenarios also it has the greatest instability in most cas-

es. 

7 Conclusion and future work 

In this work, a new grid portion metric was proposed and introduced for the assess-

ment of the performance of SLAM algorithms. Three representative 2D LiDAR 

SLAMs were studied. Results show that, in comparison to traditional metrics such as 

ADNN, the proposed grid portion-based assessment has great potential to provide a 

more complete picture of the quality of SLAM maps. By visualising the SLAM re-

sults on a map, a better understanding of the map can be achieved.  The numerical 

value of sensitivity and precision representing the proportion of FP and FN results 

respectively can be used to indicate the correctness and completeness of a SLAM 

map. In order to deal with the potential instability of the SLAM results, the mean and 

standard deviation of each metric were calculated which provides additional insight to 

the nature of each SLAM algorithm. 

 

It is worth noting that the evaluation was based on simulation environment provid-

ed by ROS. Assessment to be carried out in a real physical world would be part of our 

future work. In addition, the research would be expanded to cover 3D LiDAR SLAM 

and vision SLAM. Besides, because each SLAM algorithm, under different scenarios, 

can be optimised by adjusting the certain parameters.  Dynamic determination of op-

timal parameters represents another direction of our research. 
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