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Abstract

Search result diversification of text documents is especially necessary when a
user issues a faceted or ambiguous query to the search engine. A variety of ap-
proaches have been proposed to deal with this issue in recent years. In this article,
we propose a group of fusion-based result diversification methods with the aim to
improve performance that considers both relevance and diversity. They are linear
combinations of scores that are obtained from different component search systems.
The weight of each search system is determined by considering three factors: per-
formance, dissimilarity, and complementarity. There are two major contributions.
Firstly, we find that all the three factors of performance and complementarity and
dissimilarity are useful for effective weighting of linear combination. Secondly, we
present the logarithmic function-based model for converting ranking information
into scores. Experiments are carried out with four groups of results submitted to
the TREC web diversity task. Experimental results show that some of the fusion
methods that use the aforementioned techniques perform more effectively than the
state-of-the-art fusion methods for result diversification.

Key words: Data fusion, Web search, Result diversification, Linear combination,
Weight assignment, Linear score normalization

1 Introduction

In recent years, researchers have taken various approaches to investigate search
result diversification (Santos et al., 2015; Naini et al., 2016). The rationale
behind it is that for some faceted or ambiguous queries, a good search engine
should provide results with a wide coverage of all possible subtopics to the user,
rather than a narrow focus on one or very few special subtopics. For example,
there are many different interpretations for the query “online mapping sites”.
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It could mean Goggle Maps, MSN Maps, Yahoo Maps, MapQuest, or other
free printable maps. In such a situation, a web search engine needs to consider
both relevance and diversity for those retrieved documents. In this article, we
investigate this by using the data fusion technique.

Previous research on data fusion demonstrates that it is possible to improve
retrieval performance when we only consider relevance (Wu, 2012b). The ra-
tionale behind it is: if a document is retrieved by multiple search systems,
then it is more likely that the document is relevant to the information need.
For the result diversity task, the situation is somewhat different. We may use
the same principle of multiple evidence but different explanations for these
two situations. In the relevance-related task, data fusion is expected to pro-
mote more relevant documents to the top-ranked positions; while in the result
diversity task, data fusion is expected to secure wider coverage of different
types of relevant documents in the top-ranked positions. As we will see later,
different explanations have impact on the fusion algorithms and some of them
need to be modified to accommodate for the new situation.

Suppose for a given query, there are a group of search systems and each of
them retrieves a ranked list of documents from the same collection of docu-
ments. Those ranked lists are referred to as component results later in this
article. Data fusion is the technique of combining those component results
so as to improve performance. According to how they deal with component
results, we may divide data fusion methods into two broad categories: equal-
treatment and biased methods. As their names suggest, the former treats all
component results equally, while the latter does not. CombSum (Fox et al.,
1993), CombMNZ (Fox et al., 1993), and the Condorcet fusion (Montague
and Aslam, 2002) belong to the first category, while the linear combination
method (Vogt and Cottrell, 1998; Wu et al., 2009) is a representative of the
second category. Equal-treatment methods can likely be used in the new sit-
uation without modification, but the linear combination method needs more
consideration.

In linear combination, weight assignment is a key issue for achieving good
fusion performance and a considerable number of weight assignment methods
have been proposed. If relevance is the only concern, then two factors have
been found useful for weight assignment (Wu et al., 2009). One is the per-
formance of every component search system involved, and the other is the
dissimilarity (or distance) between those component systems/results. For the
web search systems involved, well-performing systems should be given heavy
weights, while systems performing poorly should be assigned light weights. On
the other hand, lighter weights should be assigned to those results that are
similar to the others, while heavier weights should be assigned to those results
that are more different to the others (Wu and McClean, 2006a). When assign-
ing weights, we may take performance or dissimilarity or even both of them
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together into consideration. It is also possible to use some machine learning
techniques, known as “learning to rank” (Liu, 2011), to train weights by using
some training data. This is especially popular for combining results at feature
level. However, when diversity is also a concern, we need to consider more
factors.

In this article, we investigate data fusion methods, especially linear combina-
tion, for result diversification. Because we need to balance multiple interpreta-
tions of the given query, fusing results balancing both relevance and diversity
is more challenging than merely taking relevance into account. Novel methods
of weight assignment are proposed to accommodate this. The concept of com-
plementarity on coverage of subtopics is introduced. This is helpful when some
of the component results cover more different subtopics than the others. Our
investigation shows that using it alone or with other types of weights together
can lead to very good weighting schemes. Additionally, we propose a logarith-
mic function-based method for converting ranking information into scores.
Experiments are carried out to evaluate them with four groups of results sub-
mitted to the TREC web diversity task between 2009 and 2012 (Clarke et al.,
2009, 2011). Experiments show that the proposed methods perform well. For
all four groups of results, the fused results are more effective than the best
component results by a clear margin.

The rest of this article is organized as follows: in Section 2 we discuss some
related work on search result diversification and data fusion. Several data fu-
sion methods for result diversification are presented in Section 3. Experiments
are reported in Section 4 to evaluate the proposed data fusion methods. Some
discussion about data fusion on result diversification is presented. Besides,
the proposed score normalization method is also evaluated. Section 5 is the
conclusions.

2 Related Work

This section is divided into two parts: one is some related work on result
diversification and the other is on data fusion.

2.1 Result Diversification

Result diversification has been identified as an important problem in many
different applications such as web search (Capannini et al., 2011; Santos et al.,
2010), recommender systems (Schedl and Hauger, 2015), database systems
(Deng and Fan, 2014), among others. In this article we focus on the issue
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of result diversification of web search. Santos et al. (2015) is a recent review
article about result diversification in web search.

Usually search result diversification is done by a two-step procedure: for a
given topic first we run a typical web search system to obtain a ranked list
of documents, then we apply a result diversification algorithm to re-rank the
documents so as to promote diversity. Many re-ranking algorithms are greedy
algorithms. It means that each time such an algorithm will select one document
according to a given criterion. The documents chosen are put to the resultant
list one after another until all the positions are occupied.

Result diversification algorithms can be divided into two categories: implicit
and explicit. The implicit approach promotes diversity by comparing the dif-
ference of the documents in the list and re-ranking them, or by extracting
subtopics from all the documents and re-ranking them. This means that such
a method does not need any extra information apart from the documents
themselves retrieved through a traditional retrieval system and possibly some
statistics of the document collection.

Carbonell and Goldstein (1998) proposed a maximal marginal relevance-based
method. The basic idea is to re-rank documents according to a linear combi-
nation of each document’s relevance to the query and its similarity to other
documents that are already selected in the list. Based on the same idea as Car-
bonell and Goldstein (1998), Zhai et al. (2003) used KL-divergence to measure
the distance of a new document to those that are already in the list; and both
Rafiei et al. (2010) and Wang and Zhu (2009) used correlation to measure the
novelty of a new document to those already in the list.

Some methods extract potential subtopics by analysis of the documents in-
volved. Analysis can be done in different ways. Carterette and Chandar (2009)
extracted potential subtopics by topic modeling, while He et al. (2011) did this
by query-specific clustering. Zuccon et al. (2012) modeled the result diversifica-
tion problem using facility location analysis, which was taken from operations
research.

Vieira et al. (2011) evaluated a group of implicit methods including Swap,
BSwap, MMR, Motley, MSD (Max-Sum Dispersion), CLT (Clustering), GMC
(Greedy Marginal Contribution), and GNE (Grasp with Neighbor Expansion).
In their experiments, GNE was the best performer. But on the other hand, it
took the longest time for computation. Thang et al. (2015) evaluated 6 implicit
methods Swap, Motley, MMR, MSD, GrassHopper, and Affinity Graph. They
observed that MMR was the best performer.

The explicit approach needs more information than the implicit approach
does but it is usually more effective than the implicit approach. Assuming it
is known that the given query has a set of subtopics and other related in-
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formation, the result diversification algorithm maximizes the coverage of all
subtopics in the top k results. IA select (Agrawal et al., 2009), xQuAD (Santos
et al., 2010), and PM-2 (Dang and Croft, 2012) are algorithms in this cate-
gory. In the re-ranking stage, xQuAD considers both relevance (relevance of
the candidate document to the original query) and diversity (relevance of the
candidate document to all sub-topics of that query). A variant of xQuAD is
proposed by Ozdemiray and Altingovde (2015). The difference between their
method mixCombSum and xQuAD is in the diversity part. Instead of using
a greedy algorithm to obtain the documents one by one, their method uses
CombSum to sum up subtopic scores of all the documents involved. Then doc-
uments are re-ranked by their total scores. IA select is a simplified version of
xQuAD and it only has the diversity part. PM-2 treats the re-ranking prob-
lem as a proportional election of the documents for all sub-topics. Similar to
IA select and mixCombSum, PM-2 only considers relevance of the candidate
document to all sub-topics without taking the original query into considera-
tion.

Apart from the re-ranking methods themselves, one key issue for these explicit
methods is how to obtain accurate subtopic information from external sources.
Different sources such as commercial web search engines (Santos et al., 2010)
and Wikipedia (Kaptein et al., 2009) have been investigated.

Recently, machine learning has been used to deal with the result diversification
problem. Many different machine learning techniques including the maximal
marginal relevance model (Xia et al., 2015), neural tensor networks (Xia et al.,
2016), recurrent neural networks (Jiang et al., 2017), Markov decision process
(Xia et al., 2017), the document repulsion model (Li et al., 2017), word em-
bedding (Ullah et al., 2016), the learning-to-rank algorithm LambdaMART
(Wu et al., 2016) have been attempted.

Instead of formulating user intents for a query as a flat list of subtopics,
Hu et al. (2015) presented hierarchical diversification models. Hierarchical
topic models are estimated for measuring topical diversity of documents in
Azarbonyad et al. (2017). Wang et al. (2016a) investigated methods of evalu-
ating search result diversity using intent hierarchies

Result diversification has also been investigated in various specific search ap-
plications such as image retrieval (Ionescu et al., 2016), historic entity or event
search (Gupta and Berberich, 2016), medical records retrieval (Li et al., 2015),
music recommendations (Schedl and Hauger, 2015), search in Twitter (Wang
et al., 2016b), among others.
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2.2 Data Fusion

Data fusion has been widely investigated and used in many different research
areas and applications such as classification (Li et al., 2018), artificial neural
networks (Chen et al., 2017), the internet of things (Alam et al., 2017), infor-
mation retrieval/web search (Wu and Crestani, 2015), among many others.

When the search results include text, image, and other types of media, then
multimodal data fusion (Lahat et al., 2015) can be used to fuse multiple
evidence from different types of media. For some types of applications, data
fusion may take place at different levels. For example, in content-based image
retrieval (Kaliciak et al., 2014) or multimedia event detection (Lan et al.,
2012), data fusion may be carried out at the representation level (early fusion)
or at the decision level (late fusion) or both. In these two cases the early fusion
strategy fuses some low-level features before performing classification; while
the late fusion strategy combines outputs of different classifiers.

In this article, we investigate result diversification via data fusion in which
relevance and diversification are considered at the same time. We assume that
the component results involved for fusion are ranked list of text documents.
We also assume that those component results are already diversified by some
special algorithms. This means that it is a late fusion strategy of web search
results for result diversification. In the following we review some data fusion
work on web search/information retrieval, especially on result diversification.

In information retrieval/web search, data fusion has been applied in many
different tasks including the routing task (Bigot et al., 2011), expert search
(Macdonald and Ounis, 2006), blog opinion search (Wu, 2012a), query-focused
summarization (Wei et al., 2010), and others. Different methods such as Comb-
Sum (Fox et al., 1993), CombMNZ (Fox et al., 1993), linear combination (Vogt
and Cottrell, 1998; Wu et al., 2009), Borda Count (Aslam and Montague,
2001), Condorcet fusion (Montague and Aslam, 2002), the multiple criteria
approach (Farah and Vanderpooten, 2007), cluster-based fusion (Kozorovitzky
and Kurland, 2011), genetic algorithm-based method (Ghosh et al., 2015) and
others have been investigated. A geometric framework of score-based data fu-
sion methods is presented in Wu and Crestani (2015). However, in all these
methods, relevance is the only concern and result diversification is not consid-
ered.

In Zheng and Fang (2013), two representative result diversification methods
xQuAD (Santos et al., 2010) and PM-2 (Dang and Croft, 2012) are involved.
For a given query, performance of the two methods is predicted based on some
factors such as diversity of the documents and number of relevant documents
in the results retrieved. The best performer is chosen to present its results
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based on the prediction.

The approach that is taken in Liang et al. (2014) is a combination of different
techniques. Their method mainly includes three parts. In the first part they
combine a few results from different search systems. The data fusion meth-
ods used are CombSum and CombMNZ. In the second part they infer latent
subtopics by topic modeling. The document set used is the output of Step 1
with full text for all the documents. Lastly, result diversification is performed
by a typical result diversification method PM-2 (Dang and Croft, 2012).

Xu et al. (2016) investigated differential evolution-based methods for result di-
versification. Linear combination is the method used for fusion and differential
evolution is applied to train weights for different component search systems.

Instead of fusing results that are already diversified, Xu and Wu (2017) in-
vestigated the early fusion strategy. It includes three stages. First a group of
results are generated by some typical search algorithms, at this stage only
relevance is considered and diversification is not considered. Second, a group
of results are fused by a given fusion algorithm such as CombSum. Third, the
fused result are re-ranked by a typical result diversification algorithm such as
PM-2. Their experiments show that the early fusion strategy is as effective as
some late fusion strategies, but can be implemented more efficiently.

Most of the above-mentioned methods are score-based data fusion methods.
They need reliable and comparable scores from all component results. Such a
requirement is not very often satisfied when various kinds of techniques are
used in the implementation of the underlining information search systems.
In such a situation, score normalization is necessary before data fusion takes
place.

Many score normalization methods have been proposed: the zero-one method
(Lee, 1997), the fitting method (Wu et al., 2006), Z-scores (Montague and
Aslam, 2001), the reciprocal rank (Cormack et al., 2009), the logistic model
(Calvé and Savoy, 2000) and so on. However, these score normalization meth-
ods are aimed at improving relevance-based performance and diversity is not
an issue. Note that the reciprocal rank and the logistic model convert ranking
into scores. Therefore, scores are not required when using either of them.

This piece of work is considerably different from the above-mentioned (Zheng
and Fang, 2013; Liang et al., 2014; Ozdemiray and Altingovde, 2015; Xu et al.,
2016; Xu and Wu, 2017). This is an extended work on the same issue as in Wu
and Huang (2014) and more results of empirical investigation are presented.
More importantly, not included in Wu and Huang (2014), there are two major
contributions in this article:

(1) Some weighting schemes for the linear combination method are proposed.
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The proposed weighting schemes take a new factor into consideration. The
new factor, complementarity of results on subtopic coverage, is specific
to result diversification.

(2) A logarithmic function-based method for converting ranking information
into scores is presented for result diversification.

Both of them are effective. Compared with other alternatives, they perform
better in our experiments. See Section 4 for details.

3 Fusion-Based Methods for Result Diversification

Assume there is a document collection D and a group of search systems IR =
{iri} for (1 ≤ i ≤ t). All search systems iri search D for a given query q and
each of them provides a ranked list of documents ri = < di1, di2, ..., din >. We
further assume that a score si(d) is associated with each of the documents d in
the list. The data fusion technique is to use some algorithms to merge these t
ranked lists into one. The goal is to make the fused result more effective than
those component results.

CombSum (Fox et al., 1993) uses the following equation

g(d) =
t∑

i=1

si(d) (1)

to calculate scores for every document d. Here si(d) is the score that d obtains
from iri. If those scores from different search systems are not comparable, then
it is better to normalize them before the fusion process for better performance.
si(d) is used to denote either unnormalized or normalized score later in this
article. If d does not appear in any ri, then a default score (e.g., 0) must be
assigned to it. After that, every document d obtain a global score g(d) and all
the documents can be ranked according to the global scores they obtain.

Another method CombMNZ (Fox et al., 1993) uses the equation

g(d) = m ∗
t∑

i=1

si(d) (2)

to calculate scores. Here m is the number of results in which document d
appears.

As aforementioned in Section 1, data fusion methods can be divided into two
categories: equal-treatment and biased methods. Methods such as CombSum
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and CombMNZ belong to the first category. Methods in this category may be
used in many different situations and for different purposes. For example, ex-
periments in Liang et al. (2014) show that CombSum and CombMNZ perform
very well for result diversification.

The linear combination method (Vogt and Cottrell, 1998; Wu et al., 2009)
uses the equation below

g(d) =
t∑

i=1

wi ∗ si(d) (3)

to calculate scores. wi is the weight assigned to system iri. The linear com-
bination method is very flexible since different weights can be assigned to
different web search systems. It is useful when those equal-treatment methods
are not able to obtain good results. Weight assignment is a key issue for linear
combination to be successful.

When relevance is the only concern, previous research finds that the perfor-
mance of all component results and dissimilarity between component results
are two factors that affect performance of the fused result significantly (Wu
and McClean, 2006b). Now both relevance and diversity need to be consid-
ered at the same time, we bring a third factor that measures the novelty of a
component result relating to other component results. These three factors are
referred to as performance, dissimilarity, and complementarity weights later
in this article. See Section 3.2 for more details.

A related issue is score normalization, which is required by data fusion when
the scores of documents in those component results are not comparable. Previ-
ous research finds that the reciprocal function (Cormack et al., 2009) is a good
option for a few TREC tasks such as the adhoc task. However, we find that
the logarithmic function is a better option when used for the web diversity
task. See Section 4.3 for more details.

For convenience, all the symbols used in this article are summarized in Table 1.

3.1 Basic Concepts and Examples

In a diversity task, queries are faceted or ambiguous. Relevant documents are
not focused on a single topic, but can be on different subtopics.

Example 1. In TREC’s 2009 web track, query 6 is “KCS”. “KCS” can be an
acronym for Kansas City Southern railroad, or Kanawha County Schools in
West Virginia, or Knox County School system in Tennessee, or KCS Energy,
Inc. Thus this query has at least 4 subtopics.
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Table 1
Symbols and their meanings used in this article

Symbol Description

as(r, i) set of subtopics that the first i documents in r cover

ci(j) complementarity of subtopic coverage of ri to rj

ci average complementarity of ri to other t− 1 results

d a document in D

dij the j-th document in ri

D a collection of documents

g(d) final score that d obtain from a fusion algorithm

IR a list of t search engines that contribute results for fusion

iri the i-th search engine in IR

n the number of top documents in ri we use for fusion

pi, p(ri) performance of ri measured by a measure like ERR-IA@20

q a given query in Q

Q a group of queries

ri a list of n documents <di1,di2,...,din> retrieved from iri for q

rankk(d) rank position of document d in result rk

t the number of search engines in IR (t > 2)

si(d) (normalized) score that document d obtains from iri

u(ri, rj) dissimilarity between result ri and rj

vi average dissimilarity between result ri and other t− 1 results

wi the weight assigned to iri for linear combination of results

For such ambiguous queries, their resultant lists should include documents
that are relevant to as many different types of subtopics as possible. With a
diversified resultant list, a user is more likely to find the information needed.

As to data fusion, if the following two conditions are satisfied: (1) the compo-
nent results are equally effective, and (2) subtopics are evenly covered by all
the component results, then it is very likely that equal-treatment data fusion
methods such as CombSum and CombMNZ can achieve very good results.
The following example illustrates this.

Example 2. For a given query q, there are 3 result lists r1 = <d1, d2, d3, d4
>, r2 = <d5, d6, d7, d8 >, and r3 = <d9, d10, d11, d12 >. Among them, d1 is
relevant to subtopics 1 and 2, d5 is relevant to subtopics 3 and 4, d9 is relevant
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to subtopics 5 and 6, while all others are non-relevant documents. In this
case, the above two conditions are well satisfied. Equal-treatment data fusion
methods are able to achieve good results. If we use CombSum or CombMNZ
to fuse them, then d1, d5, and d9 will be the top-3 documents in the fused
result. This is the best possible result.

If either or both of the above two conditions are not well-satisfied, then equal-
treatment data fusion methods may not work well and linear combination is a
better choice. We may assign a weight to each result so as to reflect its degree
of importance in the fusion process. In the following we focus on the coverage
of sub-topics by component results and consider profitable weights for fusion
performance improvement. Let us see an example to illustrate this.

Example 3. For a given query q, there are 3 result lists r1 = <d1, d2, d3, d4>,
r2 = <d5, d6, d2, d8>, and r3 =<d7, d6, d4, d8>. Among them, d1 is relevant
to sub-topics 1 and 2, d2 is relevant to subtopic 3, d5 is relevant to subtopics
2 and 3, d6 is relevant to subtopic 2, d7 is relevant to subtopics 3 and 4, while
d3, d4, and d8 are non-relevant documents. See below for the distribution of
relevant documents that cover different subtopics.

Subtopic
Result Document

1 2 3 4

d1 Y Y
r1 d2 Y

d5 Y Y

r2 d6 Y

d2 Y

d7 Y Y
r3 d6 Y

We combine them by CombSum and documents at rank 1, 2, 3, and 4 are given
scores of 4, 3, 2, 1, respectively. d6 obtains a score of 6 (3 for rank position 2
in r2 and 3 for rank position 2 in r3) and d2 obtains a score of 5 (3 for rank
position 2 in r1 and 2 for rank position 3 in r2). Therefore, the fused result rf
is <(d6,6),(d2,5),...>. rf is not very good because only 2 subtopics are covered
in the top 2 documents.

It is worthwhile to investigate why CombSum does not work well. In this
example, subtopic 4 is only covered by document d7 in r3, but not at all by
documents in r1 or r2; while subtopic 1 is only covered by document d1 in r1.
Therefore, r1 and r3 are complementary to each other, while the coverage of r2
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is a subset of the subtopics that either r1 or r3 covers. Fusing r1 and r3 would
cover all four subtopics, while adding r2 would not be useful. In other words,
both r1 and r3 cover four subtopics while r2 only covers two. Therefore, this
is not an ideal situation for CombSum to achieve good performance because
the second condition is not well-satisfied. This can be improved by applying
linear combination with different weights to the component results.

If we fuse them by linear combination, then the key problem is how to as-
sign weights for those component results. According to our discussion above,
we should assign heavy weights to both r1 and r3, and assign light weight
to r2. If we let w1 = 4, w3 = 4, and w2 = 1, then the fused result rf2 is
<(d1,16),(d7,16),(d5,15), (d3,14),(d6,12),...>. This time, the top 2 documents
cover all four subtopics.

Example 3 shows the ability of linear combination over CombSum when the
conditions are not favorable for the latter. For a given group of search en-
gines, such a phenomenon may not just happen occasionally for one or two
queries, but happen regularly over a large number of queries. For a given set
of documents and a given query, search results are related to the implemen-
tation technologies used by search engines. Therefore, some specific patterns
may occur in those search results from particular search engines. For example,
if search engine A uses an implicit result diversification method and search
engine B uses an explicit result diversification method, then it is possible that
A is less effective than B (Santos et al., 2015); if both search engines A and B
use explicit result diversification methods but obtain extra information from
different sources (Santos et al., 2010; Kaptein et al., 2009), then it is possible
that the subtopic coverage of their results are different. When such patterns
happen regularly in results from those search engines across different queries,
they can be learnt by applying some training data and used to improve fusion
performance by linear combination.

However, how to assign suitable weights to component search systems is chal-
lenging. As a matter of fact, it can be defined as an optimization problem. For
a collection of training data and a given metric, the best solution can only be
found by searching the whole solution space. Instead of doing that, we present
some heuristic methods for weight assignment and the goal of this approach
is to achieve good result in both performance and efficiency.

3.2 Weight Assignment for Linear Combination

Weight assignment is a key issue for the linear combination method. In this
subsection, we discuss a few different ways of dealing with this issue. Firstly,
let us consider the following three different factors:
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(1) Performance of each search system in question.
(2) Similarity between one result and the others.
(3) Complementarity on relevant subtopic coverage between one result and

the others.

In previous data fusion experiments (Vogt and Cottrell, 1998; Wu and Mc-
Clean, 2006b) that only consider relevance, researchers find that performance
of each component result and dissimilarity between component results are fac-
tors that affect performance of the fused result significantly. The third factor,
complementarity, is newly introduced because it only makes sense for results
diversification.

The first factor is straightforward. The only thing we need to consider is the
measure for performance evaluation. In this study, we use ERR-IA@20, which
is a typical measure for result diversification (Chapelle et al., 2009). Other
measures such as α-nDCG@20 (Clarke et al., 2008) may also be used.

As to the second factor, we do not distinguish relevant and non-relevant results
when computing the similarity of two results. According to Wu (2012b), there
are different solutions. We may divide them into three categories: score-based
similarity, ranking-based similarity, and set-based metrics. Score-based simi-
larity can be defined by the Euclidean distance or street block distance, while
ranking-based similarity can be defined by Spearman’s correlation coefficient,
Kendall’s tau correlation coefficient, Goodman and Kruskal’s gamma corre-
lation coefficient, and so on. In this study, we use a ranking-based measure,
which will be described later.

The third factor only makes sense for result diversification in which multiple
subtopics exist for the same given query. Some results may cover more or less
the same subtopics, while some others may cover very different subtopics. We
should take advantage of this so as to obtain better fusion results by assigning
different weights to different search systems.

Three types of weighting schemes can be obtained if we consider the above-
mentioned three factors separately. Based on these factors, different combina-
tions of them are possible to obtain more weighting schemes. Now let us detail
these weighting schemes.

Suppose there are a group of web search systems ir1, ir2,...,irt, a collection of
documents D, a given query q and all its relevant documents in D. Thus all
the search systems search the collection and the performance of those results
r1, r2,..., rt can be calculated by using a given metric (e.g., ERR-IA@20). We
use p1, p2,..., pt to represent them.

Next we discuss how to calculate the dissimilarity of two results. It can be
done by comparing documents’ ranking difference for each pair of them. Let
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us consider the top-n ranked documents in results r1 and r2 for a given query
q, respectively. Suppose that m (m ≤ n) documents appear in both r1 and r2,
and (n −m) of them appear in only one of them. Without loss of generality,
we let d1, d2,..., dm appear in both r1 and r2, dm+1, dm+2,..., dn appear in
r1 but not r2, and dn+1, dn+2,..., d2n−m appear in r2 but not r1. For those
n − m documents that only appear in one of the results, we simply assume
that they occupy the places from rank n+ 1 to rank 2n−m whilst retaining
the same relative orders in the other result. Thus we can calculate the average
rank difference of all the documents in both results and use it to measure the
dissimilarity of r1 and r2. To summarize, we have

u(r1, r2) =
1

n(2n−m)
{
di∈r1∧di∈r2∑

i=1,2,...,m

|rank1(di)− rank2(di)|

+
di∈r1∧di /∈r2∑

i=m+1,m+2,...,n

|rank1(di)− (n−m+ i)|

+
di /∈r1∧di∈r2∑

i=n+1,n+2,...,2n−m

|rank2(di)− i|} (4)

Here rank1(di) and rank2(di) denote the rank positions of di in r1 and r2,
respectively. 1

n(2n−m)
is the normalization coefficient, which guarantees that

u(r1, r2) is in the range of [0,1]. Note that 2n−m is the number of pairs and
n is the maximum rank difference of the same document in r1 and r2. Based
on Equation 4, the average dissimilarity between ri (1 ≤ i ≤ t) and other t−1
results is defined as

vi =
1

t− 1

∑

j=1,2,...,t∧j 6=i

u(ri, rj) (5)

The last factor is complementarity of subtopic coverage between results. Let
us consider two results ri = < di1, di2, ..., din > and rj = < dj1, dj2, ...,
djn > for a given query q. At rank position k, ri covers a set of subtopics
as(ri, k), and rj covers a set of subtopics as(rj , k). Based on ri and rj, we may
define a super-result r. Note that r is a virtual result and we only consider
its performance. At rank position k, r covers a set of as(r, k) subtopics. Here
as(r, k) is defined as the union of as(ri, k) and as(rj , k). r’s performance can
be calculated from ri and rj . We may use a metric, such as ERR-IA@20, to
measure the performances of ri, rj , and r. Suppose that the values obtained
are p(ri), p(rj), and p(r), then the complementarity of ri to rj can be defined
as

ci(j) =
p(r)− p(rj)

p(r)
(6)

14



From Equation 6, we can see that the complementarity of ri to rj (i.e. ci(j))
and the complementarity of rj to ri (i.e. cj(i)) are two different quantities.

If there are t results in total, then the average complementarity of ri to other
t− 1 results r1,...,ri−1, ri+1,...,rt can be defined as

ci =
1

t− 1

∑

j=1,2,...,t∧j 6=i

ci(j) (7)

Suppose that the training data set comprises a group of queries Q. For each
query q, we may obtain the parameter values of p by evaluating the results
directly, and we compute the parameter values of c and v according to Equa-
tions 5 and 7, respectively. These values are averaged over all the queries and
thus each parameter obtains one value for the whole training data set. In the
following we still use pi, ci, and vi to denote those averaged values. There are
a few different ways of defining weights. One option is to define weights by
considering any individual factor. For example, we may define pi, p

2
i ,...,as per-

formance weights. Some typical values for power is: 0, 1, 2, etc. if power is 0,
then all the weights are the same and linear combination becomes CombSum;
if power is 1, then it is the performance-level weighting scheme; if power is
2, then it is the performance-square weighting scheme. Note that the larger
the power is, the more influential the better-performed system is. Different
weighting schemes such as pi, p

2
i ,..., are investigated empirically in Wu et al.

(2009) and it is found that on average p2i , p
3
i ,..., p

6
i are more effective than pi

when only relevance is considered. Similar weighting schemes can be applied
to other two factors dissimilarity and complementarity. In the following we
will refer to pi and pi

2 (or p and p2 in short) as performance weight, vi and vi
2

(or v and v2) as dissimilarity weight, and ci and ci
2 (or c and c2) as comple-

mentarity (or diversity) weight. We may also define combined weights based
on these factors. They are represented by a combination of p, c, and v.

When all the weights are decided by the above-mentioned methods with some
training data, it is ready for fusing new results. At the fusion stage, the linear
combination method uses Equation 3 to calculate scores for all the documents,
then a new ranking of documents can be generated accordingly.

4 Experiments

In this section we report the experiments that evaluate the performance of
the weighting schemes presented in the previous section. The data set used is
“ClueWeb09”. 1 The web track of TREC used it in the four successive years

1 http://www.lemurproject.org/clueweb09.php/
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from 2009 to 2012. The “ClueWeb09” collection consists of roughly 1 billion
web pages crawled from the Web.

Four groups of results are chosen for the experiment. They are top eight re-
sults (measured by ERR-IA@20) submitted to the diversity task in the TREC
2009, 2010, 2011, and 2012 web track. Each participant was allowed to submit
multiple runs to the same track and the multiple runs from the same partici-
pant are much similar than those from different participants. In order to avoid
fusing very similar results, we try to take just one run from each participant.
However, this is not strictly observed for the 2012 group because not many
runs are submitted in that year.

The information about all the selected results is summarized in Table 2. uwgym
in 2010 and UDCombine2 in 2011 are not chosen because they include much
fewer documents than the others and using them would cause problems in
calculating weights for the linear combination method and in the fusion process
as well. 2 msrsv3div is listed in Table 2 but not in Wu and Huang (2014).
As a matter of fact, it is the best performer in 2010 and includes 247,778
documents. This number is less than but not far away from 250,000. That is
why msrsv3div was excluded that time but is taken this time.

In each year, fifty queries are divided into five groups: A (queries 1-10), B
(queries 11-20), C (queries 21-30), D (queries 31-40), and E (queries 41-50).
All possible combinations of four groups are used as training queries, while the
remaining one group is used for fusion test. Here we use the five-fold cross val-
idation method (Kohavi, 1995). Every result is evaluated using ERR-IA@20
over training queries to obtain performance weight pi and pi

2. Dissimilarity
weight vi and vi

2 and complementarity weight ci and ci
2 are calculated accord-

ingly. Each of them is used individually as the weight of the corresponding
web search system. Different combinations of them are also used: p ∗ v, p2 ∗ v,
p ∗ v2, p ∗ c, p2 ∗ c, p ∗ c2, p ∗ v ∗ c, etc.

Four recently proposed fusion methods are also involved for comparison. They
are genetic algorithm-based fusion (GA) (Ghosh et al., 2015), differential
evolution-based fusion (DE) (Xu et al., 2016), DDF (Liang et al., 2014), and
ClustFuseCombSum (Kozorovitzky and Kurland, 2011). For GA, as in Ghosh
et al. (2015), we set the population size as 30 and the maximum number of
generations as 200. For DE, we set NP=30, F=0.5, CR=0.5, and the maxi-
mum number of generations as 200. For DDF, we set α=0.5, β=0.02, and the
number of topics is 10. They are the same as in Liang et al.’s experiments. For
ClustFuseCombSum, we set δ=10 and λ=0.7. The same δ value of 10 is used
in Kozorovitzky and Kurland’s experiment and they also recommend that the

2 As a matter of fact, uwgym in 2010 includes 12,719 documents, and UDCombine2

in 2011 includes 48,951 documents, while other runs include 250,000 or close to
250,000 documents.
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Table 2
Information of three groups of results submitted to the web diversity task in TREC
(the figures in parentheses are ERR-IA@20 values of selected runs)

TREC 2009 TREC 2010 TREC 2011 TREC 2012

MSRAACSF msrs3div uogTrA45Nmx2 DFalah120D

(0.2144) (0.3473) (0.5284) (0.4259)

MSDiv3 THUIR10DvNov msrs2011d1 DFalah121A

(0.2048) (0.3355) (0.4994) (0.4290)

uogTrDY CcsB ICTNETDV 10R2 UWatMDSqltsr QUTparaBline

(0.1922) (0.3222) (0.4939) (0.4185)

UamsDancTFb1 uogTrB67xS ICTNET11DV R3 uogTrA44xi

(0.1774) (0.2981) (0.4764) (0.4873)

mudvimp UMd10IASF UAmsM705tFLS uogTrA44xu

(0.1746) (0.2546) (0.4378) (0.5048)

UCDSIFTdiv cmuWi10D uwBA uogTrB44xu

(0.1733) (0.2484) (0.3986) (0.4785)

NeuDiv1 UAMSD10aSRfu CWIcIA2t5b1 utw2012c1

(0.1705) (0.2423) (0.3487) (0.4046)

THUIR09AbClu UCDSIFTDiv liaQEWikiAnA utw2012lm09

(0.1665) (0.2100) (0.2287) (0.4038)

Ave 0.1842 Ave 0.2823 Ave 0.4265 Ave 0.4440

Std 0.0176 Std 0.0502 Std 0.0991 Std 0.0399

value of λ should be between 0.6 and 0.8 for good fusion performance.

4.1 Data Fusion Results

As we know (Wu and McClean, 2006b), it is harder to get improvement over
better component results through data fusion. However, the purpose of the
experiment is to exam if we can obtain even better results by fusing a number
of top-ranked results submitted.

Score normalization is necessary for data fusion to achieve good results. In
this experiment the logarithmic function-based method is used to normalize
scores of all component results. This method uses the formula s(rank) =
max{1 − 0.2 ∗ ln(rank), 0} to generate scores for documents at each ranking
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Table 3
Performance (measured by ERR-IA@20) of data fusion methods (figures in paren-
theses indicate the improvement rate of each method over the best component;
figures in bold indicate the best three results in each column)

Method 2009 2010 2011 2012 Average

Best 0.2144 0.3473 0.5284 0.5048 0.3987

0.2439 0.4110 0.5457 0.5096 0.4276
CombSum

(+13.77%) (+18.35%) (+3.27%) (+0.95%) (+7.25%)

0.2506 0.3985 0.5422 0.4887 0.4200
CombMNZ

(+16.89%) (+14.77%) (+2.63%) (-3.19%) (+5.34%)

0.2438 0.4135 0.5528 0.5055 0.4289
p

(+13.69%) (+19.08%) (+4.63%) (+0.14%) (+7.57%)

0.2450 0.4046 0.5630 0.5099 0.4306
p2

(+14.25%) (+16.51%) (+6.55%) (+1.01%) (+8.01%)

0.2480 0.4160 0.5524 0.5069 0.4308
c

(+15.67%) (+19.80%) (+4.55%) (+0.42%) (+8.06%)

0.2472 0.4149 0.5635 0.5104 0.4340

c2
(+15.31%) (+19.47%) (+6.65%) (+1.11%) (+8.85%)

0.2453 0.4127 0.5442 0.5101 0.4281
v

(+14.41%) (+18.84%) (+1.05%) (+0.46%) (+7.37%)

0.2455 0.4138 0.5465 0.5038 0.4290
v2

(+14.52%) (+19.18%) (+3.44%) (-0.20%) (+7.20%)

0.2478 0.4139 0.5633 0.5100 0.4338
pc

(+15.57%) (+19.19%) (+6.62%) (+1.01%) (+8.80%)

0.2458 0.4032 0.5668 0.5078 0.4309
p2c

(+14.65%) (+16.10%) (+7.27%) (+1.01%) (+8.08%)

0.2466 0.4205 0.5496 0.5043 0.4303
pv2

(+15.01%) (+21.10%) (+4.01%) (-0.10%) (+7.93%)

0.2431 0.4094 0.5669 0.5170 0.4341

pc2v
(+13.39%) (+17.90%) (+7.29%) (+2.42%) (+8.88%)

0.2460 0.4202 0.5599 0.5113 0.4344

pcv
(+14.71%) (+21.00%) (+5.98%) (+1.29%) (+8.95%)
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Table 4
Performance (measured by α-nDCG@20) of data fusion methods (figures in paren-
theses indicate the improvement rate of each method over the best component;
figures in bold indicate the best three results in each column)

Method 2009 2010 2011 2012 Average

Best 0.3653 0.4909 0.6298 0.6061 0.5230

0.4016 0.5588 0.6610 0.6094 0.5577
CombSum

(+9.96%) (+13.82%) (+4.97%) (+0.54%) (+6.63%)

0.4051 0.5502 0.6532 0.5922 0.5502
CombMNZ

(+10.91%) (+12.09%) (+3.72%) (-2.29%) (+5.20%)

0.4009 0.5636 0.6668 0.6100 0.5603
p

(+9.75%) (+14.80%) (+5.88%) (+0.64%) (+7.14%)

0.4035 0.5558 0.6743 0.6137 0.5618
p2

(+10.47%) (+13.22%) (+7.08%) (+1.25%) (+7.42%)

0.4020 0.5646 0.6662 0.6120 0.5612
c

(+10.04%) (+15.02%) (+5.79%) (+0.43%) (+7.30%)

0.4059 0.5673 0.6745 0.6146 0.5656
c2

(+11.12%) (+15.56%) (+7.11%) (+1.40%) (+8.15%)

0.4031 0.5598 0.6561 0.6104 0.5574
v

(+10.35%) (+14.03%) (+4.19%) (+0.71%) (+6.58%)

0.4031 0.5597 0.6575 0.6069 0.5568
v2

(+10.34%) (+14.02%) (+4.41%) (+0.13%) (+6.46%)

0.4072 0.5677 0.6748 0.6146 0.5661

pc
(+11.49%) (+15.64%) (+7.15%) (+1.40%) (+8.24%)

0.4049 0.5562 0.6776 0.6145 0.5633
p2c

(+10.84%) (+13.29%) (+7.60%) (+1.39%) (+7.71%)

0.4045 0.5712 0.6609 0.6109 0.5619
pv2

(+10.73%) (+16.37%) (+4.95%) (+0.79%) (+7.44%)

0.4024 0.5633 0.6766 0.6205 0.5657

pc2v
(+10.15%) (+14.76%) (+7.44%) (+2.38%) (+8.16%)

0.4046 0.5726 0.6724 0.6154 0.5663

pcv
(+10.75%) (+16.64%) (+6.77%) (+1.53%) (+8.28%)
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position rank. It assigns positive scores {1, 0.8614, 0.7803, 0.7227,..., 0.0006}
to top 148 documents and zero to the rest of them. More discussion about the
logarithmic function-based method and a comparison of this method and two
other score normalization methods are reported in Section 4.3.

For comparison, the best component result and two traditional data fusion
methods, CombSum and CombMNZ, are used as baseline. Experimental re-
sults are shown in Tables 3 and 4. Two metrics, ERR-IA@20 and α-nDCG@20
(α = 0.5), are used to evaluate all the fusion methods. From Tables 3 and 4,
we can see that all the data fusion methods involved perform better than the
best component result. Both CombSum and CombMNZ perform quite well,
although CombSum is a little better than CombMNZ.

In this experiment, we apply three types of weights (performance, dissimilarity,
and complementarity) separately with two options (linearly or squared). Most
of the time using these weights we obtain better results than the best com-
ponent result. It shows that using performance or complementarity weights
can achieve better results than using dissimilarity weights. Comparing them
with CombSum and CombMNZ, we find that using complementarity weight or
performance weight is useful for performance improvement, while dissimilarity
weight does not make much difference. We also observe that complementarity
weight is more useful than performance weight, when using one of them alone.
For both performance and complementarity weights, the square function is
slightly better than the linear function.

Different types of combined weights are also tested. On average the combina-
tions pcv, pc2v, pc, and c2 are very close in performance. They are better than
the other schemes. They outperform CombSum and CombMNZ by 1% to 3%
when either of the two measures is used. The improvement rates over the best
component results are over 8% when either ERR-IA@20 or α-nDCG@20 is
used.

In order to investigate the generalizability and robustness of these fusion meth-
ods, we carry out more experiments by the following procedure: from all the
runs submitted to the web diversity task of TREC in the same year, we ran-
domly select 3-20 runs to test the effectiveness of these methods. For any given
number (3-20), 200 combinations are tested. Figures 1 and 2 present the re-
sults with the TREC 2010 web diversity data set, with metrics ERR-IA@20
and α-nDCG@20, respectively. From Figures 1 and 2, we can see that for both
metrics CombSum is better than the best component results at sixteen points
except four points (3, 4, 5, and 7). p, c, and v are better than CombSum, while
pcv is the best. Similar results are observed for the other three data sets 2009,
2011, and 2012. Therefore, we do not present them.

Results are shown in Tables 5 and 6 for the comparison between our methods
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Fig. 1. Average performance (in ERR-IA@20) of the fusion methods with the TREC
2010 web diversity data set (3-20 component results, 200 combinations for each given
number of component results)
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Fig. 2. Average performance (in α-nDCG@20) of the fusion methods with the TREC
2010 web diversity data set (3-20 component results, 200 combinations for each given
number of component results)

and six other fusion methods that were proposed recently: ClustFuseComb-
Sum (Kozorovitzky and Kurland, 2011), DDF (Liang et al., 2014), GA (Ghosh
et al., 2015), dis ∗ p2(Eq.1) (Wu and Huang, 2014), and DE (Xu et al., 2016).
For convenience, one of our best methods pc is also shown in these two ta-
bles. We can see that pc, DE, and GA are close in performance, while DDF,
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Table 5
Performance (measured by ERR-IA@20) of data fusion methods pc and four other
methods (figures in bold indicate the best result in each column and a “*” symbol
indicates the difference between that method and pc is significant at the 0.05 level)

Method 2009 2010 2011 2012 Average

pc 0.2478 0.4139 0.5633 0.5100 0.4338

GA 0.2474 0.4204 0.5472* 0.5091 0.4310

DE 0.2551* 0.4067* 0.5571 0.5108 0.4324

DDF 0.2394* 0.4059* 0.5439* 0.5081 0.4243

ClustFuseCombSum 0.2393* 0.3585* 0.5157* 0.5025 0.4040

dis ∗ p2(Eq.1) 0.2492 0.3905* 0.5410* 0.4973* 0.4195

Table 6
Performance (measured by α-nDCG@20) of data fusion methods pc and four other
methods (figures in bold indicate the best result in each column and a “*” symbol
indicates the difference between that method and pc is significant at the 0.05 level)

Method 2009 2010 2011 2012 Average

pc 0.4072 0.5677 0.6748 0.6146 0.5661

GA 0.4067 0.5718 0.6655 0.6182 0.5656

DE 0.4117 0.5619 0.6691 0.6190 0.5654

DDF 0.3956* 0.5544* 0.6549* 0.6074 0.5531

ClustFuseCombSum 0.3924* 0.5071* 0.6293* 0.5926* 0.5303

dis ∗ p2(Eq.1) 0.4100 0.5515* 0.6477* 0.6012* 0.5526

dis ∗ p2(Eq.1), and ClustFuseCombSum are not as good as the other three. A
two-tailed T test is conducted to compare the difference between pc and the
other methods. A “*” symbol in Tables 5 and 6 indicates that the difference
between that method and pc is significant at the 0.05 level. In most cases, the
difference between pc and either GA or DE is not significant, while the differ-
ence between pc and either of DDF, ClustFuseCombSum and dis ∗ p2(Eq.1)
is significant.

Finally, we test the time consumed by GA, DE, DDF, ClustFuseCombSum,
and four representative weighting schemes of our method: p, v, c, and pcv. 3

Other weighting schemes that are not presented have almost the same time
complexity as one of the presented. For example, p2 is similar to p, v2 is

3 A personal computer with Intel Core i7 quad-core 3.4 GHz CPU and 32 GB of
RAM is used for the test.
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Table 7
Time in seconds for training (40 queries) and run-time (per query) of several fusion
methods (CF denotes ClustFuseCombSum)

TREC 2009 TREC 2010 TREC 2011
Method

training run-time training run-time training run-time

p 1.30 0.0074 1.16 0.0075 1.19 0.0074

v 0.25 0.0075 0.24 0.0077 0.23 0.0078

c 7.06 0.0074 7.30 0.0074 7.21 0.0075

pcv 8.66 0.0074 8.82 0.0074 8.79 0.0075

GA 169.75 0.0074 168.31 0.0075 169.52 0.0075

DE 180.33 0.0075 179.58 0.0075 181.02 0.0075

DDF - 15,379 - 13,478 - 18,986

CF - 93.03 - 94.08 - 93.96

similar to v, pc2v is similar to pcv, and so on. Table 7 shows the result. In
those four weighting schemes, pcv needs more time than p, c, and v. All of
the four weighting schemes of our method, GA, and DE need more or less the
same time for fusion, but GA and DE need more time for training than our
methods do. For example, GA requires almost 20 times as much time as pcv
does. DDF and ClustFuseCombSum are very different from GA, DE, and the
methods presented in this paper. Both of them do not need training but take
long time in the fusion process, although DDF needs much longer time than
ClustFuseCombSum does.

4.2 Three Types of Weights and Their Relationships

In this subsection we further investigate the relationship between three types
of weights. We still look at the eight runs for each of the three groups listed
in Table 2. As in the experiment presented in Section 4.1, three types of
weights are calculated five times for each group of component results due
to the five-fold cross validation method used. To estimate the similarity of
a pair of weighting schemes, we calculate the Euclidean distance of any two
types of weights. For consistency, each group of weights are normalized to
unit length, thus the Euclidean distances are comparable across different cases.
Table 8 shows the results. The distance between p and c is always much shorter
than the distance between c and v, or between p and v. If we regard each
weighting scheme as a point in a space and use a triangle to represent the
relationship (distance) of them, then the triangle is roughly an isosceles one.
The distance between the dissimilarity weighting and the other two are long,
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Table 8
Euclidean’s distance between two different types of weights (average of 5 groups)

Pair of Weights 2009 2010 2011 2012 Average

c and v 0.0960 0.1180 0.2363 0.3362 0.1966

p and v 0.1104 0.1614 0.2497 0.3572 0.2197

p and c 0.0334 0.0670 0.0300 0.2845 0.1037

Table 9
Different types of weights for three results (average of five groups, the figures in
parentheses indicate the normalized weights by setting the weight of MSRAACSF
to 1)

Type MSRAACSF UamsDancTFb1 mudvimp

p 0.2144(1) 0.1774(0.8274) 0.1746(0.8142)

c 0.5512(1) 0.4554(0.8261) 0.4129(0.7492)

v 0.8925(1) 0.9183(1.0289) 0.8938(1.0014)

Table 10
Performance of data fusion with three results (figures in bold indicate the top three
values in the column)

Method ERR-IA@20 α-nDCG@20

CombSum 0.2097 0.3373

p 0.2129 0.3432

p2 0.2184 0.3490

c 0.2129 0.3433

c2 0.2188 0.3503

v 0.2092 0.3369

v2 0.2093 0.3364

pc 0.2189 0.3501

pcv 0.2186 0.3496

while the performance weighting and the complementarity weighting are close.
As we already see, the dissimilarity weights is not as useful as the performance
weights and complementarity weights. This phenomenon suggests that the
area around performance and complementarity weighting is a profitable one
for fusion performance improvement.

In Section 3.2 we used a few toy examples to illustrate the concept of com-
plementarity of results on different subtopics and its effect on data fusion. In
this subsection we take a real example to further explore this.
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From those eight submitted results in 2009, we choose three of them for further
investigation. They areMSRAACSF (Dou et al., 2009), UamsDancTFb1 (Anh
and Moffat, 2010), and mudvimp (Kaptein et al., 2009). They are chosen be-
cause they are implemented by using different retrieval models.MSRAACSF is
implemented using WebStudio (an augmented BM25 model) with a clustering-
based implicit diversification method, UamsDancTFb1 is implemented using
Indri (a combination of the language modeling and inference network) and a
document similarity-based implicit diversification method, while mudvimp is
implemented using IMP (a variation of the vector-space model), but no diver-
sification method is used. Another difference is: both MSRAACSF and mud-

vimp use “ClueWeb09”, while UamsDancTFb1 uses “ClueWeb09B”, which is
a subset of “ClueWeb09”. Interestingly, all of them index anchor text of all
the web documents for the search task.

After calculating each result’s complementarity of subtopic coverage to an-
other result using Equations 5 and 6, we obtain: ca(b): 0.5621, ca(c): 0.5403,
cb(a): 0.4163, cb(c): 0.4944, cc(a): 0.3542, cc(b): 0.4717. Here a, b, and c de-
notes MSRAACSF, UamsDancTFb1, and mudvimp, respectively. We can see
that MSRAACSF obtains the heaviest weight, UamsDancTFb1 is in the sec-
ond place, and mudvimp obtains the lightest. Two other types of weights are
also calculated, and all the weights are shown in Table 9. In this example,
performance weights and complementarity weights are strongly correlated,
while dissimilarity is quite different from the other two. Because all three dis-
similar weights are very close to each other, their power for distinguishing
systems/results is limited.

Using the same methodology of five-fold cross validation, we fuse these three
results by CombSum and linear combination. The results are shown in Table
10. Not surprisingly, using c or c2 can achieve similar fusion performance as
using p or p2. pc, c2 and pcv are the top three. This is consistent with the
experimental results reported in Section 4.1.

4.3 Converting Rankings into Scores

In this section we compare two methods of converting rankings into scores:
the logarithmic model and the reciprocal model. The logarithmic model uses
the formula score(i) = max{1−0.2∗ ln(i), 0} to normalize score of documents
at rank i to score(i), while the reciprocal model uses the formula score(i) =
1/(i + 60) for the same purpose. According to Cormack et al. (2009), the
reciprocal function is very good for converting rankings into scores. However,
their scenario is different from ours here. In their experiments, a topic does not
include any subtopic and binary relevance judgment is used. This is common
in many historical TREC tasks. But this time we are in a different situation.
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Table 11
Estimation accuracy of the two rank-to-score converting models

Logarithmic Reciprocal
Group

R2 F R2 F

2009 0.907 959.079 0.900 879.491

2010 0.926 1226.342 0.890 794.127

2011 0.959 2312.175 0.936 1424.361

2012 0.957 2168.538 0.952 1954.654
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Fig. 3. Score estimation of two different models with the TREC 2011 web diversity
data set

For those top-ranked documents, it is possible that some of them are relevant
to multiple subtopics. Thus we hypothesize that the reciprocal model does not
fit well on some top-ranked documents, while the logarithmic model can be a
better option for this.

Firstly, we try to see which of them fits the observed data better. The proce-
dure is as follows: consider eight runs in the same year in Table 2 together,
we check all the documents involved to see if they are relevant or not to the
given query. If a document is non-relevant to any subtopics, then a score of
0 is assigned to that document; while if a document is relevant to s (s ≥ 1)
subtopics at the same time, then a score of s is assigned to that document.
Over all fifty queries and all eight runs, scores are averaged for documents at
each rank (1,2,...,100). Thus we obtain an observed curve that indicates the
average number of subtopics to which a document at a certain rank would be
relevant. Then we run curve estimation using a statistic software SPSS to see
how accurate the two models are. Table 11 shows the results.
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From Table 11 we can see that in all four years, the logarithmic model is
slightly more accurate than the reciprocal model with larger R2 and F values.

To have a closer look at how these two models perform, we depict the observed
curve and the two estimated curves for the data of 2011 group in Figure 3. 4

The curves for the other three groups are not presented due to similarity. In
Figure 3, the observed curve is not very smooth and follows a zigzag pattern.
This indicates that the number of relevant subtopics varies from one rank
to next and the number of cases (8 runs * 50 queries) is not large enough
to stabilize them. In Figure 3, we can also see that both logarithmic and
reciprocal models fit the observed curve quite well. However, we can observe
that the logarithmic model fits the observed curve better than the reciprocal
model at a few very top ranks. This phenomenon is significant since top-
ranked documents are more important than the others. It may explain why
the logarithmic model leads to better results than the reciprocal model in the
fusion experiment, as we discuss now.

We examine the performance of score normalization by fusing the same results
with different score normalization methods. Apart from the logarithmic model
and the reciprocal model, the zero-one method is also included for comparison.
The zero-one method (Lee, 1997) is a typical method for score normalization,
which normalizes scores of a resultant list of documents into the range of 0-1.
The experimental result is shown in Tables 12 and 13.

From Tables 12 and 13 we can see that both the logarithmic model and the
reciprocal model are better than the zero-one method in all the cases by a
clear margin (5%-8%). On average, the logarithmic model is slightly better
than the reciprocal model. If we compare them per year, then the reciprocal
model performs better than the logarithmic model in 2009, while it is worse
than the logarithmic model in the other three years. This is mainly because in
2009, fewer documents are relevant to multiple subtopics as in the other three
years. This experiment shows it is very likely that the logarithmic model is a
better option than the reciprocal model for score normalization when multiple
subtopics are considered.

5 Conclusions

In this article we have reported our investigation on search result diversifi-
cation via data fusion. We focus on the linear combination method in which
weight assignment is a key issue. In order to achieve better fusion results,

4 In Figure 3, the curves of the reciprocal model and the logarithmic model are
magnified linearly to best fit the observed curve. Thus it is easier to compare them.
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Table 12
Performance (measured by ERR-IA@20) of data fusion using 3 different score nor-
malization methods (figures in bold indicate the highest performance for a specific
fusion method)

Fusion method Logarithmic Reciprocal Zero-one

CombSum 0.4276 0.4266 0.3990

CombMNZ 0.4200 0.4205 0.3827

p 0.4289 0.4208 0.3983

p2 0.4306 0.4172 0.3974

c 0.4308 0.4211 0.3987

c2 0.4340 0.4196 0.3976

v 0.4281 0.4243 0.3983

v2 0.4290 0.4247 0.3978

pc 0.4338 0.4175 0.3973

p2c 0.4309 0.4215 0.3958

pc2 0.4316 0.4197 0.3961

pv 0.4296 0.4195 0.3982

pv2 0.4303 0.4185 0.3980

p2v 0.4307 0.4180 0.3989

p2cv 0.4316 0.4203 0.3985

pc2v 0.4341 0.4200 0.3972

pcv 0.4344 0.4189 0.3976

Average 0.4303 0.4205 0.3969

±0.0% -2.28% -7.76%

complementarity of results on subtopic coverage has been identified as an im-
portant factor that can be used to decide the weight of a component search
system. Using it alone or combining it with other factors, such as performance
and dissimilarity, can achieve very good results.

Experiments with four groups of results submitted to the TREC web diversity
task show that all the data fusion methods perform well and better than the
best component result. Among those methods proposed, a variety of combined
weights of performance and complementarity and dissimilarity outperform the
others on average. Our experiments also demonstrate that the logarithmic
model is very likely better than the reciprocal model for converting rank in-
formation into scores.
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Table 13
Performance (measured by α-nDCG@20) of data fusion using 3 different score nor-
malization methods (figures in bold indicate the highest performance for a specific
fusion method)

Fusion method Logarithmic Reciprocal Zero-one

CombSum 0.5577 0.5562 0.5233

CombMNZ 0.5502 0.5443 0.5055

p 0.5603 0.5540 0.5235

p2 0.5618 0.5516 0.5233

c 0.5612 0.5542 0.5230

c2 0.5656 0.5532 0.5227

v 0.5574 0.5545 0.5228

v2 0.5568 0.5550 0.5233

pc 0.5661 0.5524 0.5224

p2c 0.5633 0.5553 0.5229

pc2 0.5639 0.5530 0.5232

pv 0.5611 0.5527 0.5229

pv2 0.5619 0.5528 0.5237

p2v 0.5629 0.5530 0.5242

p2cv 0.5619 0.5541 0.5248

pc2v 0.5657 0.5533 0.5234

pcv 0.5663 0.5535 0.5231

Average 0.5622 0.5531 0.5222

±0.0% -1.62% -7.11%

In summary, the experiments demonstrate that data fusion is still a useful
technique for performance improvement when addressing search result diver-
sification. The proposed methods are promising and have the potential to
be used in such applications. However, there are conditions for our methods
to work more effectively than CombSum and CombMNZ: either some of the
component results are more effective than the others or subtopics are unevenly
covered by all the component results. If the component results are generated
by search systems with diversified technologies, then it is very likely that the
methods proposed in this paper are able to achieve better performance. On
the other hand, one deep question is: why the data fusion methods work for
diversified results as well as for relevance-oriented results? In this article we
have addressed it by the introduction of complementarity weights in Section

29



3.2 and by some analysis of the three types of weights in Section 4.2. Some
more theoretical work is desirable and it remains to be our future work.
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