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Abstract

To what extent are effectiveness estimates of nonpharmaceutical interventions
(NPIs) against COVID-19 influenced by the assumptions our models make? To
answer this question, we investigate 2 state-of-the-art NPI effectiveness models
and propose 6 variants that make different structural assumptions. In particular, we
investigate how well NPI effectiveness estimates generalise to unseen countries,
and their sensitivity to unobserved factors. Models that account for noise in disease
transmission compare favourably. We further evaluate how robust estimates are to
different choices of epidemiological parameters and data. Focusing on models that
assume transmission noise, we find that previously published results are remarkably
robust across these variables. Finally, we mathematically ground the interpretation
of NPI effectiveness estimates when certain common assumptions do not hold.

1 Introduction
Nonpharmaceutical interventions (NPIs), such as business closures, gathering bans, and stay-at-home
orders, are a central part of the fight against COVID-19. Yet it is largely unknown how effective
different NPIs are at reducing transmission [2, 7]. With a global rise of COVID-19 cases and an
unknown number of waves to come, better understanding is urgently needed to guide policy. Indeed,
knowing the effectiveness of different NPIs would enable countries to efficiently suppress the disease
without imposing unnecessary burden on the population.

Data-driven NPI modelling is one of the best approaches for inferring NPI effect sizes. These models
assume that the implementation of an NPI affects the course of a country’s epidemic in a particular
way. Then, using publicly available incidence and fatality data, as well as a list of NPIs with their
implementation dates, the NPI model can be inverted, yielding NPI effectiveness estimates.
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However, it is impossible to construct a model without making assumptions. Given the importance
and the policy-relevance of NPI effectiveness estimates, we must ask to what extent are our NPI
effectiveness estimates influenced by the assumptions our models make? If our estimates fluctuate
widely under different plausible assumptions, our results cannot be used to inform policy.

Additionally, it is challenging to collect data about NPI implementation dates in several countries, so
all analyses are limited to a subset of countries. Also, epidemiological parameters describing COVID
are required by NPI effectiveness models, but they are only known with uncertainty. In order for
effectiveness estimates to be used by policymakers, we must also assess their robustness to these
factors.

To address these challenges, we empirically investigate the influence of common assumptions made
by NPI effectiveness models. We build on previous state of the art NPI effectiveness models [2, 7]
and construct 6 variants that make different structural assumptions. Without access to ground-truth
NPI effectiveness estimates, we evaluate models by assessing how well their estimates generalise to
unseen countries, and how much their estimates are influenced by unobserved factors. We find that
assuming transmission noise yields more robust estimates that also generalise better.

Furthermore, we systematically validate all of our models, assessing how sensitive NPI effectiveness
estimates are to variations in the input data and assumed epidemiological parameters. We find
that systematic trends in effectiveness estimates obtained from our models when varying model
structure, data, and epidemiological parameters. In particular, closing schools and universities in
conjunction was consistently highly effective; the effect size of stay-at-home orders is modest;
the additional benefit of closing most nonessential businesses was smaller than targeted closures
of high exposure businesses; and the effectiveness of gathering bans increased as the maximum
gathering size decreased. Our model implementations and sensitivity analyses can be found at
https://github.com/epidemics/COVIDNPIs/tree/neurips.

Finally, we mathematically ground the interpretation of NPI effectiveness estimates when common
assumptions do not hold. In particular, we conclude that our estimates should be interpreted as average,
marginal effectiveness estimates, where the average is taken over the situations in which each NPI
was active. As such, we urge caution in interpreting results from data driven NPI effectiveness models.
For instance, mask-wearing mandates for (some) public spaces were only activated in our data when
several other NPIs were also activated. Therefore, we can only reason about the effectiveness of
mask-wearing mandates in the presence of many other NPIs.

We hope that these results will advance understanding and best practices of COVID-19 NPI effective-
ness models, ultimately helping countries efficiently suppress virus transmission.

Disclaimer. Note that this paper uses the same data as our previous work [2] (medRvix Version
4) and references previously reported results in several places. While our latest results use an updated
dataset and model, the results in this paper have not been updated. The difference does not affect the
claims made here. The exact models and data used to produce these results can be found on Github.

2 Common assumptions in NPI modelling

To investigate the influence of specific assumptions, we must first understand why these assumptions
are made. To infer NPI effect sizes, data-driven NPI effectiveness models must somehow link the
course of a country’s epidemic to NPI implementation dates. Fig. 1 broadly outlines the approach
that our models take. In short, these models assume that implementing an effective NPI immediately
reduces transmission of COVID-19. This transmission is measured using the reproduction number,
R. R is the expected number of people directly infected by one infected person. Therefore, given a
list of NPIs, their effectiveness estimates, and an estimate of the transmission that occurs when no
NPIs are active (the basic reproduction number, R0), we can compute R on a specific day.

However, R is insufficient to calculate the number of infections on a particular day; we also need
to know the time delay between a person becoming infected and then subsequently infecting R
others. This is the Generation Interval (GI), but published estimates vary and often depend on the
specific country studied. Furthermore, we also need to know the time delay between infection and
case/death reporting to link the number of infections to the number of reported cases and deaths (our
observations). These time delays are also only known with uncertainty.
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Figure 1: Approach Overview. Data-driven NPI effectiveness models assume that interventions
affect the course of a country’s epidemic. Note: the right subplot shows simulated data with only one
NPI. In reality, most countries implemented several NPIs, in different orders.

Without making assumptions, our models would be unable to infer NPI effectiveness estimates. The
key question we seek to answer is not whether these assumptions hold in reality (since they do not),
but rather the extent to which our results are the product of a particular assumption.

We proceed by collecting and reviewing the assumptions of our previous work [2]. We then propose
alternative plausible assumptions that would lead to different models. We discuss key assumptions in
this section, but include a more detailed discussion in the Supplement (Section A.5).

Notation. We index time with t and country with c. The reproduction number R is the expected
number of infections caused by one infection (if all members of the population were susceptible).
The basic reproduction number for country c (i.e., R in the absence of any observed NPIs) is R0,c.
The time-varying (instantaneous [8]) reproduction number at time t in country c is Rt,c, which we
use as the measure of transmission. xi,t,c are binary NPI activation features with xi,t,c = 1 indicating
that NPI i is active in country c at time t. y(C)

t,c and y(D)
t,c represent the number of daily reported cases

and deaths respectively. The set of NPIs is denoted as I. Nt,c represents (constant-scaled) numbers
of new daily infections. ↵i 2 R parameterises the effectiveness of NPI i and ↵i > 0 is interpreted
as NPI i being effective. Superscript (C) represents terms corresponding to reported cases, while
superscript (D) corresponds to reported deaths.

2.1 Default Model Outline
To link NPI implementation dates to reported cases and deaths, our models require knowledge of
COVID-19. For example, the generation interval describes the time between successive infection
events. Further, we also need to know the delay between infection and case/death reporting i.e.,
the time delay between a person becoming infected, and their case/death being reported in national
statistics. Since these delays vary across countries and over time, they are difficult to estimate. This
motivates the following assumption.
Assumption 1. Epidemiological parameters are constant across countries and time [7, 1, 3, 22, 28, 2].

We also need to link NPI implementation and effectiveness estimates to our measure of COVID-19
transmission, Rt,c. This is a challenging task. In reality, NPI effectiveness will vary over time as
adherence changes, and will also depend on the specific NPI implementation in a particular country.
For instance, some countries required residents to complete a form to leave their home during a
stay-at-home order, whilst others did not. A common approach to address this is to pool estimates
across countries and time, which motivates the following assumptions.
Assumption 2 (Constant NPI Effectiveness). (a) The effectiveness of NPI i is independent of country
[7, 1, 3, 28, 2]. (b) The effectiveness of NPI i is independent of time [7, 1, 3, 28, 2].

In addition, the effectiveness of different NPIs may depend on the other active interventions. Social
distancing measures may reduce the effectiveness of mandatory mask wearing. However, our data is
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limited. Since we don’t observe all combinations of NPIs in each country, it is challenging to model
NPI interactions. Instead, it is common to assume multiplicative, independent NPI effects.
Assumption 3 (Multiplicative NPI Effects). NPIs have multiplicative effects on Rt,c [7, 1, 3, 2].
Assumption 4 (No NPI Interactions). The effectiveness of NPI i is independent of the other NPIs
that are active [7, 1, 5, 2].

Finally, many factors will affect COVID-19 transmission, such as behavioural change and unrecorded
interventions. However, our models assume that only observed NPIs influence Rt.
Assumption 5 (No Unobserved Factors). Rt,c depends only on R0,c and the active NPIs i.e.,
{xi,t,c}i2I . Therefore, each NPI has its full effect on Rt,c immediately [7, 1, 3, 2].

With Assumptions 2 to 5, we can write:
Rt,c = R0,c

Y

i2I
exp(�↵ixi,t,c). (1)

Rt,c is computed as the basic reproduction number in country c multiplied by country-independent
factors, each of which correspond to active NPIs. We are now able to link NPI implementations to
the time-varying reproduction number, Rt,c, for each country.

We now wish to use Rt to compute the number of daily infections. We will use the discrete time
growth rate, gt,c to do so. gt,c describes the change in the number of daily infections, and satisfies
Nt,c = gt,cNt�1,c. In other words, the number of infections of day t in country c, is equal to the
number of infections on the previous day, multiplied by the growth rate. If gt,c = 1, then there is no
change in the number of infections on subsequent days. How can we link Rt,c to gt,c?
Assumption 6. Rt,c may be converted to gt,c by assuming constant exponential growth [32]:

gt,c = exp
�
M�1

GI (R�1
t,c )
�
, (2)

where M�1
GI is the inverse moment-generating function of the generation interval distribution [2], [7]

(in their sensitivity analysis).

Note that to convert Rt,c to a daily growth rate, we required parameters of the generation interval
distribution: the distribution describing the time between one infection and the subsequent generated
infections. For example, if the generation interval distribution was a delta distribution at t = 5 days,
an infected person would infect Rt others after exactly 5 days.

Since we observe both cases and deaths, we model two sets of daily infection counts. N (C)
t,c represents

the daily number of infections on day t in country c that will lead to reported cases after a time delay.
Similarly, N (D)

t,c represents the daily number of infections on day t in country c that will lead to
reported deaths after a longer time delay. We also introduce noise on the daily growth rate, gt,c to
account for unobserved factors influencing transmission, which partially relaxes Assumption 5 (No
Unobserved Factors).
Assumption 7 (Transmission Noise). (a) There is multiplicative noise on the measure of transmission
(usually gt,c or Rt,c) [2] (similarly used in older epidemic models [8, 29]). (b) In expectation, the
measure of transmission is the same for cases and deaths [2].

We can now write:

N (C)
t,c = N (C)

0,c

tY

t0=1

h
gt0,c · exp

⇣
"(C)
t0,c

⌘i
, N (D)

t,c = N (D)
0,c

tY

t0=1

h
gt0,c · exp

⇣
"(D)
t0,c

⌘i
, (3)

with noise terms "(C)
t0,c , "(D)

t0,c ⇠ N (0,�2
g). Transmission noise partially relaxes Assumption 5 (No

Unobserved Factors) as this noise can account for unobserved factors that influence R. If the timing
of an unobserved factor is uncorrelated with the observed NPIs [5], we expect the unobserved factor
to be attributed to noise. However, if unobserved NPI i is correlated with observed NPI j, the effect
of NPI i may be attributed to NPI j. As our NPI effectiveness models operate with many unobserved
factors, caution is needed in drawing causal conclusions from such observational studies. We discuss
this further in the Supplement A.5.

In addition, this noise can model time-varying changes in the rate of case/death reporting. Specifically,
transmission noise allows for time-varying changes in the Ascertainment Rate, ARc, (the proportion
of infected cases that are subsequently reported) and the Infection-Fatality Rate, IFRc, (the proportion
of infected cases that subsequently die) since "(C)

t0,c affects N (C)
t,c for all t � t0 [2]. For example,
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if the proportion of infections tested in country c increases by 20% on day t0, the model can set
"(C)
c,t0 = log 1.2 = 0.18, which will increase all future case numbers.

Of course, there are also time-invariant differences in case and death reporting, as well as healthcare
quality (that would influence the proportion of infections that die). However, these differences in IFRc

and ARc are accounted for by latent variables N (C)
0,c and N (D)

0,c , which represent infection numbers
of the first day of analysis. Concretely, if the true number of infections in country c is the same as
country c0 for all t, but c tests a greater proportion of the population, we may infer N (C)

0,c > N (C)
0,c0 .

With the above assumptions, we are able to compute the daily number of infections over a time period
if an initial outbreak size, N0,c, is provided. We now seek to map infection counts to our observations:
reported cases and deaths. The daily infections that are eventually reported, N (C)

t,c , and the daily
infections that eventually result in death, N (D)

t,c , are convolved with the delays between infection and
case/death reporting to produce the expected number of new reported cases ȳ(C)

t,c and deaths ȳ(D)
t,c :

ȳ(C)
t,c =

31X

⌧=0

N (C)
t�⌧,c⇡C [⌧ ], ȳ(D)

t,c =
47X

⌧=0

N (D)
t�⌧,c⇡D[⌧ ]. (4)

⇡C [⌧ ] represents the probability of the delay between infection and case reporting being ⌧ days, while
⇡D[⌧ ] represents the probability of the delay between infection and death reporting being ⌧ days. For
computational reasons, we right-truncate these delay distributions at a maximum delay of 31 days
(cases) and 47 days (deaths).

Assumption 8. The output distribution of (observed) reported cases y(C)
t,c and deaths y(D)

t,c follows a
Negative Binomial (NB) distribution [7, 2, 1]:

y(C)
t,c ⇠ NB(µ = ȳ(C)

t,c , (C)), y(D)
t,c ⇠ NB(µ = ȳ(D)

t,c , (D)), (5)
where  (C) and  (D) are the dispersion parameters (larger  correspond to less noise) for cases
and deaths, which are inferred from the data. The negative binomial distribution is suitable as it has
support over N0, and allows for over-dispersion, with independent mean and variance parameters.

2.2 Alternative Assumptions

We now propose alternative assumptions to those of the default model. We later use these assumptions
to construct alternative models.

Additive Effects. Instead of Assumption 3 (Multiplicative NPI Effects), we could assume additive
NPI effects.
Assumption 9 (Additive NPI Effects). The introduction of NPI i has an additive effect on Rt,c by
affecting a non-overlapping, constant proportion of initial transmission, R0,c. The introduction of
NPI i eliminates all transmission related to i.

This may be intuitively understood as follows. Transmission occurring in the absence of NPIs may
be due to non-overlapping fractions. For example, 25% of R0 could be associated with educational
institutes, 35% with businesses, and 40% unaffected by NPIs. Closing businesses would eliminate
the corresponding 35% of transmission. This leads to:

Rt,c = R0,c

 
↵̂+

X

i2I
↵i (1� xi,t,c)

!
, with ↵̂+

X

i2I
↵i = 1, (6)

↵i > 0 8i and ↵̂ > 0. ↵i is the proportion of transmission eliminated by introducing NPI i while
↵̂ > 0 represents the proportion of transmission that remains even when all NPIs are active.

Different Effects. It is possible to simultaneously relax Assumptions 4 (No NPI Interactions) and 2a
(Constant NPI Effectiveness over Countries) by allowing NPI effects to vary across countries. For
example, if we find a relatively higher effectiveness for NPI i in country c, this could be caused by
interactions with the other NPIs that were active in country c when i was implemented, or by other
country-specific factors such as country c’s population demographics.
Assumption 10 (Different NPI Effects). Country-specific NPI effectiveness parameters, {↵i,c}c, are
drawn i.i.d. according to N (↵i,�2

↵). �↵ is a hyperparameter describing the variance in effectiveness
across countries.
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Noisy-R. Transmission noise could instead be applied directly to Rt,c rather than to gt,c (Eq. 3):

R(C)
t,c = R̄t,c exp "

(C)
t,c , R(D)

t,c = R̄t,c exp "
(D)
t,c , (7)

where "(C)
t,c , "(D)

t,c ⇠ N (0,�2
R).

Discrete Renewal Infection Process. We previously converted Rt,c to gt,c by assuming constant
exponential growth (Assumption 6). We can alternatively use a discrete renewal process that does not
make this assumption [6, 28]. We then write:

N (C)
t,c = R(C)

t,c

28X

⌧=1

N (C)
t�⌧,c · ⇡GI [⌧ ], N (D)

t,c = R(D)
t,c

28X

⌧=1

N (D)
t�⌧,c · ⇡GI [⌧ ], (8)

Under this infection model, transmission noise would be applied to Rt,c as in Eq. (7). ⇡GI [⌧ ] is the
truncated, discretised generation interval distribution.

No Transmission Noise. Recall that transmission noise can be used to explain time-varying changes
in reporting and treatment, as well as unobserved factors. Alternatively, output noise could be used to
model these factors.
Assumption 11 (No Transmission Noise). There is no noise in the measure of transmission (Rt,c or
gt,c) [7, 22, 1].

3 Experiments & Methodology
We now use previously outlined assumptions to construct 8 models that make different structural
assumptions. By comparing NPI effectiveness estimates under these models, we effectively compare
effectiveness estimates under different assumptions. This will allow us to assess how the assumptions
made influence our NPI effectiveness estimates.

The models that we construct are: Default, the model used our previous work [2] (medRvix Version
4); Additive Effects, where the NPI interaction is additive; Different Effects, where NPI effectiveness
is allowed to vary per country; Noisy-R, where noise is applied to Rt,c rather than gt,c; Discrete
Renewal (DR), where the infection model is a discrete renewal process and noise is applied on Rt,c;
Deaths-Only DR — identical to the DR model, except only deaths are modelled; Flaxman et al. [7],
which is identical to Deaths-Only DR, but has no transmission noise; and Default (No Transmission
Noise), which is identical to Default but has no transmission noise. Fig. 4 (Supplement) outlines the
differences between these models.

Model Evaluation. While our models are reasonable a priori, we must also empirically validate
them. In particular, an analysis of holdout predictive performance is required, even though prediction
is not our purpose [11, 12]. Holdout predictive performance can be used to rule out models—since
we expect that a significant fraction of variation in national cases and deaths can be explained by
NPIs, there is little reason to trust an NPI model that entirely fails to predict on held-out data. We
measure holdout predictive likelihood on a test-set of 6 countries, having tuned hyperparameters by
cross-validation.

In addition, we must assess how NPI effectiveness estimates from these models are influenced by
unobserved factors. Our data does not capture all NPIs implemented in each region, and transmission
is also influenced by other variables, including behaviour change not attributable to our NPIs. Here,
we assess sensitivity to unobserved factors by evaluating how inferred NPI effectiveness parameters
change when previously observed NPIs become unobserved (NPI leave-outs), as well as when
previously unobserved NPIs are observed [30]. Additional NPIs are drawn from the Oxford COVID-
19 Government Response Tracker (OxCGRT) NPI dataset [14]. We favour models with stable
effectiveness estimates under these conditions, as this indicates the model assigns unobserved effects
to noise and not to our NPIs.

We report sensitivity to unobserved factors using the following loss: Lc =
1
|I|
P

i2I std[median(↵̃i)],
where the standard deviation is over multiple test conditions of analysis category c e.g., if c =
NPI leave-outs, the standard deviation is taken over several model runs where one NPI at a time is
made unobserved and all else is equal. We compute the standard deviation in posterior median NPI
effectiveness across tests for every NPI, and then average this over our NPIs. ↵̃i is the effectiveness
of NPI i in units “percentage reduction in R”;. Larger Lc indicates higher sensitivity.

Model Robustness. Finally, following our previous work [2], we perform extensive sensitivity
experiments across 6 additional categories for these models. To examine sensitivity to data we vary:
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Figure 2: Model comparison. Left: holdout performance, measured using predictive log-likelihood
on a test-set of 6 regions Right: sensitivity to unobserved factors.

the included countries, by holding out each country one at a time; the cumulative threshold for case
masking; and the threshold for death masking. Recall that all NPI studies are limited to a limited
number of countries due to data collection difficulties. Additionally, since epidemiological parameters
are only known with uncertainty, we examine sensitivity to epidemiological parameters by varying
the parameters of the generation interval; the infection to case reporting delay; the infection to death
reporting delay distributions; the prior mean over R0,c; and the prior over NPI effectiveness. In total,
the sensitivity analysis includes over 600 experimental conditions.

Data & Implementation. We use our previous NPI dataset [2], composed of data on the implemen-
tation of 9 NPIs in 41 countries between January and end of May 2020 (validated with independent
double entry). Data on reported cases and deaths is from the Johns Hopkins CSSE tracker [19].
Please see Supplement A.7.1 for further details. We implement our models in PyMC3 [31], using
Hamiltonian Monte Carlo NUTS [15] for inference. We use 4 chains with 1250 samples per chain.
For runs with default settings, we ensure that the Gelman-Rubin R̂ is less than 1.05 and that there are
no divergent transitions. Our sensitivity analyses and model implementations are available online.

Related Work. Unfortunately, holdout performance validation is often limited or absent in other
previous work. The majority of NPI studies do not report holdout performance [16, 17, 1, 23, 3, 22, 24,
9, 18]. Flaxman et al. [7] hold out the last fourteen days in all countries in parallel. While sensitivity
analyses are more common than holdout validation often only a small subset of epidemiological
parameters are examined and sensitivity to model structure (structural sensitivity) is not evaluated.
Flaxman et al. [7] check sensitivity to the generation interval and to leaving out individual countries,
fit the reproduction number (R, the expected number of infections directly generated by one infected
individual) with a non-parametric model, and compare to an alternative model of R0. Banholzer et al.
[1] check the sensitivity of their results to the delay from infection to reporting, the threshold initial
case count, influential single data points, the form of the influence function, and to restricting NPI
effectiveness to be positive. Jarvis et al. [18] varied the reduction in post-lockdown contact among
young people. Many NPI studies do not mention sensitivity or validation at all [3, 28, 4, 20, 26, 24, 9].

4 Results & Discussion
Fig. 2 shows holdout predictive performance and sensitivity to unobserved factors for these models.
Holdout performance is similar across models, but consistently better for deaths than cases, reflecting
that the predictions for cases are for more days and further into the future than for death, as deaths
appear later than cases—see also Fig. A.2. However, the sensitivity to unobserved factors varies
significantly across models; in particular, the discrete renewal model is more sensitive than the
default model. Since the sum of NPI effectiveness estimates is constrained for the Additive Effects
model, it has the lowest sensitivity. Furthermore, we find that including transmission noise both
improves holdout predictive performance and increases robustness to unobserved factors, suggesting
models with transmission noise are less likely to assign unobserved factors to observed NPIs. Further,
transmission noise more closely reflects the underlying stochastic process and has history in epidemic
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modelling [8, 29]. Therefore, we proceed by excluding models without transmission noise in
subsequent analyses.
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Figure 3: Aggregated sensitivity analysis for models with transmission noise. Each dot represents
posterior median effectiveness in one experimental condition for one model. Since the Additive
Effects model expresses NPI effectiveness in a different unit, we show its results in a separate plot.

Structural sensitivity analysis. Having excluded models without transmission noise, we now assess
the robustness of inferred NPI effectiveness estimates to variations in the data and epidemiological
parameters for the remaining 6 models.

Fig. 3 shows the results of our additional sensitivity analyses. The Additive Effects Model is plotted
separately to reflect that the effectiveness values cannot be directly compared: the multiplicative
models represent effectiveness values in terms of multiplicative reductions in Rt, while the Additive
Effects Model represents effectiveness as additive reductions in Rt, but as percentages of R0. Con-
sequently, the absolute reduction in Rt when an NPI is implemented is independent of other active
NPIs for the Additive Effects Model, but not for the multiplicative effects models.

We find systematic trends in median NPI effectiveness estimates, even across variations in model
structure, data and epidemiological parameters. Stay-at-home order and mask-wearing mandates
are consistently among the least effective NPIs, suggesting they may have had played a relatively
small role in reducing transmission in our window of analysis. Closing schools and universities
in conjunction tends to be one of of the most effective NPIs (these two NPIs cannot be separated
since they are highly collinear–see [2]). Amongst the multiplicative effect models, we find that that
marginal benefit of most nonessential businesses closed, i.e., the additional reduction in transmission
when most nonessential businesses are closed given that some businesses are already closed, is
modest. Curiously, the DR and Deaths-Only DR models both find a relatively lower effectiveness
for gatherings limited to 1000 or less and a relatively higher effectiveness for gatherings limited to
10 or less, but differ substantially in the estimates for gatherings limited to 100 or less. We suggest
that lower effectiveness of gatherings limited to 100 or less for the DR model is in part due to the
effectiveness of some businesses closed being relatively higher. We discuss our results and their
potential policy implications in greater depth in our previous work [2].

5 Effectiveness Depends on Context
If we do not use Assumption 10, we assume that NPI effectiveness is constant over countries and time,
and does not depend on the other active NPIs (Assumptions 4 and 2). In reality, these assumptions
do not hold. For instance, mask wearing mandates may have a greater effect on R when no social
distancing measures are in place. Also, the specifics of NPI implementation differ across countries
e.g., some countries required residents to complete a form to leave their home during a stay-at-home
order, whilst others did not. Furthermore, NPI adherence (and thus effectiveness) will vary over time.
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How should effectiveness estimates be interpreted when these assumptions are violated? To gain
insight, we assume that ground truth values of gt,c, Rt,c and R0,c have been provided. Consider
simplified versions of the Default Model and the Noisy-R Model that directly observe these values.

Simplified Default Model. gt,c = g(Rt,c) exp("t,c), with Rt,c = R0,c
Q

i2I exp(�↵i xi,t,c).
Simplified Noisy-R Model. gt,c = g(Rt,c), with Rt,c = R0,c exp("t,c)

Q
i2I exp(�↵i xi,t,c),

i.e., the Simplified Default Model applies noise "t,c ⇠ N (0,�2) to gt,c whilst the Simplified Noisy-R
Model applies noise to Rt,c. We now derive expressions for the Maximum Likelihood (ML) estimates
of ↵i given {↵j}j 6=i, presented in terms of exp(�↵i) i.e., the factor by which NPI i reduces R.

Let �i = {(t, c)|xi,t,c = 1} be the days and countries with NPI i active.
Let R̃(�i),t,c = R0,c

Q
j2I\{i} exp(↵jxj,t,c) i.e., R̃(�i),t,c is the predicted R ignoring the effect of i.

Theorem 1. The ML estimate of ↵i, given {↵j}j 6=i, under the Simplified Noisy-R Model satisfies:

exp(�↵i) =

⇣Q
(t,c)2�i

Rt,c

⌘1/|�i|

⇣Q
(t,c)2�i

R̃(�i),t,c

⌘1/|�i|
=

M0( {Rt,c}�i )

M0( {R̃(�i),t,c}�i )
, (9)

where M0(S) denotes the geometric mean of set S . The ML solution for exp(�↵i) is the ratio of two
geometric means over all country-days when NPI i is active: the numerator is the mean ground-truth
Rt,c and the denominator is the mean of the predicted value of Rt,c if NPI i was deactivated.

To compute the ML solution for the Simplified Default Model, recall that Assumption 6 lets us write
log g(R) = �

�
R1/⌫ � 1

�
, where ⌫ is the shape and � is the inverse scale of the GI distribution,

assumed to be a Gamma(⌫,�) distribution [2, 7]. We use the well-known analytical form for MGI(·).
Theorem 2. The ML solution of ↵i, given {↵j}j 6=i, under the Simplified Default Model satisfies:

exp(�↵i) =

0

@
X

(t,c)2�i

R̃1/⌫
(�i),t,cR̄

1/⌫
t,c

1

A
⌫,0

@
X

(t,c)2�i

R̃1/⌫
(�i),t,cR̃

1/⌫
(�i),t,c

1

A
⌫

=
MWi

1/⌫({R̄t,c}�i)

MWi

1/⌫({R̃(�i),t,c}�i)

(10)
where MWi

1/⌫(S) is the generalized weighted mean of set S , with exponent 1/⌫ and weights
Wi = {wc,t = (R̃(�i),t,c)

1
⌫ }. R̄t,c is the ground truth R that exactly corresponds to the observed g.

Proofs: See Supplement.

Notably, the minor variation in model structure gives a significant difference in ML solutions; the ML
solution of the Simplified Noisy-R Model is a ratio of geometric means, whilst that of the Simplified
Default Model is a ratio of generalized weighted means that weighs observations more when the
predicted R, excluding NPI i, is larger. However, in both models, when Assumptions 4 and 2 do not
hold, ↵i can be interpreted as an average additional effectiveness, since it is produced by averaging
over the data distribution. Therefore, care must be taken when interpreting NPI effectiveness
estimates. For example, we previously estimated that stay-at-home orders were associated with a
small reduction in R [2]. However, whenever stay-at-home orders were active in our data, almost
always several other NPIs were also active; consequently, the results should be interpreted as
‘implementing a stay-at-home order is associated with a modest reduction in R when other effective
NPIs are already active’.

6 Conclusions
We find that our previously reported NPI effectiveness results [2] are robust across several alternative
model structures with transmission noise. For a more comprehensive discussion of the NPI effective-
ness results and their implications, we refer the reader to Brauner et al. [2]. While the robustness
of these results is promising, the numerous assumptions and limitations inherent to data-driven NPI
modelling imply that we should neither treat these results as the last word on NPI effectiveness,
nor treat the effects as causal. Instead, policy-makers should draw on diverse sources of evidence,
including other retrospective studies, experimental methods, and clinical experience. Our validation
suite and model implementations are available online and we urge those working on estimating NPI
effectiveness to systematically validate their models.
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Broader Impact

The rapid pace of the COVID-19 research cycle has increased the erroneous and misreported findings
reaching popular attention [21]. It is critical that such errors are caught before publication; the sensi-
tivity analyses developed in this work can uncover faulty assumptions, and so prevent overconfidence
or misinformation. We intend for our findings to aid other modelling teams in producing highly
reliable, policy-guiding estimates of NPI effects; to this end we release our sensitivity analysis suite
and model implementations.

This work is written as many governments are selecting the time and order in which to reintroduce
NPIs, and attempting to control second wave epidemics. It offers vital validation of the evidence, to
help minimise harm to the world population.

One potential risk stems from miscommunication: we must not mistake high robustness for excessive
certainty. We expect the results and conclusions of NPI effectiveness models to change as best practice
evolves. In addition, the subtle issues of interpretation raised in Section 5 are difficult to convey
to non-technical audiences, and could easily be misread as unconditional effects, or extrapolated
incorrectly.
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