
Partition-Based Formulations for Mixed-Integer
Optimization of Trained ReLU Neural Networks

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, Ruth Misener
Department of Computing, Imperial College London

South Kensington, SW7 2AZ, United Kingdom
{c.tsay, j.kronqvist, alexander.thebelt18, r.misener}@imperial.ac.uk

Abstract—This paper introduces a class of mixed-integer
formulations for trained ReLU neural networks. The
approach balances model size and tightness by partitioning
node inputs into a number of groups and forming the
convex hull over the partitions via disjunctive program-
ming. At one extreme, one partition per input recovers the
convex hull of a node, i.e., the tightest possible formulation
for each node. For fewer partitions, we develop smaller
relaxations that approximate the convex hull, and show
that they outperform existing formulations. Specifically,
we propose strategies for partitioning variables based
on theoretical motivations and validate these strategies
using extensive computational experiments. Furthermore,
the proposed scheme complements known algorithmic
approaches, e.g., optimization-based bound tightening cap-
tures dependencies within a partition.

I. INTRODUCTION

Many applications use mixed-integer linear program-
ming (MILP) to optimize over trained feed-forward
ReLU neural networks [1]–[6]. A MILP encoding of
a ReLU-NN enables network properties to be rigorously
analyzed, e.g., verifying robustness of an output (of-
ten classification) within a restricted input domain [7].
MILP encodings of ReLU-NNS have also been used
to determine robust perturbation bounds [8], compress
NNs [9], count linear regions [10], and find adversarial
examples [11]. The so-called big-M formulation is the
main approach for encoding NNs as MILPs and is used
in all above references. Optimizing the resulting MILPs
remains challenging for large networks, even with state-
of-the-art software.

Effectively solving a MILP hinges on the strength of its
continuous relaxation [12]; weak relaxations can render
MILP problems computationally intractable. For NNs,
Anderson et al. [13] showed that the big-M formulation
is not tight and presented formulations for the convex
hull (i.e., the tightest possible formulation) of individual

nodes. However, the convex hull formulations require
either an exponential (with respect to node inputs) number
of constraints or many additional/auxiliary variables.
So, despite its weaker continuous relaxation, the big-M
formulation can be computationally advantageous owing
to its smaller size.

Given these challenges, we present a novel class of
MILP formulations for ReLU-NNs. The formulations are
hierarchical: their relaxations start at a big-M equivalent
and converge to the convex hull. Intermediate formu-
lations can closely approximate the convex hull with
many fewer variables/constraints. The formulations are
constructed by viewing each ReLU node as a two-part
disjunction. Kronqvist et al. [14] proposed hierarchical
relaxations for general disjunctive programs. This work
uses a similar hierarchy to construct strong and efficient
MILP formulations for ReLU-NNs. Specifically, we par-
tition the inputs of each node into groups and formulate
the convex hull over the resulting groups. With fewer
groups than inputs, this approach results in MILPs that are
smaller than convex-hull formulations, yet have stronger
relaxations than big-M.

Three optimization tasks evaluate the new formulations:
optimal adversarial examples, robust verification, and `1-
minimally distorted adversaries. Extensive computation
shows that our formulations outperform the standard big-
M approach with 25% more problems solved within a 1h
time limit (average 2.2X speedups for solved problems).

Related work. Techniques for obtaining strong relax-
ations of ReLU-NNs include linear programming [15]–
[17], semidefinite programming [18], [19], Lagrangian
decomposition [20], combined relaxations [21], and
relaxations over multiple nodes [22]. These relaxation
techniques do not exactly represent ReLU-NNs, but rather
derive valid bounds for the network in general. These
techniques might fail to verify some properties, due to
their non-exactness, but they can be much faster than
MILP-based techniques.

ar
X

iv
:2

10
2.

04
37

3v
1

 [
m

at
h.

O
C

]
 8

 F
eb

 2
02

1

Strong MILP encoding of ReLU-NNs was also studied
in [13]. Our approach is fundamentally different, as
it constructs computationally cheaper formulations that
approximate the convex hull, and we start by deriving a
stronger relaxation instead of strengthening the relaxation
via cutting planes. Furthermore, our formulation enables
input node dependencies to easily be incorporated.

Contributions of this paper. We present a new class
of strong, yet compact, MILP formulations for feed-
forward ReLU-NNs. Section III-A observes how, in
conjunction with optimization-based bound tightening,
partitioning input variables can efficiently incorporate
dependencies into MILP formulations. Section III-B
builds on the convex disjunctive programming relaxations
in [14] to prove the hierarchical nature of the proposed
formulations for ReLU-NNs, with relaxations spanning
between big-M and convex-hull formulations. Sections
III-C–III-D show that formulation tightness depends on
the specific choice of variable partitions, and we present
efficient partitioning strategies based on both theoretical
and computational motivations. The advantages of the
new formulations are demonstrated via extensive compu-
tational experiments in Section IV.

II. BACKGROUND

A. Feed-forward Neural Networks

A feed-forward neural network (NN) is a directed
acyclic graph with nodes structured into a number of
k layers. Layer k receives the outputs of nodes in the
preceding layer k − 1 as its inputs (layer 0 represents
inputs to the NN). Each node in a layer computes a
weighted sum of its inputs (known as the preactivation),
and applies an activation function. This work considers
the ReLU activation function:

y = max(0,wTx + b) (1)

where x ∈ Rη and y ∈ [0,∞) are, respectively, the inputs
and output of a node (wTx + b is the preactivation).
Parameters w ∈ Rη and b ∈ R are its weights and bias.

B. ReLU Optimization Formulations

In contrast to the training of NNs (where parameters
w and b are optimized), optimization over a NN seeks
extreme cases for a trained model. Therefore, model
parameters (w, b) are fixed, and the inputs/outputs of
nodes in the network (x, y) are optimization variables
instead.

Big-M Formulation. The ReLU function (1) is com-
monly modeled [2], [8]:

y ≥ (wTx + b) (2)

y ≤ (wTx + b)− (1− σ)LB0 (3)

y ≤ σUB0 (4)

where σ ∈ {0, 1} is a binary variable corresponding to
the on-off state of the neuron. The formulation requires
the bounds (big-M coefficients) LB0,UB0 ∈ R, which
should be as tight as possible, such that (wTx + b) ∈
[LB0,UB0].

Disjunctive Programming [23]. We observe that (1)
can be alternatively modeled as a disjunctive program:[

y = 0
wTx + b ≤ 0

]
∨
[
y = wTx + b
wTx + b ≥ 0

]
(5)

Note that the second equation is not necessary to model y,
but in general results in a tighter formulation for x. The
extended formulation for disjunctive programs introduces
auxiliary variables for each disjunction. Defining z :=
wTx, za ∈ R and zb ∈ R can be introduced to model
(5):

wTx = za + zb (6)

za + σb ≤ 0 (7)

zb + (1− σ)b ≥ 0 (8)

y = zb + (1− σ)b (9)

σLBa ≤ za ≤ σUBa (10)

(1− σ)LB b ≤ zb ≤ (1− σ)UB b (11)

where the summation in (6) can be used to eliminate
either za or zb. Therefore, in practice, only one auxiliary
variable is introduced by the formulation (6)–(11).

Relaxation strength. MILP is often solved with
branch-and-bound, a strategy that bounds the objective
function between a feasible point and its optimal relax-
ation. The integral search space is explored by “branching”
until the gap between bounds reaches a desired value. A
tighter, or stronger, relaxation can reduce this search tree
considerably.

III. DISAGGREGATED DISJUNCTIONS: BETWEEN

BIG-M AND THE CONVEX HULL

Our proposed formulations split the sum z = wTx into
partitions: we will show these formulations are tighter
than (6)–(11). In particular, we partition the set {1, ..., η}
into subsets S1 ∪ S2 ∪ ... ∪ SN = {1, ..., η}; Sn ∩ Sn′ =
∅ ∀n 6= n′. An auxiliary variable is then introduced for

each partition, i.e., zn =
∑

Sn
wixi. Replacing z = wTx

with
∑

n zn, n = 1, ..., N , the disjunction (5) becomes:[
y = 0∑N

n=1 zn + b ≤ 0

]
∨
[
y =

∑N
n=1 zn + b
y ≤ 0

]
(12)

The extended formulation then introduces auxiliary vari-
ables zan and zbn for each zn:∑

i∈Sn

wixi = zan + zbn (13)∑
n

zan + σb ≤ 0 (14)∑
n

zbn + (1− σ)b ≥ 0 (15)

y =
∑
n

zbn + (1− σ)b (16)

σLBa
n ≤ zan ≤ σUBa

n,∀n = 1, ..., N (17)

(1− σ)LB b
n ≤ zbn ≤ (1− σ)UB b

n,∀n = 1, ..., N (18)

where again σ ∈ {0, 1}. We observe that (13)–(18)
exactly represents the ReLU node described by (12):
substituting zn =

∑
Sn
wixi in the extended convex hull

formulation [23] of disjunction (12), directly gives (13)–
(18).

Eliminating zan via (13) results in our proposed formu-
lation: ∑

n

(∑
i∈Sn

wixi − zbn

)
+ σb ≤ 0 (19)∑

n

zbn + (1− σ)b ≥ 0 (20)

y =
∑
n

zbn + (1− σ)b, σ ∈ {0, 1} (21)

σLBa
n ≤

∑
i∈Sn

wixi − zbn ≤ σUBa
n,∀n = 1, ..., N (22)

(1− σ)LB b
n ≤ zbn ≤ (1− σ)UB b

n,∀n = 1, ..., N (23)

Note that domains [LBa
n,UB

a
n] and [LB b

n,UB
b
n] may not

be equivalent, owing to the inequality constraints in (12).

A. Obtaining and Tightening Bounds

The big-M formulation (2)–(4) requires valid bounds
(wTx + b) ∈ [LB0,UB0]. Given bounds for each input
variable, xi ∈ [x

¯ i
, x̄i], interval arithmetic gives valid

bounds:

LB0 =
∑
i

(x
¯ i

max(0, wi) + x̄imin(0, wi)) + b (24)

UB0 =
∑
i

(x̄imax(0, wi) + x
¯ i

min(0, wi)) + b (25)

But (24)–(25) do not provide the tightest valid bounds
in general, as dependencies between the input nodes
are ignored. Propagating the resulting over-approximated
bounds from layer to layer leads to increasingly large over-
approximations, i.e., propagating weak bounds through
multiple layers results in a significantly weakened model.
Note that these bounds remain in the proposed formula-
tion (19)–(23) in the form of bounds on both the output y
and the original variables x (i.e., outputs of the previous
layer).

Optimization-Based Bound Tightening (OBBT) or
progressive bounds tightening [4], tightens variable
bounds and constraints [24]. For example, solving the
optimization problem with the objective set to mini-
mize/maximize (wTx + b) gives bounds: min(wTx +
b) ≤ wTx + b ≤ max(wTx + b). To simplify these
problems, OBBT can be performed using the relaxed
model (i.e., σ ∈ [0, 1] rather than σ ∈ {0, 1}), resulting
in a linear program (LP). In contrast to the bounds
from (24)–(25), bounds from OBBT incorporate variable
dependencies. We apply OBBT by solving one LP per
bound.

The partitioned formulation (19)–(23) requires bounds
such that zan ∈ σ[LBa

n,UB
a
n], zbn ∈ (1− σ)[LB b

n,UB
b
n].

In other words, [LBa
n,UB

a
n] is a valid domain for

zan when the node is inactive (σ = 1) and vice
versa. These bounds can also be obtained via OBBT:
min(

∑
Sn
wixi) ≤ zan ≤ max(

∑
Sn
wixi);w

Tx + b ≤ 0.
The constraint on the right-hand side of disjunction (12)
can be similarly enforced in OBBT problems for zbn. In
our framework, OBBT additionally captures dependencies
among each partition Sn. Specifically, we observe that the
partitioned OBBT problems effectively form the convex
hull over a given polyhedron of the input variables,
in contrast to the convex hull formulation, which only
considers the box domain defined by the min/max of
each input node [13].

Since
∑

Sn
wixi = zan + zbn and zanz

b
n = 0, the bounds

[min(
∑

Sn
wixi), max(

∑
Sn
wixi)] are valid for both zan

and zbn. These bounds can be from (24)–(25), or by
solving two OBBT problems for each auxiliary variable
zn (2N LPs total). This simplification uses equivalent
bounds for zan and zbn, but tighter bounds can potentially
be found by performing OBBT for zan and zbn separately
(4N LPs total).

Figure 1 compares tightness of the proposed formula-
tion with bounds from interval arithmetic (top row) vs
OBBT (bottom row). The true model outputs (blue), and
minimum (orange) and maximum (green) outputs of the
relaxed model are shown over the domain of inputs. The

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 1

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 2

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 5

x1
0

1
x2

0

1

f(x
)

0

1.5

N = 20

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 1

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 2

x1
0

1
x2

0

1

0

0.5

1

1.5

N = 5

x1
0

1
x2

0

1

f(x
)

0

1.5

N = 20

Fig. 1. Hierarchical relaxations from N = 1 (equiv. big-M) to N = 20 (convex hull of each node over a box domain) for a two-input
(x1, x2) NN trained on scaled Ackley function, with output f(x). Top row: zbn bounds obtained using interval arithmetic; Bottom row: zbn
bounds obtained by optimization-based bound tightening. The partitions are formed using the equal size strategy.

NNs are trained on the scaled 2-D Ackley function and
comprise two inputs, three hidden layers with 20 nodes
each, and a single output. As expected, OBBT greatly
improves relaxation tightness.

B. Tightness of the Proposed Formulation

Proposition 1. Formulation (19)–(23) has the equivalent
non-lifted (i.e., without auxiliary variables) formulation:

y ≤
∑
i∈Ij

wixi + σ(b+
∑
i∈I\Ij

UB i)+

(σ − 1)(
∑
i∈Ij

LB i),∀j = 1, ..., 2N (26)

y ≥ wTx + b (27)

y ≤ σUB0 (28)

where UB i and LB i denote, respectively, the upper and
lower bounds of wixi. The set I denotes the input indices
{1, ..., η}, and the subset Ij contains the union of the
j-th combination of partitions {S1, ...,SN}.

Proof. Formulation (19)–(23) introduces N auxiliary
variables zbn, n = 1, ..., N , which can be projected
out using Fourier-Motzkin elimination. The constraint
(26) is thus enumerated for all combinations of size
1, .., N from the partitions, resulting in combinations
I1, ..., IJ , J = 2N .

Proposition 2. Formulation (19)–(23) for the case of
N = 1 is equivalent to the big-M formulation (2)–(4).

Proof. When N = 1, it follows that S1 = {1, .., η}.
Therefore, z1 =

∑η
i=1wixi = wTx, and

∑
n zn = z1 =

z. Conversely, big-M can be seen as the convex hull over
a single aggregated “variable,” z = wTx.

Proposition 3. Formulation (19)–(23) represents the
convex hull of (1) for the case of N = η.

Proof. When N = η, it follows that Sn = {n}, ∀n =
1, .., η, and, consequently, zn = wnxn. The auxiliary
variables can be expressed in terms of xn, rather of zn
(i.e., zan = wnx

a
n and zbn = wnx

b
n):

xn = xan + xbn (29)

wTxa + σb ≤ 0 (30)

wTxb + (1− σ)b ≥ 0 (31)

y = wTxb + (1− σ)b (32)

σ
LBa

n

wn
≤ xan ≤ σ

UBa
n

wn
,∀n = 1, ..., η (33)

(1− σ)
LB b

n

wn
≤ xbn ≤ (1− σ)

UB b
n

wn
,∀n = 1, ..., η (34)

This formulation with a copy of each input represents
the convex hull of the neuron, e.g., see [13]; however,
the overall model tightness still strongly depends on the
bounds used for xn, n = 1, ..., η.

Proposition 4. A formulation with N partitions is strictly
tighter than any formulation with (N − 1) partitions that
is derived by combining two partitions in the former.

Proof. When combining two partitions, i.e., S′N−1 :=
SN−1 ∪ SN , constraints in (26) where S′N−1 ⊆ Ij are
also obtained by {SN−1,SN} ⊆ Ij . In contrast, those
obtained by SN−1 ∨ SN ⊆ Ij cannot be modeled by
S′N−1. Since each constraint in (26) is facet-defining
[13], omissions result in a less tight formulation.

Remark. The convex hull can be formulated with η
auxiliary variables (29)–(34), or 2η constraints (26).
While these formulations have tighter relaxations, they
can perform worse than big-M due to having more
difficult branch-and-bound subproblems. Our proposed
formulation balances this tradeoff by introducing a
hierarchy of relaxations with increasing tightness and size.
The convex hull is created over partitions zn, n = 1, ..., N ,
rather than the input variables xn, n = 1, ..., η. There-
fore, only N auxiliary variables or 2N constraints are
introduced, with N ≤ η.

Figure 1 shows a hierarchy of increasingly tight
formulations from N = 1 (equiv. big-M) to N = 20
(convex hull of each node over a box input domain). The
intermediate formulations approximate the convex-hull
(N = 20) formulation well, but need fewer auxiliary
variables/constraints.

C. Effect of Input Partitioning Choice

Formulation (19)–(23) creates the convex hull over
zn =

∑
Sn
wixi, n = 1, ..., N . Therefore, N dictates

model size, but the choice of subsets, S1, ...,SN , can
strongly impact its relaxation. By Proposition 4, (19)–
(23) can in fact give multiple hierarchies of formulations.
While the hierarchies eventually converge to the convex
hull, we are especially interested in those with tight
relaxations for small N .

Bounds and Bounds Tightening. Bounds on the
partitions play a key role in the proposed formulation. For
example, consider when a node is inactive: σ = 1, zbn = 0,
and (22) gives the bounds σLBa

n ≤
∑

Sn
wixi ≤ σUBa

n.
Intuitively, the proposed formulation represents the con-
vex hull over the auxiliary variables, zn =

∑
Sn
wixi,

and their bounds play a key role in model tightness.
We hypothesize these bounds are most effective when
partitions Sn are selected such that wixi,∀i ∈ Sn are of
similar orders of magnitude.

Consider for instance the case of w = [1, 1, 100, 100]
and xi ∈ [0, 1], i = 1, ..., 4. As all weights are positive,
interval arithmetic gives 0 ≤

∑
xiwi ≤

∑
x̄iwi.

With two partitions, the choices of S1 = {1, 2} vs
S1 = {1, 3} give:[

x1 + x2 ≤ σ2
x3 + x4 ≤ σ2

]
or

[
x1 + 100x3 ≤ σ101
x2 + 100x4 ≤ σ101

]
(35)

where σ is a binary variable. The constraints on the right
closely approximate the η-partition (i.e., convex hull)
bounds: x3 ≤ σ and x4 ≤ σ. But x1 and x2 are relatively
unaffected by a perturbation σ = 1 − δ (when σ is
relaxed). Whereas the formulation on the left constrains
the four variables equivalently. If the behavior of the
node is dominated by a few inputs, the formulation on
the right is strong, as it approximates the convex hull
over those inputs (z1 ≈ x3 and z2 ≈ x4 in this case).
For the practical case of N << η, there are likely fewer
partitions than dominating variables.

The size of the partitions can also be selected to be
uneven:[

x1 ≤ σ1
x2 + 100x3 + 100x4 ≤ σ201

]
or[

x3 ≤ σ1
x1 + x2 + 100x4 ≤ σ102

]
(36)

Similar tradeoffs are seen here: the first formulation
provides the tightest bound for x1, but x2 is effectively
unconstrained and x3, x4 approach the “equal treatment”
constraint above. The second formulation provides the
tightest bound for x3, and a tight bound for x4, but x1, x2
are effectively unbounded for fractional σ.

The above analyses also apply to the case of OBBT.
For the above example, solving a relaxed model for
max(x1 + x2) obtains a bound that affects the two
variables equivalently, while the same procedure for
max(x1 + 100x3) obtains a bound that is much stronger
for x3 than for x1. Similarly, max(x1 + x2) captures
dependency between the two variables, while max(x1 +
100x3) ≈ max(100x3).

Relaxation Tightness. The partitions (and their
bounds) also directly affect the tightness of the relaxation
for the output variable y. The equivalent non-lifted
realization (26) reveals the tightness of the above simple
example. The partitions S1 = {1, 3},S2 = {2, 4} result
in the constraints:

y ≤ x1 + 100x3 + σ(b+ 101) (37)

y ≤ x2 + 100x4 + σ(b+ 101) (38)

Note that combinations Ij = ∅ and Ij = {1, 2, 3, 4} in
(26) are not analyzed here, as they correspond to the
big-M/1-partition model and are unaffected by choice of

partitions. The 4-partition model is the tightest formula-
tion and (in addition to all possible 2-partition constraints)
includes:

y ≤ xi + σ(b+ 201), i = 1, 2 (39)

y ≤ 100xi + σ(b+ 102), i = 3, 4 (40)

The 2-partition (37)–(38) closely approximates two of the
4-partition (i.e., convex hull) constraints (40). Analogous
to the tradeoffs in terms of bound tightness, we see that
this formulation essentially neglects the dependence of y
on x1, x2 and instead creates the convex hull over z1 =
x1 + 100x3 ≈ x3 and z2 ≈ x4. For this simple example,
the behavior of y is dominated by x3 and x4, and this
turns out to be a relatively strong formulation. However,
when N << η, we expect neglecting the dependence of
y on some input variables to weaken the model.

The alternative partitions S1 = {1, 2},S2 = {3, 4}
give:

y ≤ x1 + x2 + σ(b+ 200) (41)

y ≤ 100x3 + 100x4 + σ(b+ 2) (42)

This formulation handles the four variables similarly and
creates the convex hull in two new directions: z1 =
x1 + x2 and z2 = 100(x3 + x4). While (42) does not
model the individual effect of either x3 or x4 on y as
well as (37)–(38), it does include dependency between x3
and x4. Furthermore, x1 and x2 are modeled equivalently
(i.e., less tightly than individual constraints). Analyzing
partitions with unequal size reveals similar tradeoffs. This
section shows that the proposed formulation selects a
subset of constraints from the convex hull formulation
(26), revealing a strong tradeoff between modeling the
effect of individual variables well vs the effect of many
variables weakly.

Remark. While the above 4-D case suggests “unbal-
anced” partitions may be favorable, it is difficult to de-
velop a small example with N << η. Our computational
results confirm that “balanced” partitions perform better.

D. Strategies for Selecting Partitions

The above rationale strongly motivates selecting par-
titions that result in a model that treats input variables
(approximately) equivalently for the practical case of
N << η. Specifically, we seek to evenly distribute
tradeoffs in model tightness among input variables.
Section III-C suggests a reasonable approach is to select
partitions such that the weights in each are approximately
the same (weights are fixed during optimization). We
propose two such strategies below.

Partitions of Equal Size. One strategy we propose
to achieve this is to create partitions of equal size, i.e.,
|S1| = |S2| = ... = |SN | (note that they may differ by
up to one if η is not a multiple of N). The indices are
then assigned to partitions to keep the weights in each
partition as close as possible. This is accomplished by
first sorting the weights w, then distributing them evenly
among the partitions (array_split(argsort(w), N)
in Numpy).

Partitions of Equal Range. A second strategy is
to partition with equal range, i.e., range

i∈S1

(wi) = ... =

range
i∈SN

(wi). We define thresholds v ∈ RN+1 such that v1

and vN+1 are min(w) and max(w). To reduce the effect
of outliers, we define v2 and vN as the 0.05 and 0.95
quantiles of w, respectively. The remaining elements of v
are distributed evenly in (v2, vN). Indices i ∈ {1, ..., η}
are then assigned to the subset Sn : wi ∈ [vn, vn+1).
This strategy requires N ≥ 3, but, for a symmetrically
distributed weight vector, w, two partitions of equal size
are also of equal range.

We compare our proposed strategies against the fol-
lowing:

Random Partitions. Partitions are created by assign-
ing indices {1, ..., η} randomly to partitions S1, ...,SN .

Uneven Magnitudes. Weights are sorted by decreasing
magnitude and “dealt” to partitions in a snake-draft order.

IV. EXPERIMENTS

All computational experiments were performed on
a 3.2 GHz Intel Core i7-8700 CPU (12 threads) with
16 GB memory. Models were implemented and solved
using Gurobi v 9.1 [25]. The LP algorithm was set
to dual simplex, cuts = 1 (moderate cut generation),
TimeLimit = 3600s, and default termination criteria
were used. We set parameter MIPFocus = 3 to ensure
consistent solution approaches across formulations.

Neural Networks. We trained several NNs on MNIST
[26] and CIFAR-10 [27], including both fully con-
nected NNs and convolutional NNs (CNNs). Dense
models are denoted by nLayers × nHidden and comprise
nLayers × nHidden hidden plus 10 output nodes. CNN2
is based on ‘ConvSmall’ of the ERAN dataset [28]:
{Conv2D(16, (4,4), (2,2)), Conv2D(32, (4,4), (2,2)),
Dense(100), Dense(10)}. CNN1 halves the channels
in each convolutional layer: {Conv2D(8, (4,4), (2,2)),
Conv2D(16, (4,4), (2,2)), Dense(100), Dense(10)}.
The implementations of CNN1/CNN2 have 1,852/3,604
and 2,476/4,852 nodes for MNIST and CIFAR-10, respec-
tively. NNs are implemented in PyTorch [29] and obtained

using standard training (i.e., without regularization or
methods to improve robustness).

A. Optimal Adversary Results

The optimal adversary problem takes a target image
x̄, its correct label j, and an adversarial label k, and finds
the image within a range of perturbations maximizing
the difference in predictions. Mathematically, this is
formulated as max

x
(fk(x) − fj(x));x ∈ X , where fk

and fj correspond to the k- and j-th elements of the NN
output layer, respectively, and X defines the domain of
perturbations. We consider perturbations defined by the
`1-norm (||x − x̄||1 ≤ ε1 ∈ R), which promotes sparse
perturbations [30]. For each dataset, we use the first 100
images from the corresponding test dataset and randomly
selected adversarial labels (the same 100 verification
problems are used for models trained on the same dataset).

Table I gives the optimal adversary results. Perturba-
tions ε1 were selected such that some big-M problems
were solvable within 3600s (problems become more
difficult as ε1 increases). While formulations with both
two and four partitions consistently outperform big-M
in terms of problems solved and solution times, the best
choice of N is problem-dependent. For instance, the
4-partition formulation performs best for the 2 × 100
network trained on CIFAR-10; Figure 2 shows the
number of problems solved for this case. The 2-partition
formulation is best for easy problems, but is soon
overtaken by larger values of N . Intuitively, simpler
problems are solved with fewer nodes in a branch-and-
bound tree and benefit more from smaller subproblems.
Performance declines again near N ≥ 7, supporting
observations that the convex-hull formulation (N = η)
is not always best [13]. All partition-based formulations
consistently outperform big-M (N = 1).

102 103

time (s)
0

20

40

60

80

100

so
lv

ed
 (#

)

N=1
N=2
N=3
N=4
N=5

N=6
N=7
N=8
N=9
N=10

Fig. 2. Number solved vs run time for optimal adversary problems
(ε = 5) for the CIFAR-10, 2× 100 model for various values of N .
Each line shows 100 runs. N = 1 (equivalent to big-M) performs the
worst; N = 2 performs well for easier problems; and intermediate
values of N balance tradeoffs between model size and tightness well.
Performance begins to decline near N ≥ 7.

Partitioning Strategies. Figure 3 shows the result
of the input partitioning strategies from Section III-D
on the MNIST 2 × 100 model for varying N . Both
proposed strategies (blue) outperform formulations with
random and uneven partitions (red). With OBBT, big-
M (N = 1) outperforms partition-based formulations
when partitions are selected poorly. Figure 3 also shows
the same tradeoff as Figure 2: our formulations perform
best for some intermediate N , while the random/uneven
partitions worsen with increasing N . The equal range
strategy performs best for large N .

Optimization-Based Bounds Tightening. OBBT was
implemented by tightening bounds for all zbn. We found

TABLE I
NUMBER OF SOLVED (IN 3600S) OPTIMAL ADVERSARY PROBLEMS AND AVERAGE SOLVE TIMES FOR BIG-M VS N = {2, 4} EQUAL-SIZE

PARTITIONS. AVERAGE TIMES COMPUTED FOR PROBLEMS SOLVED BY ALL 3 FORMULATIONS. GREY INDICATES FORMULATIONS
STRICTLY OUTPERFORMING BIG-M.

Dataset Model ε1 Big-M 2 Partitions 4 Partitions
solved(#) avg.time(s) solved(#) avg.time(s) solved(#) avg.time(s)

MNIST 2× 50 5 100 57.6 100 42.7 100 83.9
2× 50 10 97 431.8 98 270.5 98 398.4
2× 100 2.5 92 525.2 100 285.1 94 553.9
2× 100 5 32 1473.7 59 494.6 48 988.9
CNN1* 0.25 68 1099.7 86 618.8 87 840.0
CNN1* 0.5 2 2293.2 16 1076.0 11 2161.2

CIFAR-10 2× 100 5 62 1982.3 69 1083.4 85 752.8
2× 100 10 23 2319.0 28 1320.2 34 1318.1

*OBBT performed on all NN nodes

1 2 3 4 5 6 7 8 9 10
N

20

40

60

80

100
Nu

m
be

r S
ol

ve
d

Eq. Size
Eq. Range

Random
Ueven

1 2 3 4 5 6 7 8 9 10
N

103

Av
g

Ti
m

e
So

lv
ed

Eq. Size
Eq. Range

Random
Ueven

Fig. 3. Number solved (top) and solution times (bottom) for optimal
adversary problems for MNIST 2× 100 (ε = 5). Each point shows
100 runs, max time of 3600s. Dashed lines show runs with OBBT. The
equal range strategy requires N ≥ 3. Our proposed (blue) partitioning
strategies solve more problems (top) faster (bottom) than random and
uneven partitions (red)

that adding the bounds from the 1-partition model (i.e.,
bounds on

∑
zbn) improved all models, as they account for

dependencies among all inputs. Therefore these bounds
were used in all models, resulting in 2N+2 LPs per node
(N ≥ 2). We limited the OBBT LPs to 5s; interval bounds
were used if an LP was not solved. Figure 3 shows that
OBBT greatly improves the optimization performance
of all formulations. OBBT problems for each layer are
independent and could, in practice, be solved in parallel.
Therefore, at a minimum, OBBT requires the sum of
max solution times found in each layer (5s × # layers
in this case). This represents an avenue to significantly
improve MILP optimization of NNs via parallelization.
In contrast, parallelizing branch-and-bound is known to
be challenging and gives limited benefits [31], [32].

B. Verification Results

The verification problem is defined similarly to the
optimal adversary problem, but terminates when the sign
of the objective function is known (i.e., the lower/upper
bounds of the MILP have the same sign). This problem
is typically solved for perturbations defined by the `∞-
norm (||x − x̄||∞ ≤ ε∞ ∈ R). Here, problems are
difficult for moderate ε∞: at large ε∞ a mis-classified
example (positive objective) is easily found. Several
verfication tools rely on an underlying big-M formulation,
e.g., MIPVerify [4], NSVerify [33], making big-M an
especially relevant point of comparison.

Owing to the early termination, larger NNs can be
tested compared to the optimal adversary problems.
We turned off cuts (cuts= 0) for the partition-based
formulations, as the models are relatively tight over the
box-domain perturbations and do not seem to benefit
from additional cuts. On the other hand, removing cuts
improved some problems using big-M and worsened
others. Results for the verification problem are presented
in Table II. The partition-based formulations again
generally outperform big-M (N = 1), except for a few
of the 4-partition problems.

C. Minimally Distorted Adversary Results

In a similar vein as [34], we define the `1-minimally
distorted adversary problem: given a target image x̄
and its correct label j, find the smallest perturbation
over which the NN predicts an adversarial label k. We
formulate this as min

ε1,x
ε1; ||x− x̄||1 ≤ ε1; fk(x) ≥ fj(x).

The adversarial label k is selected as the second-likeliest
class of the target image. Figure 4 illustrates that the `1-
norm promotes sparse perturbations, unlike the `∞-norm.

Target ε1 = 4 ε∞ = 0.05

Fig. 4. Sample `1- vs `∞-based minimally distorted adversaries for
the MNIST 2× 50 model. The adversarial label (k) is ‘4.’

Table III presents results for the minimally distorted ad-
versary problems. As input domains are unbounded, these
problems are considerably more difficult than the above
optimal adversary problems. Therefore, only smaller
MNIST networks were manageable (with OBBT) for
all formulations. Again, all partition-based formulations

TABLE II
NUMBER OF SOLVED (IN 3600S) VERIFICATION PROBLEMS AND AVERAGE SOLVE TIMES FOR BIG-M VS N = {2, 4} EQUAL-SIZE
PARTITIONS. AVERAGE TIMES COMPUTED FOR PROBLEMS SOLVED BY ALL 3 FORMULATIONS. OBBT WAS PERFORMED FOR ALL

PROBLEMS. GREY INDICATES FORMULATIONS STRICTLY OUTPERFORMING BIG-M.

Dataset Model ε∞ Big-M 2 Partitions 4 Partitions
solved(#) avg.time(s) solved(#) avg.time(s) solved(#) avg.time(s)

MNIST CNN1 0.050 82 198.5 92 27.3 90 52.4
CNN1 0.075 30 632.5 52 139.6 42 281.6
CNN2 0.075 21 667.1 36 160.7 31 306.0
CNN2 0.100 1 505.3 5 134.7 5 246.3

CIFAR-10 CNN1 0.007 99 100.6 100 25.9 99 45.4
CNN1 0.010 98 85.1 100 21.1 100 37.5
CNN2 0.007 80 1016.7 95 412.8 68 1712.7
CNN2 0.010 40 2246.7 72 859.9 35 2449.4

TABLE III
NUMBER OF SOLVED (IN 3600S) `1-MINIMALLY DISTORTED ADVERSARY PROBLEMS AND AVERAGE SOLVE TIMES FOR BIG-M VS
N = {2, 4} EQUAL-SIZE PARTITIONS. AVERAGE TIMES AND ε1 ARE COMPUTED FOR PROBLEMS SOLVED BY ALL 3 FORMULATIONS.

OBBT WAS PERFORMED FOR ALL PROBLEMS. GREY INDICATES PARTITION FORMULATIONS STRICTLY OUTPERFORMING BIG-M.

Dataset Model avg(ε1) Big-M 2 Partitions 4 Partitions
solved(#) avg.time(s) solved(#) avg.time(s) solved(#) avg.time(s)

MNIST 2× 50 6.51 52 675.0 93 150.9 89 166.6
2× 75 4.41 16 547.3 37 310.5 31 424.0
2× 100 2.73 7 710.8 13 572.9 10 777.9

consistently outperform big-M, solving more problems
and in less time.

V. CONCLUSIONS

This work presented MILP formulations for ReLU
NNs that can balance having both a tight relaxation
and manageable size. The approach strategically parti-
tions node inputs and forms the convex hull over said
partitions: we presented theoretical and computational
motivations for obtaining good partitions for ReLU nodes.
Furthermore, our approach expands the benefits of OBBT,
which, unlike conventional MILP tools, can easily be
parallelized. Results on three classes of optimization
tasks show that the proposed formulations consistently
outperform standard MILP encodings, allowing us to
solve 25% more of the considered problems. A >2X
speedup is achieved on average for solved problems.

ACKNOWLEDGMENTS

This work was supported by Engineering & Physical
Sciences Research Council (EPSRC) Fellowships to CT
and RM (grants EP/T001577/1 and EP/P016871/1), an
Imperial College Research Fellowship to CT, a Royal So-
ciety Newton International Fellowship (NIF\R1\182194)
to JK, a grant by the Swedish Cultural Foundation in
Finland to JK, and a PhD studentship funded by BASF
to AT.

REFERENCES

[1] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output
range analysis for deep feedforward neural networks,” in NASA
Formal Methods Symposium. Springer, 2018, pp. 121–138.

[2] A. Lomuscio and L. Maganti, “An approach to reachability
analysis for feed-forward ReLU neural networks,” arXiv preprint
arXiv:1706.07351, 2017.

[3] G. Wu, B. Say, and S. Sanner, “Scalable planning with deep
neural network learned transition models,” Journal of Artificial
Intelligence Research, vol. 68, pp. 571–606, 2020.

[4] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness
of neural networks with mixed integer programming,” arXiv
preprint arXiv:1711.07356, 2017.

[5] B. Grimstad and H. Andersson, “ReLU networks as surrogate
models in mixed-integer linear programs,” Computers & Chemi-
cal Engineering, vol. 131, p. 106580, 2019.

[6] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Mis-
ener, “Efficient verification of ReLU-based neural networks via
dependency analysis,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3291–3299.

[7] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar,
“A unified view of piecewise linear neural network verification,”
arXiv preprint arXiv:1711.00455, 2017.

[8] C.-H. Cheng, G. Nührenberg, and H. Ruess, “Maximum re-
silience of artificial neural networks,” in International Sympo-
sium on Automated Technology for Verification and Analysis.
Springer, 2017, pp. 251–268.

[9] T. Serra, A. Kumar, and S. Ramalingam, “Lossless compression
of deep neural networks,” in Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Springer,
2020, pp. 417–430.

[10] T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding and
counting linear regions of deep neural networks,” in International
Conference on Machine Learning. PMLR, 2018, pp. 4558–
4566.

[11] M. Fischetti and J. Jo, “Deep neural networks and mixed integer
linear optimization,” Constraints, vol. 23, no. 3, pp. 296–309,
2018.

[12] M. Conforti, G. Cornuéjols, and G. Zambelli, “Integer program-
ming, volume 271 of Graduate Texts in Mathematics,” 2014.

[13] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P.
Vielma, “Strong mixed-integer programming formulations for
trained neural networks,” Mathematical Programming, pp. 1–37,
2020.

[14] J. Kronqvist, R. Misener, and C. Tsay, “Between steps: Interme-
diate relaxations between big-M and convex hull formulations,”
arXiv preprint arXiv:2101.12708, 2021.

[15] E. Wong and Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in Inter-
national Conference on Machine Learning. PMLR, 2018, pp.
5286–5295.

[16] R. Ehlers, “Formal verification of piece-wise linear feed-forward
neural networks,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2017, pp.
269–286.

[17] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel,
D. Boning, and I. Dhillon, “Towards fast computation of certified
robustness for ReLU networks,” in International Conference on
Machine Learning. PMLR, 2018, pp. 5276–5285.

[18] A. Raghunathan, J. Steinhardt, and P. S. Liang, “Semidefinite
relaxations for certifying robustness to adversarial examples,”
in Advances in Neural Information Processing Systems, vol. 31.
Curran Associates, Inc., 2018, pp. 10 877–10 887.

[19] S. Dathathri, K. Dvijotham, A. Kurakin, A. Raghunathan,
J. Uesato, R. Bunel, S. Shankar, J. Steinhardt, I. Goodfellow,
P. Liang et al., “Enabling certification of verification-agnostic
networks via memory-efficient semidefinite programming,” arXiv
preprint arXiv:2010.11645, 2020.

[20] R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli,
P. Torr, and M. P. Kumar, “Lagrangian decomposition for neural
network verification,” in Conference on Uncertainty in Artificial
Intelligence. PMLR, 2020, pp. 370–379.

[21] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “Boosting
robustness certification of neural networks.” in International
Conference on Learning Representations, 2019.

[22] G. Singh, R. Ganvir, M. Püschel, and M. Vechev, “Beyond the
single neuron convex barrier for neural network certification,”
in Advances in Neural Information Processing Systems, 2019,
pp. 15 098–15 109.

[23] E. Balas, Disjunctive Programming. Springer International
Publishing, 2018.

[24] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli,
“A dual approach to scalable verification of deep networks.” in
Conference on Uncertainty in Artificial Intelligence, vol. 1, no. 2,
2018, p. 3.

[25] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,”
2020. [Online]. Available: http://www.gurobi.com

[26] Y. LeCun, C. Cortes, and C. Burges, “MNIST hand-
written digit database,” ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[27] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[28] G. Singh, J. Maurer, C. Müller, M. Mirman, T. Gehr,
A. Hoffmann, P. Tsankov, D. Drachsler Cohen, M. Püschel, and

M. Vechev, “ERAN verification dataset.” [Online]. Available:
https://github.com/eth-sri/eran

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, 2019,
pp. 8024–8035.

[30] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh,
“Ead: elastic-net attacks to deep neural networks via adversarial
examples,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[31] T. Achterberg and R. Wunderling, “Mixed integer programming:
Analyzing 12 years of progress,” in Facets of Combinatorial
Optimization. Springer, 2013, pp. 449–481.

[32] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch, “Parallel solvers
for mixed integer linear optimization,” in Handbook of Parallel
Constraint Reasoning. Springer, 2018, pp. 283–336.

[33] M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano,
“Reachability analysis for neural agent-environment systems.”
in International Conference on Principles of Knowledge Repre-
sentation and Reasoning, 2018, pp. 184–193.

[34] F. Croce and M. Hein, “Minimally distorted adversarial examples
with a fast adaptive boundary attack,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 2196–2205.

http://www.gurobi.com
https://github.com/eth-sri/eran

	I Introduction
	II Background
	II-A Feed-forward Neural Networks
	II-B ReLU Optimization Formulations

	III Disaggregated Disjunctions: Between Big-M and the Convex Hull
	III-A Obtaining and Tightening Bounds
	III-B Tightness of the Proposed Formulation
	III-C Effect of Input Partitioning Choice
	III-D Strategies for Selecting Partitions

	IV Experiments
	IV-A Optimal Adversary Results
	IV-B Verification Results
	IV-C Minimally Distorted Adversary Results

	V Conclusions
	References

