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For decades, electrification planning in the developingworld has often focused on extending the national grid to
increase electricity access. This article draws attention to thepotential complementary role of decentralized alter-
natives – primarily micro-grids – to address universal electricity access targets. To this aim, we propose a meth-
odology consisting of three steps to estimate the LCOE and to size micro-grids for large-scale geo-spatial
electrification modelling. In the first step, stochastic load demand profiles are generated for a wide range of set-
tlement archetypes using the open-source RAMPmodel. In the second step, stochastic optimization is carried by
the open-sourceMicroGridsPymodel for combinations of settlement size, loaddemandprofiles and other impor-
tant techno-economic parameters influencing the LCOE. In the third step, surrogate models are generated to au-
tomatically evaluate the LCOE using a multivariate regression of micro-grid optimization results as a function of
influencing parameters defining each scenario instance. Our developments coupled to the OnSSET electrification
tool reveal an important increase in the cost-competitiveness of micro-grids compared to previous analyses.
© 2020 The Authors. Published by Elsevier Inc. on behalf of International Energy Initiative. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Access to electricity is a fundamental driver to reduce poverty and en-
able social, economic and human development (Karekezi et al., 2012).
Traditionally, electricity access has often been measured as a binary
issue of households being connected to electricity or not (International
Energy Agency and the World Bank, 2015). However, to accomplish de-
sired socio-economic development benefits, multiple aspects of energy
access – quantity, reliability, affordability, sustainability and safety –
should be accounted when designing electrification solutions for un-
served or underserved populations (Bhatia and Angelou, 2015).
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Electricity access does not automatically bring desired socio-economic
development benefits to newly electrified populations (Odarno et al.,
2017). If poorly designed, a supply system can constrain the productive
activity of households, community facilities and enterprises. Regardless
of quality, if the services derived from electricity access are expensive,
consumers will not be able to afford to pay for the service. Hence, energy
access initiatives should build upon the understanding between electric-
ity demand and cost of supply to ensure that electricity access and devel-
opment become mutually reinforcing endeavours (Odarno et al., 2017).

Many efforts are underway across developing countries to enable
policy, regulatory and financial conditions to foster energy access. How-
ever, government and utility budgets for electrification are often limited
and can only afford to provide access to a limited number of people per
year. Therefore, electricity access projects have to prioritize between
grid extension and off-grid solutions to meet annual electrification tar-
gets. To address this challenge, research organizations have started to
develop spatially explicit electrification tools to identify priority areas
and techno-economic characteristics for grid-extension and off-grid so-
lutions to assist in decision-making and budget allocations.
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1 There are several types of territorial organizations with their own denomination such
as communities, municipalities, provinces and departments. A community is an area
whose limits are identifiable and authorities are recognized by its inhabitants and by its
neighbors.
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In recent years, electrification planningmodels associatedwith Geo-
graphic Information Systems (GIS) and remote sensing data have
emerged as independent software packages (Moner-Girona et al.,
2018). In principle, thesemodelling tools address large-scale electrifica-
tion plans (regional, country or continent level) using techno-economic
and GIS data to match energy resources with potential energy demands
to provide the least-cost electricity service. The Levelized Cost Of Elec-
tricity (LCOE) is often used to select the combination of grid-connected
and off-grid solutions that can serve as least-cost options in a territory
given a demand potential within a specified time horizon.

Following this methodology, a handful of analytical tools are avail-
able and continuously developed and further upgraded (Moner-
Girona et al., 2018). Some examples of this first generation GIS-based
modelling tools – affiliated to several country scale projects – are the
Re2nAF, Network Planner (NP), the Reference Energy Model (REM)
and the Open Source Spatial Electrification Tool (OnSSET) (Szabó et
al., 2011; Ohiare, 2015; Amatya et al., 2019; Mentis et al., 2015). Other
noteworthy work available in the literature includes independent elec-
trification studies for Uganda (Kaijuka, 2007), Kenya (Zeyringer et al.,
2015), Nigeria (Bertheau et al., 2016) and the West African continent
(Auth et al., 2014).

To ensure accessibility, transparency and reproducibility of this re-
search article (two important features of high-quality scientific research
(Pfenninger et al., 2017)), OnSSETwas selected among the other electri-
fication modelling tools for being fully open-source. OnSSET is a soft-
ware written in Python, developed by the division of Energy Systems
Analysis from the Royal Institute of Technology in Sweden (Mentis et
al., 2017), with further advances on grid-extension algorithms and set-
tlement clustering developed by Korkovelos et al. (2019). A range of in-
dicators based on open-source geospatial data are used to determine
the initial electrification status – such as proximity to the roads, proxim-
ity to existing transmission infrastructure, nightlights and population
density. It also determines the additional capacity and investments re-
quired to fulfil electrification targets using various geospatial socio-eco-
nomic and renewable resource data (Korkovelos et al., 2019).

OnSSET and the aforementioned models evaluate various technol-
ogy options to identify the least-cost electrification solution in large-
scale applications. While the methods vary in complexity among these
tools, one common caveat lies in the technical accuracy of micro-grid
systems modelling.

The Re2nAF sizemono-sourcemicro-grids (solarwith battery or die-
sel) assuming a simple daily load demand profile and varying the PV
array and battery size (or diesel generator capacity) geographically to
satisfy a demand proportional to population size (Szabó et al., 2011).
Network Planner considers only diesel micro-grids for its analysis and
estimates the size using a simple relation of generation capacity and
peak demand data in every node (Ohiare, 2015). REM designs optimal
configurations of multi-source micro-grids for a number of representa-
tive combinations of consumers, and it approximates micro-grid de-
signs for other combinations of customers by interpolation of existing
solutions stored in a lookup table (Ciller et al., 2019). Similar to
Re2nAF, OnSSET size mono-source micro-grids using a simple energy
balance to meet an average peak demand in every settlement (Mentis
et al., 2015; Korkovelos et al., 2019).

Adequate micro-grids sizing requires matching unpredictable energy
sources with uncertain demands while optimizing for reliability and cost
(Mandelli et al., 2016a). Since evaluating every micro-grid candidate
(one-by-one optimization) at a large scale is computationally impractical,
we develop a modelling framework to bridge the “computational gap”
between technically detailed micro-grid systems analyses and large-
scale electrification modelling.

An innovative three-step framework is proposed with the objective
to capture high-resolution peculiarities of electricity demand and to
evaluate cost-optimal micro-grid performance at large-scale electrifica-
tion modelling (Balderrama-Subieta et al., 2019). To do so, two special-
ized open-source modelling tools were used to generate surrogate
models to automatically evaluate the LCOE in OnSSET. The surrogate
models derive from a multivariate regression of micro-grid optimiza-
tion results as a function of influencing parameters.

The open-source RAMPmodel – standing for Remote AreasMulti-en-
ergy system load Profiles –was used to generate representative load de-
mand profiles using interview-based information for a number of
representative settlement archetypes (Lombardi, Balderrama, Quoilin, &
Colombo, 2019). While the open-source Micro-GridsPy model was used
to optimize the size of micro-grid system components (Balderrama-
Subieta et al., 2019). A “Solution Pool” dataset containing optimized solu-
tions for a wide range of possible settlement archetypes and other
techno-economic parameters (diesel cost, lost load and capital costs) is
used to obtain an adequate size for every micro-grid candidate.

Although the application of the new framework requires additional
datasets, the benefit of its implementation lies in the ability to assess
complex micro-grid systems at large-scale electrification modelling
with increased technical accuracy. Even further, it allows the represen-
tation of hybrid micro-grid technologies which will otherwise provide
inaccurate results by means of a simplified model.
Case study

The territory of Bolivia covers an area of 1,098,581 km2 of unique ge-
ography with contrasting climatic zones. Its main altitudinal classifica-
tion divides the territory in the highlands (up to 6500 m.a.s.l) and the
lowlands (b800 m.a.s.l). This geographical differentiation was used to
characterize the demand of rural populations in Bolivia with distinctive
climatic, cultural and socioeconomic characteristics. Climatically, the
lowlands of Bolivia are characterized by a monsoon and tropical savan-
nah climate; while the highlands experience large variations, from
warm humid subtropical to cold desert climate (Kottek et al., 2006).

Bolivia has currently a population of 11 million inhabitants, from
which 67.3% live in urban areas and 32.7% live in rural areas (Instituto
Nacional de Estadística, 2018). In less than two decades, the electrifica-
tion rate in Bolivia increased from 64% in 2000 to 93% in 2018 (MHE,
2014). In the same period, the electrification rate in urban areas in-
creased from85% to 98% and from25% to 78% in rural areas. The govern-
ment of Bolivia has set a goal to reach universal access to electricity by
2025, requiring a national strategy to guide investment needs for grid-
extension and off-grid solutions.

Fig. 1.a and Fig. 1.b illustrate the population size and electrification
rate in the near 19,300 communities1 of Bolivia. The highest concentra-
tion of fully electrified communities is closer to the capital cities and
close to the high-voltage network, being mostly dense-populated
areas. Small populations near and far away from the high-voltage grid
have the lowest electrification rates.

The so-called “Isolated Systems” (Sistemas Aislados in Spanish) are
decentralized mini-grids. In 2018, the Isolated Systems supplied elec-
tricity to near 10% of the total electrified households (211 thousand
households) and made the 6.8% of the total installed capacity.

Asmini-grids can vary largely in size (from kilowatts tomegawatts),
a distinction between mini-grids and micro-grids is made in this article
(see “Mini-grids and micro-grids differentiation” section). Micro-grids
refer in our study to smaller systems than mini-grids with small non-
regulated distribution systems. Existing mini-grids in Bolivia have a
size in the order of megawatts with regulated distribution networks.
The current mini-grid installed capacity is 180 MW, with an energy
mix of 66% gas, 25% diesel, 6% hydropower and 4% solar (Autoridad de
Electricidad, 2015). In recent years, several mini-grid systems have



Fig. 1. Overview of the electrification status in communities of Bolivia. Note that the size of the symbols is not representative of the area. a. Classification of population size in each com-
munity and high-voltage transmission lines in 2018. Population extrapolated from National Census 2012. b. Electrification rate in communities of Bolivia in 2012.
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Fig. 2. Population threshold for micro-grids assessment. Communities with 50 to 550
households and without initial connection to the grid are considered for our micro-grids
analysis.
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been incorporated to the national grid, reducing their carbon footprint
by being dispatched as peak technologies (MHE, 2014). Only a handful
number of micro-grids have been implemented in Bolivia, serving to
small communities ranging from 125 to 377 households (Balderrama-
Subieta et al., 2017).

Population threshold for micro-grid analysis specific to Bolivia
Geo-referenced data from the latest National Census on Population

and Households (‘Censo Nacional de Población y Vivienda’) was avail-
able for this study. The Census dataset contains geo-referenced data
on number of households, electrification status, electricity source
(grid, mini-grid, PV panel, diesel generator) and exact geographic loca-
tion of 19,280 communities (INE& VMEEA, 2015). Given the availability
of this data, the algorithm to determine the initial electrification status
from the OnSSET methodology was not used.

A preliminary assessment of the Census database revealed that com-
munities with N550 un-electrified households have a percentage of
households connected to the grid. Only 14 communities with N550
un-electrified households do not have any initial connection to the
grid. Communities with b50 households have high shares on low-in-
come households. Therefore, these demands are too small (as small as
1 MWh per settlement per year) to justify grid-extension until 2025.

These characteristics have direct implications on the least cost elec-
trification solution. An initial connection to the grid and an accumulated
high demand is anticipated to make grid extension themost cost-effec-
tive alternative. In contrast, low demand and large distance (larger than
50 km) from the high-voltage grid make standalone systems the most
cost-effective. Specifically for communities with high demands and
large distances from the grid, either mini-grids or grid extension are
the most suitable (an indicative calibration of these relations is given
by Fuso-Nerini et al., 2016).

Given the Census dataset contains communitieswith awide range of
sizes – from a handful of households to few thousands of households –
we must simplify the range in which micro-grids are assessed. There-
fore, our micro-grid systems analysis for Bolivia focuses specifically in
communities with a minimum of 50 households (sufficient demand)
and a maximum of 550 households (larger sizes have an existing con-
nection to the grid). Fig. 2 illustrates the location of the communities
with the selected population threshold. The reader must notice that
the methodology for micro-grids described in the following sections is
designed to communities in the range between 50 and 550 households
and will not be suitable for communities with populations outside of
this range.
Methods

This section is divided into five sub-sections. “Demand
characterization for Bolivia” section details the data available for Bo-
livia and assumptions to characterize and to estimate the demand for
every community of the National Census database. “Electrification
technologies and focus of the study” section introduces to the main
concepts of the study, the technologies assessed and the population
threshold selected to evaluate micro-grids. “OnSSET original algorithms
for grid extension, mini-grid and stand-alone systems” section summa-
rizes OnSSET original algorithms for each technology type. “Micro-grid
systems design” section describes themethodological additions of the ar-
ticle to model micro-grids. Finally, a description of the cost scenarios
assessed is presented in “Cost scenarios” section.

Demand characterization for Bolivia

To characterize the population living in each community of the Cen-
sus database, socio-economic information deriving from poverty maps



Fig. 3. Taxonomy of electrification technologies and cost components.
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was used to classify households into two income categories: high-in-
come (HI) and low-income (LI) (GeoBolivia, 2012a). This database pro-
vides a georeferenced headcount ratio of the population living under
five poverty categories in Bolivia based on the Unsatisfied Basic Needs,
UBN, multidimensional method (Feres and Mancero, 2001). According
to the UBN classification, two categories correspond to the population
living above the poverty threshold and the other three categories corre-
spond to the population living below the poverty threshold. For the sake
of simplicity, were re-classified thesefive categories into two categories.
The percentage of the population living above the poverty threshold
was categorized as HI and the remaining population as LI.

A distinction of the electricity demand of HI and LI populations living
in densely populated communities (N1000 households) and low popu-
lated communities (b1000 households) was proposed. For low popu-
lated communities, surveyed data from two existing off-grid micro-
grid systemswas used to characterize the demand of populations living
in the highlands (800–4000 m.a.s.l) and lowlands (b800 m.a.s.l) of Bo-
livia. Data from two survey campaigns in the villages of “El Espino”
(19.188° S, −63.560° W) and “Toconao” (23.187° S, 68.004° W) were
available at the moment of writing this article and used as representa-
tive of the lowlands and the highlands in Bolivia respectively. El Espino
is a village located in Santa Cruz, Bolivia while Toconao is a village lo-
cated in Chile, in proximity with Bolivia. A description of both systems
is further detailed in Lombardi et al. (2019), Pistolese et al. (2017),
and Balderrama-Subieta, Haderspock, Canedo, Renan, and Quoilin
(2018). For densely populated communities (N1000 households), infor-
mation of electricity demandwas approximated by downscaling data at
national level (Autoridad de Electricidad, 2015).

In addition to household information, electricity demand of commu-
nity facilities (education and health centres) and public services (public
lighting) was also collected. Open-source georeferenced data on the lo-
cation of existing health and education centres in Bolivia is available in
(GeoBolivia, 2013; GeoBolivia, 2012b). Proximity methods were used
to group georeferenced data on existing health and education centres
to the nearest settlement. After compiling this information, the annual
energy demand was calculated in each settlement by multiplying the
electricity consumption per consumer group and adding the demand
from existing community facilities as described in Eq. (1). “Annual
demand estimation” section in Annex further describes the demand
components and “Geospatial datasets and assumptions” section de-
scribes the geo-referenced data used in this study.

Demand ¼ N � ð%HI � DHI þ%LI � DLIÞ þ Dhealth center þ Deducation center
þ Dpublic lighting ð1Þ

where N is the number of households, %HI is the percentage of high-in-
come households, %LI is the percentage of low-income households, DHI,
DLI, Dhealth center, Deducation center and Dpublic lighting are the annual demands
of a single high-income household, low-income household, health cen-
tre, education centre and public lighting.

Electrification technologies and focus of the study

Portfolio of electrification technologies
Fig. 3 illustrates the taxonomy of electrification technologies

assessed in this study together with their energy source and associated
cost components. The technologies assessed in the OnSSET original ver-
sion are grid extension, mini-grids and standalone systems. No modifi-
cations were applied to the algorithms to model these technologies. In
this article, we develop a methodology specific for micro-grids. Note
that in the original OnSSET tool, no differentiation is made between
mini-grids and micro-grids.

The above-mentioned technology options are economically efficient
in different settings. Grid extension is advisable in areas close to existing
transmission infrastructure, where electricity demandmakes economic
sense. Mini and micro-grids are often cost-effective in settlements
outside the reach of the grid, with a sufficient density and diversity of
users that is more cost-effective to connect together than supplying
each user with stand-alone systems. Lastly, standalone systems are
the most cost-effective electrification solution for remote and low pop-
ulated areas offering limited but life-changing electricity service.

The economics of a technology option in a given settlement depend
on site-specific characteristics. Such as demand, distance to the grid, re-
newable potential and added transportation costs to diesel price. This
information together with other technology-specific data can be used
to determine the LCOE of implementing various electrification options
to supply identified electricity needs. The least-cost alternative that pro-
vides desired attributes on peak capacity and reliability is advised for
investment.

Mini-grids and micro-grids differentiation
A number of technical (Martin-Martínez et al., 2016) and functional

(Olivares et al., 2014) definitions to classify mini-grids can be found in
the literature. Wheremini, micro, nano and pico prefixes are used cate-
gorically to specify technical capacities and complexities.

In this study, we differentiate micro-grids from mini-grids based on
the size of the population served (see “Population threshold for micro-
grid analysis specific to Bolivia” section). Micro-grids refer to smaller
units than mini-grids, serving mainly residential and other small com-
munity services with small non-regulated distribution systems. Mini-
grids serve to larger populations and productive activities with a regu-
lated distribution system. Both operate in islanded mode and do not
consider possible interactions with the grid.

Specific to our case study,we apply our developments tomicro-grids
and not tomini-grids since surveyed data on demandwas available only
for small populations at themoment of writing this article. The analysis
could be expanded tomodelmini-gridswhen data on demand for larger
populations is available.

OnSSET original algorithms for grid extension, mini-grid and stand-alone
systems

This section briefly describes the algorithms used to calculate the
LCOE and to size the new generation capacity required for grid-exten-
sion, mini-grid and standalone systems in the OnSSET model.

OnSSET algorithms balance demand and supply on an annual basis.
Demands in every region are proportional to the population density
and urbanization rate. Since hourly differences in load demands are
not captured, load profiles between small and large populated areas
are not distinguished.

Technologies are sized to meet an average peak demand, but do not
include detailed reliability features in the sizing algorithms—which re-
quire higher temporal resolution to represent demand and resource
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variability. The author may refer to Mentis et al. and Korkovelos et
al. for a detailed description of the sizing algorithms used in all
technologies (Mentis et al., 2017; Korkovelos et al., 2019). Small-
scale hydropower potential is estimated following a methodology
described in Korkovelos et al. (2018). The LCOE for all technologies
is calculated using a mix of techno-economic information of con-
version efficiency, capital, fixed and fuel costs (see data assump-
tions in Table A.7 in Annex).
Grid extension algorithms
The LCOE for grid-extension comprise the cost of electricity genera-

tion from the grid-connected power plants and themarginal cost of ex-
tending transmission and distribution lines (Mentis et al., 2015). The
algorithmexamineswhere it is less costly to extend the grid bymedium
voltage (MV) lines comparing to deploying off-grid technologies for
each un-electrified settlement located within 50 km from the existing
and planned high voltage (HV) network (Mentis et al., 2015). This iter-
ative process determines if the connection of one settlement may lead
to the cost-effective connection of neighbouring settlements (all within
a 50 km limit from HV lines) (Mentis et al., 2015). Extensions by MV
lines for distances longer than 50 km may be limited by techno-eco-
nomical aspects that are not considered in this model (Korkovelos et
al., 2019). A comprehensive description of the sizing algorithms for
HV andMV transmission lines, transformers, connections to substations
Fig. 4. Flowchart of the three-stepmethodology and coupling to OnSSET. Formicro-grid LCOE a
and household connection costs were added in Step 3 using results from OnSSET mini-grid alg
and LV distribution lines are described in Appendix D in Reference
(Korkovelos et al., 2019).

Standalone systems algorithms
For small domestic consumers, standalone solar PV and diesel

generators are often the most cost-effective solution in terms of
total investment. These electrification technologies provide a few
hours of essential electricity service to power small appliances. How-
ever, standalone systems cannot provide electricity with comparable
reliability to micro-grid and grid-connected systems. In OnSSET, as-
sociated costs for non-served energy – loss of load –are not assessed
in standalone systems. The LCOE of PV-standalone and diesel-
standalone use location-specific data on annual solar irradiation
and diesel costs respectively (see “Hourly PV energy generation
estimates” section in Annex).

Mini-grid algorithms
OnSSET evaluates demand on a yearly basis for specified household

consumption levels, but it does not differentiate demands from small
and large populations, which often have substantial differences in load
demand profiles.

Different to stand-alone technologies, mini-grids include a distribu-
tion network in the settlement. The length of the distribution network is
determinedwith information of the settlement area, electricity demand
nd investment cost calculations in each settlement, low-voltage distribution network costs
orithms.



Fig. 5. Load demand scenarios modelled.
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and peak power demand (Korkovelos et al., 2019). Only mono-source
technologies are modelled, solar PV-battery and diesel-only mini-grids.

Mini-grids are sized with a simple energy balance to meet an aver-
age peak demand using annual data on demand and renewable re-
sources availability. As previously mentioned, since no detailed
reliability considerations are included in the sizing algorithms, intra-
day and intra-seasonal peculiarities are not captured.

For PV-batterymini-grids, OnSSET estimates the generation capacity
required (PV panel) but does not explicitly calculate the size of the bat-
tery. Investment costs include the battery cost proportional to the gen-
eration capacity. Compared to diesel-only, solar-onlymini-grids require
large batteries to supply electricity with comparable reliability.

Micro-grid systems design

A three-stepmethodologywas designed to estimate the LCOE of PV-
battery, diesel and diesel-solar hybridmicro-grids. A flowchart illustrat-
ing the sequence of processes and relevant data used is shown in Fig. 4.
Each step is detailed in the following sub-sections and it summarizes as
follows:

■ Step 1 uses a bottom-up stochastic model to generate demand load
profiles for multiple settlement archetypes.

■ Step 2 optimize the micro-grid size for scenarios combining the set-
tlement archetypes defined in Step 1 with other influencing param-
eters to the LCOE, such as diesel cost, loss of load and capital costs,
among others. Each optimized scenario is stored in a “solution
pool” dataset.

■ Step 3 estimates a multivariate linear relation of influencing factors
to the micro-grid LCOE over the solution pool defined in Step 2.

■ The OnSSET coupling starts at themoment that the LCOE for all tech-
nologies is calculated. The surrogate model from Step 3 is used to
calculate the micro-grid LCOE for each community. If grid-extension
is not economically feasible, then the LCOE of all other off-grid tech-
nologies is compared with the LCOE of micro-grids. The least-cost
electrification technology is selected (Fig. 4). Additionally, the size
of the micro-grid components is approximated to the closest solu-
tion from the “solution pool” dataset in Step 2.

Step 1. Hourly load demand profiles
The objective of Step 1 is to generate a set of load demand profiles for

awide range of possible combinations of settlement archetypes. This set
of demand scenarios aims at approximating real demands from the Cen-
sus database. The population threshold – for which micro-grids are
assessed – consists of small populations which are not necessarily un-
electrified but do not have a connection to the grid in the base year.
For this segment of the population,we assess load-demands using inter-
view-based information of available electrical appliances and usage
habits from people living in already electrified villages (see “Demand
characterization for Bolivia” section) (Mandelli et al., 2016b).

A novel approach developed by Lombardi et al. (2019) generates
multi-energy demand load profiles using a stochastic bottom-up
model for the situation wherein interview-based information is avail-
able. The RAMP model – standing for Remote Areas Multi-energy
Table 1
Demand scenarios based on available geospatial data for Bolivia.

Parameter Number of
classes

Description

Elevation 2 1) Highlands (N800 m.a.s.l.), 2) Low
Socio-economic 5 1) 90%, 2) 80%, 3) 70%, 4) 60%, 5) 5
Public services 3 1) No community centers, 2) Educa
Settlement size 11 1) 50, 2) 100, 3) 150, 4) 200, 5) 25
system load Profiles – is an expanded stochastic approach that builds
upon the concept proposed by Mandelli et al. (2016b).

The RAMPmodel it is specifically used to generate load demands for
a set of village archetypes. It uses information on appliance ownership
with defined nominal absorbed power, total functioning time along
the day and possible periods of use, in addition to other further optional
features (e.g. modular duty cycles for selected appliances, cooking cy-
cles and thermal appliances) to generate load profiles. The model was
developed using surveyed data from the village of El Espino and vali-
dated against measured data from El Espino micro-grid showing a
good approximation (average NRMSE of 10%) (Lombardi et al., 2019).
The comprehensive model design and further applications can be
found in references (Lombardi et al., 2019; Stevanato et al., 2019).

Assumptions on appliance ownership, electrical cooking and water
heating specific to our case study are reported together with usage
habits with corresponding timings in “Summary of appliances and
using timings in El Espino and Toconao” section in Annex. Stochastic
variations between predefined ranges are used to account for uncer-
tainty and random user behavior. Based on this information, the
model computes the load demand for an individual settlement.

To tailor energy planning purposes, environmental objectives such
as de‑carbonization and de-fossilization are of relevance for electrifica-
tion planning. In this regard, this study includes not only electric appli-
ances but also embeds some fuel-switch to electricity for simple cooking
tasks. Electrical cooking demand was added only to 5% of the high-in-
come households by 2025. For larger populated areas (outside the pop-
ulation threshold for micro-grids analysis), electrical cooking was not
considered due to ongoing policies for natural gas and LPG fuel intensi-
fication in Bolivia.

Building upon the demand characterization described in “Population
threshold for micro-grid analysis specific to Bolivia” section, Table 1 de-
scribes the demand components withmultiple granularities introduced
into the RAMP model in Step 1. Fig. 5 illustrates further the set of 330
load scenarios modelled. The granularity of each parameter could be in-
creased or decreased to generate a different set of demand scenarios.
While increasing the granularity could benefit to a better approximation
to real conditions, it will increase the computation requirements in the
optimization carried in Step 2.
lands (b800 m.a.s.l.).
0% LI households.
tion center + public lighting, 3) Education center + health center + public lighting.
0, 6) 300, 7) 350, 8) 400, 9) 450, 10) 500, 11) 550 households.
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Step 2. Micro-grid sizing model
In ourmodel,micro-grids are defined as centralized generation units

with individual distribution network operating in islandedmode. Three
types of micro-grids are modelled using the following methodology:
diesel-only, PV-battery and hybrid diesel-PV-battery.

A two-stage stochastic MILP optimization model developed by
Balderrama et al. is used to determine the micro-grid optimal size and
architecture—that minimizes the net present cost—under uncertainty
in demand and renewable generation (Balderrama-Subieta et al.,
2017; Balderrama-Subieta et al., 2019). The Micro-GridsPy model is
based on historical monitoring data relative to an operating micro-
grid in Bolivia. The ‘two-stage’ framework stands for determining the
optimum value of first-stage variables under the uncertainty of stochas-
tic parameters in the second-stage scenarios. The first stage variables
are the rated capacities of each energy source, and the second-stage var-
iables are the operation decisions across the components (Balderrama-
Subieta et al., 2019). This approach allows for the design of a micro-grid
system flexible enough to accommodate variations in demand and re-
newable energy availability without compromising the cost to the
final user.

The objective function of the sizingmodel is tominimize the present
cost of the project, as stated in Eqs. (2)–(4). These equations can be ap-
plied to the four mini-grid configurations assessed in our study.

min Invþ
XS
s¼1

Xy
y¼1

COM
s þ Cfuel

s þ Crep
s þ cs

1þ rð Þy � Ioccurrences

 !( )
∀s;∀t ð2Þ

Inv ¼
XR
r¼1

UPV
r � CPV

r þ Ubat � Cbat þ
XG
g¼1

Ug � Cge
g ∀r;∀g ð3Þ

XS
s¼1

Ioccurrences ¼ 1 ∀s ð4Þ

where the sub-index y represents every year over the lifetime of the
project, s is every scenario, t is every time-step, r is every renewable
unit and g is every diesel generator unit. Inv is the total investment
cost in USD. COM, Cfuel, Crep, C are the costs in USD/kWh for operation
and maintenance, fuel, battery replacement and lost load costs respec-
tively. UPV, Ubat, Uge are the capacities in kW of the solar PV, battery
and diesel generator, respectively. CPV, Cbat, Cge are the capital costs in
USD/kW of the PV unit, battery and generator. Finally Is

occurrence is the
probability of occurrence attributed to each scenario. For a more de-
tailed description of the sizing algorithms, the reader may refer to
Balderrama-Subieta et al. (2019).

When modelling micro-grids, ensuring energy supply for each hour
of the year is not the common practice. In fact, accepting a small fraction
of unmet demand - i.e. a fraction that does not significantly compromise
the service - has been proven to lead to important cost savings
(Balderrama-Subieta et al., 2018). To account for this, the sizing model
includes a loss of load probability (LLP) parameter, allowing the system
not to supply part of the demand as shown in Eq. (5). The loss of load (E)
is considered as another energy source in the energy balance in Eq. (6).
Where D is the village demand, ERis the renewable energy, Egeis the
Table 2
Mutable techno-economic parameters used as independent variables.

Parameter Unit Range Step

Diesel cost (Cfuel) US$/liter 0.18–1.28 0.001
LLP Percent 0–2 0.02
Battery capital investment cost (Cbat)a US$/Wh 0.3–0.8 0.001
PV capital investment cost (CPV) US$/W 1–2 0.001
Generator capital investment cost (Cge) US$/W 1–2 0.001

a Li-ion battery with 5500 cycles and 20% depth of discharge.
energy coming from the diesel generator, Ebat, ch is the energy charging
into the battery and Ebat, dis is the energy discharging from the battery, E
is the energy that cannot be met by the system and Ecurtailment is the en-
ergy that the system cannot store or consume. Additionally, the loss of
load has an associated cost c in each scenario (see Eq. (2)).

XS
s

∑t¼1
T

Es;tLL

∑t¼1
T Ds;t

� Ioccurrences

 !
≤LLP ∀s;∀t ð5Þ

Ds;t ¼
XR
r¼1

EPVs;r;t þ
XG
g¼1

Eges;g;t−Ebat;chs;t þ Ebat;diss;t þ Es;t þ Ecurtailment
s;t ∀s;∀tð6Þ

To estimate EPV, hourly PV energy generation is required for any lo-
cation. “Hourly PV energy generation estimates” section in Annex de-
scribes the methodology and data sources used for this purpose. For
estimating cfuel, transportation costs of diesel from major cities to each
settlement are added to local market prices following the methodology
of Szabó et al. (2013).

Step 3. LCOE surrogate model and look-up result dataset
Sizing a mini-grid for every settlement is computationally impracti-

cal due to the vast number of possible combinations of settlement de-
mands, locations and renewable resource availability – among other
important techno-economic parameters. Therefore,we propose amath-
ematical expression that automatically evaluates the LCOE as a function
of important influencing factors. A multivariate linear regression is per-
formed over a solution space deriving from the optimization of a combi-
nation of parameters.

Table 2 details the selected techno-economic parameters with re-
spective ranges that influence themicro-grid optimization results. Com-
binations of these parameters have been used together with demand
scenarios deriving from Step 1 and solar energy output scenarios (see
“Hourly PV energy generation estimates” section in Annex) as simula-
tion “instances”. A Latin hypercube sampling method is selected to de-
fine the input space on which the optimization model is run;
therefore, we avoid running a computationally intensivemicro-grid op-
timization model for each instance.

For each instance optimized, the LCOE andmicro-grid size are calcu-
lated in Step 2. To generate the surrogate model, a multivariate linear
regression between the LCOE (dependent variable) and the instance pa-
rameter entries (independent variables) is performed. Fig. 6 illustrates
the sequence of steps to obtain the surrogate models.

The surrogate model is presented in Eq. (7). Where t specifies the
micro-grid technology (solar-only, diesel-only or hybrid), LLP is the
loss of load probability in percentage, cfuel is the diesel cost in US$/
liter, H is the number of households, GHI is the global horizontal irradi-
ation. cge, cR and cbat are the capital costs in USD/kW of the generator, PV
unit and battery respectively. c0 to c7 are the coefficients of the regres-
sion. For each community, i, from the Census database, the LCOE of
each micro-grid possibility is calculated using Eq. (7). Note that surro-
gate models are based on a multivariate regression of datasets resolved
with an hourly time resolution; thus, surrogate models inherit the crit-
ical information associatedwith the time component despite not explic-
itly carrying it.

LCOEt ¼ co þ c1 � LLP � 100þ c2 � cfuel þ c3 � 1Hi
þ c4 � GHI þ c5 � cge

þ c6 � cR þ c7 � cbat ð7Þ

As for the LCOE, surrogate models cannot be used to approximate
the size of each micro-grid component in a given community i – since
the sizing of the generation and storage units come from an optimiza-
tion model. Therefore, a look-up algorithm consisting of the following
steps was designed. A “solution pool” dataset containing information
of the entry information of each scenario modelled (q scenarios in Fig.



Fig. 7.Methodology to approximate the size of the micro-grid components using data from the “solution pool”.

Fig. 6. Sequence of steps to generate surrogate models.
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6) and its solution output (battery, generator and PV nominal capaci-
ties) was setup. For each settlement i from the Census database, the
size of the micro-grid components were selected from the most similar
scenario available in the Solution pool dataset.

Fig. 7 illustrates the procedure followed. Data on demand and
techno-economic parameters are stored as feature elements for each
settlement from the Census database and the Solution pool dataset.
Principal component analysis (PCA) is used to extract information into
a lower-dimensional sub-space while preserving most of the variance
in the data. From the lower-dimensional subspace (with the principal
components containing most of the variance), the Euclidean distance
(‘distance measure’) is calculated to unify these principal components
into a one-dimension indicator. This procedure is applied separately to
each community from the Census database and the Solution pool
Fig. 8. Cost-scenario components. Reference scenario and other four scenarios with
combinations of diesel price and capital investment costs described in Table 2.
dataset. In the solution pool, each “distance measure” indicator is asso-
ciated with its design parameter results (battery, generator and PV
nominal capacities).

To obtain the micro-grid size in each community i from the Census
database, the distance measure of the community i is compared to the
set of distancemeasures from the solution pool. The scenario that better
approximate the distancemeasure (nearest keymerge) is selected from
the Solution pool for the community i. This procedure is applied to all
communities from the Census database within the size threshold and
without initial connection to the grid (see “Population threshold for
micro-grid analysis specific to Bolivia” section).

Cost scenarios

To account for the steady improvements in renewable technology
costs and uncertainty on the continuity of fossil fuels subsidies, cost sce-
narios (fuel and capital costs) were performed to further discuss the re-
sults of our analysis. Two existing subsidy schemes in the Bolivian
electricity sector were included as scenarios together with international
diesel prices. Fig. 8 illustrates the modelled scenarios and Table 3 de-
scribes the values used in each of them.

Results

This section presents the results obtained in 3 subsections.
“Simulated loads, micro-grid optimization and regression results” sec-
tion describes the simulation results for the demand load curves,



Fig. 9. Load profiles illustrated for representative population sizes and poverty shares for 3 days between the 1st and the 3rd of March. In the left-hand side, overlaying load results for
populations ranging from 50, 250 and 550 households with poverty shares of 50% and 90% at the top and the bottom of the Figure for the a. lowlands and b. highlands of Bolivia. In the
right-hand side stacked loads from residential, hospital, school and cooking for a population of 50 households from the c. lowlands and d. highlands of Bolivia. Note that not all settlements
contain health and education centres. Refer to “Population threshold for micro-grid analysis specific to Bolivia” section for further details.

Table 3
Specific values used in the cost scenarios.

Parameter Unit Reference Scenarios

Diesel cost (Cfuel, market) US$/liter 0.8 Diesel grid- subsidy: 0.53
Diesel off-grid subsidy: 0.18

Battery capital investment cost (Cbat) US$/Wh 0.6 Minimum: 0.3, Maximum: 0.8
PV capital investment cost (CPV) US$/W 1.5 Minimum: 1, Maximum: 2
Generator capital investment cost (Cge) US$/W 1.48 Minimum: 1, Maximum: 2
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micro-grid optimization and surrogate models. “Electrification results”
section describes the electrification results for the modelling period
2012–2025 and compares the results deriving from the enhanced
OnSSET version with the original version. “Sensitivity analysis:
considering cost-scenarios” section reports an analysis deriving from
the cost scenarios.

Simulated loads, micro-grid optimization and regression results

Simulated demand loads
A total of 330 loadprofileswere generated, building upon interview-

based information from two representative systems in the highlands
Fig. 10. Boxplots of the LCOE obtained for solar-only, hybrid and diesel-only micro-grids for all
Results are selected for three representative settlement sizes.
and lowlands of Bolivia. The simulated demand loads are shapedmainly
by household activity – characteristic from rural demand profiles –with
substantial differences resulting from appliance ownership and house-
hold activity patterns.

Fig. 9 illustrates the aggregated load for selected population sizes
and socio-economic mixes. Independently of the size and location, a
midday peak demand followed by a steady reduction until 5 pm is ob-
served. From 5 pm, a fast increase in the demand leads to a maximum
peak consumption around 9 pm. For the smallest population size,
peak atmidday derivesmainly from schools and from electrical cooking
used by a fraction of the population. Fig. A.2 in Annex illustrates the load
profiles of each of the demand users separately.
average
mean

◊
–

instances described in “Step 3. LCOE surrogate model and look-up result dataset” section.
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The importance of the results obtained in this section lies the deter-
mination of the intra-day and intra-seasonal demand peaks. This infor-
mation is of key importance for the design of micro-grids since
generation capacity and storage are optimized to meet the peak load
under a variety of load conditions during the year.

Micro-grid optimization
The economic competitiveness between solar, diesel or hybrid

micro-grids depends largely on location-specific data. Such as demand,
solar resource, road accessibility (influencing the diesel cost at the site)
and other techno-economic parameters detailed in Table 2.When inter-
national diesel prices are applied, hybrid micro-grids are more cost-
competitive than diesel micro-grids. However, when large diesel subsi-
dies are applied (such as a subsidized price of 0.18 US$/liter), diesel-
only micro-grids are more competitive than hybrid micro-grids.

In all instances, solar-only micro-grids have a higher LCOE than hy-
brid micro-grids and diesel-only micro-grids. Since solar-only micro-
grids require a large battery to achieve the same LLP, leading to higher
investment costs and higher LCOE. This is illustrated in Fig. 10 with
boxplots of the LCOE results obtained in the optimization of all instances
modelled. “Micro-grid optimization box-plots” section in Annex ex-
pands to compare boxplots for two diesel price scenarios. In addition,
“Sensitivity analysis: considering cost-scenarios” section expands with
an analysis of the effect of selected techno-economic parameters in
the electrification solution.

Multivariate regression results
Coefficients and statistics of the regression are presented in

“Multivariate regression results” section in Annex. For the three types
of micro-grids, the number of households is the most important
influencing parameter to the LCOE. The secondmore influential param-
eter for diesel-only and diesel-PV hybrid micro-grids is diesel cost,
while for solar-only, it is the cost of the battery.

Electrification results

Reference scenario results applying OnSSET-enhanced algorithms to the
case of Bolivia

The least-cost optimization results show that 87.8% of the popula-
tion could be electrified with grid extension by 2025 compared to
76.3% in 2012.More specifically, grid-extension could provide newelec-
tricity connections to 2.9 million people by 2025. Given the relatively
dense coverage of the grid, a large number of new connections derive
from grid extension (76% of the newly electrified population). The
99.4% of the total electrified settlements by grid extension are located
within 10 km from the current grid network. Off-grid technologies sup-
ply electricity to disperse populations far away from the grid.

Concerning micro-grids, hybrid and hydropower micro-grids could
supply electricity to 1.9% and 0.2% of the newly electrified population
respectively and diesel mini-grids to 1.6%. About 6% of the population
electrified with micro-grids are within 10 km from high-voltage grid
transmission lines and 36%within 10 km from existing off-gridmedium
voltage lines. Diesel standalone and PV standalone could electrify to
2.1% and 6.1% of the newly electrified population by 2025, respectively.

The investment cost per household varies largely depending on the
electrification technology. For households electrified through grid-ex-
tension, the investment cost increases with increasing distance to the
transmission lines and decreases with increasing population density.
The average cost of connecting a household the grid amounts to
$1159. All new grid connections in Bolivia will require $973 million.

Investment for mini-grid is estimated at $10 million, micro-grid at
$26 million and stand-alone at $258 million. Table 4 summarizes the
number of new connections per technology type, investment cost esti-
mates and new capacity when using the OnSSET original and the en-
hanced framework for micro-grids.
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Through 2025, Bolivia will need to increase the grid capacity by
251 MW and the off-grid capacity by 59 MW in order to meet the in-
creased residential demand and electrification targets indicated in our
reference scenario. Table A.6 in the Annex describes the expected en-
ergy mix of the grid based on committed generation projects towards
2025. Assuming this generation mix together with our results, we
estimated that 62% of the additional generating capacity needed to
achieve universal access goals in Bolivia would derive from renewable
technologies.

Differences in the results when applying OnSSET enhanced and original
algorithms

The original OnSSET algorithms do not include hybridmicro-grids or
mini-grids, hence we cannot compare the LCOE of this technology be-
tween both methodologies. Nonetheless, we can compare results on
generation capacity and LCOE for solar-only and diesel-only micro-
grids for both methodologies. Fig. 11 compares the results when apply-
ing the OnSSET original and enhanced algorithms to the lowlands of the
population threshold described in section "Population threshold for
micro-grid analysis specific to Bolivia". Since the population of the com-
munities in the highlands (within the population threshold) are smaller
than the lowlands we present the results separately. “Differences in the
results when applying OnSSET-enhanced and original algorithms” sec-
tion in Annex presents results for the populations in the highlands.

In general, due to the intermittent availability of solar resources,
solar-only micro-grids are larger in capacity than the equivalent die-
sel-only micro-grids supplying to the same demand with same reliabil-
ity considerations (Fig. 11.a). Since the original algorithms do not
optimize the capacity, the size of diesel micro-grids calculated by the
enhancedmethodology is 2.5 times smaller on average than the original
methodology (Fig. 11.a). Conversely, since the sizing algorithms in the
original version do not include detailed reliability considerations, re-
sults for the capacity of solar-only micro-grids in the enhanced version
are 35% higher on average than the original methodology.

As a consequence of differences in sizing, when comparing the LCOE
for diesel-only and solar-only micro-grids, the values calculated by the
enhancedmethodology are on average 16% lower and 11% higher in av-
erage than the original methodology, respectively (Fig. 11.b).
Fig. 11. Boxplots comparing results obtained when applying the OnSSET original and
OnSSET enhanced algorithms to the lowlands of the population threshold described in
Section 2.2.3. a. Comparison of generation capacity results. b. Comparison of the LCOE
results.
Regarding hybrid micro-grids, their selection over mono-source
micro-grids is a matter of costs as shown in “Reference scenario results
applying OnSSET-enhanced algorithms to the case of Bolivia” section.
The role of fuel and investment costs is further discussed in “Sensitivity
analysis: considering cost-scenarios” sectionwith selected cost scenarios.

Table 4 compares the optimal results of the OnSSET original and en-
hanced methodologies showing important differences across all tech-
nologies. A significant reduction on standalone systems is observed in
the results of theOnSSET enhancedmodel compared to the original ver-
sion. This is explained by the significant oversizing of diesel micro-grids
occurring in the results from the original version compared to the en-
hancedmethodology –which increases its respective LCOE and reduces
its cost competitiveness against standalone systems.

Similarly, there is a very marginal reduction on grid-extension con-
nections when comparing the results from the original OnSSET to the
new framework. Which is expected since the LCOE for diesel micro-
grids are smaller in the results of the enhanced model and, therefore,
more cost-competitive than grid-extension in certain communities.

Comparing the number of people electrified with micro-grids in
Table 4, the solution with the enhanced model has a larger share of
micro-grids, accounting for 79 thousand new electrified people com-
pared to 44 thousand people from the original OnSSET code. Table 4
also compares the percentage of new connections per technology type
for both methodologies. We observe that for several communities, the
least-cost technology switch from grid-extension, diesel micro-grids,
solarmicro-grids, standalone solar and standalone diesel systems to hy-
brid micro-grids. Fig. 12 further illustrates the result differences from
bothmethodologies as a percentage of the 72.4 thousand newly electri-
fied population by hybrid micro-grids. Notice that these 72.4 thousand
settlements were electrified with a mix of other technologies in the
OnSSET original version.

Fig. 13 illustrates furtherwith the geospatial least-cost electrification
solution for the original and enhanced OnSSET formulation for every
community of the Census database. Highlighted in the map with circle
symbols are the results for micro-grids. Results from the enhanced
model have 208 communities electrified with micro-grids compared
to 101 communities in results from the original model. Note that the
presence of a higher number of settlements electrified with hybrid
micro-grids in the enhanced methodology is because of differences in
LCOE and does not relate to their spatial distribution.
Sensitivity analysis: considering cost-scenarios

To highlight the results of the cost scenarios (see scenario details in
“Cost scenarios” section), we report three indicators for the communities
Fig. 12. Percentage share of technologies switching to hybrid micro-grids from results
from the original OnSSET-original to results from the enhanced OnSSET.
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that belong to the population threshold considered for micro-grids (see
“Population threshold for micro-grid analysis specific to Bolivia”
section):

1. Number of new connections,
2. New capacity added and
a.

b.

Fig. 13.Geographical comparison of the least-cost electrification technology solution for OnSSET
symbols for diesel (red), hydro (cyan), PV (orange) and hybrid (yellow). Grid extensionwith cro
green) symbols. Notable differences in the number ofmicro-grids are observedwhen comparing
technologies when applying OnSSET enhanced algorithms for micro-grids. b. Electrification tec
3. Investment costs per type of electrification technology.

The settlements selected for this analysis have a population between
50 and 550 households with no connection to the grid in the base year.
The reason of this selection is to exclude from the cost-scenario analysis
original and OnSSET enhanced formicro-grids. Micro-grids are plottedwith circle-shaped
ss (light blue), standalone diesel with cross (light red) and standalone PVwith cross (light
the results from theOnSSET original andOnSSET enhancedmethodology. a. Electrification

hnologies when applying OnSSET original algorithms.



0

50

100

REF SC1 SC2 SC3 SC4

Th
ou

sa
nd

 h
h

a) New connec�ons

0

10

20

30

REF SC1 SC2 SC3 SC4

M
W

b) New capacity

0

50

100

150

REF SC1 SC2 SC3 SC4

$m
ill

io
n 

c) Investments

Grid extension
Standalone PV
Standalone Diesel
Micro-grid Hydro
Micro-grid Solar
Micro-grid Diesel
Micro-grid Hybrid
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to all settlements with little demand for which standalone are the only
solution (either PV or diesel) and settlements for which grid extension
is the only solution.

Fig. 14 compares the results for new connections (Fig. 14.a), new ca-
pacity (Fig. 14.b) and investments (Fig. 14.c) per technology type. Be-
tween the scenarios with low and high capital cost (SC1 and SC2
respectively), the smallest settlements switch from hybrid micro-grids
to standalone when capital costs increase, the opposite happens when
there is a reduction in capital costs. This marginal difference, however,
does not account for reliability differences between standalone and
micro-grid systems.

For the first diesel price subsidy scenario (SC3), there is a slight
increase in the cost-competitiveness of hybrid micro-grids and a sig-
nificant increase for diesel standalone compared to the reference
scenario. For the highest subsidy scenario (SC4), diesel-fuelled tech-
nologies gain cost-competitiveness against other renewable tech-
nologies. This observed switch from micro-grid to standalone
systems is explained by marginal differences on the LCOE and do
not consider differences on reliability, as mentioned previously. Al-
though standalone systems are more expensive per unit of power ca-
pacity, these do not require expensive distribution lines and
connection costs per household compared to micro-grids (see Fig.
14.c). Further considerations on reliability should be introduced to
standalone systems in the OnSSET algorithms for an effective cost-
comparison with micro-grids – since these provide only limited
hours of electricity.

Discussion

In this article, we developed an innovativemethodology that bridges
the “computational gap” between technically-detailed micro-grid sys-
tems analyses and large-scale electrification modelling. This is achieved
by surrogate models deriving from multivariate regressions of micro-
grid optimization results of multiple scenario instances. Each scenario
instance consists of a combination of settlement size and other impor-
tant techno-economic parameters influencing the LCOE.

Surrogate models were directly coupled to a mature electrification
tool, OnSSET, to calculate the LCOE ofmicro-grids in an automated fash-
ion. Unlike sizing algorithms tomodelmono-sourcemicro-grids, hybrid
micro-grids require a specialized model to optimize generation and
storage capacities to determine the least cost configuration. Therefore,
representing hybrid micro-grids by means of a simplified model
would provide inaccurate results with low technical accuracy.

Further expansions of this methodology could include a broader
portfolio of micro-grid technologies and fuels (Step 2), such as wind-
diesel, wind-gas, solar-gas or other multi-source micro-grid possibili-
ties. Similarly, the methodology could be expanded to assess larger sys-
tems such asmini-grids, which require additional surveyed information
on appliance ownership and usage habits, among others.

Deriving from the cost sensitivity analysis, we found that diesel cost
is themain driving factor for the choice between standalone andmicro-
grid systems. In the original OnSSETmodel, units of standalone systems
can be aggregated in a modular fashion to supply demand. Since this
simplified approach does not account for reliability, an effective cost-
comparison with micro-grids cannot be made. One way to improve
the representation of standalone systems without increasing complex-
ity in OnSSET, could be to add a cost for loss of load in the cost function.
Although we recognize the complexity of setting values for loss of load
in rural areas, it is necessary to differentiate desired attributes on peak
capacity and reliability among technologies.

With regards to off-grid interconnection possibilities, OnSSET
does not connect mini-grids or micro-grids that are close to each
other. Further studies are required to look at how existing mini-
grids or micro-grids could be inter-connected to lower the costs
and ensure reliability (should newly electrified communities have
their own generation units? Or, should the generation capacity be re-
inforced in the neighbouring location?).

With regards to the case study, one important caveat in our demand
assessment is the exception of productive uses of electricity – such as
electricity for agriculture and manufacture. Since productive uses of
electricity do not always occur immediately after electrification occurs,
potential demands for productive uses require careful assessment.
Hence, further data and analysis are required to determine such elec-
tricity needs. Notwithstanding such limitations, the model generating
load demands (Step 1) can be customized and include hypothetical pro-
ductive demands when information is available.

Finally, it is worth mentioning that capacity expansion models and
GIS-based electrification modelling could be coupled to provide a com-
plete view of the investments required to reach universal access to elec-
tricity. Since investments decisions at grid-level affect the grid-
electricity price directly and therefore, the LCOE for grid expansion; de-
cisions at grid-level could possibly affect the selection over off-grid
technologies. Moksnes et al. proposed a soft-link between an open-
source capacity expansion planning tool, OSeMOSYS (see Howells et
al. (2011)), and OnSSET to evaluate investments to reach universal ac-
cess to electricity in Kenya (Moksnes et al., 2017). In thiswork, it is dem-
onstrated that different technology configurations – grid and off-grid –
are obtainedwhen planning for either high demandor lowdemand sce-
narios. When demand is expected to be high, grid connections increase
compared to off-grid solutions (Moksnes et al., 2017).

Policy considerations

Results from our cost-scenario analysis reveal how sensitive the
electrification results to diesel prices are. Clearly, the continuation of
diesel subsidies strongly reduces the economic competitiveness of
local renewable energy resources.

Fossil fuel subsidies are remarkably widespread in developing coun-
tries for several socioeconomic factors (Szabó et al., 2011). For a small
economy, ameaningful change in subsidy schemeswould consequently
produce large macroeconomic impacts – through economy-wide
changes – in sectoral relative prices and demands (Coxhead and
Grainger, 2018). Therefore, it may be counterintuitive to remove fossil
fuels as a measure to foster energy access. Yet, in the same way fossil
fuels subsidies are used to promote affordable energy, renewable en-
ergy subsidies could be considered to compensate for this market dis-
tortion (Szabó et al., 2013).
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As electrification planning diversifies with the inclusion of
decentralized alternatives, different affordability and financing con-
cerns emerge. Further enabler actors should be considered by electricity
planners and policymakers to address the entire range of affordability
concerns for both grid and off-grid rural consumers. More important,
better coordination among national stakeholders is needed to develop
a local renewable energy industry able to mobilize public finance to-
wards rural electrification projects.

In the future, therewill be important considerations around technol-
ogy costs and security. While battery costs are dropping, we find that
fossil fuel provides an inexpensive alternative at present. In the future,
we must ask if battery prices will continue to drop as global demand
for them (and their constituent materials) continues to rocket.
Conclusions

This research article represents a step forward in the formulation of
geospatial electrification modelling tools. For which, an innovative
methodology was developed to maintain the technical accuracy of de-
tailed load simulation and micro-grid optimization analyses in a large-
scale geospatial electrification tool. The methods presented in this arti-
cle offer an innovative solution to identify priority areas for micro-grids
at early stages of rural electrification planning.
Table A.1
Annual demand per consumer type.

Consumer type Elevation classa Population size Consumer classb Demand 2

Residential LL b1000 hh HI 1089
Residential LL b1000 hh LI 88
Residential HL b1000 hh HI 1256
Residential HL b1000 hh LI 173
Residential LL, HL N1000 hh HI 1645
Residential LL, HL N1000 hh LI 455
Education center LL, HL b1000 hh Type 2d 1560
Health center LL, HL b1000 hh Type 4c 2370
Education center LL, HL N1000 hh Type 1d 20,755
Health center LL, HL N1000 hh Type5c 947
Health center LL, HL N1000 hh Type4c 2370
Health center LL, HL N1000 hh Type3c 3050
Health center LL, HL N1000 hh Type2c 90,000
Health center LL, HL N1000 hh Type1c 109,950
Public lights LL, HL All All 5833

a Lowlands (LL), highlands, (HL).
b High income (HI), low income (LI).
c Health center type: Type 1 is 1st level hospital, Type 2 is 2nd level hospital, Type 3 is Health ce
d Education center type: Type 1 for rural context, Type 2 for urban context.
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Annex

Annual demand estimation

For each scenario modelled using RAMP, 365 daily profiles are computed, each with 1-minute time-step (later resampled to 1-hour resolution to
couple with themicro-grid sizingmodel). Four seasons were distinguished, summer, autumn, winter and spring with respectively 90, 91, 92 and 92
profiles each. Specifically for indoor and public lighting, different time-frames for indoor and public lighting were used in each season as a result of
variations on sunrise and sunset timings.
012 Demand 2025 Units Description

1165 kWh/hh-y Derived from survey in El Espino
94 kWh/hh-y Derived from survey in El Espino
1344 kWh/hh-y Derived from survey in Toconao
185 kWh/hh-y Derived from survey in Toconao
2464 kWh/hh-y Derived from downscaling national statistics
648 kWh/hh-y Derived from downscaling national statistics
1560 kWh/hh-y Derived from survey in El Espino
2370 kWh/hh-y Derived from survey in El Espino
20,755 kWh/hh-y Derived from survey in Toconao
947 kWh/y Derived from national statistics
2370 kWh/y Derived from survey in El Espino
3050 kWh/y Derived from survey in Toconao
90,000 kWh/y Derived from national statistics
109,950 kWh/y Derived from national statistics
5833 kWh/hh-y Derived from survey in El Espino

nter with hospital beds, Type 4 is Health center without hospital beds, Type 5 is Health post.
Hourly PV energy generation estimates

Over the past few years, the use of global meteorological data into reanalyses has emerged as an important source of synthetic information to es-
timate renewable energy availability (Pfenninger & Staffell, 2016). A key benefit of reanalyses is theprovision of data for remote locations, wherefield
measurements are usually not available. Data from anopenweb-based application deriving from thework from Pfenninger & Staffell, 2016; Staffell &
Pfenninger, 2016 was used to estimate hourly PV energy production.
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Hourly data on the total incident radiation on the PV tilde surface (IT, β) and the temperature on thePV cell (TPV) are required to estimate hourly PV
energy generation (EPV). The incident radiation, (IT, β) is obtained from [1] and [2]. The temperature on the PV cell (TPV), was estimated using Eq. (A.1),
where NOCT is the nominal operating cell temperature, t is the time-period and Tamb is the ambient temperature.

TPV
t ¼ Tamb

t þ NOCT−20
800

� IT ;β
t

∀t ðA:1Þ

The hourly PV energy generation in each arrayðEPVm) is then calculated following themethodology of (Holmgren, Hansen, &Mikofski, 2018) com-
bined to a commercial PV database from (Gosolarcalifornia, 2019). The energy output in the entire array is calculatedwith Eq. (A.2), whereNPV is the
number of array units and ηinv is the efficiency of the inverter.

EPV s;t ¼ NPV � ηinv � EPVm s;t ∀s;∀t ðA:2Þ

To represent statistically all communities, coordinates of GHI quartiles at 25%, 50% and 75% were selected to extract GHI time series (Table A.2).

Table A.2
Selected PV time series.
Elevation class
H
H
H
Lo
Lo

P

A
E
Su
R
P

G

W

T

D

La

P

H

E

Time series
 Quartile
 Coordinates
 Elevation
 Average daily PV output (kWh)
ighlands
 2014, 2015, 2016
 q1
 (66.3224, 12.7228)
 134
 2339

ighlands
 2014, 2015, 2016
 q2
 (65.1318, 16.8743)
 217
 2376

ighlands
 2014, 2015, 2016
 q3
 (62.909, 19.7112)
 566
 2323

wlands
 2014, 2015, 2016
 q1
 (68.6203, 16.604)
 3897
 1822

wlands
 2014, 2015, 2016
 q2
 (65.8361, 18.8807)
 4174
 1929

wlands
 2014, 2015, 2016
 q3
 (64.8337, 21.4591)
 2552
 2130
Lo
Geospatial datasets and assumptions

For the centralized grid generation, the average investment cost was assumed as 1655 $/kW based on committed investments on power gener-
ation in the national grid. The expected energymix by 2025 is detailed in Table A.6 (Peña Balderrama, Alfstad, Taliotis, Hesamzadeh, &Howells, 2018.
The grid generating cost of electricity represents the cost of producing 1 kWh of electricity and does not reflect the customer tariff. It was assumed as
0.1223 $/kWh. Related costs to the grid extension are detailed in Table A.5 and techno-economic parameters for the off-grid electrification technol-
ogies are detailed in Table A.7. Finally, all cost-related comparisons are performed in present value. The discount ratio was set at 12% in line with the
Ministerial Resolution 01/200 of the government of Bolivia, specific for investments on electrification infrastructure.

Table A.3
Open-source GIS data used in the model.
Dataset
 Description and purpose in the electrification analysis
 Type
 Source
opulation and electrification Census
 Spatial identification and quantification of the population
in 2012 per community. Contains information of the electrification
status in each settlement (% electrified households) and the
electrification technology (grid, mini-grid, PV panel or diesel
generator connected).
Point vector
 INE, 2015
dministrative boundaries
 Delineates the boundaries of the analysis.
 Line vector
 (GeoBolivia, 2015c)

xisting grid network
 Used to estimate the costs of grid extension.
 Line vector
 (GeoBolivia, 2015b; GeoBolivia, 2015a)

bstations
 Used to specify grid extension suitability.
 Point vector
 (GeoBolivia, 2014)

oads
 Used to specify grid extension suitability.
 Line vector
 (OpenStreetMap, 2018)

lanned grid network
 Planned extension of the national electric grid. It includes extension to

current/future substations, power plants, mines and queries.

Line vector
 (GeoBolivia, 2018a; GeoBolivia, 2018b)
HI annual average
 Provide information about the Global Horizontal Irradiation (kWh/m2/year)
over an area. It is used to identify the availability/suitability of
photovoltaic systems.
Raster
 (SolarGIS, 2016)
ind speed annual average
 Provide information about the wind velocity (m/s) over an area.
It is used to identify the availability/suitability of wind power
(through capacity factors).
Raster
 (ESMAP et al., 2018)
ravel time
 Accounts spatially the travel time required to reach from any
individual cell to the closest town with population N50,000 people.
It is used to estimate diesel transportation costs.
Raster
 (Weiss et al., 2018)
igital elevation map
 It is used in the energy potential estimation, restriction zones and grid
extension suitability map
Raster
 (Farr et al., 2007)
nd cover
 Land cover maps are used in a number of processes in the analysis
(Energy potentials, restriction zones, grid extension suitability map etc.).
Raster
 (GeoBolivia, 2011)
overty
 Provides socio-economic information of the population using the Unsatisfied
Basic Needs, UBN, multidimensional method in which a headcount ratio of the
population living under five poverty categories is provided. It is used to
disaggregate the population in 4 consumption levels.
Polygon vector
 (GeoBolivia, 2012a)
ealth centers
 Locations of health centers as vector containing relevant attributes to estimate
potential electricity demand (health post, health center without international
beds, health center with international beds, hospital 2nd
level and hospital 3rd level)
Point vector
 (GeoBolivia, 2012b)
ducation centers
 Locations of education centers as vector containing relevant attributes
to estimate potential electricity demand (size, primary school, secondary
school, tertiary education center)
Point vector
 (GeoBolivia, 2013)



Socio-economic parameters

Table A.4
Socio-economic parameters used in the electrification model for Bolivia.

Parameter Metric Value 2012 Value 2025

113J.G. Peña Balderrama et al. / Energy for Sustainable Development 56 (2020) 98–118
P
U
E
U

Li
D
Lo
P
B
G
M
H
H
M
LV
Tr
M
Su
Su
A
A
A
O
G

H
G
So
W
B
G

M
M
M
B
St
opulation total
 Million persons
 10,351,118
 12,454,178

rban population
 Percent of total population
 67.71%
 72.80%

lectricity access
 Percent of total population
 82.08%
 100%

rban household size
 People per household
 3.84
 3.84

ural household size
 People per household
 3.41
 3.41
R
Techno-economic input parameters

Table A.5
Techno-economic parameters related to transmission and distribution.

Parameter Values' Unit
fetimea
 30
 Years

iscount rate
 12
 %

ad moment (50 mm aluminium)
 9643
 kW m

ower factor
 0.9

ase to peak load ratio
 0.529

rid losses
 18.3
 %

V max distance reach
 50
 km

V line cost (115 kV)
 117,000
 US$/km

V line cost (69 kV)
 99,000
 US$/km

V line cost (33 kV)b
 9000
 US$/km

line cost (0.24 kV)b
 5000
 US$/km

ansformers (50 kVA)b
 3500
 US$

ax nodes per transformer
 300
 nodes

bstation (400 kVA)
 10,000
 US$

bstation (1000 kVA)
 25,000
 US$

dditional connection cost to grid
 150
 US$/household

dditional connection cost to mini-grid
 100
 US$/household

dditional connection to standalone
 0
 US$/household

&M costs of distribution
 2
 % of capital cost/year

rid capacity investment cost
 1722
 US$/kW

rid electricity generation cost
 0.092
 US$/kWh
G
a Discount rate defined in 12% by Ministerial Resolution 01/200 of the government of Bolivia.
b Cost related to transmission and distribution were primarily adopted from ESMAP, 2014

Table A.6
Techno-economic parameters related to the grid connected technologies.
Technology type
 Expected capacity in 2025, MW
 % share
 Investment costs, $/kW
ydropower
 2393
 43%
 2100

as combined cycle
 2698
 47%
 1140

lar power
 160
 3%
 1400

ind power
 180
 3%
 1320

iomass thermal
 62
 1%
 2200

eothermal
 110
 1%
 590

iesel
 35
 2%
 5218
D
Table A.7
Techno-economic parameters related to off-grid technologies.
Plant type
 Investment cost
 Units
 O&M costs (% of investment cost/year)
 Efficiency (%)
 Capacity factor
 Life (years)
ini-grid diesel generatora
 1480
 $/kW
 10
 33
 0.7
 20

ini-grid Hydrob
 5000
 $/kW
 2
 –
 0.5
 30

ini-grid Solar PVa
 1500
 $/kW
 2
 –
 Obtained by model
 20

atterya
 600
 $/kWh
 2
 –
 10

and-alone Solar PVb
 5500
 $/kW
 2
 –
 Obtained by model
 15

and-alone Dieselb
 938
 $/kW
 10
 28
 10
St
a Obtained from Balderrama et al. [24].
b Obtained from Korkovelos et al. [24].
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Summary of appliances and using timings in El Espino and Toconao
Fig. A.1. Load demand profiles for single users of high-income residential, low-income residential and community centers for threemonths in the summer season. a. Representative for the
lowlands of Bolivia b. Representative for the highlands of Bolivia.
Table A.8
Appliance power, cycles and using timings for households and public lighting.
User class
T
H

LI

C

P

E
H

LI

C

Appliance
 n
 P [W]
 Cycle [min]
 Tot Use [min]
 Start W1
 End W1
 Start W2
 End W2
oconao

I
 Indoor bulbb
 6
 7
 10
 120
 19:30
 24:00
 00:00
 00:30
Outdoor bulbb
 2
 13
 10
 600
 19:30
 24:00
 00:00
 00:30

TV
 2
 60
 5
 180
 09:00
 13:00
 18:00
 24:00

Radio
 1
 7
 30
 240
 08:00
 12:00
 18:00
 23:00

Phone charger
 4
 5
 10
 360
 20:00
 24:00
 00:00
 07:00

Fridgea
 1
 250
 30
 1440
 00:00
 24:00
 –
 –

Laptop
 1
 70
 30
 90
 16:00
 20:00
 –
 –

Iron
 1
 700
 1
 30
 10:00
 20:00
 –
 –

Indoor bulbb
 2
 7
 10
 120
 19:30
 24:00
 00:00
 00:30

Outdoor bulbb
 1
 13
 10
 600
 19:30
 24:00
 00:00
 00:30

TV
 1
 60
 30
 240
 09:00
 13:00
 18:00
 24:00

Radio
 1
 7
 30
 240
 08:00
 12:00
 18:00
 23:00

Phone charger
 1
 8
 5
 60
 20:00
 24:00
 00:00
 07:00

Iron
 2
 2
 5
 300
 10:00
 20:00
 –
 –
hurch
 Indoor bulbb
 10
 26
 60
 210
 20:00
 24:00
 –
 –

Outdoor bulbb
 7
 26
 60
 240
 20:00
 24:00
 –
 –

Speaker
 1
 100
 60
 240
 20:00
 22:30
 –
 –
ublic lighting
 Lightsb
 c
 150
 300
 600
 19:00
 24:00
 00:00
 06:00
l Espino

I
 Indoor bulbb
 6
 7
 10
 120
 19:30
 24:00
 00:00
 00:30
Outdoor bulbb
 2
 13
 10
 600
 19:30
 24:00
 00:00
 00:30

TV
 2
 60
 5
 180
 12:00
 15:00
 19:30
 01:00

DVD
 1
 8
 5
 60
 12:00
 15:00
 19:30
 01:00

Antenna
 1
 8
 5
 120
 12:00
 15:00
 19:30
 01:00

Phone charger
 5
 2
 5
 300
 18:30
 24:00
 00:00
 00:30

Fridgea
 1
 200
 30
 1440
 00:00
 24:00
 –
 –

Mixer
 1
 50
 1
 30
 07:00
 08:00
 11:00
 12:30

Indoor bulbb
 2
 7
 10
 120
 19:30
 24:00
 00:00
 00:30

Outdoor bulbb
 1
 13
 10
 600
 19:30
 24:00
 00:00
 00:30

TV
 1
 60
 5
 90
 12:30
 14:00
 19:30
 00:30

DVD
 1
 8
 5
 30
 12:30
 14:00
 19:30
 00:30

Antenna
 1
 8
 5
 60
 12:30
 14:00
 19:30
 00:30

Phone charger
 2
 2
 5
 300
 18:00
 24:00
 –
 –
hurch
 Indoor bulbb
 10
 26
 60
 210
 20:00
 24:00
 –
 –

Outdoor bulbb
 7
 26
 60
 240
 20:00
 24:00
 –
 –

Speaker
 1
 100
 60
 240
 20:00
 22:30
 –
 –
ublic lighting
 Lightsb
 c
 150
 300
 600
 19:00
 24:00
 00:00
 06:00
P
a Fridge follow a specific ad-hoc cycle, is not functioning full power for 24 h.
b Total duration and functioning windows depending on seasonal sunrise and sunset times.
c Depending on population size.
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Table A.9
Appliance power, cycles and using timings for health center and schools.
T
R

Appliance
H
In
O
P
Fr
P
M

Sc
In
O
P
P
P
Fr
TV
D

able A.10
egression coefficients and s

# Mini-grid
type

Eleva

1 Diesel-only Lowla

2 Diesel only Highl

3 Solar-only Lowla

4 Solar-only Highl

5 Hybrid Lowla

6 Hybrid Highl
n

tatistics for Eq.

tion Statist

nds Coeffi
Std er
VIF

ands Coeffi
Std er
VIF

nds Coeffi
Std er
VIF

ands Coeffi
Std er
VIF

nds Coeffi
Std er
VIF

ands Coeffi
Std er
VIF
P [W]
(6).

ic Coefficien

c0

cient 0.009
ror 0.000

38.325
cient 0.009
ror 0.000

35.926
cient 0.377
ror 0.020

266.895
cient 0.325
ror 0.030

3057.32
cient 0.040
ror 0.006

302.641
cient −0.015
ror 0.027

3095.064
Cycle [min]
ts

c1 c2

2 −0.0095 0.317
0 0.0000 0.000
7 1.0004 1.000
1 −0.0097 0.318
0 0.0001 0.000
9 1.0052 1.000
4 −0.0853 –
0 0.002 –
1 1.0057 –
8 −0.0468 –
0 0.0010 –

1.0032 –
7 −0.0094 0.239

0.001 0.001
5 1.0023 1.002
8 −0.0102 0.197
0 0.0010 0.002
8 1.0079 1.002
Tot use [min]
c3 c4

7 3.4905 –
0 0.0120 –
3 1.0000 –
0 2.9356 –
0 0.0110 –
2 1.0000 –

2.8059 −0.0002
0.233 0.0000
1.0001 1.0001
2.4086 −0.0001
0.1060 0.0000
1.0001 1.0000

2 3.3833 0.0000
0.071 0.000

2 1.0000 1.0001
3 2.8730 0.0000
0 0.0950 0.0001
0 1.0001 1.0001
Start W1
c5 c6

0.0348 –
0.0000 –
1.0006 –
0.0368 –
0.0000 –
1.0053 –
– 0.1709
– 0.0080
– 1.0032
– 0.1091
– 0.0020
– 1.0031
0.0268 0.0295
0.001 0.001
1.0022 1.0039
0.0307 0.0313
0.0020 0.0020
1.0027 1.0060
End W1
Diagn

c7 R2

– 99.973
–
–
– 99.977
–
–
0.5911 92.072
0.0200
1.0023
0.5491 97.279
0.0040
1.0011
0.0252 98.372
0.003
1.0024
0.0560 95.900
0.0030
1.0005
Start W2
osis check

MAE RMSE

0.637 0.005

0.739 0.007

11.068 1.346

8.341 0.757

1.444 0.047

2.082 0.103
End W2
ealth center

door bulb**
 12
 7
 10
 690
 08:00
 12:00
 14:30
 24:00

utdoor bulb**
 1
 13
 10
 690
 00:00
 05:30
 17:30
 24:00

hone charger
 8
 2
 5
 300
 08:00
 12:00
 15:00
 24:00

idge*
 3
 150
 30
 1440
 00:00
 24:00
 –
 –

C
 2
 50
 10
 300
 08:00
 12:00
 17:30
 24:00

ixer
 1
 50
 1
 60
 08:00
 12:00
 17:30
 24:00
hool

door bulb**
 8
 7
 10
 60
 17:00
 18:00
 –
 –

utdoor bulb**
 6
 13
 10
 60
 17:00
 18:00
 –
 –

hone charger
 5
 2
 5
 180
 08:30
 12:30
 13:30
 18:00

C
 18
 50
 10
 210
 08:30
 12:30
 13:30
 18:00

rinter
 1
 20
 5
 30
 08:30
 12:30
 13:30
 18:00

idge*
 1
 200
 30
 1440
 00:00
 24:00
 –
 –
1
 60
 5
 120
 08:30
 12:30
 13:30
 18:00

VD
 1
 8
 5
 120
 08:30
 12:30
 13:30
 18:00

ereo
 1
 150
 5
 90
 08:30
 12:30
 13:30
 18:00
St
* Fridge follow a specific ad-hoc cycle, is not functioning full power for 24h.
** Total duration and functioning windows depending on seasonal sunrise and sunset times.
*** Depending on population size.
Multivariate regression results

Table A.10 details the regression results and respective statistics for each surrogate model (see structure in Eq. (A.3)). When looking at the
regression diagnosis-testing results, we can conclude that the accuracy of the regression fit is sufficient, with low scores reported for the Mean
Absolute Error (MAE) and low scores for the Root Mean Squared Error (RMSE). Specifically for solar-only micro-grids, the models were not
able to predict the LCOE as accurately as for the other two models, due to the non-linear characteristics of battery sizing. Looking at the R-
squared scores, we find a regression correlation higher than 95% for all models, with the only exemption of solar-only micro-grids with cor-
relation of 92%. Looking at the Durbin Watson (DW) residual autocorrelation test score, we found no autocorrelation in any of the models
(DW = 2 means no autocorrelation). Each coefficient of the regression is statistically significant, with non-significant standard errors and
non multicollinearity found with the Variance Inflation Factor (VIF) test (since a Latin hypercube sampling method is applied to all instances
prior optimization).

LCOEt ¼ co þ c1 � LLP � 100þ c2 � cfuel þ c3 � 1Hi
þ c4 � GHI þ c5 � cge þ c6 � cR þ c7 � cbat ðA:3Þ
DW

1.686

1.808

1.865

1.810

2.054

1.974
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Micro-grid optimization box-plots
Fig. A.2. a. Boxplots of the LCOE obtained for solar-only, hybrid and diesel-onlymicro-grids for all instances of three representative settlement sizes in the lowlands of Bolivia. Resultswhen
international diesel price is applied at the top and results for subsidized prices at the bottom. b. Comparison of the LCOEmeans obtained for eachmicro-grid type for three representative
settlement sizes specific for the international and subsidized diesel price scenarios.
Differences in the results when applying OnSSET-enhanced and original algorithms

Fig. A.3. Boxplots comparing results obtained when applying the OnSSET original and OnSSET enhanced algorithms to the highlands of the population threshold a. Comparison of
generation capacity results. b. Comparison on LCOE results.

Unlabelled image
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