
Minimalistic Fuzzy Ontology Reasoning: An application to Building
Information Modeling

Ignacio Huitzila,b,∗, Miguel Molina-Solanab,c, Juan Gómez-Romeroc, Fernando Bobilloa,d

aUniversity of Zaragoza, Zaragoza, Spain
bImperial College London, London, United Kingdom

cUniversity of Granada, Granada, Spain
dAragon Institute of Engineering Research (I3A), Zaragoza, Spain

Abstract

This paper presents a minimalistic reasoning algorithm to solve imprecise instance retrieval in fuzzy ontologies with

application to querying Building Information Models (BIMs)—a knowledge representation formalism used in the

construction industry. Our proposal is based on a novel lossless reduction of fuzzy to crisp reasoning tasks, which

can be processed by any Description Logics reasoner. We implemented the minimalistic reasoning algorithm and

performed an empirical evaluation of its performance in several tasks: interoperation with classical reasoners (Hermit

and TrOWL), initialization time (comparing TrOWL and a SPARQL engine), and use of different data structures

(hash tables, databases, and programming interfaces). We show that our software can efficiently solve very expressive

queries not available nowadays in regular or semantic BIMs tools.

Keywords: Fuzzy ontologies, Flexible querying, Building Information Modeling

1. Introduction1

Digitalization is a major innovation factor in the construction sector. The incorporation of new information man-2

agement technologies is transforming how buildings are designed, planned and operated [1]. A key element to achieve3

this vision is the Building Information Model (BIM), a digital representation of a building for integrated design, mod-4

eling, planning and operation during its whole lifecycle [2], from inception to decommission. BIMs can help to5

optimize construction and maintenance costs, improve transparency and collaboration between different stakeholders,6

manage complex projects, and adapt to changing requirements quickly. Not surprisingly, the European BIM market7

was evaluated at 1.8 billion e in 2016 and it is expected to grow up to 2.1 billion e by 2023 [3].8

The BIM concept brings together several pieces of interconnected information, including a 3D geometric model9

of the building elements and a description of the materials used and their properties. To encode these data, the10

buildingSMART1 organization proposed the Industry Foundation Classes (IFC), a neutral and open ISO standard for11

∗Corresponding author
Email addresses: ihuitzil@unizar.es (Ignacio Huitzil), mmolinas@ic.ac.uk (Miguel Molina-Solana), jgomez@decsai.ugr.es (Juan

Gómez-Romero), fbobillo@unizar.es (Fernando Bobillo)
1https://www.buildingsmart.org

Preprint submitted to Applied Soft Computing February 10, 2021

https://www.buildingsmart.org


BIM data [4]. The IFC specification defines a conceptual schema for BIM elements, encoded in the data modeling12

languages EXPRESS (ISO 10303-11) or XSD (XML Schema Definition), and file formats for specific building data,13

namely IFC-SPF (IFC STEP Physical Format) and ifcXML. Although these formats are light and easy to use, they14

lack the capabilities for sophisticated knowledge representation and reasoning offered by ontologies. Hence, there are15

several initiatives to evolve BIMs into semantic BIMs [5], powered by Semantic Web technologies (see Section 2.116

for details).17

An ontology is “a formal, explicit specification of a shared conceptualization” [6], i.e., a definition of the vocabu-18

lary of a domain of interest consisting in axioms describing concepts, instances, and properties. By using a software19

called reasoner2, one can infer facts which are implicitly contained in an ontology. The theoretical foundations of20

ontologies are Description Logics (DLs), a family of logics particularly well suited to represent structured knowl-21

edge [7]. OWL 2 (Ontology Web Language) [8] is the standard representation language and it is based on the RDF22

(Resource Description Framework) triple-based model [9].23

Many real-world domains demand representing imprecise knowledge, vagueness, approximate reasoning, or flex-24

ible querying, for which classical ontologies do not provide support. To overcome this limitation, classical (i.e., crisp)25

ontologies have been extended with fuzzy logic [10] to create fuzzy ontologies [11]. In fuzzy ontologies, concepts and26

relations are modeled using fuzzy sets and fuzzy relations, respectively, and axioms and facts are not either true or27

false, but may hold to some degree of truth. Knowledge representation with fuzzy ontologies can be done with custom28

languages such as Fuzzy OWL 2 [12], while reasoning is supported by reasoning engines such as fuzzyDL [13] and29

DeLorean [14].30

Objective. In a previous paper, we showed that fuzzy ontologies can accomplish information retrieval tasks not avail-31

able in current BIM systems [15]; e.g., cross-domain information integration, flexible querying, and imprecise para-32

metric modeling. Unfortunately, as highlighted in the conclusions, semantic BIM tools and fuzzy inference engines33

suffer some limitations in terms of scalability, efficiency and ease of use, which make them unsuitable for medium-34

scale models. In this paper, we address these problems by proposing and evaluating a new algorithm for efficient35

reasoning with fuzzy ontologies with application to the instance retrieval problem, arguably the most common one in36

BIMs and in many other domains. Our research approach is aligned to recent BIM research initiatives [16], which37

highlight the need for leveraging BIM data models and validating them on real use cases.38

Contributions. More specifically, in the present work we developed a minimalistic-reasoning algorithm, where the39

term minimalistic refers to the fact that the algorithm cannot support any element of a fuzzy ontology, but only a se-40

lection of them useful for the instance retrieval task—namely, fuzzy datatypes and fuzzy concept assertions involving41

leaf concepts. These kind of queries is pervasive in real-world problems—and notably in BIMs—since they can be42

used to obtain the domain objects—i.e. building elements—that satisfy imprecise (and probably complex) constraints43

2http://owl.cs.manchester.ac.uk/tools/list-of-reasoners

2

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners


defined over their properties. However, solving them efficiently remains unexplored. The algorithm was implemented44

in a software prototype and its performance evaluated on sample fuzzy queries over a real-world BIM. Accordingly,45

the main contribution of the paper is the identification and optimization of a minimal set of reasoning tasks required46

for instance retrieval with restrictions in a fuzzy ontology, and particularly, in a fuzzy BIM. We also describe how47

these tasks can be expressed in terms of classical crisp inference, which can be solved by any classical (non-fuzzy)48

reasoning engine. Finally, we prove that the new algorithm can be useful to provide an efficient reasoning over some49

real BIM models.50

Structure. This paper is structured as follows. In section 2, we overview some related works on reasoning. In51

section 3, we describe the bases and methods necessary for our research. In section 4, we propose a framework,52

describe the reasoning task and propose a reasoning algorithm. In section 5, we depict the implementation of the53

algorithm by means of an application that we tested with a real use case. Then, Section 6 discusses the pros and cons54

of our proposal. Section 7 concludes summarizing the main findings and pointing towards several pieces of future55

work.56

2. Related work57

2.1. Querying and reasoning over Semantic BIMs58

The use of ontologies in the domains of architecture, engineering and construction (AEC) has notably increased59

over the last years, giving raise to the so-called semantic BIMs. Pauwels, Zhang and Lee stated that there are several60

motivations behind this interest [5]: (1) facilitating interoperability and information exchange between heterogeneous61

tools, (2) linking cross-domain information to exploit synergies of related domains, (3) equipping AEC data models62

with logic-based representation capacities. These authors concluded that are still many research gaps than remain un-63

explored, such as the combination of declarative and procedural techniques, and the automation of the data integration64

and retrieval procedures.65

Recently, Mendes de Farias et al. explored the capabilities of rule-based reasoning in semantic BIMs [17]. They66

proposed the concept of view to represent a minimal usable sub-graph of elements extracted from an IFC file modeling67

a whole facility. The view is materialized as a knowledge graph based on the ifcOWL ontology [18], created by68

applying logical rules in SWRL (the Semantic Web Rule Language), and queried in the same language. The Stardog3
69

triplestore is used to solve SPARQL [19] queries on RDF data and SWRL inferences. We perform a similar process to70

translate the heavyweight IFC files into a simpler OWL model, but we rely instead on the creation of modules based71

on the physical features of the building via a graphical user interface. We also leverage this interface to facilitate72

the creation of fuzzy queries over the IFC entities, instead of directly using SPARQL—which can be difficult for73

3https://www.stardog.com/

3

https://www.stardog.com/


non-expert users. Our algorithm also reduces the time required to solve the queries, which may take hours in their74

case.75

Werbrouck et al. analyzed the limitations of IFC regarding modularity of BIM models and their support for76

query-solving [20]. Focusing on data represented as RDF triples, they presented a comparative of the usability and77

the performance of SPARQL against GraphQL-LD [21] and HyperGraphQL [22], two query languages based on the78

REST API language GraphQL. The transformation between IFC and RDF was done with IFCtoLBD, which we also79

use in this work. The authors showed that BIM models can exploit standard Linked Data languages for pattern-based80

query and data federation, but their expressivity is low: mostly simple RDF property-value and type-of queries on81

BIM elements are addressed. Our proposal supports instead a richer fuzzy extension of OWL 2, and at the same time,82

allows using existing reasoning engines.83

Another proposal is that of Fahad et al., who focused on formal verification of IFC models by means of a Linked84

Data consistency checker—namely, the Semantic BIM Reasoner (SBIM-Reasoner) [23]. This issue was indeed men-85

tioned in [20] (and also in [24], where the Shapes Constraint Language (SHACL) is suggested to address this issue).86

To that end, Fahad et al. developed a processing pipeline to extract geometry data from an IFC file, filter relevant87

information to reduce the model size, and create a resulting RDF graph. This model was managed with the Stardog88

triplestore via SPARQL queries and SWRL rules, in a similar way as in [17]. In contrast, our paper explores how89

fuzzy ontologies can be applied to define imprecise restrictions on data with the purpose of flexible querying. Fuzzy90

constraint satisfaction still remains as a future work.91

To the best of our knowledge, the first approach to augment semantic BIMs with capabilities to manage impreci-92

sion and vagueness is our 2015 paper [15]. We used fuzzy ontologies and the fuzzy ontology reasoner DeLorean [14]93

to propose solutions to several AEC tasks: cross-domain knowledge linking (e.g. with partial concept inclusions and94

graded relationships), imprecise BIM queries (e.g. by using linguistic labels and imprecise topological relations) and95

fuzzy parametric modeling (e.g. by means of fuzzy axioms and maximization of their degree of fulfillment). In the96

current paper, we further develop these ideas and focus on one unsolved issue: the efficiency and the scalability of the97

reasoning algorithms. To that aim, we present a new algorithm for instance retrieval in large BIM models, which is98

evaluated on a real-world BIM.99

Abualdenien and Borrmann highlighted that vague, imprecise, and incomplete information is frequent in the AEC100

industry, and acknowledged that is should be somehow incorporated into the BIM methodology [25]. These authors101

focused on the visualization of uncertain aspects of the building design, and particularly, vagueness of geometrical102

properties. In contrast to our work, they did not use a formal framework for the representation of uncertainty and103

imprecision. Our approach, based on Description Logics, allows us to guarantee the computational properties of the104

inference process and to use existing fuzzy and crisp reasoning engines.105

Table 1 summarizes the main contribution and limitation of the previous approaches.106

4



Reference Main contribution Main limitation
[17] Semantic BIMs using RDF triples, OWL schema, SWRL

rules, and SPARQL queries
Not scalable. No support for OWL reasoning
tasks. No support for vagueness

[20] Semantic BIM queries using HyperGraphQL and
GraphQL-LD

Low expressivity. No support for vagueness

[23] Consistency checking for Semantic BIMs using RDF
triples and SWRL rules

No support for OWL reasoning tasks. No sup-
port for vagueness

[15] Representation and reasoning with fuzzy Semantic BIMs Not scalable algorithms
[25] Visualization of vagueness in AEC No formal model. No reasoning

Table 1: Related work on querying and reasoning over semantic BIMs

2.2. Efficient reasoning with fuzzy ontologies107

Different families of reasoning algorithms for fuzzy ontologies can be found in the literature [26]. However, most108

of them are focused on showing the existence of an algorithm rather than on the efficiency in practice. For example,109

some reasoning algorithms are based on computing an equivalent crisp ontology, with a blowup in the size of the110

ontology [27]. DeLorean implements some of these algorithms. This is clearly not scalable and inappropriate to111

answer queries over real BIM models, with a very high number of individuals and axioms.112

Because ontology languages provide a trade-off between expressive power and complexity of the reasoning, a first113

way to guarantee an efficient reasoning is to restrict the expressivity. In classical ontologies, the OWL 2 language has114

three sublanguages or profiles with tractable reasoning (i.e., the main reasoning tasks can be solved in a polynomial115

time), namely OWL 2 EL, OWL 2 QL, and OWL 2 RL [28]. In the fuzzy case, it has been showed that fuzzy116

extensions of tractable languages are not tractable in general [29], and they can even be undecidable [30]. Despite this117

fact, some fuzzy extensions of tractable DLs have been investigated, including fuzzy extensions of the logics behind118

OWL 2 EL [31, 32], OWL 2 QL [33], and OWL 2 RL [34].119

We argue that this limited expressivity might not be enough to represent real BIM models. For example, OWL 2 EL120

does not support universal restrictions, which are important to represent that individuals of a class always have a121

certain property valued in a range. For example, we would want to represent that IfcStairFlight is a subclass of the set122

of elements which are related via the property riserHeight only with elements of the class IfcPositiveLengthMeasure123

(in Manchester syntax, riserHeight only IfcPositiveLengthMeasure).124

Another approach is to develop specific optimization techniques to make reasoning more efficient in some common125

cases in practice. While many optimization techniques are known for classical DLs, optimizations for fuzzy DLs have126

not received such attention, but there are some exceptions. Haarslev et al. [35] proposed caching (to avoid repeating127

computations), lexical normalization (transforming concept expressions into a canonical form to detect inconsistencies128

earlier), simplifications of concept expressions, and ABox partitioning (splitting axioms about individuals—concept129

and property assertions—into disjoint sets). Simou et al. [36] proposed degrees normalization, to remove superfluous130

axioms when the same axioms is stated with different degrees of truth, and some optimizations of the algorithm to131

compute the best entailment degree of an axiom. Moreover, Bobillo and Straccia [37] proposed lazy unfolding, to132

5



delay the expansion of subclass axioms as much as possible, and an absorption algorithm to increase the applicability133

of lazy unfolding. fuzzyDL reasoner implements these and other optimization techniques, such as using different134

blocking strategies (adapted to the expressivity of the ontology) to guarantee the termination of the reasoning [13], or135

using some reasoning rules for some common special cases (such as n-ary conjunctions).136

Finally, it is common to solve a reasoning task on fuzzy ontologies by reducing it to solving another one. For137

example, the instance retrieval problem can be solved by computing several entailment tests (one for each individual138

in the ontology). However, developing a specific reasoning algorithm is often more efficient. For example, we can139

mention a specific algorithm for the classification problem [26] and some recent algorithms to solve the realization140

and the instance retrieval problems [38]. In the present paper, we provide a new reasoning algorithm to solve a novel141

version of the instance retrieval problem. The main differences with the work in [38] is that we can reuse a classical142

DL reasoner, but imposing some restrictions on the language (for example, we only consider fuzzy concept asser-143

tions involving leaf concepts). Reusing classical reasoners is interesting because existing fuzzy ontology reasoners144

have limitations: most of them cannot completely support Fuzzy OWL 2 (e.g., fuzzyDL [13] ) and the only current145

exception, DeLorean, implements a non-scalable algorithm [14].146

Table 2 compiles the main contribution and limitation of the overviewed related work.147

Reference Main contribution Main limitation
[27, 29] Reasoning algorithms based on a reduction to crisp on-

tology reasoning. Classical reasoners can be reused
Not scalable (blow-up in the size of the com-
puted crisp ontology)

[31, 32, 33, 34] Fuzzy extensions of tractable languages (OWL 2 EL,
OWL 2 QL, and OWL 2 RL)

Insufficient expressivity for a real fuzzy BIM

[13, 35, 36, 37] Optimization techniques for fuzzy ontology reasoning Classical reasoners cannot be reused
[26] Specific algorithm for classification Classical reasoners cannot be reused. Ques-

tionable scalability
[38] Specific algorithms for realization and instance retrieval Classical reasoners cannot be reused. Classi-

cal definition of the instance retrieval problem

Table 2: Related work on efficient reasoning in fuzzy ontologies

3. Background148

This section overviews some basic notions on fuzzy logic (Section 3.1) and fuzzy ontologies (Section 3.2).149

3.1. Fuzzy sets and fuzzy logic150

Fuzzy logic is a generalization of classical logic proposed by Zadeh where statements are not necessarily either151

true or false, but hold to some degree of truth [10]. The cornerstone of fuzzy logic is the concept of fuzzy set, which152

is a generalization of a classical set where elements can have a partial membership. A fuzzy set A is characterized153

by a membership function µA(x) which associates with each object x a real number in [0, 1] representing the mem-154

bership degree of x in A. Figure 1 shows some examples of membership functions commonly used to build fuzzy155

6



(a) (b) (c)

(d) (e) (f)

Figure 1: Typical fuzzy membership functions (borrowed from [13]): (a) Trapezoidal function; (b) Triangular function; (c) Left-shoulder function;
(d) Right-shoulder function; (e) Linear function; (f) Power function

sets. For instance, TallWindow is a fuzzy set that contains tall windows. If a window window001 has a height of156

1470 mm, we can evaluate the membership degree to TallWindow with a triangular function (Figure 1d) such as Tall-157

Window(window001) = (triangular(1500, 1700, 2500))(1470) = 0.67. This way, it becomes possible to represent158

imprecise information. In particular, the value of a property can be a linguistic label (represented as a fuzzy set) rather159

than a single numerical value.160

Fuzzy logic enables approximate reasoning. Logical operations over classical sets are also generalized to the fuzzy161

case. To compute the conjunction, disjunction, complement and implication over fuzzy sets one can use different162

families of functions, namely a t-norm, a t-conorm, a negation, and a fuzzy implication (see [39] for details). For163

instance, the minimum (Min) is a t-norm and the maximum (Max) is a t-conorm.164

Besides logical operations, there are other ways to combine fuzzy sets. For example, an aggregation operator is165

a function that takes n values in [0,1] (possibly representing the membership degrees to n fuzzy sets) and returns a166

single value in [0,1]. Some examples are the weighted mean (WMEAN) or the Ordered Weighted Averaging (OWA)167

operator [40]. Given a weighting vector w = [w1, . . . ,wn] such that wi ∈ [0, 1] and
∑n

i=1 wi = 1, an OWA operator168

aggregates the values x1, . . . , xn ∈ [0, 1] into:169
n∑

i=1

wixσ(i) (1)

where σ is a permutation such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Note that xσ(i) denotes the i-th largest value that we170

want to aggregate.171

The problem of computing weighting vectors for OWA has been largely investigated. A popular solution is172

to use quantifier-guided aggregation. Given a Regular Increasing Monotone (RIM) quantifier [41], i.e., a function173

7



Q : [0, 1]→ [0, 1] satisfying some properties, each weight can be computed as:174

wi = Q(
i
n

) − Q(
i − 1

n
) (2)

For example, right-shoulder (Figure 1d), linear (Figure 1e), and power functions (Figure 1f) can be used to define175

RIMs.176

To conclude this section, a fuzzy modifier (also called fuzzy hedge) modifies the shape of a fuzzy set by alter-177

ing its membership function. Two common examples are the weakening modifier very, characterized by the func-178

tion very(x) = x2, and the increasing modifier few, defined as few(x) =
√

x. If we apply very to the fuzzy set179

TallWindow, for each window x we can be compute the degree of being a very tall window as µVeryTallWindow(x) =180

very(µTallWindow(x)) = (µTallWindow(x))2. Fuzzy modifiers can also be defined, for example, using triangular (Figure 1b)181

or linear (Figure 1e) functions.182

3.2. Fuzzy ontologies183

Fuzzy ontologies are a generalization of classical ontologies based on fuzzy set theory and fuzzy logic [26]. They184

are useful in many real-world application domains to represent imprecise facts or axioms that are only partially true,185

and to enable approximate reasoning and flexible querying.186

Fuzzy ontologies are a conceptualization of the world which can include the following elements:187

• An individual is an object of the modeled domain, e.g., window001.188

• A data value is a value from another domain, different to the one being modeled, such as an integer or a real189

number, a textual value, or a date. A fuzzy datatype is a generalization of crisp numerical values by using a190

fuzzy membership function instead (see e.g., Figure 1). For example, one can replace a crisp value 1700 mm191

with the fuzzy datatype HighOverallHeight, defined as triangular(1500, 1700, 2500).192

• A fuzzy concept (or fuzzy class) is a fuzzy set of individuals, e.g., TallWindow.193

• A fuzzy property is a fuzzy binary relation between an individual and another individual or a data value.194

– An object property links two individuals, e.g., hasWindow links a building with a window.195

– A data property relates an individual and a data value, e.g., overallHeight links an individual with a real196

number.197

• A fuzzy axiom states a restriction on the elements of the fuzzy ontology. A fuzzy axiom is not either true or198

false but might hold to some degree. In this paper, we will focus on the following types of fuzzy axioms:199

– A fuzzy concept assertion expresses a restriction on the membership degree of an individual to a fuzzy200

concept. For example, one can say that window001 belongs to the concept of TallWindow with at least201

degree 0.67, meaning that it is a quite tall window.202

8



– A fuzzy object property assertion expresses that two individuals are partially related. For example, we can203

say that wall001 and window001 are related via hasWindow.204

– A fuzzy data property assertion expresses that an individual is related to a data value, e,g,, one can state205

that a window has a height of 1634 mm by relating window001 and the number 1634 via overallHeight.206

– A fuzzy subclass axiom ensures that a fuzzy concept is more specific than another one, i.e., it is a subclass207

of it. For instance, TallWindow is more specific than IfcWindow. A more complex example is that a208

TallWindow is related to the fuzzy datatype HighOverallHeight via the data property overallHeight.209

Figure 2 illustrates a simple ontology with four classes (denoted with a yellow circle), one individual (purple210

rhombus), one data property (green rectangle), and a fuzzy datatype (red circle). Solid lines denote that a class is a211

subclass of another one. Dashed lines denote other axioms, namely a fuzzy concept assertion and a complex subclass212

axiom involving a data property and a fuzzy datatype. Figure 3 shows how to encode this fuzzy ontology using a213

fuzzy ontology editor.214

Figure 2: Fragment of the model of a fuzzy ontology

Several fuzzy ontology languages have been proposed in the literature. Among them, the most used one is Fuzzy215

OWL 2 [12], which extends OWL 2 ontologies [8] with OWL 2 annotations encoding the fuzzy information that cannot216

be represented in standard OWL 2. Such annotations are represented using a special annotation property fuzzyLabel.217

To avoid dealing with the syntax of the language, there is a Protégé plug-in to develop Fuzzy OWL 2 ontologies4.218

Many reasoning tasks for fuzzy ontologies have been studied in the literature, and some reasoners have been219

implemented, such as fuzzyDL [13] and DeLorean [14]. In this work, we will define a new task similar to the instance220

retrieval problem [38] (i.e., retrieving all the instances of a fuzzy concept and their minimal degrees of membership).221

4http://www.umbertostraccia.it/cs/software/FuzzyOWL/index.html

9

http://www.umbertostraccia.it/cs/software/FuzzyOWL/index.html


Figure 3: Snapshot of a fuzzy ontology edited in Protégé with the FuzzyOWL 2 plugin

4. Minimalistic fuzzy ontology reasoning222

To solve flexible queries over a BIM model, we propose a framework composed of the following steps:223

• Representation of the BIM model using an OWL 2 ontology. This involves using a conversion tool and defining224

a BIM schema.225

• Split of the BIM model in several subontologies with smaller size which fit our hardware requirements. The226

reason is that representing real BIM data usually leads to very large OWL 2 ontologies.227

• Fuzzification of the ontology. On the one hand, one can define linguistic labels using fuzzy datatypes. On the228

other hand, one can state partial membership of individuals to classes using class assertion axioms.229

• Retrieval of the instances of the ontology that satisfy a given (flexible) query.230

In this section we will focus on the last step of the process, in which the minimalistic fuzzy reasoning is applied.231

In particular, we will define a novel reasoning task, namely flexible faceted instance retrieval (Section 4.1), discuss a232

more specific case obtained after some simplifications (Section 4.2), and propose a reasoning algorithm (Section 4.3).233

The other steps will be discussed in Section 6.234

10



4.1. Flexible faceted instance retrieval235

Let us describe the reasoning task flexible faceted instance retrieval. The idea is to extend classical fuzzy instance236

retrieval to narrow down the query results by imposing some conditions on the attribute values. In particular, given a237

fuzzy ontology O, our aim is to retrieve the instances of a fuzzy concept C such that the values of n functional data238

properties pi with a numerical range are compatible with a fuzzy datatype Di. For example, retrieving all the instances239

of IfcWindow (or its subclasses) such that their overallHeight and overallWidth, representing the height and the width240

of a window, are Low and High, respectively. Furthermore, the intermediate degrees of truth can be combined using241

a combination function Fc (a t-norm, a t-conorm, or an aggregation operator such as the weighted sum or OWA), and242

the final degree can be modified using a modifier function Fh (a fuzzy hedge), e.g., to ensure that the query is very243

much satisfied. Formally:244

Definition 1 (Flexible faceted instance retrieval). Given the sextuple 〈O,C, [p1, . . . , pn], [D1, . . . ,Dn], Fc, Fh〉, the

solution to the flexible faceted instance retrieval is an ordered list of pairs 〈ii, βi〉 such that

O |= 〈C(ii), αi〉 ,

O |= p j(ii, v j), j ∈ {1, . . . , n} ,

βi = Fh(Fc(max{αi},D1(v1), . . . ,Dn(vn))) > 0 ,

βi ≥ β j, j > i .

(3)

Example 1. Consider a BIM ontology O where the class IfcBuildingElement has 5 sibling subclasses, namely IfcWin-245

dow, IfcDoor, IfcColumn, IfcWall, and IfcStair. IfcWindow has some subclasses BasicWindow, HistoricWindow, Slid-246

ingWindow, and SpecialWindow. Such subclasses are non-direct in general, for example, InteriorBasicWindow is a247

direct subclass of BasicWindow, which is a direct subclass of IfcWindow. Note that IfcWindow and all its subclasses248

are crisp concepts, so all the αi = 1. There are 2 data properties overallWitdth and overallHeight and 5 individuals249

GUI eYJ, GUI jTl, GUI pCt, GUI rYh, and GUI nVz. The following table shows for each window to which subclass250

of IfcWindow it belongs to, the width, and the height at millimeters:251

Window Type overallWidth overallHeight

GUI eYJ InteriorBasicWindow 1200 2000

GUI jTl HistoricWindow 900 800

GUI pCt SpecialWindow 1430 2512

GUI rYh SlidingWindow 1000 2200

GUI nVz BasicWindow 940 1760

252

We want to retrieve the instances of IfcWindow such that the overallWidth is HighWidth and the overallHeight is253

HighHeight, using as a combination function the minimum t-norm fc(x1, . . . , xk) = min{x1, . . . , xk} and using as a mod-254

ifier function the fuzzy hedge very defined as fh(x) = x2. HighWidth (fuzzy datatype) is defined as a triangular fuzzy255

11



function triangular(900, 1200, 2000) and HighHeight is defined as a triangular fuzzy function triangular(1500, 1700, 2500).256

Remember that βi = Fh(Fc(max{αi},D1(v1), . . . ,Dn(vn)) > 0. Thus:257

Window HighWidth HighHeight βi

GUI eYJ 1 0.63 0.39

GUI jTl 0 0 0

GUI pCt 0.71 0 0

GUI rYh 0.33 0.37 0.11

GUI nVz 0.13 0.93 0.02

258

Therefore, the answer would be:

{
〈GUI eYJ, 0.39〉, 〈GUI rYh, 0.11〉, 〈GUI rYh, 0.02〉

}
�

This very general case could be simplified in different ways. For example, C can be a crisp concept, there can be259

a smaller number of properties (or even none), and Fh can be omitted assuming that it is the identity function. Also,260

it is trivial to extend the reasoning task to consider only the top-k results.261

4.2. A more specific scenario262

Our aim now will be to propose a reasoning algorithm for more specific, but still common in practice, cases:263

Restriction 1 We assume that the only fuzzy elements that the fuzzy ontology can contain are fuzzy concept asser-264

tions and fuzzy datatypes.265

Restriction 2 We only take into account those partial memberships that are stated via a fuzzy concept assertion266

〈C(i) ≥ α〉 with α > 0 (that will also be propagated to the named concepts that are superclasses of C).267

Restriction 3 We assume that if an individual partially belongs to a concept, it does not fully belong to another268

concept (except to owl:Thing).269

Example 2 shows an example of an implicit fuzzy concept assertion that is excluded by Restriction 2.270

Example 2. Let us assume {{i} v (A t A)} ∈ O under Łukasiewicz family of fuzzy operators. Therefore, according271

to the usual semantics (see for example [27]), for each element x of the domain, ({i})I(x) ≤ (A t A)I(x) holds. In272

particular, x = iI implies 1 ≤ (A t A)I(iI), so AI(x) ⊕ AI(x) = min{AI(iI) + AI(iI), 1} ≥ 1, and thus 2 · AI(iI) ≥ 1,273

so AI(iI) ≥ 0.5 holds. Therefore, the fuzzy ontology entails a fuzzy concept assertion 〈A(i) ≥ 0.5〉 that is not explicitly274

represented in O. �275

12



Therefore, if 〈i, α〉 is in the solution of the flexible faceted instance retrieval of a fuzzy concept C and α < 1, there

is at least a fuzzy concept assertion of the form 〈C′(i) ≥ α〉 in the ontology, for some subclass C′ of C. Formally:

O |= C′ v C ,

O 3 〈C′(i) ≥ α〉 .
(4)

Note in particular that the case C′ = C is possible. The rationale behind this restriction is to avoid computing the276

membership degrees of individuals to classes using an ontology reasoner. We instead assume that there is one (or277

more) fuzzy concept assertions and propagate the membership degrees to the superclasses of the concept. If there278

is more than one fuzzy concept assertion involving subclasses of C, we can take the maximum of the membership279

degrees max{αi}.280

Example 3. Assume that b is a SpecialWindow with degree 0.9 and a BasicWindow with degree 0.8. Then, the281

membership degree to the common superclass IfcWindow is max{0.9, 0.8} = 0.9. �282

Note also that we do not restrict to a specific family of fuzzy operators (Zadeh, Gödel, Łukasiewicz, or Product).283

Because we only consider fuzzy datatypes and the propagation of fuzzy concept assertions to their superclasses, where284

the subclasses axioms are fully true, our algorithm does not depend on the choice of the fuzzy operators.285

To efficiently retrieve the degrees αi without using a reasoner, we retrieve them from the OWL 2 annotations and286

store them in an appropriate data structure (such as a noSQL database storing triples) for an efficient data access. In287

particular, for each fuzzy concept assertion 〈C(i) ≥ α〉 ∈ O, we add a tuple 〈i,C, α〉 to the data structure. Note that it288

is possible to visit all fuzzy concept assertions in a Fuzzy OWL 2 ontology, by looping over all existing annotation289

assertions involving the fuzzyLabel property.290

We avoid adding to the data structure individuals which fully belong to a concept. That is, for each classical291

concept assertion C(i) we do not add to the data structure a tuple 〈i,C, 1〉. The reason is that it is not efficient to292

retrieve each concept C′ such that O |= C′(i) but C′(i) < O; in particular, we would need to use an ontology reasoner.293

Note that if there is a classical assertion stating that an individual belongs to a class, there is no annotation294

assertion. Therefore, individuals fully belonging to a class are not stored in the data structure. Given a flexible faceted295

instance retrieval over a concept C, it is fine to have an individual partially belonging to several fuzzy concepts that296

are subclasses of C (i.e., appearing in more than one fuzzy concept assertion) and it is fine to have an individual fully297

belonging to several fuzzy concepts that are subclasses of C. Restriction 3 forbids having both cases at the same time,298

and it is needed to propagate a membership degree to a class C′ to a (possibly non-direct) superclass C without having299

to check if the individual fully belongs to C.300

4.3. An algorithm301

We call our approach minimalistic reasoning because it is restricted to a more specific case and imposes some302

assumptions to reuse classical ontology reasoners, providing an incomplete solution (i.e., if a fuzzy ontology does303

13



not satisfy our constraints, some inferences can be missed). Algorithm 1 shows how to compute the flexible faceted304

instance retrieval of a fuzzy ontology under the restrictions enumerated in the previous section.305

The first part (Lines 2–7) is an initialization that can be computed just once, and can be reused by future queries.306

Firstly, we load the ontology (Line 2), classify the ontology by computing the hierarchy of concept names that fully307

subsumes their subclasses (Line 3), and store the degrees of the fuzzy concept assertions in an auxiliary data structure308

DS (Lines 4–7). The rest of the code (Lines 9–35) implements the proper query answering. The next steps are309

retrieving all instances of C, noting that some of them might partially belong to C (Line 9) and retrieving all subclasses310

of C (Line 10). Then, we will look in the data structure if each retrieved instance appears in the data structure (partial311

membership) or not (fully membership). In particular, Lines 13–23 compute the maximum of the degrees in the data312

structure (1 if there is none). The next step is to compute the satisfaction degrees of the linguistic labels associated to313

the attributes of the instance. Therefore, Lines 24–29 retrieve the values (which must be unique because the properties314

are functional) of each data property and compute the membership degrees to the respective fuzzy datatypes (0 if315

the value of the property is unknown). All the obtained degrees are aggregated in Lines 30–32 using a combination316

functions and a fuzzy hedge, and then added to a list of solutions. Finally, the list is ordered and returned.317

One of the key points of the algorithm is that Lines 3, 9, 10, and 25 can be obtained using a classical ontology318

reasoner and, therefore, rather efficiently.319

5. Implementation and evaluation320

In this section we describe a prototype implementation and an evaluation of our tool on a fuzzy ontology obtained321

from a real BIM model. Firstly, we discuss the reuse of classical ontology reasoners (Section 5.1). Then, we describe322

the implementation of the tool (Section 5.2). Next, we describe the dataset, taken from a real use case (Section 5.3),323

and the results of an empirical evaluation (Section 5.4).324

5.1. Reuse of classical ontology reasoners325

Line 9 of Algorithm 1 requires solving the instance retrieval concept, Line 10 requires solving the classification326

problem, and Line 25 requires retrieving the values of data property, possibly not explicitly stored in the ontology.327

While the two former tasks are relatively well supported by a number of reasoners, this is not the case of last one.328

HermiT reasoner is one of the few exceptions, as it has indeed a method getDataPropertyValues to solve Line 25.329

TrOWL is a reasoner for the OWL 2 EL profile and by means of the OWL API it is possible to access to the data330

properties values.331

There is another way to get the real values: using a SPARQL query. Figure 4 illustrates the results of a simple332

query to obtain the overallHeight and overallWidth values of the instances of IfcWindow class (for the third floor333

ontology obtained using IFC-to-RDF converter [42]). It is clear that if we need to infer knowledge or to classify the334

ontology, SPARQL is not appropriate.335

14



Algorithm 1 Algorithm to compute the flexible faceted instance retrieval assuming Restrictions 1–3.
Input: A sextuple 〈uri,C, [p1, . . . , pn], [D1, . . . ,Dn], Fc, Fh〉 composed by a fuzzy ontology URI uri, a concept C, a
list of functional numerical data properties [p1, . . . , pn], a list of fuzzy datatypes [D1, . . . ,Dn], a combination function
Fc, and a fuzzy hedge Fh

Output: A list of pairs with individuals and membership degrees to C
{
〈ii, βi〉

}
1: // Initialization
2: O← loadOntology(uri)
3: O← crispClassi f y(O)
4: DS ← ∅
5: for all 〈C(i) ≥ α〉 ∈ O do
6: DS ← DS ∪ 〈i,C, α〉
7: end for
8: // Query answering
9: I ← Retrieve all instances i of C in O

10: S ← Retrieve all subclasses of C in O
11: S ol← ∅
12: for all i ∈ I do
13: A← ∅
14: for all s ∈ S do
15: if 〈i, s, α〉 ∈ DS then
16: A← A ∪ α
17: end if
18: end for
19: if A = ∅ then
20: α← 1
21: else
22: α← max(A)
23: end if
24: for all data property pi do
25: v← Retrieve the value of the data property pi for i in O
26: if v , null then
27: D← D ∪ Di(v)
28: end if
29: end for
30: auxDegree← Fc(α,D)
31: β← Fh(auxDegree)
32: S ol← S ol ∪ 〈i, β〉
33: end for
34: S ol← sort(S ol) in decreasing order of degrees of truth
35: return S ol

15



Figure 4: SPARQL query for IFC-to-RDF converter file

5.2. Implementation336

We developed a prototype tool which is available online5. It implements Algorithm 1 and a graphical interface337

to submit queries. It is a Java (1.8) implementation using the OWL API6 to manage OWL 2 ontologies represented338

in Fuzzy OWL 2 language. The classical semantic reasoner used is TrOWL 3.4. To reduce the time to access the339

ontology, we stored the fuzzy concept assertions using a hash table and a NoSQL database (MongoDB 4.0.10). As a340

baseline, we also considered direct calls to the OWL API. A graphical user interface (for desktop computers) makes341

it possible to submit queries about building elements. Appendix A shows some snapshots of our tool.342

The general functionality of this software is shown next. The tool contains three tabs:343

• The first one (see Figure A.8) specifies the path of the ontology and the base URI (it corresponds to the IFC2X3344

schema) by default. The converter software uses the base URI http://linkedbuildingdata.net/schema/345

IFC2X3#. Sometimes that URI could change, as it depends on the converter or the version schema. The fuzzy346

ontology file can have .owl or .ttl extensions. The user also needs to select the IFC element (a class) from the347

schema, such as IfcWindow.348

In this tab the user also needs to select the operator to combine the values and a fuzzy modifier. Possible349

operators include minimum (T-norm Min), maximum (T-conorm Max), weighted mean (WMEAN), and OWA.350

Figure A.12 shows an example of OWA operator built using quantifier-guided aggregation. Possible modifiers351

are none, very, few, linear, and triangular. Figure A.8 shows as an example the definition of very.352

5http://webdiis.unizar.es/~ihvdis/fuzzyBIMgui.html
6http://owlapi.sourceforge.net

16

http://linkedbuildingdata.net/schema/IFC2X3#
http://linkedbuildingdata.net/schema/IFC2X3#
http://linkedbuildingdata.net/schema/IFC2X3#
http://webdiis.unizar.es/~ihvdis/fuzzyBIMgui.html
http://owlapi.sourceforge.net


• The second tab shows all the data properties in the ontology and the user has the possibility to select some of353

them. Figure A.9 shows an example where overallHeight and overallWidth properties are checked.354

• The third tab allows to select or create the fuzzy datatypes for the chosen data properties (see Figure A.10).355

One way is to select fuzzy datatypes already defined in the ontology file. It is also possible to create a new356

fuzzy datatype, using labels like VeryLow, Low, Neutral, High, and VeryHigh, and membership functions such357

as left-shoulder, triangular, trapezoidal, and right-shoulder.358

Initially, the Run button is disabled until all necessary parameters are specified. When the run button is clicked,359

a process is executed to solve the query. Eventually, a dialog with a sorted list of instances is displayed, as shown in360

Figure A.11.361

Example 4. Assume we need to retrieve a set of windows with high width and very high height from the fuzzy on-362

tology. So, we use the desktop tool and ask for a IFC building element called IfcWindow. We consider two data363

properties of a window, namely overallWidth and overallHeight. We define two fuzzy datatypes HighOverallWidth,364

using a triangular fuzzy function triangular(900, 1200, 2000), and VeryHighOverallHeight, using a right-shoulder365

fuzzy function right(1700, 2500). We choose the maximum t-conorm operator (auxDegree) and the fuzzy modifier366

very (βi). Table 3 shows the evaluation of 12 window instances. αi denotes the degree used in the fuzzy concept367

assertion, and was added randomly to each window in the fuzzy ontology. Figure A.11 shows the result: a sorted list368

of windows (colored using the satisfaction degree of the query). �369

Window overallWidth overallHeight tri right αi auxDegree βi

GUID kMl 1430 2512 1 0.71 0.20 1 1
GUID O8D 940 1760 0.13 0.75 0.70 0.70 0.48
GUID 7nV 940 1760 0.13 0.07 0.10 0.13 0.01
GUID S27 940 1760 0.13 0.07 0.60 0.60 0.36
GUID eYJ 1430 2512 0.71 1 1 1 1
GUID RyI 916 1760 0.05 0.07 0.50 0.50 0.25
GUID wCu 940 1760 0.13 0.75 0.40 0.40 0.16
GUID jtL 1430 2512 0.71 1 0.10 1 1

GUID hhq 1430 2512 0.71 1 0.90 1 1
GUID pct 916 1760 0.05 0.07 0.80 0.80 0.64
GUID 41F 940 1760 0.13 0.07 0.30 0.30 0.09
GUID lLC 916 1760 0.05 0.07 0.20 0.20 0.04

Table 3: Set of individuals from IFCWindow

5.3. Use case: a fuzzy ontology for a real BIM model370

We evaluated our proposal using the Schependomlaan public BIM dataset7. This project was developed and built371

by Hendriks Bouw en Ontwikkeling8 and comprises 10 apartments located in Nijmengen, Netherlands. The dataset372

7https://github.com/openBIMstandards/DataSetSchependomlaan
8https://www.hendriksbouwenontwikkeling.nl/en

17

https://github.com/openBIMstandards/DataSetSchependomlaan
https://www.hendriksbouwenontwikkeling.nl/en


Tool Classes Data Properties Object Properties Individuals
IFC-to-RDF 1085 929 1502 10127

Table 4: Statistics of the conversion of the third floor.

contains a design model in IFC, extract, suppliers, point clouds, schedules and construction log files. Figure 5 shows373

the 3D model visualised on the academic version of Archicad 229.374

Figure 5: Use case: 3D representation

For our purpose, we need to obtain an ontology from the IFC model of the use case. The ontology that we need375

should consider classes, individuals and relationships (data and object properties). For example, the class IfcDoor has376

the instance IfcDoor 01 with a data property overallHeight equals to 2282 mm and an object property representation377

linking it to the b179 instance. After testing four IFC converters (IFC-to-RDF Version 1.010 [42], IFC2LD11 [43],378

IFCtoRDF12, and IFCtoLBD13 [44]) we selected IFC-to-RDF.379

In order to reduce both the file size and the reasoning time, we divided the use case in six submodules (the six380

storeys of the original IFC building model) that correspond to foundation, ground floor, first floor, second floor, third381

floor, and roof. The fragmentation task was manually done with the help of the graphical environment Archicad. Next,382

we exported to IFC format and then used the converter to obtain the ontology.383

We focused on the third floor, because it has the smaller .ifc and .ttl files, and that makes reasoning more feasible384

without loss of generality. Table 4 shows some statistical data about the ontology representing the third floor.385

Furthermore, we defined a modified version by making the following changes:386

9https://www.graphisoft.es/archicad
10Not available online anymore. Latest version (1.5) is called Ifc2Rdf and is available at https://github.com/Web-of-Building-Data/

Ifc2Rdf/tree/master/software
11https://github.com/Web-of-Building-Data/ifc2ld.git
12https://github.com/pipauwel/IFCtoRDF
13http://github.com/jyrkioraskari/IFCtoLBD

18

https://www.graphisoft.es/archicad
https://github.com/Web-of-Building-Data/Ifc2Rdf/tree/master/software
https://github.com/Web-of-Building-Data/Ifc2Rdf/tree/master/software
https://github.com/Web-of-Building-Data/ifc2ld.git
https://github.com/pipauwel/IFCtoRDF
http://github.com/jyrkioraskari/IFCtoLBD


1. We removed the graphic elements that do not have property values that are needed for our queries. For example,387

walls or columns that do not have a height and a width. The priority is a high number of windows. The complete388

ontology has 12 windows, and 8 of them have values. The reduced ontology was updated to have the 12 windows389

(we used the tool Measure of Archicad to obtain the missing sizes).390

2. We modified in the schema file the range of the data properties overallHeight and overallWidth, to make it391

xsd:double.392

3. We added some new classes representing specific styles defined in Archicad, and created some new instances of393

them (via concept assertions). For the IfcWindow class we added 9 subclasses, namely BasicWindow (with 8394

instances), DormersAndSkylights, EmptyWindowsOpenings, HistoricWindow, SingleDoubleHungWindow,395

SindingWindow, SpecialWindow (with 4 instances), StoreFronts, and TerraceDoors. For IfcDoor class we396

added 8 subclasses, namely Bed, EmptyDoorOpenings, GarageDoor, HingedDoor(2 instances), SidingFold-397

ingDoor. For IfcWall class we added 5 subclasses: GenericWall, ExteriorWall, InteriorWall, PartitionalWall,398

and StructuralWall.399

Finally, we fuzzified the ontology representing the third floor for testing our novel algorithm. We firstly defined400

a fuzzy ontology (called Fuzzy1) using the plugin Fuzzy OWL 2 for Protégé 4.3. In particular, we added 12 fuzzy401

concepts assertion, adding a degree of truth to some axioms at BasicWindow and SpecialWindow classes. The degree402

values in (0,1) were chosen in random way. 10 fuzzy datatypes were created based on our experience about size403

windows [12]. The definition of the window labels is shown in Figure 6; Section 6 discusses how to build them.404

We also created another version (Fuzzy2) by adding more individuals to the fuzzy ontology (in particular, 6498405

individuals, with 1400 windows and 100 doors).406

(a) (b)

Figure 6: Linguistic labels for a) overallWidth and b) overallHeight

The fuzzy ontology and schema were saved using OWL/XML syntax. The ontology lost some valuable data (such407

as graphic placement and anonymous nodes) but this does not affect the result of our queries.408

19



Ontology File size (MB) Reasoner Time (s) Individuals
Original 27.8 HermiT OutOfMemoryError 10127
Modified 15.1 HermiT OutOfMemoryError 5498
Fuzzy1 56.4 HermiT OutOfMemoryError 5498
Original 27.8 TrOWL OutOfMemoryError 10127
Modified 15.1 TrOWL 80.38 5498
Fuzzy1 56.4 TrOWL 83.28 5498

Table 5: Time (s) to load and classify the ontology

Ontology Hash table DB OWL API
Fuzzy1 0.07 1.09 0.01
Fuzzy2 0.32 2.04 6.52

Table 6: Time (s) to create the data structures

5.4. Evaluation409

Firstly, we evaluated the initialization time of our tool, which includes loading the ontology, computing the clas-410

sification, and the initialization of a data structure with the degrees of truth. Secondly, we evaluated the proper query411

time, as well as the time to retrieve the values of the data properties. The evaluation was performed on a Intel Core412

i7-8550U 1.8 GHz, 16 GB RAM (7 GB were allocated for the JVM) laptop running Windows 7 64-bits.413

Initialization time. Before describing the evaluation of the initialization time, it is worth to recall that it must be414

computed just once. Firstly, we tested two classical reasoners (Hermit 1.3.814 and TrOWL 3.415) to measure the load415

and classification times for the original, modified, and fuzzy ontologies of the third floor. Table 5 shows the ontology,416

file size, reasoner used, time and number of named individuals. Time includes the time to load the ontology, to classify417

it by precomputing the class hierarchy and the class assertions, and to perform a consistency test. Note that HermiT418

run out of memory in all cases, after approximately 20 minutes. TrOWL also run out of memory for the original419

ontology, but the modified versions could be successfully processed.420

We also evaluated the use of the auxiliary data structures to reduce the answering time (Lines 4–7). The results421

are shown in Table 6. For ontology Fuzzy1, OWL API method was slightly faster than the hash table, so it seems to422

be the best option to avoid the cost of maintaining the data structure. In particular, for such ontologies with a small423

number of fuzzy concept assertions, the database performs worse than the OWL API. For the ontology Fuzzy2, hash424

table is clearly faster than the other two methods.425

Query time. Next, we evaluated the time to obtain the values from the data properties (height and width) of each426

individual (Lines 24–29). We used TrOWL reasoner and SPARQL for the modified and Fuzzy1 versions. For the427

SPARQL queries we used the server Apache Jena Fuseki 3.14 and Jena Java API.16. It is worth to note, however, that428

14http://www.hermit-reasoner.com
15http://trowl.org/download-page
16http://jena.apache.org

20

http://www.hermit-reasoner.com
http://trowl.org/download-page
http://jena.apache.org


Ontology Reasoner Loading + classification time (s) Query time (s)
Modified Jena 4.40 1.160
Modified TrOWL 80.38 0.007
Fuzzy1 TrOWL 83.28 0.007

Table 7: Time (s) to get the data properties values in the IfcWindow class

a SPARQL query cannot be used in general to solve a query to the ontology, but only to retrieve the data property429

values. Table 7 shows the results (the average of five executions) for the fuzzy ontology. For the first query, the430

SPARQL query is solved faster than using the reasoner because it only needs to load the ontology, but the reasoner431

performs a more complex preprocessing including classification. However, for the next queries the reasoner is faster.432

Then, we evaluated the full query time (Lines 9–35). Starting from the ontology Fuzzy1 (with 5498 individuals433

where 12 are windows and 2 doors), we created a set of 6 queries, 5 of them about IfcWindow class and 1 about434

IfcDoor class. To get the query time, the 6 queries were executed in a sequential way on an instance of the tool.435

Queries were solved 5 times and we computed the average values. Table 8 summarizes the queries and the results.436

The first columns include the query ID, and the parameters of the query: the class, the data property, the label (fuzzy437

datatype), the aggregation operator, and the modifier. The final columns include the query time when using a hash438

table, a NoSQL Database Mongo DB, or only calls to OWL API methods. As already discussed, hash table is slightly439

preferable.440

# Class Property Label Operator Modifier Time (s)
Hash table DB OWL API

1 IfcWindow overallWidth High T-conorm Max Very fm(x) = x2 0.14 0.18 0.18overallHeight VeryHigh

2 IfcWindow overallWidth Neutral T-norm Min Few fm(x) =
√

x 0.11 0.12 0.11overallHeight High

3 IfcWindow overallWidth Low OWA Linear (0.3) 0.06 0.10 0.06overallHeight Neutral

4 IfcWindow overallWidth Low WMEAN tri (1000, 1500, 2000) 0.05 0.11 0.05overalHeight Neutral

5 IfcWindow overallWidth Neutral T-norm Min None 0.05 0.09 0.03overallHeight Low

6 IfcDoor overallWidth High T-conorm Max Few fm(x) =
√

x 0.10 0.09 0.08overallHeight High

Table 8: Queries and query time (s) for ontology Fuzzy1

We also repeated the same queries for the ontology Fuzzy2. Figure 7 shows the result of the query times. We can441

see that using the best data structure, query time is very fast (less than 0.62 s), making our algorithm acceptable for442

such models.443

The previous query times assume that the system has already been initialized. Table 9 shows the total time for the444

first query. Likewise for the query time, OWL API performs similarly to the hash table version for Fuzzy1, but hash445

table performs clearly better for Fuzzy2.446

21



Figure 7: Query time (s) for ontology Fuzzy2

Ontology Task Time (s)
Hash table DB OWL API

Loading + Classification 83.28 83.28 83.28
Data structure 0.07 1.09 0.01

Fuzzy1 Query 0.08 0.11 0.1
Total 83.43 84.48 83.39

Loading + Classification 112.63 112.63 112.63
Data structure 0.32 2.04 6.52

Fuzzy2 Query 0.37 22.30 9.49
Total 113.32 136.97 128.64

Table 9: Total time (s) for the first query

22



6. Discussion447

This section summarizes the pros and cons of our approach, debates possibilities of our framework, discusses how448

to learn its elements, and examines the verification of the results.449

Pros and cons. Our framework provides a solution to a problem identified in [15]: the need to improve scalability of450

the reasoning with fuzzy semantic BIMs, i.e.. of the reasoning algorithms for fuzzy ontologies representing extensions451

of semantic BIMs with fuzzy logic. In this way, the practical use cases envisioned in that previous work are feasible452

even for large BIMs—i.e., integration of cross-domain knowledge, imprecise BIM query, and flexible parametric453

modeling. In particular, more efficient querying over BIM elements and geometric relations is the most straightforward454

application of our framework.455

A notable contribution with respect to the existing work by other authors is that we support more expressive456

queries. In particular, we support answering flexible queries thanks to the linguistic labels of the fuzzy ontology. This457

unique service is provided to users by a publicly available software. Furthermore, our experiments show that our458

framework can reduce the query time. While we were able to answer queries over real BIM data in a reasonable time,459

some previous works needed hours to solve the queries.460

On the negative side, our approach also has some limitations. As already mentioned, some steps of the framework461

require manual intervention so far, in particular splitting a large file into subontologies. Moreover, only some of462

the features of fuzzy ontologies (fuzzy datatypes and fuzzy concept assertions) are supported by our minimalistic463

reasoning algorithm.464

BIM ontology. Our framework requires a representation of our BIM model using an OWL 2 ontology. Firstly, this465

involves a conversion from IFC to RDF. In this work we used the IFC-to-RDF tool [42], but using more sophisticated466

parsers could be possible. Secondly, it involves using an OWL schema to categorize BIM elements. In this work, we467

used the ifcOWL ontology. Another option is the Building Typology Ontology (BOT)17, or the BIM schemas used by468

other conversion tools.469

In general, when dealing with real data, one needs to split the ontology into smaller subontologies. In this work,470

we did it manually. It would be possible to study methods to compute a split automatically given some restrictions.471

In particular, one could consider using a method to reduce the geometrical data (e.g., position and orientation of the472

building elements) which are not necessary unless one wants to reason with spatial semantics [45]. This makes it473

possible to reduce the size of the ontology while having a more efficient representation for some queries, e.g., those474

involving intersections of building elements.475

Learning. A common problem in ontology development is how to obtain the linguistic labels, i.e., the concrete defini-476

tions of the fuzzy datatypes. We did it manually in the example discussed in this paper but it would be recommendable477

17http://www.student.dtu.dk/~mhoras/bot/index-en.html

23

http://www.student.dtu.dk/~mhoras/bot/index-en.html


to use supporting tools, such as Datil [46] or Fudge [47]. Datil makes it possible to learn the definitions from numer-478

ical data: it uses a clustering algorithm and uses the centroids as the parameters of the membership functions. Fudge479

instead builds the fuzzy datatypes as a consensual definition of the individual definitions given by several domain480

experts.481

So far, we assumed that the fuzzy datatypes were learnt offline. However, it is entirely possible to use online482

learning to incrementally build the fuzzy membership functions defining the fuzzy datatypes. For example, in Datil,483

it suffices to use incremental clustering algorithms [48] and then update the definitions of the fuzzy datatypes in the484

fuzzy ontology.485

Let us also mention that the relation between symbolic reasoning and deep learning has been recently studied486

[49], opening the door to future research on ontology reasoning not based on logical deduction.487

Verification. Our reasoning algorithm is correct, i.e., all retrieved instances satisfy the query. However, the solution is488

only complete if the fuzzy ontologies satisfies some restrictions. Regarding the quality of the solutions, they depend489

on the quality of the linguistic labels. In this regard, it is worth mentioning that Datil’s algorithm to learn fuzzy490

datatypes has been evaluated in the field of beer recommendation, showing that it provides similar results to a human491

expert [50].492

7. Conclusions and future work493

This paper proposed a novel algorithm to perform minimalistic fuzzy ontology reasoning based on the reuse of494

classical reasoners. The objective is to be able to reason with larger Building Information Modeling files, closer to495

those used in real-world applications. We developed a desktop application (in Java) and evaluated our proposal.496

We considered a real BIM model as a case of study. The model was converted from IFC to OWL (RDF syntax)497

using an existing tool. We showed that such a big model could not be supported by two classical reasoners (Hermit498

and TrOWL). Hence, the final ontology was fragmented; for operativeness, we restricted the tests and evaluations to499

just the third floor of the dataset. Also, with this sub module we built a fuzzy ontology updated with new property500

assertions, concept assertions and fuzzy datatypes.501

We evaluated the performance of our proposal by measuring the times of retrieval of the data property values502

of each individual. We conclude that TrOWL give us satisfactory results. We also found that the query times can503

be reduced when using additional data structures (an extra hash table). Another finding is that our tool requires a504

considerable initial time to classify the ontology, but following queries require less time.505

A future research line is to improve the size of the fragments that can be supported, as the whole ontology is not506

currently supported by the classical reasoners and could not be evaluated. For example, a possible strategy would be507

using a preprocessing step to filter the ontology (or fragments) and reduce the sizes with specific classes.508

Another future work could be improving the implementation to automatically split the ontology into subontologies,509

or using more sophisticated parsers to translate the BIM model into OWL. Finally, it would be interesting to test a set510

24



of use cases with a high-level digital representation of a real building.511

Acknowledgments512

This work was funded by Imperial College’s Centre for Systems Engineering and Innovation under its 2019 call for513

small projects. I. Huitzil was partially supported by a grant from Universidad de Zaragoza – Santander Universidades514

(Ayudas de Movilidad para Latinoamericanos – Estudios de Doctorado). I. Huitzil and F. Bobillo were partially515

supported by the project TIN2016-78011-C4-3-R (AEI/ FEDER, UE). J. Gómez-Romero was partially supported516

by the Spanish Ministry of Science, Innovation and Universities (TIN2017-91223- EXP). M. Molina-Solana was517

supported by European Union’s H2020 MSCA-IF (ga. No. 743623) and Athenea3i (ga. No. 754446) programmes.518

References519

[1] A. Sawhney, M. Riley, J. Irizarry, Construction 4.0: An Innovation Platform for the Built Environment, Routledge, 2020. doi:10.1201/520

9780429398100.521

[2] A. Borrmann, M. König, C. Koch, J. Beetz, Building information modeling: Why? what? how?, in: Building Information Modeling:522

Technology Foundations and Industry Practice, Springer International Publishing, 2018, pp. 1–24. doi:10.1007/978-3-319-92862-3_1.523

[3] MagiCAD, BIM adoption in Europe: Current state, challenges and a vision of tomorrow, Tech. rep., visited on April 2020 (2020).524

[4] M. Poljansek, Building information modelling (BIM) standardization, Tech. Rep. JRC109656, European Joint Research Centre (JRC) (2017).525

doi:10.2760/36471.526

[5] P. Pauwels, S. Zhang, Y.-C. Lee, Semantic web technologies in AEC industry: A literature overview, Automation in Construction 73 (2017)527

145–165. doi:10.1016/j.autcon.2016.10.003.528

[6] S. Staab, R. Studer (Eds.), Handbook on Ontologies, International Handbooks on Information Systems, Springer, 2004.529

[7] F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, P. F. Patel-Schneider, The Description Logic handbook, 2nd Edition, Cambridge530

University Press, 2010.531

[8] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics532

6 (4) (2008) 309–322. doi:10.1016/j.websem.2008.05.001.533

[9] P. J. Hayes, P. F. Patel-Schneider, RDF 1.1 Semantics (2014).534

URL http://www.w3.org/TR/rdf11-mt535

[10] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X.536

[11] T. Lukasiewicz, U. Straccia, Managing uncertainty and vagueness in Description Logics for the Semantic Web, Journal of Web Semantics537

6 (4) (2008) 291–308. doi:10.1016/j.websem.2008.04.001.538

[12] F. Bobillo, U. Straccia, Fuzzy ontology representation using OWL 2, International Journal of Approximate Reasoning 52 (7) (2011) 1073–539

1094. doi:10.1016/j.ijar.2011.05.003.540

[13] F. Bobillo, U. Straccia, The fuzzy ontology reasoner fuzzyDL, Knowledge-Based Systems 95 (2016) 12–34. doi:10.1016/j.knosys.541

2015.11.017.542

[14] F. Bobillo, M. Delgado, J. Gómez-Romero, DeLorean: a reasoner for fuzzy OWL 2, Expert Systems with Applications 39 (2012) 258–272.543

doi:10.1016/j.eswa.2011.07.016.544

[15] J. Gómez-Romero, F. Bobillo, M. Ros, M. Molina-Solana, M. D. Ruiz, M. J. Martı́n-Bautista, A fuzzy extension of the semantic building545

information model, Automation in Construction 57 (2015) 202–212. doi:10.1016/j.autcon.2015.04.007.546

[16] European Construction Sector Observatory, Building Information Modelling in the EU construction sector, Tech. rep., visited on May 2019547

(2019).548

25

https://doi.org/10.1201/9780429398100
https://doi.org/10.1201/9780429398100
https://doi.org/10.1201/9780429398100
https://doi.org/10.1007/978-3-319-92862-3_1
https://doi.org/10.2760/36471
https://doi.org/10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.websem.2008.05.001
http://www.w3.org/TR/rdf11-mt
http://www.w3.org/TR/rdf11-mt
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.websem.2008.04.001
https://doi.org/10.1016/j.ijar.2011.05.003
https://doi.org/10.1016/j.knosys.2015.11.017
https://doi.org/10.1016/j.knosys.2015.11.017
https://doi.org/10.1016/j.knosys.2015.11.017
https://doi.org/10.1016/j.eswa.2011.07.016
https://doi.org/10.1016/j.autcon.2015.04.007


[17] T. Mendes de Farias, A. Roxin, C. Nicolle, A rule-based methodology to extract building model views, Automation in Construction (2018).549

doi:10.1016/j.autcon.2018.03.035.550

[18] P. Pauwels, W. Terkaj, EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology, Automation in551

Construction 63 (2016) 100–133. doi:10.1016/j.autcon.2015.12.003.552

[19] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query (2013).553

[20] J. Werbrouck, M. Senthilvel, J. Beetz, P. Bourreau, L. Van Berlo, Semantic query languages for knowledge-based web services in a construc-554

tion context, in: P. Geyer, K. Allacker, M. Schevenels, F. De Troyer, P. Pauwels (Eds.), Proceedings of the 26th International Workshop on555

Intelligent Computing in Engineering (EG-ICE), Vol. 2394 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, p. 13.556

URL http://ceur-ws.org/Vol-2394/paper03.pdf557

[21] R. Taelman, M. Vander Sande, R. Verborgh, GraphQL-LD: Linked Data querying with GraphQL, in: Proceedings of the ISWC 2018 Posters558

& Demonstrations, Industry and Blue Sky Ideas Tracks, Vol. 2180 of CEUR Workshop Proceedings, CEUR-WS.org, 2018.559

URL http://ceur-ws.org/Vol-2180/paper-65.pdf560

[22] Semantic Integration Ltd., Hypergraphql, https://www.hypergraphql.org, accessed: 2020-06-16 (2020).561

[23] M. Fahad, N. Bus, B. Fies, Semantic bim reasoner for the verification of ifc models, in: eWork and eBusiness in Architecture, Engineering562

and Construction, CRC Press, 2018, pp. 361–368. doi:10.1201/9780429506215-45.563

[24] R. K. Soman, M. Molina-Solana, J. Whyte, Linked-Data based Constraint-Checking (LDCC) to support look-ahead planning in construction,564

Automation in Construction 120 (2020) 103369. doi:10.1016/j.autcon.2020.103369.565

[25] J. Abualdenien, A. Borrmann, Vagueness visualization in building models across different design stages, Advanced Engineering Informatics566

45 (2020). doi:10.1016/j.aei.2020.101107.567

[26] U. Straccia, Foundations of Fuzzy Logic and Semantic Web Languages, CRC Studies in Informatics Series, Chapman & Hall, 2013.568

[27] F. Bobillo, M. Delgado, J. Gómez-Romero, U. Straccia, Joining Gödel and Zadeh fuzzy logics in fuzzy Description Logics, International569

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20 (04) (2012) 475–508. doi:10.1142/S0218488512500249.570

[28] W3C, OWL 2 web ontology language profiles, http://www.w3.org/TR/2009/REC-owl2-profiles-20091027 (2009).571

[29] F. Bobillo, The role of crisp elements in fuzzy ontologies: The case of fuzzy OWL 2 EL, IEEE Transactions on Fuzzy Systems 24 (2016)572

1193–1209. doi:10.1109/TFUZZ.2015.2505329.573

[30] S. Borgwardt, M. Cerami, R. Peñaloza, The complexity of fuzzy EL under the łukasiewicz t-norm, International Journal of Approximate574

Reasoning 91 (2017) 179–201. doi:10.1016/j.ijar.2017.09.005.575

[31] F. Bobillo, U. Straccia, Reasoning within fuzzy OWL 2 EL revisited, Fuzzy Sets and Systems 351 (2018) 1–40. doi:10.1016/j.fss.576

2018.03.011.577

[32] T. P. Mailis, G. Stoilos, N. Simou, G. B. Stamou, S. D. Kollias, Tractable reasoning with vague knowledge using fuzzy EL++, Journal of578

Intelligent Information Systems 39 (2) (2012) 399–440. doi:10.1007/s10844-012-0195-6.579

[33] J. Z. Pan, G. Stamou, G. Stoilos, E. Thomas, S. Taylor, Scalable querying service over fuzzy ontologies, in: Proceedings of the 17th580

International Conference on World Wide Web (WWW 2008), 2008, pp. 575–584. doi:10.1145/1367497.1367575.581

[34] G. Stoilos, T. Venetis, G. Stamou, A fuzzy extension to the OWL 2 RL ontology language, The Computer Journal 58 (11) (2015) 2956–2971.582

doi:10.1093/comjnl/bxv028.583

[35] V. Haarslev, H.-I. Pai, N. Shiri, Optimizing tableau reasoning in ALC extended with uncertainty, in: Proceedings of the 20th International584

Workshop on Description Logics (DL 2007), Vol. 250 of CEUR Workshop Proceedings, CEUR-WS.org, 2007, pp. 307–314.585

URL http://ceur-ws.org/Vol-250/paper-29.pdf586

[36] G. S. N. Simou, T. Mailis, G. Stamou, Optimization techniques for fuzzy description logics, in: Proceedings of the 23rd International587

Workshop on Description Logics (DL 2010), Vol. 573 of CEUR Workshop Proceedings, CEUR-WS.org, 2010.588

URL http://ceur-ws.org/Vol-573/paper-25.pdf589

[37] F. Bobillo, U. Straccia, Optimising fuzzy description logic reasoners with general concept inclusions absorption, Fuzzy Sets and Systems 292590

(2016) 98–129. doi:10.1016/j.fss.2014.10.029.591

26

https://doi.org/10.1016/j.autcon.2018.03.035
https://doi.org/10.1016/j.autcon.2015.12.003
http://www.w3.org/TR/sparql11-query
http://ceur-ws.org/Vol-2394/paper03.pdf
http://ceur-ws.org/Vol-2394/paper03.pdf
http://ceur-ws.org/Vol-2394/paper03.pdf
http://ceur-ws.org/Vol-2394/paper03.pdf
http://ceur-ws.org/Vol-2180/paper-65.pdf
http://ceur-ws.org/Vol-2180/paper-65.pdf
https://www.hypergraphql.org
https://doi.org/10.1201/9780429506215-45
https://doi.org/10.1016/j.autcon.2020.103369
https://doi.org/10.1016/j.aei.2020.101107
https://doi.org/10.1142/S0218488512500249
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027
https://doi.org/10.1109/TFUZZ.2015.2505329
https://doi.org/10.1016/j.ijar.2017.09.005
https://doi.org/10.1016/j.fss.2018.03.011
https://doi.org/10.1016/j.fss.2018.03.011
https://doi.org/10.1016/j.fss.2018.03.011
https://doi.org/10.1007/s10844-012-0195-6
https://doi.org/10.1145/1367497.1367575
https://doi.org/10.1093/comjnl/bxv028
http://ceur-ws.org/Vol-250/paper-29.pdf
http://ceur-ws.org/Vol-250/paper-29.pdf
http://ceur-ws.org/Vol-573/paper-25.pdf
http://ceur-ws.org/Vol-573/paper-25.pdf
https://doi.org/10.1016/j.fss.2014.10.029


[38] I. Huitzil, J. Bernad, F. Bobillo, Algorithms for instance retrieval and realization in fuzzy ontologies, Mathematics 8 (2) (2020) 154:1–16.592

doi:10.3390/math8020154.593

[39] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications, Prentice-Hall, Inc., 1995.594

[40] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man and595

Cybernetics 18 (1) (1988) 183–190. doi:10.1109/21.87068.596

[41] R. R. Yager, Connectives and quantifiers in fuzzy sets, Fuzzy Sets and Systems 40 (1) (1991) 39–75. doi:10.1016/0165-0114(91)597

90046-S.598

[42] P. P. S. Törma, N. Hoang, IFC-to-RDF conversion tool, visited on March 2019.599

URL http://www.rymreport.com/pre/result/opening-bim-to-the-web-ifc-to-rdf-conversion-software600

[43] N. M. Hoang, S. Törmä, Implementation and experiments with an ifc-to-linked data converter, in: Proceedings of the 32nd CIB W78601

Conference, 2015, pp. 285–294.602

[44] M. Bonduel, J. Oraskari, P. Pauwels, M. Vergauwen, R. Klein, The IFC to linked building data converter: current status, in: Proceedings603

of the 6th Linked Data in Architecture and Construction Workshop, Vol. 2159 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp.604

34–43.605

URL http://ceur-ws.org/Vol-2159/04paper.pdf606

[45] S. Daum, A. Borrmann, Processing of topological BIM queries using boundary representation based methods, Advanced Engineering Infor-607

matics 28 (4) (2014) 272–286. doi:10.1016/j.aei.2014.06.001.608

[46] I. Huitzil, U. Straccia, N. Dı́az-Rodrı́guez, F. Bobillo, Datil: Learning fuzzy ontology datatypes, in: Proceedings of the 17th International609

Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2018), Part II, Vol. 854 of610

Communications in Computer and Information Science, Springer, 2018, pp. 100–112. doi:10.1007/978-3-319-91476-3_9.611

[47] I. Huitzil, F. Bobillo, J. Gómez-Romero, U. Straccia, Fudge: Fuzzy ontology building with consensuated fuzzy datatypes, Fuzzy Sets and612

Systems 401 (2020) 91–112. doi:10.1016/j.fss.2020.04.001.613

[48] A. M. Bagirov, N. Karmitsa, S. Taheri, Incremental clustering algorithms, in: Partitional Clustering via Nonsmooth Optimization. Unsuper-614

vised and Semi-Supervised Learning, Springer, 2020, pp. 185–200. doi:10.1007/978-3-030-37826-4_7.615

[49] P. Hohenecker, T. Lukasiewicz, Ontology reasoning with deep neural networks, Journal of Artificial Intelligence Research 68 (2020) 503–540.616

doi:10.1613/jair.1.11661.617

[50] I. Huitzil, F. Alegre, F. Bobillo, GimmeHop: A recommender system for mobile devices using ontology reasoners and fuzzy logic, Fuzzy618

Sets and Systems 401 (2020) 55–77. doi:10.1016/j.fss.2019.12.001.619

27

https://doi.org/10.3390/math8020154
https://doi.org/10.1109/21.87068
https://doi.org/10.1016/0165-0114(91)90046-S
https://doi.org/10.1016/0165-0114(91)90046-S
https://doi.org/10.1016/0165-0114(91)90046-S
http://www.rymreport.com/pre/result/opening-bim-to-the-web-ifc-to-rdf-conversion-software
http://www.rymreport.com/pre/result/opening-bim-to-the-web-ifc-to-rdf-conversion-software
http://ceur-ws.org/Vol-2159/04paper.pdf
http://ceur-ws.org/Vol-2159/04paper.pdf
https://doi.org/10.1016/j.aei.2014.06.001
https://doi.org/10.1007/978-3-319-91476-3_9
https://doi.org/10.1016/j.fss.2020.04.001
https://doi.org/10.1007/978-3-030-37826-4_7
https://doi.org/10.1613/jair.1.11661
https://doi.org/10.1016/j.fss.2019.12.001


Appendix A. Snapshots of the implemented tool620

Figure A.8: User interface: loading fuzzy BIM ontology, selection of a class and fuzzy operators

28



Figure A.9: User interface: selection of data properties

29



Figure A.10: User interface: selection or creation of fuzzy datatypes

30



Figure A.11: User interface: final result

Figure A.12: User interface: use of a quantifier to get the parameters of the OWA aggregation operator

31


	Introduction
	Related work
	Querying and reasoning over Semantic BIMs
	Efficient reasoning with fuzzy ontologies

	Background
	Fuzzy sets and fuzzy logic
	Fuzzy ontologies

	Minimalistic fuzzy ontology reasoning
	Flexible faceted instance retrieval
	A more specific scenario
	An algorithm

	Implementation and evaluation
	Reuse of classical ontology reasoners
	Implementation
	Use case: a fuzzy ontology for a real BIM model
	Evaluation

	Discussion
	Conclusions and future work
	Snapshots of the implemented tool

