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Abstract 9 

Two-dimensional discrete dislocation plasticity (DDP) calculations that simulate single 10 

crystal films bonded to a rigid substrate under sliding by a rigid sinusoid-shaped 11 

asperity are performed with various contact sizes. The contact between the thin film 12 

and the asperity is established by a preceding indentation and modelled using a cohesive 13 

zone method (CZM), whose behavior is governed by a traction-displacement relation. 14 

The emergence of microstructural changes observed in sliding tests has been interpreted 15 

as a localized lattice rotation band given rise by the dislocation activities underneath 16 

the contact. The depth of the lattice rotation band is predicted to be well commensurate 17 

with that observed in the corresponding tests. Furthermore, the dimension and 18 

magnitude of the lattice rotation band have been linked to the sliding distance and 19 

contact size. This research reveals the underpinning mechanisms for the microstructural 20 
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changes observed in the sliding tests by explicitly modelling the dislocation patterns 1 

and highly localized plastic deformation of materials under various indentation and 2 

sliding scenarios. 3 

Keywords: Sliding; Discrete Dislocation Plasticity; Lattice rotation; Size effect  4 
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1 Introduction 1 

Microstructure determines the material performance under contact, including but not 2 

limited to hardness (Chenje et al., 2004), coefficient of friction (COF) (Rigney and 3 

Hirth, 1979), anti-fretting (Zhang et al., 2009) and wear resistance (Rigney and Glaeser, 4 

1978) under a tribological loading condition, particularly when the contact size 5 

approaches the grain size. Correspondingly, the subsurface microstructure of specimens 6 

is simultaneously changed by the plasticity induced by external tribological load that 7 

couples normal and tangential components. Therefore, it is significant to understand the 8 

mechanisms of the mutual interactions between the microstructure and the local 9 

deformation of materials under tribology loadings. Among complex tribology loading 10 

scenarios, the single asperity sliding problem provides an elementary mechanistic 11 

benchmark for revealing the mechanisms for microstructure change. 12 

The phenomenon of microstructure variation in the sample subsurface under 13 

tribological loads has commonly been observed in experimental studies e.g .(Hattori et 14 

al., 2008; Hughes and Hansen, 2001; Stoyanov et al., 2014) on various crystalline 15 

metals, including nickel, copper and aluminum. Numerical investigations including the 16 

work (Karthikeyan et al., 2009; Pastewka et al., 2011) were performed to understand 17 

the intrinsic mechanisms of the subsurface modification under sliding. However, due 18 

to the complexity of the tribology contact loads, neither of the experimental nor 19 

numerical studies have not yet elucidated the phenomenon with satisfactory 20 

mechanisms. A more recent experimental study (Greiner et al., 2016) using Scanning 21 

Transmission Electron Microscopy (STEM) has shown a “dislocation traceline”, i.e. an 22 

apparent contrast change in the STEM images within the subsurface of a copper 23 

specimen after one-stroke sliding. The abrupt contrast change was interpreted as a 24 
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special dislocation piling up pattern under the contact and serves as a key mechanistic 1 

driver giving rise to subgrain boundary formation and further damage in subsequent 2 

cyclic tribological loading (Greiner et al., 2016). 3 

There are no physics-based mechanisms that have yet been proposed to provide a 4 

convincing insight for the emergence of tracelines observed in sliding tests. In order to 5 

interpret microstructural changes observed in the subsurface during sliding tests, a 6 

previous study (Greiner et al., 2018) employed a continuum model to describe the 7 

dislocation activity by assessing the inhomogeneous stress field variation under the 8 

moving indenter. However, due to the lack of a length scale parameter and the discrete 9 

nature of the phenomenon under investigation, neither conventional continuum 10 

approaches nor crystal plasticity (e.g. (Dunne et al., 2007b)) is capable of capturing the 11 

highly localized and discrete deformation observed in the experiments. It is in fact more 12 

sensible to explicitly model dislocation activities that appear to be likely responsible 13 

for the microstructural discontinuities. Hence, a 2D Discrete Dislocation Plasticity 14 

(DDP) model is established in this paper to simulate the evolution of dislocations 15 

motion and their pile up pattern under the sliding. The DDP numerical framework has 16 

been extensively applied to provide microstructure- and length-scale associated 17 

interpretation to a variety of fundamental micromechanical problems, including tension 18 

(Balint et al., 2008), micro-compression (Akarapu et al., 2010) , bending (Prastiti et al., 19 

2020; Tarleton et al., 2015), nano-indentation (Qu et al., 2006) and pure sliding 20 

(Deshpande et al., 2004) by simulating the activity of individual dislocations that is 21 

governed by nucleation, mobility and pinning laws. In this framework, the material 22 

behavior is completely determined by the collective activities of dislocations under 23 

contact. The contact between the specimen and indenter that is established by a 24 

preceding sinusoidal micro-indentation is modelled using a cohesive zone method 25 
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(CZM), whose shear stress performance is governed by a non-soften traction-1 

displacement relation (Deshpande et al., 2007). We herein aim to investigate the 2 

underpinning mechanisms for local microstructural deformation and the induced lattice 3 

rotation under single asperity sliding using the DDP framework integrated with 4 

experimental observation (Ruebeling et al., 2021). The numerical results shed light on 5 

the mechanisms for the emergence of the dislocation tracelines observed in the 6 

experiment by explicitly illustrating the dislocation pilling up, geometrically necessary 7 

dislocations (GND) and consequently localized lattice rotation of the subsurface under 8 

various indentation and sliding scenarios. In addition, this research also provides a 9 

pioneering framework for simulating the localized deformation and the subsequent 10 

microstructure changes observed in the multi-cycle tribological tests, e.g. shown in the 11 

work (Greiner et al., 2016). The results of the analysis also benefit researchers and 12 

engineers in their pursuit of tailored and optimized the anti-wear properties of materials 13 

and coatings. 14 

2 Methodology 15 

2.1 Discrete Dislocation Plasticity formulation 16 

We herein employ the classical two-dimensional, plane strain, isotropic discrete 17 

dislocation plasticity (DDP) computational framework first described by Van der 18 

Giessen and Needleman (Van der Giessen and Needleman, 1995). Although three-19 

dimensional discrete dislocation plasticity (3D-DDD) could also be used to improve 20 

our understanding of material deformation (e.g. (Bertin et al., 2020; El Ters and 21 

Shehadeh, 2019; Gurrutxaga-Lerma et al., 2017; Lu et al., 2019; Motz et al., 2008)), 22 

the 2D DDP framework reflects important dislocation-related features of crystalline 23 

materials (van der Giessen et al., 2020), which can be more swiftly used to explore 24 
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fundamental aspects of permanent deformations and irreversible changes. The 2D DDP 1 

framework adopted in this paper explicitly simulates the nucleation, glide, pinning and 2 

interaction of the edge components of individual dislocation loops in crystals subject to 3 

external loads and constraints assuming plane strain conditions. The formulation 4 

exploits Bueckner’s principle to represent the collective effect of dislocations by their 5 

linear elastic superposition; plasticity arises from the irreversible, quasi-static evolution 6 

of the elastic fields associated with all dislocations in the system. Hence, the localized 7 

micromechanical behavior of crystalline materials (e.g. stress, strain and slip etc.) are 8 

calculated based on the instantaneous dislocation structure induced by various loading 9 

scenarios, such as tension (Balint et al., 2006b), indentation (Lu et al., 2019), shock and 10 

high strain rate loading (Gurrutxaga-Lerma et al., 2017; Gurrutxaga–Lerma et al., 2020), 11 

and cyclic loading (Xu et al., 2020). The essential details of the DDP framework have 12 

been given in (Balint et al., 2005); only the aspects of the DDP formulation that are 13 

distinct from the basic recipe are described here.  14 

2.2 The DDP model setup for sliding  15 

The basic DDP model described above is adapted here for frictional sliding problems. 16 

The aim is to use the model to reproduce the experimental observation, hence enable 17 

its physical interpretation. An initial sinusoidal indentation process is utilized to 18 

establish contact between the rigid asperity and the specimen. This is followed by 19 

monotonic sliding with a cohesive zone model (CZM) between the asperity and the 20 

specimen (Deshpande et al., 2004).  21 

The specimen is made of a DDP region underneath a sinusoidal asperity with an elastic 22 

medium on either side, as depicted in Figure 1. The DDP process window represents a 23 

single FCC-like crystal in a plane strain orientation and is assigned with aluminum-like 24 
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properties. Further details of the DDP parameters associated with this crystal 1 

representation can be found in (Xu et al., 2016). Although the crystal representation 2 

does not correspond exactly to the pure copper tested in the experiments, the similarity 3 

of the slip systems (Φ(𝛼) = 0, ±45° with respect to the x-axis in the model) to those in 4 

the experiments enables mechanistic study of the microstructural change observed in 5 

the sliding tests. 6 

The DDP process window with dimension 𝑙 × ℎ is discretized by a finite element mesh 7 

(the finite element method is used to solve the correction, or reduced problem of the 8 

Bueckner linear superposition) that is highly focused towards the centre of the contact 9 

area. The finite element mesh is made up of 240 × 100 bi-linear elements with a typical 10 

mesh size of ∆𝑥 = 0.005 µm in the refined zone, which has dimensions 1 µm × 1 µm. 11 

A mesh-size sensitivity study was conducted, and the mesh size mentioned above was 12 

found to be an optimal balance between computation expense and numerical accuracy. 13 

A sufficiently-small time increment of ∆𝑡 = 0.5ns was used to sufficiently resolve the 14 

evolution of the dislocation structure. 15 

 16 
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Figure 1. Schematic illustration of (a) the sinusoidal indentation and (b) the subsequent 1 

monotonic sliding boundary value problem, solved using the DDP model. 2 

Although the sinusoidal indentation model invokes a small strain approximation, the 3 

contact between the indenter and film is based upon the deformed film surface. 4 

Indentation depth is denoted by 𝛿, and true contact length 𝐴 is defined as the distance 5 

between the intersections of the indenter surface and the deformed film surface. In 6 

general, the true contact length 𝐴 differs from the nominal contact length as material 7 

sink-in or pile-up (Balint et al., 2006a) occurs. Also, nominal contact area does not 8 

account for the effect of surface roughness, comprised of steps created by dislocations 9 

exiting at the free surface, on the contact area, hence hardness (as analyzed and 10 

discussed in (Widjaja et al., 2007a). 11 

The total reaction force of the thin film response to the applied indentation depth is 12 

computed as in eq. (1):   13 

𝐹 =  − ∫ 𝑇𝑦(𝑥, 𝐻)𝑑𝑥
𝐴 2⁄

−𝐴/2

 
 

(1) 

where 𝑇𝑦 is the surface traction in the y-direction, hence the indentation pressure (i.e. 14 

instantaneous or indentation depth-dependent hardness) p is defined by:  15 

𝑝 ≡ 𝐹/𝐴   (2) 

where A is the actual, end-to-end length definition of the contact area. 16 

The interaction between surfaces can be modelled by applying a continuum cohesive 17 

formula (Johnson, 1997). In the sliding simulations, the interaction between the 18 

sinusoidal asperity and the specimen is modelled using a cohesive zone on the 19 

contacting surface of length A with a relation between shear traction versus 20 

displacement, which is given by: 21 
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𝑇𝑡 = {
−𝜏𝑚𝑎𝑥

∆𝑡

𝛿𝑡
,                if |∆𝑡| < 𝛿𝑡

−𝜏𝑚𝑎𝑥𝑠𝑖𝑔𝑛(∆𝑡),     if |∆𝑡| > 𝛿𝑡

 

 

(3) 

where ∆𝑡 = 𝑢𝑥(𝑥, 𝐻) is the tangential displacement jump across the cohesive surface, 1 

and Tt= Tx is the shear traction. Hence, the interaction is a cohesive resistance to the 2 

relative sliding of the thin film, here chosen to be represented by a “non-softening” 3 

cohesive relation with unbounded shear work of separation (Deshpande et al., 2004). 4 

While there is at present no fundamental basis for choosing the form of cohesive 5 

relation to use in conjunction with the discrete dislocation description of material 6 

behavior, the interaction between adhesion and tangential tractions is in itself currently 7 

at the center of an active scientific debate (see e.g. (Menga et al., 2018; Peng et al., 8 

2021)) and very much depends on the nature of the specific interfacial characteristics 9 

of the contact pair being investigated. In addition, the cohesive law chosen in our study 10 

helps the convergence of contact calculations, and hence has been commonly used in 11 

other sliding studies, such as (Deshpande et al., 2007; Song et al., 2016). 12 

Traction free boundary conditions are applied on the part of the surface outside of the 13 

contact region:  14 

𝑇𝑥 = 𝑇𝑦 =  0 on 𝑥 = 0 ∉ 𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑦 = 𝐻  (4) 

The maximum cohesive strength τmax is set to be τmax=300MPa and the threshold 15 

displacement jump is δt = 0.5nm. The parameter values in the non-softening traction-16 

displacement relation are identical to (Deshpande et al., 2007)).  17 

The displacement rates, 18 

�̇�𝑥 = �̇�, �̇�𝑦 = 0   (5) 

are imposed on the specimen boundaries x=±L⁄2, and y=0, to simulate the relative 19 

sliding of the specimen with respect to the contact surface with magnitude �̇� 𝐴⁄ =20 
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104s−1  in the positive x-direction. The maximum sliding distance is set as 1 

approximately one half of the corresponding contact size 𝐴, which is sufficiently large 2 

to achieve a full slip condition (see the later discussion in Section 3.2) of the film. The 3 

sliding rate �̇� was chosen sufficiently low to ensure a quasi-static sliding process, i.e. 4 

that dislocations are in an equilibrium configuration at any sliding instance, hence the 5 

effect of loading rate on sliding (due to nucleation time and mobility as shown in (Song 6 

et al., 2016) is negligible. The averaged shear stress τ along the contact is given by: 7 

τ =  −
1

𝐴
∫ 𝑇𝑥(𝑥, 𝐻)𝑑𝑥

𝐴 2⁄

−𝐴 2⁄

 
 

(6) 

Different from the pure sliding calculations where films are assigned with a dislocation- 8 

and stress-free initial state using the DDP framework, e.g. (Benzerga, 2008)), the 9 

sliding simulations herein start with a certain normal load and actual contact size to 10 

accommodate the experimental setup. In fact, this type of sliding calculation is initiated 11 

with a deformation field and dislocation structure in the specimen that is introduced 12 

from the initial sinusoidal indentation simulations described above, with varying 13 

indentation depth. 14 

2.3 Lattice rotation calculation 15 

We use the DDP framework described above to model the microstructural change, more 16 

specifically, the elastic lattice rotation within the thin film under frictional sliding 17 

scenarios. The lattice rotation is defined as the antisymmetric part of the displacement 18 

gradient tensor, which for the planar situation can be expressed in terms of the off-19 

diagonal components of the small strain tenor ϵij. Therefore, lattice rotation is 20 

comprised of the derivatives of the displacements in the infinite plane discrete 21 

dislocation field and ( ̃ ) and the continuum correction field ( ̂ ) :  22 
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Ω =
1

2
(�̂�2,1 + �̃�2,1 − �̂�1,2 − �̃�1,2) 

 
(7) 

The DDP model considers only glide of edge type dislocations along predefined slip 1 

systems within the material, which introduce slip (displacement discontinuities) across 2 

the slip planes. A cluster of dislocations piling up introduces lattice rotation to the 3 

material. This phenomenon has also been reported in indentation problems (Balint et 4 

al., 2006a; Po et al., 2019; Zhang et al., 2014). Displacement discontinuities should not 5 

appear in the derivatives of the displacements, they are continuous, however this 6 

requires analytical differentiation. Standard numerical differentiation of the dislocation 7 

displacement fields will reveal a discontinuity, a fact that is often exploited for 8 

visualization of slip localization (Hirth and Lothe, 1982). Hence when computed in this 9 

way, the definition of lattice rotation Ω in eq. (7) naturally excludes slip features from 10 

the ( ̃ ) field  11 

In principle, we can employ a different background mesh, using interpolation, that is 12 

different from the finite element mesh used in the calculation in order to change the 13 

resolution of field quantities. In this work we resolve field quantities on the highly 14 

focused mesh used in the simulation to maintain their spatial resolution in the vicinity 15 

of the indentation, especially near the contact surface. The lattice rotation calculation 16 

was performed every 100 times increments, i.e. ∆U A⁄  = 5 ×  10-4, to capture the 17 

temporal evolution of lattice rotation against sliding distance.  18 

The aforementioned elastic lattice rotation method was verified for a wedge-shaped 19 

indentation problem; a comparison to prior simulations (such as (Zhang et al., 2014))) 20 

is shown in the Appendix. The abrupt change in the sign of the lattice rotation near the 21 

midline of the contact is consistent with experimental observations ((Kysar et al., 2010) 22 
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and continuum plasticity analyses ((Bouvier and Needleman, 2006). The values of 1 

lattice rotation predicted here are also consistent with (Zhang et al., 2014)). It is worth 2 

noting that the lattice rotation distribution is obtained by the combined effect (linear 3 

superposition of fields) of dislocations on the three slip systems, and the lattice rotation 4 

caused by isolated dislocations is long range. Therefore, the lattice rotation distribution 5 

shows a different pattern from the corresponding dislocation distribution, since the 6 

rotations caused by isolated, moving dislocations is experienced far from the 7 

dislocations themselves; in other words, regions with a high value of dislocation density 8 

do not necessarily exhibit a hot spot of lattice rotation. This phenomenon is further 9 

illustrated and discussed when looking at the evolution of lattice rotation contours and 10 

dislocation structure in the following sections (see e.g. Figure 9). 11 

3 Numerical results 12 

3.1 Sinusoidal indentation response 13 

The variation of actual indentation pressure 𝑝𝐴 and actual indentation contact area 𝐴 14 

against applied indentation depth 𝛿  under the rigid sinusoidal asperity with an 15 

amplitude ∆= 0.5μm  and wavelength λ = 10μm  are reported in Figure 2. The 16 

indentation pressure does not exhibit a strong indentation size effect (ISE) response, 17 

consistent with micro-indentation tests (Kuksenko et al., 2019; Pharr et al., 2010) and 18 

numerical simulations (Balint et al., 2006a; Lewandowski and Stupkiewicz, 2018; 19 

Saraev and Miller, 2006), when the indentation depth exceeds 𝛿 = 0.02𝜇𝑚 . The 20 

presence of an ISE requires a high strain gradient in the plastically deforming volume 21 

under the indenter (Nix and Gao, 1998), accommodated by a high density of 22 

geometrical necessary dislocations (GNDs). However, the relatively blunt, smooth 23 

surface of the sinusoidal indenter (e.g. compared to a wedge) used here suppresses the 24 

development of the strain gradient when indentation depth is sufficiently large (𝛿 >25 
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0.02𝜇𝑚), and the actual indentation pressure response stabilizes at a plateau level that 1 

represents the continuum hardness of the specimen. The hardness value predicted here, 2 

𝑝𝐴 ≅ 210MPa, is reasonably close to the continuum plasticity prediction, 𝑝𝐴 = 3𝜎𝑌, 3 

which establishes that plastic flow dominates the specimen response under sinusoidal 4 

indentation with a large contact size. The size-insensitive indentation pressure regime 5 

is useful in understanding the shear stress response in later sliding calculations by 6 

excluding the normal stress interference. Compared to the nominal contact size (dashed 7 

line in Figure 2), the actual contact size systematically exhibits a smaller value by 8 

virtue of the material sink-in near the contact, which was observed in prior DDP 9 

analyses of indentation (Widjaja et al., 2007b; Xu et al., 2019). 10 

 11 

Figure 2. Actual indentation pressure 𝑝𝐴  and actual contact size 𝐴  versus applied 12 

indentation depth 𝛿  by the sinusoidal asperity with λ = 10μm  and ∆= 0.5μm. The 13 

nominal contact size 𝐴𝑁 (denoted by the dash-dot line) response is also included for 14 

comparison. 15 

3.2 Subsurface deformation at different stages during sliding 16 

The evolution of the average shear stress 𝜏𝑎𝑣𝑔  along the contact with the sliding 17 

distance 𝑈 is reported in Figure 3 using the DDP model. The results were obtained 18 
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from sliding simulations starting from four different initial indentation depths, 𝛿 =1 

0.01, 0.05, 0.10, 0.20μm , with a sinusoidal asperity shape with λ = 10μm  and ∆=2 

0.5μm , and the corresponding actual contact sizes A = 1.11, 3.55, 5.52, 8.42μm , 3 

respectively, were achieve by the initial indentation. Following an initial linear response, 4 

the evolution curves continue to increase but with a much slower and strongly contact 5 

size dominated rate ∂τ/ ∂A  until the cohesive strength 𝜏𝑚𝑎𝑥  is achieved. It can be 6 

observed that the critical sliding distance for the average shear stress achieving the 7 

cohesive strength depends on the contact size. In previous studies on sliding 8 

calculations without a prior indentation, the shear stress was found to be inversely 9 

square root dependent on the contact size (Deshpande et al., 2007). The preceding 10 

sinusoidal indentation in this research introduces considerable plasticity into the film 11 

prior to the sliding, therefore the relationship revealed under pure sliding does not hold 12 

when indentation is first applied. The quantitative relation between the shear stress 13 

increase with the initial indentation and the contact size will be investigated in detail in 14 

future studies. 15 

The total dislocation density 𝜌𝑑𝑖𝑠 (number of dislocations divided by the area of the 16 

dislocation process window) evolution with the sliding distance 𝑈 is reported in Figure 17 

4, where results were obtained from the aforementioned DDP simulations for four 18 

different contact sizes. The total dislocation density linearly increases from a base value 19 

that was inherited from the preceding indentation. The rate of increase in the dislocation 20 

density is found to be independent of contact size. 21 
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 1 

Figure 3. Shear stress 𝜏  evolution with sliding displacement 𝑈  for four different 2 

contact sizes that are introduced by initial sinusoidal indentation. The normal stress 𝑝 3 

and cohesive strength 𝜏𝑚𝑎𝑥 are denoted for reference. 4 

After a critical sliding distance, the rate of increase is reduced for all contact sizes, when 5 

more plasticity is introduced into the specimen by virtue of the increased sliding load; 6 

the critical sliding distance at which this occurs strongly depends on the contact size, 7 

and is greater than the critical sliding distance at which the average shear stress achieves 8 

the cohesive strength for a given contact size (see Figure 3). For instance, the critical 9 

sliding distances are predicted as  1.0μm  and 0.76μm for the dislocation density 10 

evolution and shear stress evolution, respectively, for a contact size A = 5.52μm. The 11 

dislocation density eventually reaches a plateau value (except for the largest contact 12 

size A = 8.42μm), which is determined by the contact size, and ceases to increase with 13 

sliding distance. This suggests that the film is saturated by a stable dislocation structure, 14 

therefore full slip between the contact and specimen occurs. 15 
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 1 

Figure 4. Total dislocation density 𝜌𝑑𝑖𝑠 evolution against sliding displacement 𝑈 under 2 

different contact sizes introduced by an initial sinusoidal indentation. The dashed lines 3 

indicate the contact-size independent dislocation density increase rate prior to full slip 4 

occurring. 5 

Hence, three different sliding stages are identified, demarcated by the two 6 

aforementioned critical sliding distances for a given contact size. While the average 7 

shear stress evolution reflects plastic flow due to dislocation activity within the surface 8 

region (Deshpande et al., 2004, 2005) only, the dislocation density evolution is able to 9 

identify the point at which the full slip state initiates, i.e. when the dislocation structure 10 

and deformation field within the entire specimen reach a dynamic equilibrium and the 11 

dislocation density tends to saturate as sliding takes place. In the following sections, 12 

lattice rotation maps in the whole specimen are analyzed at different sliding stages for 13 

various contact sizes.  14 

3.3 Lattice rotation evolution during sliding 15 

The lattice rotation is calculated using eq. (7)  according to the dislocation structure and 16 

deformation field at a certain instant of a sliding process. The evolution of the lattice 17 

rotation distribution for the contact size A = 3.55 µm for single-stroke (left to right) 18 

sliding is illustrated in Figure 5 with individual dislocations shown  explicitly as black 19 
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marks; a view of the entire specimen is shown above a close-up view of the 1 

10μm × 1μm  dashed region shown. With increase in sliding distance the lattice 2 

rotation accumulates underneath and behind the contact. In particular, it is shown that 3 

the lattice rotation introduced by the indentation that precedes sliding is negligible 4 

compared to that induced by the sliding itself. As shown in (c) and (d), after sufficient 5 

sliding the lattice rotation in a thin layer of material immediately underneath the contact 6 

with thickness ℎ∗ ≈ 100 nm has its lattice rotation ‘locked in’, i.e. it does not increase 7 

in intensity but does spread with further sliding.  8 

 9 

Figure 5. The contours of lattice rotation 𝛺 and the corresponding dislocation 10 

structures (individual dislocations represented as black dots) of the sliding calculation 11 

starting from 𝛿 = 0.05 µm and 𝐴 =  3.55 µm. Results are shown for sliding distances 12 

(a) 𝑈 =  0 (i.e. just after indentation), (b) 𝑈 =  0.497 µm (the initial slip), (c) 𝑈 =13 

 1.561 µm (partial slip) and (d) 𝑈 =  1.953 µm (full sliding), where 𝑈 is the relative 14 

surface displacement, 𝐴 the contact size and δ the indentation depth. The set of lattice 15 

rotation contours with corresponding dislocation structures illustrate the emergence of 16 

the ‘locked-in’ and localized lattice rotation bands during the sliding process.  17 

This is accompanied by localization of lattice rotation in a thin band beneath this layer, 18 

which spreads parallel to the sliding direction and increases in strength as the sliding 19 
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distance increases. More bands of localized lattice rotation with associated ‘locked-in’ 1 

layers are visible with increasing distance below the surface, particularly once the full 2 

sliding conditions are achieved (Figure 5(d)). The ‘locked-in’ lattice rotation bands 3 

correspond to the trace lines experimentally observed in (Greiner et al., 2016; Greiner 4 

et al., 2018), where the localization band is the boundary between them. 5 

Lattice rotation within a single crystal material is associated with the presence of 6 

geometrically necessary dislocations (GNDs) (Arsenlis and Parks, 1999), 7 

microstructure change (Cheng and Ghosh, 2015; Cheong et al., 2005; Das et al., 2018; 8 

Dunne et al., 2007a) and non-local effect (Counts et al., 2008; Meissonnier et al., 2001). 9 

The results shown in the following sections correspond to sliding distances that exceed 10 

that required for the full sliding condition, beyond which the layered lattice rotation 11 

distribution depicted in Figure 5 is fully developed. 12 

3.4 Contact size effect on lattice rotation 13 

The contact size plays a crucial role (Deshpande et al., 2007; Liu et al., 2018) as it 14 

strongly affects the plasticity introduced into the specimen. Besides the shear stress and 15 

dislocation density reported in previous sections, the localized lattice rotation band and 16 

the ‘locked-in’ layer, henceforth referred to as a trace line to be consistent with the 17 

experiments, are illustrated for different contact sizes in Figure 6. As expected, a larger 18 

contact size produces a dislocation structure with a larger number of dislocations, which 19 

propagate much deeper into the indented material; this is also associated with the 20 

formation of more than one trace line. However, the location and intensity of the trace 21 

lines is nearly independent of the contact size, at least for smaller contact sizes, which 22 

correspond to smaller loads in the experiments. Of more significance, the depth from 23 

the surface of the first trace line is also independent of the contact size. This is consistent 24 

with experiments (Greiner et al., 2016). 25 
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 1 

Figure 6. The contours of lattice rotation Ω and the corresponding dislocation structure 2 

(individual dislocations represented as black dots) of the sliding calculation obtained 3 

for different contact sizes. (a) A =  1.11 µm, (b) A =  3.55 µm, (c) A =  5.52 µm and 4 

(d) A =  8.42 µm , where U  is the displacement, A  the contact size and δ the 5 

indentation depth. Results are shown at the instants where full sliding has been achieved 6 

for each contact size and the indenter has moved away from the initial contact area (a, 7 

b and c), or for the maximum sliding distance the calculation has reached (d). The set 8 

of lattice rotation contours illustrates the lattice rotation bands formed during sliding 9 

and the contact size effect on lattice rotation band.  10 

Figure 7 illustrates the three characteristic dimensions of the trace lines revealed in the 11 

specimen subsurface under contact size A = 3.55μm , which exhibits features 12 

representative of all contact sizes. The critical depth ℎ∗ indicates the distance between 13 

the surface and the boundary between the first and second trace lines, which is 14 

independent of contact size.  The critical depth is predicted by the DDP model for all 15 

contact sizes as  ℎ∗ = 0.09 μm, which is comparable to the experimental finding of 16 

0.1 μm (Greiner et al., 2016). This corresponds to a highly localized deformation, 17 

which is also what characterizes the depth of the plastic zone (represented as plastic slip 18 

zone), which varies as a function of the contact size and is computed to be 1.2, 3.5, 5.2 19 
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and 7.6 μm for the four contact sizes analyzed here, respectively. It has been verified 1 

that the tracelines predicted by the DDP simulation are not mesh or slip plane spacing 2 

dependent, and are not an artefact of the choice of contour levels; the mesh was fine 3 

and highly focused to the surface with a mesh size as small as 0.01𝜇𝑚, and dislocation 4 

activity was observed between the first trace line and the contact. Both the width and 5 

height of the group of trace lines, referred to here as the lattice rotation band, labelled 6 

𝑑𝑙 and 𝑑ℎ, are determined by the plasticity, hence by the contact size of the preceding 7 

indentation. In the case shown here, the width of the lattice rotation band is measured 8 

as 𝑑𝑙 = 9.5𝜇𝑚 and the height as 𝑑ℎ = 6𝜇𝑚. In the experiments the contact size was as 9 

large as 92𝜇𝑚, much larger than in the simulations presented here (Greiner et al., 2016; 10 

Liu et al., 2018). However, as shown in Figure 7, 𝑑𝑙 and 𝑑ℎ scale with the contact size, 11 

therefore it is expected that the dimensions predicted by the DDP simulations would be 12 

consistent with the experimental findings for much larger contact sizes.  13 

 14 

Figure 7. Characterization of the lattice rotation band for 𝑈 = 2.76 μm and contact 15 

size A = 3.55μm. The condition of full sliding has been reached.  16 

4 Discussion 17 

4.1 The origin of the lattice rotation band within the subsurface 18 

It is not yet understood how the experimentally observed dislocation trace line(s) 19 

originate from the dislocation structure induced by the sliding process (Greiner et al., 20 



21 

 

2018). In the discrete dislocation plasticity calculations (Figure 5 and Figure 6), the 1 

resolved shear stress is highest on the slip system parallel to the sliding direction (i.e.  2 

parallel to the x-axis) on the planes nearest to the surface, hence it is reasonable to 3 

anticipate that dislocation activity on these slip planes is responsible for the observed 4 

tracelines. As a result of the cohesive sliding boundary condition, the subsurface 5 

material would like to assume a simple-shear, stack-of-cards like slip arrangement 6 

(Haug et al., 2020); however compatibility with the surrounding bulk material prevents 7 

that from happening perfectly, which results in a corresponding lattice rotation. The 8 

mechanisms that the lattice rotation is given rise by accumulative dislocation glide and 9 

crystalline slip due to geometry and boundary constraints have recently been observed 10 

in other independent experimental observations including high-resolution digital image 11 

correlation (HR-DIC) (Sperry et al., 2020) and high-resolution Electron backscatter 12 

diffraction (HR-EBSD) (Maj et al., 2020), respectively. 13 

To illustrate the origin of the dislocation traceline, the degree of rotation in the lattice 14 

rotation band is plotted versus horizontal position x for contact size A =  1.11 µm 15 

under a full slip condition in Figure 9, for both vertical extents of the band identified 16 

from the lattice rotation contour plot (paths B-B’ and C-C’); the width of the lattice 17 

rotation band observed from the lattice rotation contour plot is dependent on the cut-off 18 

value that is chosen, as shown in the figure. In the inset to Figure 9, it is evident that 19 

dislocation dipoles pile up in queues on a single horizontal slip plane underneath the 20 

contact, which are driven apart by the applied shear stress. The gradient in resolved 21 

shear stress on that slip plane – it is largest at the center of the contact and decays to 22 

zero far away from the cohesive sliding boundary condition – causes a ‘soft’ pile-up to 23 

form. The lattice rotation at a point on the slip plane of a single dislocation dipole is 24 

zero outside the dipole and a constant value anywhere within the dipole. Hence, 25 
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theoretically, an arrangement of concentric dipoles creates a lattice rotation profile on 1 

the active slip plane that is largest at its center and decreases incrementally moving 2 

outward. This is what is observed in Figure 9, where fluctuations from the theoretical 3 

trend are caused by dislocations on other slip planes.  4 

 5 

Figure 8. Lattice rotation on a horizontal slip plane within the subsurface. Results are 6 

shown when full slip is achieved for contact size A =  1.11 µm (see Figure 6a). 7 

The instantaneous dislocation structure, corresponding GND density distribution and 8 

lattice rotation distribution within the specimen for a contact size A =  1.11 µm under 9 

a full slip condition is reported in Figure 9(a), (b) and (c), respectively. Dislocations 10 

on the horizonal slip system, which are the key contributors to the lattice rotation, are 11 

identified by a dislocation symbol that is twice as large as those on the other slip systems. 12 

Localized GND density is calculated using the net open burger’s vector algorithm based 13 

on the instantaneous dislocation structure (Kiener et al., 2011). A Burgers circuit size 14 

of 25nm was found to adequately resolve the GND distribution for these simulations. 15 

A strip of high GND density (Figure 9(b)) is identified in the same location as the 16 

lattice rotation band, which also correlates spatially with the ‘soft’ pile-ups of 17 

concentric dislocation dipoles on horizontal slip planes identified here as the cause of 18 
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the experimental STEM observations of dislocation tracelines (Greiner et al., 2016); 1 

furthermore, the magnitude of the predicted GND density is in line with previous 2 

measurements performed in sliding tests (Greiner et al., 2016; Greiner et al., 2018). 3 

Regions of low lattice rotation, particularly that of the region between the lattice 4 

rotation band and the surface, referred to here as a ‘locked-in’ layer, also correlate with 5 

low GND density as observed in the experiments. 6 

 7 

Figure 9. Correlation between (a) the instantaneous distribution of dislocations, (b) the 8 

corresponding geometrically necessary dislocation (GND) density distribution and (c) 9 

lattice rotation using the discrete dislocation plasticity model. Numerical results are 10 

extracted when full sliding occurs under contact size A =  1.11µm (see Figure 6a). 11 

Dislocation symbol size is enlarged for dislocations along the horizontal slip planes. 12 

4.2 Comparison between STEM measurements and DDP simulation results 13 

In the numerical results shown in Sections 3.3 and 3.4, the emergence of the 14 

experimentally observed dislocation traceline is interpreted as a result of the formation 15 
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of  queues of dislocation dipoles, or soft pile-ups, on slip systems parallel to the sliding 1 

direction. In this section, we compare STEM images, which show the contrast 2 

corresponding to microstructure change under sliding tests, and the lattice rotation 3 

contours obtained in the simulations. A typical comparison between experiments and 4 

simulations is illustrated in Figure 10(a). Since the appearance of the first (uppermost) 5 

traceline is common to all indenter sizes as shown in Figure 9, the lattice rotation is 6 

post-processed from the simulation with contact size 𝐴 = 1.11 µm after full slip has 7 

developed and the dislocation structure has evolved to its final configuration, as this 8 

case best illustrates the mechanism responsible for the traceline and its link to lattice 9 

rotation. As mentioned previously, the simulations clearly identify a region about 0.1 10 

µm under the contact surface where a large number of dislocation dipoles glide parallel 11 

to the surface, and a corresponding layer above it which is ‘locked-in’ and does not 12 

deform appreciably. The lattice rotation along three vertical paths (defined in (a)) 13 

originating at the contact face are shown in Figure 10(b). A significant peak indicating 14 

very large lattice rotation is observed about 0.1 microns from the contact surface. This 15 

peak diminishes moving from the contact center (the blue path) towards the contact 16 

edge (the green path), which reflects the results in Figure 8. The vertical distribution 17 

of lattice rotation divides the material into three layers, moving from the contact face 18 

into the bulk. These are: a rotation-constrained zone, a region with significant lattice 19 

rotation (due to soft pile-ups of dislocations on horizontal slip planes) and a remote 20 

zone that is unaffected by the sliding. This dislocation configuration in conjunction with 21 

the contact constraint induces large localised lattice rotation, interpreted physically as 22 

a line (in fact, a very thin layer of material) parallel to the sliding direction across which 23 

there is an abrupt change of microstructure, as observed in the experiments. This is in 24 

strong agreement with the evidence provided by the companion paper that the 25 
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misorientation is concentrated at the DTL (see e.g. Figure 6 of (Ruebeling et al., 2021) 1 

and related discussion). This magnitude of the characteristic length is system specific 2 

and we believe is linked to the combined effect of the cohesive strength (i.e. maximum 3 

shear stress), Burger’s vector and other material properties (moduli, plastic flow stress) 4 

used to describe the specific systems under investigation. The nature of the load and the 5 

contact size affect the behaviour (and the relative lattice rotation/deformation) of the 6 

material above and below the DTL, as discussed below in more details. 7 

 8 

Figure 10. (a) Comparison between the STEM image obtained from experiments for 9 

low loads (shown on the right, zoomed-in from Figure 6a) and the lattice rotation and 10 

superimposed dislocation structure computed via DDP simulations (shown on the top-11 

left, zoomed-in from Figure 9a), highlighting the dislocation activity linked to the 12 

mechanism responsible for the lattice rotation and formation of the traceline. This is 13 

also schematically depicted at the bottom-left, showing the (b) lattice rotation 14 

distribution along three paths (defined in (a)) perpendicular to the sliding direction. 15 

Results are shown at the instant when the sliding has been initiated and dislocation 16 

motion has developed in the slip systems underneath the contact. 17 
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The critical depth of the 1st DTL obtained from the simulations (0.1 µm) agrees very 1 

well with the experimental findings, albeit the contact size in the two was different but 2 

this feature was shown in the simulations to be contact-size independent; the dislocation 3 

activity under the indenter is strictly controlled by the pressure and the shear traction 4 

transmitted across the interface, which is an approximate match between the 5 

simulations and the values experienced by the material layer under low loads in the 6 

experiments. Changing the size of the indenter changes the extent of the material 7 

affected by large stresses rather than the value in the uppermost layer of the material. 8 

The features shown in Figure 10 are common to all other indentation sizes but extend 9 

further into the specimens for larger indenters, with the emergence of other tracelines 10 

(as also shown in the experiments) further away from the surface. The dislocation 11 

activity becomes more complex when the indenter size (and hence the overall load since 12 

the pressure on the indenter in the experiments is kept constant) grows due to the 13 

activation of a large number of dislocations along different slip systems and slip planes. 14 

This usually results in progressive material rotation between tracelines (i.e. bands 15 

increasing in lattice rotation between consecutive DTLs), with the largest lattice 16 

rotation experienced by the plastically deformed material further away from the contact; 17 

this is due to the fact that this region, which one can associate with the bulk material 18 

(see Figure 6), in not constrained by the indenter and lattice rotation exhibits itself 19 

differently in this region. This explains not only why the number of DTLs and the lattice 20 

rotation increase with the size of the indenter, but also why large contact areas (typical 21 

of the experiments under consideration) result is large lattice rotations recorded beneath 22 

the last observable DTL, as the reach of the plastically deformed area is much deeper 23 

than the area analyzed by STEM. A further interesting point to discuss is that increasing 24 

the load leads to more severe microstructural changes, which include increased 25 
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(geometrically necessary) dislocation activity (and hence damage(Lu et al., 2020)) and 1 

the formation of small grains and re-crystallization in the tribologically affected layer. 2 

The simulations in Figure 6(d) (largest indenter size studied here) already show very 3 

large dislocation activity on different slip systems. It can be inferred that a large contact 4 

size and normal load may lead to the subsequent formation of new grain boundaries 5 

GND density that have been characterized in previous experiments (Greiner et al., 6 

2016). 7 

4.3 Comparison between TKD measurements and DDP simulation results 8 

The qualitative comparison between the STEM image and the lattice rotation contours 9 

in Figure 10 has shown the strong correlation between the perceived abrupt 10 

microstructural changes in the experiments and the material lattice rotation under 11 

sliding conditions. We turn now to quantitative measurements using Transmission 12 

Kikuchi Diffraction (TKD), which have been used to determine lattice rotation in the 13 

neighborhoods of the DTLs in (Ruebeling et al., 2021). 14 

 15 

Figure 11. The comparison between (a) lattice rotation evaluated in DDP simulations 16 

with superimposed instantaneous dislocation structure and (b) lattice rotation measured 17 

using the TKD pattern. Numerical results are shown for full slip and contact size A =18 

95µm, when dislocation motion and lattice rotation have reached their final stable 19 

configuration. The simulation set-up is the closest possible scenario to replicate the one-20 

stroke sliding tests.  21 
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The lattice rotation within the specimen calculated using DDP and measured using TKD 1 

is illustrated in Figure 11 (a) and (b), respectively. The numerical results in Figure 11 2 

(a) are obtained from simulations under the maximum contact size ( A = 95 µm ) 3 

achieved in the DDP calculations, which is the closest match possible between the two 4 

systems given the computational demands of DDP. The subsurface region under the 5 

indenter is subjected to a similar stress state. However, the size of the indenter used in 6 

the simulation is still smaller than the contact area for the equivalent experiment, hence 7 

the region of material over which high stresses and strains are calculated is not as deep 8 

as the equivalent region in the experimental test. The A = 95 µm  simulation is 9 

nonetheless sufficient to accurately capture the lattice rotation band parallel to the 10 

sliding direction underneath the contact, which is also observed in the TKD 11 

experimental results shown in Figure 11(b).  In addition, the lattice rotation map 12 

predicted by the DDP simulations exhibits several thin strips with a limited lattice 13 

rotation compared to that in adjacent regions, which separate the lattice rotation band 14 

from the subsurface. The separation lines are again interpreted as tracelines (i.e.  the 15 

discontinuity discussed in Section 4.1), and the depths of the first two tracelines are 16 

similar to those observed in the TKD pattern map. The DDP simulations not only 17 

exhibit a similar lattice rotation pattern, but the predictions also appear to be 18 

quantitatively commensurate with the magnitude of misorientation measured 19 

experimentally between different material strips shown in Figure 11(b).  For instance, 20 

the lattice rotation within the most severely rotated material strip is roughly Ω = 30° in 21 

the DDP calculations, whereas the relative misorientation measured using TKD 22 

between the surface and the region below the second traceline is Ω  = 25°. The 23 

calculated lattice rotation and misorientation measurement in the other two layers show 24 

the same trend. In Section 3.4, we have shown the positive dependence of the lattice 25 
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rotation band dimensions on the contact size. The depth of the heavily rotated material 1 

enlarges with the contact size and the lattice rotation in the simulations does not extend 2 

to the full region shown in Figure 11(b) due to the limited contact size used for the 3 

simulation. In the experiment the material below the second (lowest) DTL shows large 4 

rotation deeper into the substrate (see Figure 11b) as the contact size is substantially 5 

larger than the field of view in STEM (about one micrometre). 6 

5 Conclusion 7 

Discrete dislocation plasticity analyses have been conducted to simulate the dislocation 8 

structure and localized lattice rotation under single asperity sliding, where the contact 9 

between the asperity and specimen was established by a preceding sinusoidal 10 

indentation. This was done to interpret the dislocation tracelines observed in 11 

corresponding experiments. The following conclusions are highlighted: 12 

(i) The entire sliding process up until full slip occurs is divided into three regimes by 13 

sliding distance, where the two critical sliding distances demarcating these regimes are 14 

identified from the shear stress and dislocation density response. Both of the critical 15 

distances are found to be strongly contact size dependent. 16 

(ii) The “dislocation traceline”, characterized by an abrupt contrast change observed in 17 

the STEM images obtained after the first sliding stroke, is due to a highly localized 18 

lattice rotation band within the material subsurface and parallel to the sliding direction, 19 

which emerges with increasing sliding distance and is dependent upon the contact size. 20 

The lattice rotation arises as a result of the deformation induced by the pattern of 21 

concentric dislocation dipoles in conjunction with the compatibility constraint of the 22 

surrounding material and the applied contact condition at the surface.  23 
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(iii) The critical depth from the contact to the top boundary of the horizontal lattice 1 

rotation band predicted by the DDP calculations shows excellent agreement with the 2 

experimental measurements. Contact size and the corresponding total normal load do 3 

not affect the critical depth of the initial traceline, yet these parameters dominate the 4 

width and depth of the lattice band when fully slip occurs. This finding provides 5 

mechanistic insight into the damage development and subgrain formation observed in 6 

tests when larger loads are applied, which have not been explicitly modelled in this 7 

contribution. 8 

(iv) A very good agreement was observed between the predicted lattice rotation 9 

magnitude and the experimentally measured misorientation between subsurface layers. 10 
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Appendix 15 

Lattice rotation validation for indentation (Supplement to Section 2.3) 16 

 17 

Figure A 1. Lattice rotation validation for indentation. Lattice rotation distribution in 18 

indentation of (a) the sinusoidal indenter adopted in this research (b) a wedge-shaped 19 

indenter with similar geometric characteristics studied in (Zhang et al., 2014) . The 20 
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result is shown at the instant when the same indentation depth δ = 0.4 µm is imposed 1 

on both indenters, respectively. 2 

Material properties  3 

Table 1. Material properties in DDP modelling 4 

Parameter Name Symbol Unit Value 

Young’s modules  𝐸 GPa 70 

Poisson ratio 𝜐 - 0.33 

Burger’s vector 𝑏 nm 0.25 

Spacing of slip planes - b 100 

Drag coefficient 𝐵 Pa · s 10−4 

Annihilation distance 𝐿𝑒 b 6 

Mean source strength  𝜏�̅�𝑢𝑐 MPa 50 

Obstacle strength  𝜏𝑜𝑏𝑠 MPa 150 

Source density 𝜌𝑛𝑢𝑐  𝜇𝑚−2 40 

Obstacle density 𝜌𝑜𝑏𝑠 𝜇𝑚−2 80 

 5 

Supplementary Information 6 

VideoS1 shows the lattice rotation development of the film under sliding with contact 7 

size A=3.55µm. 8 

  9 
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