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The Orr mechanism is revisited to understand its precise role in transition of plane Couette flow.
By considering homogenous shear flow and plane Couette flow, it is identified that the Orr mechanism
induces a lift-up effect which significantly amplifies spanwise velocity. An optimal perturbation
analysis for individual velocity component reveals that the amplification of spanwise velocity is
most active at the streamwise length comparable to the given spanwise length of the perturbation.
The relevance of this mechanism to transition is subsequently examined in plane Couette flow. To
this end, a set of initial conditions, which combines the optimal perturbation for spanwise velocity
with the one for all the velocity components, is considered by varying their amplitudes. Two
representative transition scenarios are found: oblique and streak transitions. In the former, the
spanwise velocity perturbation amplified with the Orr mechanism initiates both streak amplification
and breakdown, whereas, in the latter, its role is limited only to the streak breakdown at the late
stage of transition. As such, the oblique transition offers a route to turbulence energetically more
efficient than the streak transition at least for the cases examined in the present study. Finally, the
oblique transition is found to share many physical similarities to the transition by the minimal seed.

I. INTRODUCTION

It has been well understood that a small-amplitude perturbation to a linearly stable laminar base flow can experience
a transient growth as a result of non-normality of the linearised Navier-Stokes operator [1–3]. One of the well-known
physical mechanisms for the transient growth is the ‘lift-up’ effect, by which streamwise vortices are converted into
streaks with large amplification of energy from base/mean flow [4–6]. The initial condition, which leads to the largest
transient energy growth, has often been referred to as the ‘optimal perturbation’, and it has extensively been computed
in most of canonical laminar shear flows [2, 3, 7, 8]. The emergence of streaks has been observed as a robust feature
in transitions taking place in the absence of the Tollmien-Schilichting waves [9–16]. Furthermore, the lift-up effect
has also been understood as the key mechanism of the generation of streaks in turbulent flows [17–24].

Another well-known mechanism of transient energy growth is the Orr mechanism. It was originally proposed by
Orr [25], who demonstrated that the perturbation energy of a given velocity field can grow transiently in time, as
the perturbation field, initially inclined towards upstream, is gradually tilted downstream by base/mean shear. The
Orr mechanism was also observed in the early transient-growth studies of two-dimensional perturbation in shear flow
[26, 27]. However, despite the well-established mathematical description of the Orr mechanism, its precise physical
role in transition to turbulence remains unclear. A well-studied scenario of bypass transition, which we shall refer
to as ‘streak transition’, is typically described as [e.g. 27]: 1) linear growth of streaks from a streamwise vortical
perturbation via lift-up effect [2, 3, 7, 8]; 2) secondary instability or transient growth of the amplified streaks and
the subsequent nonlinear breakdown leading to turbulence [28–33]. In this scenario, a possible role played by the
Orr mechanism may lie in the evolution of the perturbation for secondary transient growth [30], as this would be a
mechanism for the generation of a spanwise velocity perturbation leading to a strong interaction with the least stable
streak instability modes (sinuous modes, in particular) [31, 33].

Recently, optimal initial condition, which takes the nonlinearity of the Navier-Stokes equations fully into account,
has been computed for transition to turbulence in canonical wall-bounded shear flows [34–38] (see [39] for review on
this issue). The initial condition, often referred to as the ‘minimal seed’ for transition to turbulence, is designed to
trigger turbulence by reaching the laminar-turbulence separatrix (i.e. the ‘edge’ of turbulence [40, 41]) with the lowest
perturbation energy. The minimal seed typically emerges as a highly localised three-dimensional structure in space.
In the earliest stage of its evolution, the localised initial perturbation is amplified via the Orr mechanism, and is
subsequently converted into a streamwise elongated streak via the lift-up effect. The streamwise meandering motion
of the streak, which highly resembles the sinuous mode of streak instability, ensues rapidly, resulting in a nonlinear
breakdown to form a localised turbulence (or turbulence spot). Finally, the turbulence spot gradually spreads over
the space, eventually evolving into fully-developed turbulence.

In the two transition scenarios described above, there is an important difference in the roles played by the Orr
mechanism. In the former case, the Orr mechanism may primarily be active in the secondary instability and/or
transient growth process to facilitate the generation of spanwise velocity perturbation. On the contrary, in the latter
case, the Orr mechanism emerges at the earliest stage of transition where streak is not even developed in the flow.



2

Given that the latter transition scenario is the most energetically efficient route to turbulence, this suggests that the
activation of the Orr mechanism at an appropriate stage of transition may be the key physical element to trigger
turbulence with small amount of initial perturbation energy.

The purpose of this study is to explore the possible roles played by the Orr mechanism in transition of parallel shear
flows. We first revisit the linear amplification process in homogeneous shear flow. Particular attention of the analysis
will be paid to the precise understanding of the Orr mechanism and the resulting growth mechanism. Indeed, we
shall see that the Orr mechanism induces a lift-up effect, which subsequently amplifies both streamwise and spanwise
velocities. Computation of optimal perturbation for an individual velocity component reveals that this mechanism
leads to the largest amplification of spanwise velocity at the streamwise wavelength comparable to the given spanwise
wavelength. The optimal perturbation for the spanwise velocity is then utilised to examine the transition scenarios
mediated by the Orr mechanism in plane Couette flow. In particular, by introducing a set of initial conditions suitably
combining the linear optimal perturbation for spanwise velocity with the one for all the velocity components, two
energetically efficient routes of transition have been identified, consistent with previous studies: 1) oblique transition
[42, 43]; 2) streak transition [33]. It is found that the oblique transition [42, 43] is initiated by the Orr mechanism and
that the resulting spanwise velocity perturbation promotes the early-stage streak development as well as its breakdown
at the late stage of transition. On the contrary, in the streak transition, the role of the Orr mechanism is limited
to the generation for a spanwise velocity perturbation to promote streak breakdown at the late stage. As such, the
oblique transition is found to offer a more energetically efficient route to turbulence than the streak transition, while
sharing many physical similarities to the transition by the minimal seed.

II. THE ORR MECHANISM REVISITED

A. Homogeneous shear flow

For the purpose of revisiting the role of the Orr mechanism in the context of linear stability, we first consider a
unbounded homogeneous shear flow of incompressible fluid with the density ρ and the kinematic viscosity ν. The
linearised equations of motion in this flow admit the unique analytical solution, allowing for an in-depth discussion
on the Orr mechanism and the resulting physical processes. The flow variables are made dimensionless with the
characteristic velocity U and length L, which will be defined later. We denote by x1, x2 and x3 the dimensionless
streamwise (x), vertical (y) and spanwise (z) coordinates, respectively. The dimensionless momentum equations of
motion in the perturbation form about the base flow U(= (y, 0, 0)) are given by

∂u

∂t
+ (U · ∇)u + (u · ∇)U = −∇p+

1

Re
∇2u + N(u), (1)

where t is the dimensionless time, u = (u, v, w) the perturbation velocity, which will be interchangeably used with
u = (u1, u2, u3), p the perturbation pressure, N(u) = −(u · ∇)u, Re(≡ UL/ν) the Reynolds number.

The linearised version of Eq. (1) (i.e. N(u) = 0) admits the following Kelvin-mode solution [44–46]:

u = û(t)eik·x, (2a)

where x = (x, y, z) and k = (κ1, κ2, κ3) is the wavevector with κ1, κ2 and κ3 being the dimensionless streamwise,
cross-stream and spanwise wavenumbers, respectively. Here, κ1 and κ3 are constants to be prescribed, whereas
κ2(t) = κ2,0 − κ1t is a linear function in time where κ2,0 is a constant to be given. We note that Eq. (2a) can be
rearranged as

u = û(t)ei(κ1(x−Ut)+κ2,0y+κ3z) (2b)

with U(= y) being the streamwise base-flow velocity. This form of the solution suggests that û(t) is merely a Fourier
mode of u in the co-moving frame with the local base flow, and the linear time dependence in κ2(t) originates from
the downstream advection of the perturbation velocity due to the base flow with shear.

The length and velocity scales of the flow can now be defined such that L = 1/κ∗2,0 and U = S∗/κ∗2,0, where
κ∗2,0(> 0) is the dimensional form of κ2,0 and S∗ is the shear rate of the base flow. This yields κ2(t) = 1 − κ1t and
Re = S∗/(ν(κ∗2,0)2). Also, û(t) in Eq. (2) is obtained as [47]

û(t) = û0e
φ(t) − v̂0κ1

(
κ2

0κ2(t)

κ2
hκ

2(t)

)
eφ(t) − v̂0

(
κ2

0κ
2
3[θ(t)− θ(0)]

κ1κ3
h

)
eφ(t), (3a)
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v̂(t) =
v̂0κ

2
0

κ2(t)
eφ(t), (3b)

ŵ(t) = ŵ0e
φ(t) − v̂0κ3

(
κ2

0κ2(t)

κ2
hκ

2(t)

)
eφ(t) + v̂0

(
κ2

0κ3[θ(t)− θ(0)]

κ3
h

)
eφ(t), (3c)

where û0 = (û0, v̂0, ŵ0) is the initial condition, κ(t) = (κ2
1 + κ2

2(t) + κ2
3)1/2, κ0 = κ(0) and κh = (κ2

1 + κ2
3)1/2. Also,

θ(t) = arctan

(
κh
κ2(t)

)
, φ(t) = − 1

Re

∫ t

0

κ2(τ)dτ, (3d)

where θ(t) ∈ [0, π) is the angle between the horizontal (κh) and vertical (κ2) wavevector components, equivalent to
the clockwise inclination angle of the wave from the horizontal plane, and φ(t) incorporates the effect of viscosity into
the time evolution of the solution.

Now, we briefly summarise the physical implications of Eq. (3) (see also [47]). For simplicity, we shall also assume
û0 = 0 and ŵ0 = 0 because they do not contribute to any growth of the perturbation kinetic energy. Depending on
κ1 and κ3, the dominant physical mechanisms at play can be classified into the following three categories:

1. Lift-up effect (κ1 → 0): In the limit of κ1 → 0, the term which primarily contributes to the perturbation kinetic
energy is the last term in the right-hand side of Eq. (3a). This term is also the particular solution of û to
the Squire’s equation obtained from the homogeneous solution to the Orr-Sommerfeld equation, describing the
lift-up effect of streamwise velocity [47]. In the inviscid limit (Re → ∞), it also yields û(t) ∼ t for t � Re,
retrieving the algebraic instability in [4].

2. Orr mechannism (κ3 = 0): In this case, Eq. (3) is simplified into

û(t) = −v̂0κ
2
0

κ1κ2(t)

κ2
hκ

2(t)
eφ(t), v̂(t) =

v̂0κ
2
0

κ2(t)
eφ(t), (4)

which stems from the homogeneous solution to the Orr-Sommerfeld equation [47]. Since φ(t) < 0 for t > 0, Eq.
(4) implies that having a decreasing κ2(t) in time is an important way to achieve an energy growth, and, in
particular, this is the only way for v̂(t) to do so. Given the form of κ2(t)(= 1−κ1t), κ

2(t) decreases for t < 1/κ1

and reaches its minimum at t = 1/κ1. κ2(t) then increases in time for t > 1/κ1. We note that θ0 < θ(t) < π/2
(upstream inclined wave) for t < 1/κ1, whereas π/2 < θ(t) < π (downstream inclined wave) for t > 1/κ1.
This implies that κ−2(t) in Eq. (4) describes the Orr mechanism, by which the maximum perturbation energy
would be achieved around t = 1/κ1. Finally, it is worth mentioning that the (linear) time dependence of κ2(t)
originates from the presence of the shear in base flow, as is indicated by Eq. (2b). This confirms that the Orr
mechanism is indeed a process driven by the shear in base flow.

3. Lift-up effect induced by the Orr mechanism (κ1 6= 0 & κ3 6= 0): Given the discussion above for the two limiting
cases (i.e. κ1 → 0 and κ3 = 0), the lift-up effect is described by the last terms with θ(t) in Eqs. (3a) and (3c),
while the Orr mechanism would be described by those with κ−2(t) in Eq. (3). For κ1 6= 0 and κ3 6= 0, the two
mechanisms co-exist, as none of the related terms vanish. Given the form of Eq. (3), the Orr mechanism would
operate as described above, and it extends to ŵ in the same manner. However, in this case, some care needs
to be taken for the interpretation of the lift-up effect because the time dependence of θ(t) now contributes to
the related terms. For κ1 6= 0, (θ(t) − θ(0)) in Eq. (3) now increases monotonically from zero and approaches
asymptotically its upper bound (π − θ(0)) as t → ∞. The gradually increasing θ(t) activates the last terms in
Eqs. (3a) and (3c), implying that the lift-up effect in this case is induced by the Orr mechanism – otherwise,
those terms in Eqs. (3a) and (3c) would remain zero, since θ(t) = θ(0) for all t > 0 in the absence of the Orr
mechanism. It is also important to mention that this effect is particularly well described by ŵ, because, for a
given κ1 and κ3, the energy growth in time by the lift-up term in Eq. (3c) is only affected by θ(t) – in the case
of û, the aspect ratio of the perturbation (i.e. κ3/κ1) is another factor affecting the extent of amplification.
This indicates that the spanwise velocity would be the best observable to measure this effect.

To more quantitatively capture the physical mechanisms discussed above, the linear optimal energy growth is
formulated for given κ1 and κ3:

G(t;κ1, κ3) = max
u0 6=0

||u(t)||2

||u0||2
, (5a)



4

κ1

κ
3

(a)

κ1

κ
3

(b)

κ1

κ
3

(c)

κ1

κ
3

(d)

FIG. 1. Contours of (a) Gmax, (b) Gu,max, (c) Gv,max and (d) Gw,max in the κ1-κ3 plane for Re = 100.

where ||u||2 = (1/VΩ)
∫

Ω
uHu dV (the superscript H indicates complex conjugate transpose) with u0 = u(0), Ω =

[0, 2π/κ1) × [0, 2π) × [0, 2π/κ3), VΩ being the volume of Ω. Given the discussion above, it would also be useful to
introduce the following componentwise optimal transient growth, which shares a similar idea with [18, 48] where the
observable of interest is considered for the objective functional of the optimisation: i.e.

Gui(t;κ1, κ3) = max
u0 6=0

||ui(t)||2

||u0||2
, (5b)

where ||ui||2 = (1/VΩ)
∫

Ω
|ui|2dV . By doing so, Gu1

(or Gu) would well characterise the energy amplification mostly by
the lift-up effect especially for κ1 → 0. Similarly, Gu2

(or Gv) would do the same for the Orr mechanism predominant
at κ3 = 0. Finally, Gu3

(or Gw) would well identify the energy amplification via the lift-up effect induced by the Orr
mechanism.

The optimization problem Eq. (5) is easily solved using the analytical solution Eq. (3). Once the solution to Eq.
(5) is obtained, the maximum energy growth is further sought over the time: i.e. Gmax(κ1, κ3) = maxtG(t;κ1, κ3) and
Gui,max(κ1, κ3) = maxtGui(t;κ1, κ3). Fig. 1 shows the contours of Gmax and Gui,max on the κ1-κ3 plane, where Gmax

and Gu,max are quite similar to each other. This suggests the importance of the lift-up effect in the amplification of
the streamwise velocity. However, Gmax and Gu,max do show some difference for some κ1 and κ3, and it is pronounced
especially for small κ3 (i.e. κ3 ' 10−3). In fact, Gv,max exhibits its peak at κ3 ' 10−3. This indicates that the
difference is caused by the contribution of the Orr mechanism to Gu,max being smaller than the contribution to Gmax

for small κ3. Finally, Gw,max shows its peak between the peak locations of Gu,max and Gv,max, consistent with the
expected nature of Gw,max, which would well characterise the lift-up effect induced by the Orr mechanism.

The typical features of the optimal transient growth observed in wall-bounded shear flows [27, 47] are also well
observed, if a sufficiently large κ3 is considered. Fig. 2 shows the variations of Gmax and Gui,max with κ1 for a
given κ3 = 10−2 at Re = 100. The results show that the behaviours of Gmax and Gu,max with κ1 are very similar.
Furthermore, the peaks of Gmax and Gu,max are obtained with κ1 much smaller than those at which the peaks of
Gv,max and Gw,max are achieved. This indicates that the lift-up effect for the streamwise velocity is predominant for
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FIG. 2. Variation of (a) Gmax, (b) Gu,max, (c) Gv,max and (d) Gw,max with κ1 for κ3 = 10−2 and Re = 100.
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FIG. 3. The optimal initial condition maximizing the energy of spanwise velocity perturbation in the (a) x− y plane and (b)
the y − z plane (κ1 = κ3 = 0.0033, Re = 100). In (a), the contours denote w, and the vectors represent u and v. In (b), the
contours denote u, and the vectors represent v and w. Here, the energy of the initial condition is normalised to unity.

streamwise elongated perturbations, consistent with many previous studies [2, 3, 7, 8].

Finally, given the scope of the present study, the optimal initial condition maximizing the energy of spanwise
velocity and the corresponding time traces of ||u||2, ||u||2, ||v||2 and ||w||2 are visualized in Figs. 3 and 4. As
expected, the optimal initial condition is tilted upstream and has a non-zero cross-stream velocity component forming
rolls to trigger the lift-up effect [Fig. 3]. The time evolution of ||u||2, ||u||2, ||v||2 and ||w||2 shows that the growth of



6

t

||u
(t

)|
|2

(a)

t

||u
(t

)|
|2

(b)

t

||v
(t

)|
|2

(c)
t

||w
(t

)|
|2

(d)

FIG. 4. The time dependence of (a) ||u(t)||2, (b) ||u(t)||2, (c) ||v(t)||2 and (d) ||w(t)||2 for κ1 = κ3 = 0.0033 (Re = 100). Here,
the initial condition is given by the optimal perturbation maximising the energy of spanwise velocity.

the total perturbation energy is dominated by the streamwise and spanwise components almost equally: i.e ||u||2 '
||u||2 + ||w||2 [Figs. 4(a,c,d)]. However, it is the vertical component of the energy which achieves its maximum fastest
(t ' 300(= 1/κ1)), while the streamwise and spanwise ones reach their maximum later. We note that the short
transient growth of |v|2 should be the direct consequence of the Orr mechanism, because the form of v̂ in Eq. (3b)
admits only the Orr mechanism to play a role in the growth of |v|2. Once the activation of the Orr mechanism is
completed, the lift-up effect ensues with the non-zero cross-stream velocity component. Consequently, a significant
transient energy growth of the streamwise and spanwise velocity perturbations arise for a long period, confirming the
aforementioned discussion.

B. Plane Couette flow

Here, we briefly confirm the findings in the section II A in plane Couette flow. We note that the homogeneous shear
flow and plane Couette flow share the same laminar base flow, which linearly depends on y. The only difference between
the two is the boundary condition. Therefore, the two flows would share many similarities in the characteristics of their
transient energy growth, as it essentially originates from the non-normality of the linearised Navier-Stokes equations.
The dimensionless locations of two infinitely parallel plates are set to be at y = ±1, where y now becomes the wall-
normal direction. The two walls move in opposite directions with the dimensionless velocity of U = (±1, 0, 0). This
implies that the flow variables are non-dimensionalized by choosing the length scale L to be the half-height of the
channel and the velocity scale U to be the sliding speed of each plate. In the present study, Re = 400 is considered.

A small-amplitude perturbation u = (u, v, w) is considered for the laminar Couette flow U = (y, 0, 0). Similarly to
the uniform shear flow case, the Navier-Stokes equations linearized about U = (y, 0, 0) admit the plane Fourier-mode
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FIG. 5. The contours of (a) Gu,max, (b) Gw,max in terms of κ1 and κ3 at Re = 400.
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FIG. 6. Temporal evolution of (a) ||u(t)||2 from the optimal initial condition for Gu,max (κ1 = 0, κ3 = 1.26), and (b) ||w(t)||2
from the one for Gw,max (κ1 = 0.63, κ3 = 1.26) at Re = 400.

solution: u = ũ(t, y)ei(κ1x+κ3z) where ·̃ denotes the Fourier transform in the x- and z-directions. For each Fourier
mode, the optimal perturbations for total energy and for each velocity component are computed by considering the
optimisation problems defined in Eqs. (5a) and (5b). The solutions to the optimization problems are obtained using
the standard method [27]. The Orr-Sommerfeld and Squire system is discretized using a Chebyshev collocation method
[49] with 120 collocation points in the wall-normal direction. The maximum energy growth and the corresponding
optimal perturbation are computed by formulating a variational problem, the solution to which is obtained by singular
value decomposition.

Given the expected similarity to the homogeneous shear flow discussed in section II A, only Gu,max and Gw,max

as a function of streamwise and spanwise wavenumbers at Re = 400 are shown in Fig. 5. We note that the optimal
perturbations for Gu,max and Gw,max will be utilised in section III to study transition in plane Couette flow. As
expected, the optimal perturbation for streamwise velocity is almost uniform in the streamwise direction [Fig. 5(a)].
On the contrary, the optimal perturbation for spanwise velocity appears as an oblique structure, the streamwise
wavenumber of which is close to the spanwise one [Fig. 5(b)]. The time traces of ||u(t)||2 and ||w(t)||2, obtained from
optimal perturbations for Gu,max and Gw,max, are also shown in Fig. 6. Here, κ1 = 0 and κ3 = 1.26 are chosen for
Gu,max and κ1 = 0.63 and κ3 = 1.26 are for Gw,max. These wavenumber pairs are not very far from those retaining
the maximums of Gu,max and Gw,max in the κ1-κ3 plane [Fig. 5]. In particular, κ1 = 0.63 and κ3 = 1.26 correspond to
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FIG. 7. Contours of spanwise velocity at (a) t = 0, (b) t = 4, (c) t = 8, (d) t = 12, (e) t = 16, (f) t = 20, and at z = 0 plane
of the small-amplitude optimal spanwise velocity perturbation with κ1 = 0.63, κ3 = 1.26, Re = 400. Here, the energy of initial
condition is normalised to unity.

the fundamental wavenumbers forming the spatial domain size of the DNS in section III. For the optimal perturbation
with Gu,max for κ1 = 0 and κ3 = 1.26, ||u(t)||2 shows a large amplification over a relatively long time scale of the
evolution [Fig. 6(a)]. The amplification is mediated by the lift-up effect and involves the generation of the streaks
(not shown). For the optimal perturbation with Gw,max for κ1 = 0.63 and κ3 = 1.26, ||w(t)||2 also exhibits a similar
transient amplification [Fig. 6(b)]. However, in this case, the related maximum amplification of ||w(t)||2 is much
smaller than that of ||u(t)||2 for Gu,max, and the related time scale of the evolution is much shorter than that of
||u(t)||2 from Gu,max. The time evolution from this initial condition is visualised in Fig. 7. The initial condition is
inclined upstream [Fig. 7(a)]. The spanwise velocity evolved from this initial condition is tilted in the direction of
the mean shear progressively, which gives an initial spurt to its transient amplification. The tilting angle becomes
approximately orthogonal to the x-axis around t ' 6 [Figs. 7(b) and 7(c)], at which the amplification solely by the
Orr mechanism is expected to be most active from the homogeneous shear flow analysis [see Eq. (4)]. However, we
note that ||w(t)||2 is still growing even at this instance and achieves it maximum around t ' 20 [Fig. 6(b)]. This
is consistent with the behaviour observed in the homogeneous shear flow [Fig. 4], indicating that the lift-up effect
induced by the Orr mechanism is presumably responsible for the energy growth of the spanwise velocity for t >∼ 6.

III. THE ORR MECHANISM IN TRANSITION OF PLANE COUETTE FLOW

Now, the role of the Orr mechanism and the resulting lift-up effect in transition is studied in plane Couette flow
with direct numerical simulation (DNS). In the present study, the DNS is performed using Diablo [50], which has
extensively been verified in previous studies [51]. In this numerical solver, the streamwise and spanwise directions
are discretised by the Fourier-Galerkin method with the 2/3 rule for dealiasing, whereas the wall-normal direction
is discretised by second-order central finite difference method. The fractional-step method is used for the time
integration. More specifically, all the viscous terms are advanced in time with the Crank-Nicolson method, while the
rest terms are integrated via a low-storage third-order Runge-Kutta method. The computational domain is chosen
to be Lx = 10, Ly = 2 and Lz = 5 with the number of grid points Nx = 32, Ny = 65, Nz = 32 in the streamwise,



9

wall-normal and spanwise directions, respectively. As a result, the fundamental wavenumbers are given by κ1,0 = 0.63,
κ3,0 = 1.26, identical to those examined in Fig. 6(b). This then enables us to use the optimal perturbations given
for Gu and Gw in Fig. 6 to build initial conditions for the DNS. As discussed in section II A, the wavenumbers for
Gu and Gw in Fig. 6 are not very far from those resulting in the maximums of Gu,max and Gw,max in the κ1-κ3

plane. We note that the computational domain size is close to the one, in which the Nagata’s invariant solution
emerges at the smallest Reynolds number (Rec ' 127) [52]. Also, in this domain, the developed turbulence typically
exhibits self-sustaining process involving single low-speed (or high-speed) streak and the related quasi-streamwise
vortices [53], as the horizontal size of the domain in viscous inner units is not far from the minimal flow unit [54]: i.e.
L+
x ' 360 and L+

z ' 180, where the superscript + indicates normalisation by the viscous inner length scale. Lastly,
it should be mentioned that the small computational domain is also deliberately considered to restrict us to study
only the temporal evolution of the Orr-mechanism-induced transition dynamics. If a large computational domain was
considered, transition experiences spatio-temporal complexities (e.g. the formation of turbulence spots and bands;
see also the review by [55]) and this issue is beyond the scope of the present study.

A. Two transition scenarios with the Orr mechanism

In the section II, the optimal perturbation for spanwise velocity has been shown to exhibit a large amplification
via the lift-up effect induced by the initial Orr mechanism. The large amplification of spanwise velocity implies that
this type of initial condition may be utilised to efficiently trigger a secondary transient growth around the developed
streaks [33], facilitating the streak transition scenario mentioned in the section I. However, it should also be pointed
out that the optimal perturbation for the spanwise velocity exhibits a large amplification typically at the streamwise
and spanwise wavelengths with O(1) [Figs. 1(d) and 5(b)]. Therefore, the possibility of relating the oblique transition
[42, 43] to the Orr mechanism discussed above should also be considered. For this purpose, in the present study, we
consider the following form of initial condition for the perturbation velocity:

u = λ1uopt + λ2uopt,w, (6a)

where

uopt = Re[ũopt(y; 0, κ3,0)eiκ3,0z], (6b)

uopt,w = Re[ũopt,w(y;κ1,0, κ3,0)ei(κ1,0x+κ3,0z) + ũopt,w(y;κ1,0,−κ3,0)ei(κ1,0x−κ3,0z)]. (6c)

Here, Re[·] denotes the real part, ũopt and ũopt,w are the optimal perturbations for Gmax and Gw, respectively, and
they are obtained with κ1,0 = 0.63 and κ3,0 = 1.26. Also, ||uopt||2 = ||uopt,w||2 = 1 is set, such that λ1 and λ2

indicate the energies of the two optimal perturbations. This also leads the energy of the initial condition Eq. (6a) to
be E0(≡ ||u(t = 0)||2) = λ2

1 +λ2
2. In the present study, λ1 and λ2 are varied from 3×10−5 to 10−1 to study transition

from the initial condition given in Eq. (6). We note that turbulence (chaotic state) with a small computational
domain in plane Couette flow at Re = 400 has a ‘finite lifetime’ [56–58], as it is known as a ‘chaotic saddle’ with the
fractal boundary in the state space (i.e. the edge of turbulence). Due to this nature, here we characterise whether
the flow reaches turbulence by defining the lifetime of each simulation. In the present study, the lifetime T is defined
to be the duration from t = 0 to t = T , at which the total perturbation energy E(≡ ||u||2) becomes less than 10−5

for the first time. With this definition, the lifetimes for various combinations of λ1 and λ2 are computed and the
corresponding results with 256 test cases are reported in Fig. 8.

Fig. 8 shows that the lifetime distribution in the λ1 − λ2 plane is indeed very irregular. This is due to the fractal
nature of the boundary between the laminar and turbulent states. However, in general, if λ1 and λ2 are sufficiently
large (say λ1

>∼ 10−2 and λ2
>∼ 10−2), the lifetime can significantly increase (T > 1000). Further to this, Fig. 8

suggests that there are two ways to increase the lifetime. First, the lifetime can be quickly increased only with a
relatively large value of λ2(≈ 7 × 10−3). For diminishing small values of λ1(< 1 × 10−3), this would correspond to
the oblique transition scenario, since the pair of optimal oblique waves is much stronger than the optimal streamwise
vortices at initial time instant. Second, transition can be triggered with a large λ1 (≥ 10−2) and a relatively smaller
λ2 (≤ 5× 10−3) as well. This would be the streak transition case. Here, we can conclude that the initial disturbance
energy E0 required for the oblique transition is less than that for the streak transition. This issue will be addressed
in section III D.
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λ1

λ
2

FIG. 8. Contours of lifetime T as a function of λ1 and λ2 at Re = 400 in the log-log coordinates. Here, λ1 and λ2 are varied
from 3× 10−5 to 10−1. The red dashed lines represent the initial disturbance energy, E0(= λ2

1 +λ2
2) = 10−8, 10−6, 10−4, 10−2.

B. Energy transfer in transition dynamics

To understand the time evolution of the dynamics of the two transition scenarios, we first introduce the time-
dependent streamwise, wall-normal and spanwise kinetic energies integrated over the entire computational domain
Ω:

Eui
=

1

2VΩ

∫
Ω

u2
i dV. (7)

The streamwise, wall-normal and spanwise kinetic energies of each plane Fourier mode are also considered:

E(m,n)
ui

=
1

2

∫
Ωy

|ũ(m,n)
i |2 dy, (8a)

where Ωy ∈ [−1, 1] and

ui =
∑
m

∑
n

ũ
(m,n)
i (t, y)ei[mκ1,0x+nκ3,0z]. (8b)

Given the streamwise domain size in the present study, the streaks are expected to be elongated over the entire
streamwise domain. Therefore, further to Eqs. (7) and (8), the early-stage evolution of the streaks from the initial
condition Eq. (6) is studied by considering the following perturbation energy equations for the streamwise-averaged
variables integrated over the cross-streamwise domain Ωy,z = [−1, 1]× [0, 2π/κ3,0):

d

dt

(∫
Ωy,z

〈u〉2x
2

dS

)
= L+Du +Nu,y +Nu,z, (9a)

d

dt

(∫
Ωy,z

〈v〉2x
2

dS

)
= Pv +Dv +Nv,y +Nv,z, (9b)
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d

dt

(∫
Ωy,z

〈w〉2x
2

dS

)
= Pw +Dw +Nw,y +Nw,z, (9c)

where the lift-up (or production) term is

L = −
∫

Ωy,z

〈u〉x 〈v〉x
dU

dy
dS, (9d)

the pressure transport/strain terms are

Pv = −
∫

Ωy,z

〈v〉x
∂〈p〉x
∂y

dS, Pw = −
∫

Ωy,z

〈w〉x
∂〈p〉x
∂z

dS, (9e)

the nonlinear transport terms for the streamwise component

Nu,y = −
∫

Ωy,z

〈u〉x
∂〈uv〉x
∂y

dS, Nu,z = −
∫

Ωy,z

〈u〉x
∂〈uw〉x
∂z

dS, (9f)

for the wall-normal component

Nv,y = −
∫

Ωy,z

〈v〉x
∂〈vv〉x
∂y

dS, Nv,z = −
∫

Ωy,z

〈v〉x
∂〈vw〉x
∂z

dS, (9g)

for the spanwise component

Nw,y = −
∫

Ωy,z

〈w〉x
∂〈vw〉x
∂y

dS, Nw,z = −
∫

Ωy,z

〈w〉x
∂〈ww〉x
∂z

dS, (9h)

and the viscous dissipation/transport terms are given by

Du =
1

Re

∫
Ωy,z

〈u〉x∇
2
y,z 〈u〉x dS, Dv =

1

Re

∫
Ωy,z

〈v〉x∇
2
y,z 〈v〉x dS, Dw =

1

Re

∫
Ωy,z

〈w〉x∇
2
y,z〈w〉x dS. (9i)

Here, 〈·〉x indicates an average in the streamwise direction and ∇2
y,z = ∂2/∂y2 + ∂2/∂z2.

Once the streaks are sufficiently amplified, they break down through a streak instability and/or the related transient
growth [28–31]. We note that the physical forms of the streak instability and the transient growth are very similar,
since the transient growth is a consequence of the interaction with the least stable streak instability mode. In
practice, their precise classification in a direct numerical simulation has been found to be very difficult [30]. As such,
in the present study, the emergence of the streak instability and/or the transient growth is studied by computing the
productions from the streaky flow [59]:

Ty = −
∫

Ω

ǔv̌
∂Us
∂y

dV, Tz = −
∫

Ω

ǔw̌
∂Us
∂z

dV, (10)

where ǔ(= (ǔ, v̌, w̌)) = u − 〈u〉x and Us(y, z) = U(y) + 〈u〉x. Here, Ty is the production by wall-normal mean shear
representing the activation of the varicose mode of the streak instability and/or transient growth, and Tz is the
production by spanwise mean shear, indicating the sinuous mode [59].

C. Oblique transition

We first explore the roles of the Orr mechanism in the oblique transition by considering λ1 = 0.001 and λ2 = 0.007.

The evolution of Eui
and E

(m,n)
ui , the instantaneous fields of streamwise velocity fluctuation for t ∈ [0, 100], and the

related energy transfer terms given in Eq. (9) are shown in Figs. 9, 10 and 11, respectively. Given the form of the
initial condition with λ2 > λ1, the (1, 1) plane Fourier mode, which corresponds to uopt,w, first exhibits a notable

energy growth for t ∈ [0, 20] [blue dashed lines in Figs. 8(b-d)]. In particular, E
(1,1)
u2 grows for t < 10, and the growth

of E
(1,1)
u1 and E

(1,1)
u3 subsequently appears for 10 < t < 20 (see also [60]). The time scales here compare well with those

in Fig. 6(b), indicating that the energy growth of the (1, 1) mode is due to the Orr mechanism and the subsequent
lift-up effect.
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FIG. 9. The time evolution of (a) Eu1 (red), Eu2 (blue), Eu3 (black), (b) E
(m,n)
u1 , (c) E

(m,n)
u2 , (d) E

(m,n)
u3 for the initial condition

given by Eq. (6) for λ1 = 0.001 and λ2 = 0.007 (Re = 400). In (b-d), red solid, (m,n)=(0,1); red dashed, (0,2); blue solid,
(1,0); blue dashed, (1,1); green solid, (1,2); green dashed, (2,0); black solid, (2,1); black dashed, (2,2).

After the initial transient energy growth of the (1, 1) mode, a large energy amplification of (0,2) mode ensues

through its streamwise component for t ∈ [20, 30] [E
(0,2)
u1 ; red dashed line in Fig. 9(b)]. This leads to the development

of streamwise elongated streaks from the oblique-mode initial condition, as shown in Figs. 10(a-c). We note that

the large amplification of E
(0,2)
u1 is primarily due to the linear amplification [L in Eq. (9d); black line in Fig. 11(a)],

which can only be activated by the presence of non-zero ũ
(0,2)
2 . Given the oblique-mode dominant nature of the initial

condition, this implies that there must be a nonlinear mechanism for the generation of the (0,2) mode. Indeed, E
(0,2)
u3

[red dashed line in Fig. 9(d)] is found to grow for t >∼ 10 due to the nonlinear transport Nw,z [blue line in Fig. 11(c)]
in this time interval [see also Eq. (9h)]. The amplification of the streamwise uniform spanwise velocity perturbation
simultaneously activates the related pressure to enforce the continuity through the following Poisson equation:

∇2
y,z 〈p〉x = −

[
∂2〈vv〉x
∂y2

+
∂2〈ww〉x
∂z2

+ 2
∂2〈vw〉x
∂y∂z

]
. (11)

The pressure elevates the wall-normal pressure transport Pv [black line in Fig. 11(b) at t ' 20], which subsequently

gives rise to the streamwise uniform wall-normal velocity fluctuation represented by E
(0,2)
u2 [red dashed line in Fig.

9(c) at t ' 20 in relation to Eq. (9g)]. This ultimately leads to the emergence of streaks, and this process starting
from the oblique-mode initial condition is a combined consequence of two linear mechanisms (i.e. Orr mechanism and
lift-up effect), a nonlinear interaction of the spanwise velocity perturbation, and the continuity.

In the oblique transition, the influence of the Orr mechanism and the resulting lift-up effect is found not to be
limited only at the early-stage transition (say t <∼ 20). At the late stage (t >∼ 30), the production terms Ty and Tz by
the streaky flow in Eq. (10) gradually increase [Fig. 11(d)], resulting in the breakdown of the amplified streaks [see
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FIG. 10. Contours of streamwise velocity fluctuation on the plane of y ≈ 0.3 at (a) t = 0, (b) t = 20, (c) t = 40, (d) t = 60, (e)
t = 80, (f) t = 100. Here, λ1 = 0.001, λ2 = 0.007 and Re = 400.

also Fig. 10]. In particular, here, Tz is found to be greater than Ty, implying that the streak breakdown takes place
through a sinuous mode. This is also seen very well in Figs. 10(c) and (d), where the emergence of a sub-harmonic
sinuous-mode instability (or transient growth) is evident [29, 31]. We note that the sinuous-mode breakdown of streaks
has been understood to be highly receptive to the presence of the spanwise velocity perturbation [31, 33], consistent
with the form of Tz in Eq. (10). Indeed, a substantial amount of the energy of spanwise velocity perturbation is

present even at t ' 30 [E
(1,1)
u3 ; blue dashed line in Fig. 9(d)], although it has decayed due to the almost completed

Orr mechanism for 20 <∼ t <∼ 30. Once the streak instability (or transient growth) starts to develop, the spanwise

velocity perturbation grows again, consistent with the growth of Tz in Eq. (10) [E
(1,1)
u3 ; blue dashed line for t >∼ 30 in

Fig. 9(d)]. The observation here suggests that the spanwise velocity perturbation, generated by the Orr mechanism
at the early stage, plays the role of triggering the streak breakdown at the late stage – otherwise, it would also be
difficult to explain the breakdown of the streaks especially through a ‘sinuous’ mode, which is typically triggered by
a spanwise velocity perturbation.

The DNS result suggests that the route to turbulence in the oblique transition is summarised as follows: 1) the Orr
mechanism gives an initial spurt for the amplification of spanwise velocity perturbation by inducing the lift-up effect;
2) the amplified oblique spanwise velocity perturbation nonlinearly generates an elongated streamwise vortical motion
together with continuity; 3) the streamwise vortical motion leads to streamwise elongated streaks with another lift-up
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FIG. 11. Time traces of the energetics terms for the streak development and breakdown (λ1 = 0.001 and λ2 = 0.007): (a) Nu,y

(red), Nu,z (blue); L (black), (b) Nv,y (red), Nv,z (blue), Pv (black); (c) Nw,y (red), Nw,z (blue), Pw (black); (d) Ty (red), Tz

(blue).

effect; 4) the amplified streaks interact with the oblique spanwise velocity perturbation generated with the initial Orr
mechanism; 5) the streaks subsequently break down into turbulence. From this, it is evident that the spanwise velocity
perturbation, generated by the Orr mechanism and the following lift-up effect at the early stage of transition, plays
the key roles in initiating both streak amplification and breakdown, the two key processes in transition to turbulence.

D. Streak transition

We now consider the other route of transition shown in Fig. 8 (i.e. streak transition for λ1 � λ2). The initial
condition to be studied here is λ1 = 0.07 and λ2 = 0.005, implying that the initial condition is dominated by the

optimal perturbation for the total velocity. The time traces of Eui and E
(m,n)
ui , the instantaneous fields of streamwise

velocity fluctuation for t ∈ [0, 150], and the related energy transfer terms in Eq. (9) are presented in Figs. 12, 13 and

14, respectively. As expected, there is a strong amplification of Eu1
and E

(0,1)
u1 for t <∼ 20 [red solid lines in Figs. 12(a)

and 12(b)]. Indeed, the instantaneous flow fields show that streamwise dependent structures at t = 0 due to small
λ2 are converted into the streamwise elongated streaks [Figs. 13(a) and 13(b)]. It is evident that the development of
the streaks is due to the lift-up effect, as also confirmed by L > 0 during this time interval [black line in Fig. 14(a)].
When t ' 20, the stabilising nonlinear terms Nu,y and Nu,z act strongly against the lift-up term L [Fig. 14(a)]. As a

consequence, both Eu1
and E

(0,1)
u1 begin to decay [red solid lines in Figs. 12(a) and 12(b)].

At the late stage (t >∼ 30), the wall-normal and spanwise velocity perturbations, which were decaying for t <∼ 30,
grow again [Eu2 and Eu3; blue and black lines in Fig. 12(a)]. This is a consequence of the streak instability or
transient growth. Indeed, as shown in Fig. 13(c), the fundamental secondary instability starts to emerge with the
streaks oscillating in a sinuous manner. The emergence of the fundamental sinuous mode is caused by the production
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FIG. 12. Time traces of (a) Eu1 (red), Eu2 (blue), Eu3 (black), (b) E
(m,n)
u1 , (c) E

(m,n)
u2 , (d) E

(m,n)
u3 for the initial condition

given by Eq. (6) for λ1 = 0.07 and λ2 = 0.005 (Re = 400). In (b-d), red solid, (m,n)=(0,1); red dashed, (0,2); blue solid, (1,0);
blue dashed, (1,1); green solid, (1,2); green dashed, (2,0); black solid, (2,1); black dashed, (2,2).

by the spanwise shear of the streaky flow [59], and this is consistent with Tz being much greater than Ty [Fig. 14(b)].
Here, it is important to note that the fundamental sinuous mode responsible for the streak breakdown must be
initiated by the spanwise velocity perturbation via the lift-up effect induced by the Orr mechanism at the early stage
of transition: indeed, the energy of spanwise velocity [Eu3; black line in Fig. 12(a)] and the related Fourier modes
[Fig. 12(d)] are non-negligible at t ' 30, and, more importantly, transition can not take place if the amplitude of
the oblique mode is too small [Fig. 8]. The streaks eventually break down at t ' 150, and the flow subsequently
becomes turbulent [Fig. 13(d)]. At this stage, the streamwise kinetic energy of the (0, 1) mode reduces largely [red
line in Fig. 12(b)], while the spanwise kinetic energy of the (1, 0) mode is amplified significantly during the process
[blue line in Fig. 12(d)].

The streak transition here is summarised to take the following route to turbulence: 1) the Orr mechanism initiates
the growth of the spanwise velocity perturbation in the form of an oblique mode, but its effect is limited at the early
stage; 2) instead, the optimal perturbation for all the velocity components, given in the form of elongated streamwise
vortices, generates highly amplified streamwise elongated streaks via the lift-up effect; 3) the streaks subsequently
interact with the spanwise velocity structure given by the optimal perturbation for spanwise velocity; 4) the streaks
exhibit an instability and/or a transient growth and break down into turbulence. This transition scenario is almost
identical to the one in [33]: the only difference is that the spanwise velocity perturbation in the present study is given
by the oblique-mode optimal perturbation, whereas the one in [33] is driven externally by stochastic forcing.

Finally, the role of the Orr mechanism in the oblique transition (section III C) is compared with the one in the
streak transition here. In both transition scenarios, the most robust features are the emergence of streaks and their
breakdown via a sinuous-mode instability (or transient growth). The subtle, but non-negligible, difference between
the two transition scenarios essentially stem from the dynamics of the spanwise velocity perturbation. In the oblique
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FIG. 13. Contours of streamwise velocity fluctuation on the plane of y ≈ 0.3 at (a) t = 0, (b) t = 20, (c) t = 120, (d) t = 150.
Here, λ1 = 0.07, λ2 = 0.005 and Re = 400.
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FIG. 14. Time traces of (a) Nu,y (red), Nu,z (blue), L (black), and (b) Ty (red line), Tz (blue) with λ1 = 0.07, λ2 = 0.005 at
Re = 400.

transition, the spanwise velocity perturbation, generated by the Orr mechanism and the subsequent lift-up effect, not
only nonlinearly interacts to generate streamwise vortical motions, but also initiates the breakdown of the amplified
streaks into turbulence. However, in the streak transition, the role of the spanwise velocity perturbation is limited
to the initiation of the streak breakdown. It is presumable that the multiple roles played by the spanwise velocity
perturbation in both streak amplification and breakdown offer a more energetically efficient route to turbulence for the
oblique transition at least for the initial conditions considered in the present study [see also Fig. 8]. More importantly,
the emergence of the Orr mechanism at the early stage and the following physical processes in the oblique transition
are remarkably similar to those observed in the transition induced by the minimal seed [34–38]. In this respect,
it should finally be mentioned that the nonlinear optimal perturbation calculated in the subspace spanned by the
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linear optimal perturbation modes has been shown to emerge in the form of an oblique mode [43], consistent with the
findings in the present study.

IV. CONCLUDING REMARKS

Oblique optimal perturbation for spanwise velocity

Oblique spanwise velocity structure

Elongated streamwise vortices

Elongated streaks

Streak instability/transient growth

Turbulence

Decaying spanwise velocity structure

Orr mechanism/lift-up effect

Dissipation/diffusion

Nonlinear interaction/continuity

Lift-up effect

Inflectional mechanism

Breakdown

FIG. 15. A schematic diagram of how the Orr mechanism initiates the oblique transition.
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Oblique spanwise velocity structure

Decaying spanwise velocity structure
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Inflectional mechanism
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Orr mechanism/lift-up Effect

Dissipation/diffusion

FIG. 16. A schematic diagram of how the Orr mechanism initiates the streak transition.

In the present study, the role of the Orr mechanism in transition of plane Couette flow has been explored. We
have first revisited the Orr mechanism in homogeneous shear flow and plane Couette flow and identified that the
Orr mechanism induces a lift-up effect which significantly amplifies spanwise velocity. The optimal perturbation
analysis for individual velocity component reveals that the amplification of spanwise velocity is most active at the
streamwise length comparable to the given spanwise length of the perturbation. The relevance of this mechanism
to transition has subsequently been examined in plane Couette flow using DNS. In particular, we have considered a
set of initial conditions by combining the optimal perturbation for spanwise velocity with the one for all the velocity
components. The DNS results indicate that there are two representative transition scenarios: oblique and streak
transitions. The schematic diagrams for the oblique and streak transitions are shown in Figs. 15 and 16. In the
former, the spanwise velocity perturbation amplified by the Orr mechanism plays an initiating role in both streak
amplification and breakdown, whereas, in the latter, it role is limited only to the streak breakdown at the late stage
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of transition. As such, the oblique transition offers a route to turbulence energetically more efficient than the streak
transition at least for the cases examined in the present study. Lastly, the oblique transition has been found to share
many similarities to the one by the minimal seed [34–38].

The roles of the Orr mechanism identified in the present study are evidently for a highly idealised setting. However,
these are also studied using optimal perturbations which lead to large transient energy growth. In this respect, it would
be difficult to ignore their potential role even in realistic cases where initial condition may be given by a random noise.
Indeed, our brief examination revealed that the role of the Orr mechanism is important in such cases (see Appendix).
Finally, the observations made for transition in the present study offer some important outlooks for the relevance of the
Orr mechanism to fully-developed turbulent flow. The existence of the Orr mechanism has repeatedly been reported
by several previous studies [61–64]. These studies are primarily concerned with the generation of wall-normal velocity
structure via the Orr mechanism in relation to the self-sustaining process of the energy-containing eddies (or coherent
structures) in wall-bounded turbulence [53, 65–67]. However, the precise role and origin of the Orr mechanism in
fully-developed turbulence are still matters of debate: it was initially proposed that the Orr mechanism is a part of
the self-sustaining process at a given length scale for the generation of the wall-normal velocity structure [61–63], but
a recent study showed that the Orr mechanism can well be initiated by the wall-normal velocity structure originating
from the energy cascade of ‘larger’ energy-containing eddies [64]. In any case, it should be pointed out that all these
investigations ignore the amplification of the spanwise velocity structures caused by the lift-up effect following the Orr
mechanism. Given the potential roles in the development and breakdown of streaks demonstrated for transition in the
present study, the significance of such spanwise velocity structures in full-developed turbulence should be investigated
in the future.

APPENDIX A: Transition from random initial condition

A DNS with random initial condition is performed. The amplitude of the random initial condition is increased from
a very small value to trigger transition. The result indicates that the transition can be only induced with the initial
condition energy E0 ≈ 10−1. As expected, the initial condition energy required for transition is much greater than
that for the oblique transition as well as for the streak transition.
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FIG. 17. Contours of the wall-normal velocity fluctuation at (a) t = 0, (b) t = 2, (c) t = 4, (d) t = 6 and at z = 0 plane of the
small-amplitude random initial condition with Re = 400.

The time evolution from the random initial condition is visualised in Figs. 17 and 18. The random initial condition
is isotropic at initial time instant [Figs. 17(a) and 18(a)]. The wall-normal velocity evolved from this random initial
condition is tilted in the mean shear direction progressively, which indicates that the Orr mechanism does exist [Figs.
17(b)-17(d)]. This is also demonstrated by the time trace of the wall-normal kinetic energy in the early stage of the
transition [blue line in Fig. 19]. In particular, there is a slight growth for the wall-normal kinetic energy from t ≈ 2.
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FIG. 18. Contours of the streamwise velocity fluctuation at (a) t = 0, (b) t = 50, (c) t = 90, (d) t = 100 and at y ≈ 0.3 plane
of the small-amplitude random initial condition with Re = 400.
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FIG. 19. The time evolution of Eu1 (red), Eu2 (blue), Eu3 (black) with the random initial condition at Re = 400.

These imply that the Orr mechanism indeed gives an initial spurt to the transient amplification at the early stage of
the transition with random initial condition.

The streaks are subsequently generated via the lift-up effect at later times [Figs. 18(b)-18(d)], and eventually break
down in a sinuous manner to trigger transition. However, given the meandering motion of the streaks in Fig. 18(c), it
is difficult to determine whether the sinuous streak instability is fundamental or subharmonic. It appears that both
exist in this case, indicating that both the spanwise noise in the initial condition and the Orr mechanism would play
a role in the streak breakdown.



20

APPENDIX B: Optimal perturbation for spanwise velocity in Couette flow

The optimal initial condition maximizing the energy of spanwise velocity in plane Couette flow is shown in Fig. 20.
The behaviour is similar to that in the homogeneous shear flow, but with a little difference owing to the boundary
condition [Fig. 3] – the optimal perturbation is tilted upstream, while containing wall-normal velocity component
which can induce the lift-up effect.
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FIG. 20. The optimal initial condition maximizing the energy of spanwise velocity perturbation in the (a) x − y plane and
(b) the y − z plane for plane Couette flow. (κ1 = 0.63, κ3 = 1.25, Re = 400). In (a), the contours denote w, and the vectors
represent u and v. In (b), the contours denote u, and the vectors represent v and w. Here, the energy of the initial condition
is normalised to unity.
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