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Abstract— Model reduction by moment-matching relies upon
the availability of the so-called moment. If the system is nonlinear,
the computation of moments depends on an underlying specific
invariance equation, which can be difficult or impossible to solve.
This note presents four technical contributions related to the the-
ory of moment matching: first, we identify a connection between
moment-based theory and weighted residual methods. Second,
we exploit this relation to provide an approximation technique
for the computation of nonlinear moments. Third, we extend the
definition of nonlinear moment to the case in which the generator
is described in explicit form. Finally, we provide an approximation
technique to compute the moments in this scenario. The results
are illustrated by means of two examples.

Index Terms— Weighted residual methods, moments,
moment-matching, nonlinear systems, steady-state

I. INTRODUCTION

The theory behind model order reduction by moment-matching
relies upon the notion of moment, which was originally conceived
within an interpolation framework for linear systems described by
differential equations, see e.g. [1]. Subsequently, the definition of
moment has been extended to a wider class of systems, see [2],
[3], including nonlinear systems. A comprehensive review of the
state-of-the-art on model reduction by moment-matching, including
connections between the notion of moment introduced in [2], [3] and
previously established definitions (such as those related to Krylov
methods), can be found in [2], [4]. Note that, apart from the notion of
moment arising in systems theory, a different notion can be found in
the field of probability (see [5], [6]). While the latter is not considered
within the scope of this technical note, we note that recent efforts
have been presented in [7] to bridge the gap between the notions of
moment in probability theory and in systems theory.

The moment as defined in [2], [3] is strongly related to the steady-
state output response of the interconnection between the system under
analysis and a signal generator. When the system is nonlinear, the
moment is essentially defined in terms of the solution of an invariance
equation, which can be difficult or impossible to solve. In other
words, the computation of a reduced model by moment-matching
depends upon the availability of a suitable technique to approximate
the corresponding moment.

In this study the moment-based theory as introduced in [2], [3] is
connected to the classical formulation of weighted residual methods
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(WRMs), i.e. spectral (Galerkin) and pseudospectral (collocation)
methods, see e.g. [8], [9]. The family of WRMs aims to compute
approximate solutions of differential equations by expanding the
system variables in a set of basis functions to then minimise a
particular (approximation) error function termed residual. These
methods have been successfully applied to a variety of problems in
different applications, including, for instance, numerical approximation
of solutions for the Navier-Stokes equations [8], [10].

This note provides four technical contributions related to the
framework of moment matching. First, we formalise a connection
between moment-based theory and the family of WRMs. Second,
inspired by this result, we propose a method to approximate the
moment of a nonlinear system driven by signal generators in implicit
form (loosely speaking, generators described by differential equations).
We note that approximation methods for the moment of a nonlinear
system driven by this class of inputs have been studied in [11].
However, since [11] relies on computations on the steady-state
response, [11] assumes local exponential stability of an equilibrium
point of the underlying system, which is not required for the methods
proposed in this note. The third contribution of the note is to
extend the moment-based framework to nonlinear systems driven
by signal generators in explicit form (loosely speaking, generators
not necessarily described by differential equations). In particular, we
focus on periodic and potentially discontinuous inputs (motivated by
the existence of a large number of applications in which this class of
signals occurs). Note that, up until this point, this explicit framework
was only defined for linear systems, see [12]. Finally, combining all
the previous results, we propose a method to approximate the moment
of a nonlinear system driven by generators in explicit form.

We briefly mention that while our contribution is technical and
strictly related to the definition and computation of moments, these
technical contributions allow computing and defining new classes of
reduced order models. These models, which are essential for a variety
of engineering applications (see e.g. [1]), directly motivate this work.
Moreover, we note that the contributions of this note can also be
potentially used to compute approximate solutions to optimal control
problems, following the moment-based control framework presented
in [13], [14].

The remainder of this note is organised as follows. Section II briefly
recalls both the theory behind moments for systems driven by implicit
signal generators and the theory of WRMs. Then a connection between
those methodologies is formalised. Section III proposes a method to
approximate the moment of a nonlinear system driven by an implicit
signal generator. Section IV formalises the definition of the moment of
a nonlinear system driven by an explicit signal generator and proposes
a method to approximate such a moment, with particular focus on
periodic discontinuous signals. Finally, conclusions are presented in
Section V.

A. Notation and preliminaries

Standard notation is used throughout this study, with some excep-
tions detailed in this preliminary section. R+ (R−) denotes the set of
non-negative (non-positive) real numbers. C0 denotes the set of purely
imaginary complex numbers and C<0 denotes the set of complex
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numbers with a negative real part. The symbol Nq indicates the set
of all positive natural numbers up to q, i.e. Nq = {1, 2, . . . , q}. The
symbol 0 stands for any zero element, according to the context. The
symbol In denotes the identity matrix of size n. If x is a real-valued
row/column vector, then xi ∈ R denotes the i-th element of x. We
write a matrix X ∈ Rn×m element-wise as X = [xij ]

n,m. The
spectrum of a matrix A ∈ Rn×n, i.e. the set of its eigenvalues, is
denoted as σ(A). The symbol

⊕n
i=1 denotes the direct sum of n

matrices, i.e.
⊕n
i=1Ai = blkdiag(A1, A2, . . . , An). If F ∈ Rn×n

is a symmetric matrix, the expression F � 0 means that F is positive-
definite. The symbol L{f(t)} denotes the Laplace transform of the
function f (provided that f is Laplace transformable) and, abusing
the notation, σ(L{f(t)}) denotes the set of poles of L{f(t)}. The
set of square integrable functions on the interval Ξ ⊂ R is denoted
as L2(Ξ). The Kronecker product between two matrices M1 and M2

is denoted as M1 ⊗M2. The symbol εn ∈ Rn×1 denotes a vector
with entries in odd positions equal to 1 and even positions equal to
0. Finally, we recall a definition from [2].

Definition 1: Let x, with x(t) ∈ Rn be the state of the dynamical
system1 Σ, and u, u(t) ∈ R, be the input of Σ. Let t0 and x0 = x(t0)
be the initial time and the initial state, respectively. If there exists a
function Φ : R×R×Rn × L2(R)→ R

n such that

x(t) = Φ(t, t0, x0, u[t0,t)
), ∀t ≥ t0, (1)

we call equation (1) the representation in explicit form, or the explicit
model, of Σ. Assume that Φ(t, t0, x0, u) has a continuous derivative
with respect to t for every t0, x0 and u, and there exists a function
f : Rn ×R→ R

n continuous for each t over Rn ×R such that

ẋ = f(x, u). (2)

We call the differential equation (2) the representation in implicit
form, or the implicit model, of Σ.

II. MOMENT-BASED THEORY AND WEIGHTED RESIDUAL
METHODS

This section briefly recalls the notion of moment for systems driven
by generators in implicit form. We then specialise this notion to linear
systems to formalise a connection between moment-based theory and
the family of WRMs.

A. The notion of moment

Consider a nonlinear, single-input, single-output, continuous-time,
system described by the equations2

ẋ = f(x, u) = fl(x, u) + fnl(x, u),

y = h(x) = hl(x) + hnl(x),
(3)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and f and h analytic mappings
defined in the neighborhood of the origin of Rn. Assume that
system (3) is minimal, i.e. observable and accessible (see [2, Chapter
2]), and suppose that f(0, 0) = 0 and h(0) = 0. The mappings
fl(x, u) = Ax + Bu, with A = ∂f/∂x|(x,u)=(0,0), A ∈ Rn×n,
B = ∂f/∂u|(x,u)=(0,0), B ∈ Rn, and C = ∂y/∂x|(x,u)=(0,0),
C ∈ R1×n, describe the linearisation of system (3) around the origin
and fnl(x, u) = f(x, u) − fl(x, u) and hnl(x) = h(x) − hl(x)
describe the nonlinear parts of f and h, respectively. Consider a

1We adopt the standard definition (and associated notation) of a dynamical
system arising in the field of systems theory (see [15, Chapter 2]).

2From now on, and aiming to simplify the notation, the dependence on t is
dropped when clear for the context.

signal generator, i.e. an external system ‘generating’ the input u in
(3) (see [16, Chapter 8] for further detail), described by the equations

ω̇ = Sω, u = Lω, (4)

with ω(t) ∈ Rν , S ∈ Rν×ν and L ∈ R1×ν . Consider now the
interconnected system

ω̇ = Sω, ẋ = f(x, Lω), y = h(x), (5)

Following [2], [3], we consider a set of assumptions to formalise the
definition of moment.

Assumption 1: There exists a mapping π, locally3 defined in a
neighborhood W of ω = 0, with π(0) = 0, which satisfies the
differential equation

∂π(ω)

∂ω
Sω = f(π(ω), Lω), (6)

for all ω ∈W .

Assumption 2: The triple (L, S, ω(0)) is minimal4.
Definition 2: [2, Definition 2.13] [3] Consider the system (3) and

the signal generator (4). Suppose Assumptions 1 and 2 hold. The
mapping h ◦ π is the moment of system (3) at (S,L).

Finally, we recall a result which, introducing additional assumptions,
connects the definition of moment with the steady-state response of
the output of the interconnected system (5).

Assumption 3: The signal generator (4) is such that all eigenvalues
of S are simple and with zero real part.

Theorem 1: [2], [3] Consider the system (3) and the signal
generator (4). Suppose Assumptions 2 and 3 hold and that the zero
equilibrium of the system (3) is locally exponentially stable, i.e.
σ(A) ⊂ C<0. Then Assumption 1 holds and the moment of system (3)
at (S,L) computed along a trajectory ω(t) coincides with the steady-
state response5 of the output yss(t) of the interconnected system (5),
i.e. yss(t) = h(π(ω(t))).

Remark 1: While moments can be naturally defined for nonlinear
signal generators in implicit form (see [2], [3]), this is beyond the
scope of this technical note: the class of input signals which motivates
the technical contributions presented herein are captured by the linear
generator (4) (see also Remark 3), and the implicit form generator
(33), discussed in Section IV.

B. The special case of linear systems
Suppose fnl(x, u) = 0 and hnl(x) = 0 in (3). The assumptions

required in the nonlinear case to formalise the definition of moment
are less restrictive when the mapping f is purely linear, as detailed
in [2], [3] and briefly recalled in the following.

Assumption 4: The matrices A and S are such that σ(S)∩σ(A) =
∅.

Lemma 1: [2], [3] Suppose Assumption 4 holds. Then there exists
a unique matrix Π ∈ Rn×ν which solves the Sylvester equation

ΠS = AΠ +BL. (7)

Definition 3: [2], [3] Consider the system (3), with fnl(x, u) = 0
and hnl(x) = 0, and the signal generator (4). Suppose Assumptions
2 and 4 hold. Then we call the matrix CΠ the moment of system (3)
at (S,L).

3All statements are local, although global versions can be straightforwardly
derived.

4Minimality of the triple (L, S, ω(0)) implies observability of the pair
(S,L) and excitability of the pair (S, ω(0)) (see [17, Definition 2] for further
detail). Note that, for linear systems, excitability is equivalent to reachability,
i.e. with ω(0) playing the role of the input matrix, see [17, Section III].

5See [18] for a formal definition of steady-state response.
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C. Weighted residual methods and moments
Let Ξ be a closed interval in R. The basic idea behind the family of

WRMs relies on the selection of a complete set {ψk} of orthogonal
functions ψk : Ξ→ R : t 7→ ψk(t) defined on a function space H
with domain Ξ, and with the inner-product on the space H defined
as6

〈p(t), l(t)〉 =

∫
Ξ
p(τ)l(τ)w(τ)dτ, (8)

where p ∈H , l ∈H and w : Ξ→ R is a weighting function. The
standard assumption in WRMs (see [8, Chapter 1]) is that the state
vector and the control input in (3) admit the expansions

xi(t) =

M∑
j=1

x̂ijψj(t), u(t) =

M∑
j=1

ûjψj(t), (9)

where x̂ij ∈ R, ûj ∈ R, with j ∈ NM , denote, respectively, the
coefficients of the expansion of xi and u. Note that M may be infinity.
Defining the set {ψk(t)}Nk=1 with N < M , it is possible to write the
corresponding N -dimensional approximations of x and u, denoted
xN and uN , respectively, as

xi(t) ≈ xNi (t) = XiΨ(t), u(t) ≈ uN (t) = UΨ(t), (10)

where Xi ∈ R
1×N , U ∈ R

1×N , xN (t) ∈ R
n and the vector

Ψ(t) ∈ RN is defined as

Ψ(t) =
[
ψ1(t), . . . , ψN (t)

]ᵀ
. (11)

Defining the matrix X =
[
Xᵀ

1 , . . . , X
ᵀ
N

]ᵀ ∈ Rn×N , and substi-
tuting (10) into the dynamic equation (3), the residual function [8],
[9]

R(X,U,Ψ(t)) := ẋN (t)− f(XΨ(t), UΨ(t)), (12)

can be defined, in which the approximated time-derivative of the state
ẋN is given by

ẋN (t) = XΨ̇(t). (13)

Then, given values of U , the approximated state trajectory is computed
in terms of the nN unknown coefficients of X as the solution of the
system of n2N2 algebraic equations7

〈Ri(X,U,Ψ(t)), ζj(t)〉 = 0, (14)

for i ∈ Nn and j ∈ NN , where R = [Rᵀ
1 , . . . , R

ᵀ
n]ᵀ and the test

functions ζj , assumed to be sufficiently regular, form an orthogonal
set {ζj}Nj=1. If the test functions ζj are elements of the same set as
the basis functions approximating the state, that is ζj = ψj , then the
method is known as spectral or Galerkin method. If the test functions
are translated Dirac-delta functions δtj = δ(t− tj), then the method
is known as pseudospectral or collocation method, and the points
tj are called collocation points. From now on, we focus our study
on the Galerkin method, since the collocation approach can be made
equivalent to Galerkin method by an appropriate selection of the set
{tj} ⊂ Ξ, see e.g. [8, Chapter 4].

We now present a connection between WRMs and moment-based
theory in terms of the solution of the Sylvester equation (7). To this
end, we assume that in (3) fnl(x, u) = 0 and hnl(x) = 0, i.e. the
system dynamics are linear.

Remark 2: If fnl(x, u) = 0 and hnl(x) = 0, then the approxi-
mated output of system (3) can be computed as yN (t) = YΨ(t)
where Y = CX , with X solution of (14).

Proposition 1: Consider system (3) with fnl(x, u) = 0 and
hnl(x) = 0, and the signal generator (4). Suppose that Assumption

6We adopt the inner-product definition given by equation (8).
7The reader is referred to, for instance, [8, Chapter 2] for a discussion on

computational aspects of WMRs.

2 holds and that u admits an expansion as in (10). Let Ψ(t) = ω(t).
Then, the coefficients of the solution Y computed using the Galerkin
method coincide with the elements of CΠ.

Proof: Consider system (3) with fnl(x, u) = 0 and hnl(x) = 0,
and the approximating state and input vectors XΨ(t) and UΨ(t),
respectively. The residual equation defined in (12) can be written as

R(X,U,Ψ(t)) := XΨ̇(t)−AXΨ(t)−BUΨ(t), (15)

and the approximating trajectory xN can be computed in terms of X
solving the equation

〈XΨ̇(t)−AXΨ(t)−BUΨ(t),Ψ(t)ᵀ〉 = 0. (16)

Assume now that the vector of basis functions Ψ(t) belongs to the
class of functions generated by (4), i.e. we assume Ψ(t) = ω(t). Then
Ψ̇(t) = ω̇(t) = Sω(t) and, considering the superposition property of
the inner product, equation (16) can be written as

(XS −AX −BU) 〈ω(t), ω(t)ᵀ〉 = 0. (17)

Defining Ω = 〈ω(t), ω(t)ᵀ〉, the proof follows once noted that 0 /∈
σ(Ω) since Ω = Ωᵀ � 0 under the excitability condition on the pair
(S, ω(0)) (see Assumption 2). In particular, Y = CX = CΠ, where
Π is the unique solution of (7).

Inspired by Proposition 1 we present, in the following sections, a
general framework to approximate the moment of nonlinear dynamical
systems driven by a wide class of input signals. Furthermore, we
show that, under additional assumptions, the methods described in
this note can be used to approximate the steady-state behaviour of
system (3) driven by this general class of inputs.

Remark 3: The class of input signals defined by (4) contains some
of the most widely-used basis functions, such as polynomials and
trigonometric functions. For instance, the first ν polynomial functions
can be generated with S in (4) such that S = Nν , where Nν ∈ Rν×ν
is a matrix with ones in the upper diagonal and zeros elsewhere. To
address more general cases, let λ ∈ λ(S) ⊂ C, and let p be the
dimension of the largest Jordan block associated with λ. Then, for
each λ, the signal generator (4) can generate linear combinations of
the set of functions {tqeλt}p−1

q=0 .
Remark 4: The methods proposed in Sections III and IV compute

the moment for a particular trajectory ω(t). We note that, if required,
the methods can be modified to incorporate different ω(t), following
an analogous procedure to that used in the so-called “U/N” variation
proposed in [11].

III. APPROXIMATION OF MOMENTS: THE IMPLICIT SIGNAL
GENERATOR CASE

In this section we propose a method to approximate the moment of
the nonlinear system (3) driven by the signal generator (4). For this
purpose we introduce an additional signal generator. We note that the
assumptions considered in this section on the function π (solution of
(6)) resemble those in [11].

To begin with, consider the “extended” signal generator described
by the set of first order differential equations

ω̇e = Seωe, u = [L 0]ωe = Leωe, (18)

where ωe(t) = [ωᵀ(t), ω∗ᵀe (t)]ᵀ ∈ R
N , ω∗e (t) =

[ωeν+1(t), . . . , ωeN (t)], with N ≥ ν integer, and the matrix
Se ∈ RN×N given by

Se =

[
S 0
0 S∗e

]
, (19)

with any matrix S∗e such that the pair (Se, ωe(0)) is excitable (in line
with Assumption 2).
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Remark 5: The signals u(t) generated by (4) and (18) coincide.
Consequently, the moment of system (3) at (S,L) coincides with its
moment at (Se, Le).

After introducing the implicit signal generator (18), we identify
two sets of functions: Fω = {ωi}νi=1, with ω as in (4), and Fωe =
{ωei}

N
i=1, with ωe as in (18). Note that the relation Fω ⊂ Fωe holds.

We now introduce the following standing assumption.
Assumption 5: The elements of the set Fωe ⊂ H , where H is

a complete inner-product space with (closed) domain Ξ ⊂ R, are
orthogonal in the interval Ξ. Moreover, each component of the function
π, i.e. πk, k ∈ Nn, which solves (6), belongs to H .

Remark 6: Under Assumption 5, one can always extend the set of
functions Fωe to form an orthogonal basis of H by simply considering
the orthogonal complement of the subspace spanned by the elements
of Fωe (see, for instance, [19] and [20]).
Assumption 5, together with Remark 6, directly imply that πk can
be expanded as [19]

πk(ω) =

N∑
i=1

απkiωei + εk(ωe) = Π̃kωe + εk(ωe), (20)

where π(ω) = [π1(ω), . . . , πn(ω)]ᵀ, with απki ∈ R, for i ∈ NN ,
Π̃k = [απk1 , . . . , α

π
kN

], for some mapping εk : RN → R. The
existence of εk such that (20) holds follows directly from Remark 6.

Remark 7: Note that, under Assumption 5, we can always write π
as the sum of two contributions, namely

π(ω) = Π̃ωe + E(ωe), (21)

where Π̃ = [Π̃ᵀ
1 , . . . , Π̃ᵀ

n]ᵀ and E = [ε1(ωe), . . . , εn(ωe)].
In the following we proceed to formulate a method which allows

the computation of an approximation of π in terms of the set Fωe ,
i.e. in terms of the N -dimensional expansion Π̃ωe. We do this by
minimising a residual equation analogously to what done for the
family of WRMs (see Section II-C).

Proposition 2: Consider the nonlinear system (3) and the linear
generator (4). Suppose that Assumptions 1, 2 and 5 hold. Then,
h(Π̃ωe), where Π̃ is the solution of the system of algebraic equations

(Π̃Se −AΠ̃−BLe)〈ωe, ω
ᵀ
e 〉 − 〈fnl(Π̃ωe, Leωe), ωᵀ

e 〉 = 0, (22)

is the least-square minimiser of the residual R(Π̃, Le, ωe), i.e. h(Π̃ωe)
is a least-square approximation of the moment of system (3) at (S,L).

Proof: By Assumption 5, we can define a residual equation in
terms of the extended signal generator (18) as R(Π̃, Le, ωe) (similarly
to (12)), replacing Π̃ωe in (6), i.e.

R(Π̃, L, ωe) = (Π̃Se −AΠ̃−BLe)ωe − fnl(Π̃ωe, Leωe). (23)

Then we compute the approximating solution in terms of Π̃ by
forcing the residual (23) to be orthogonal to the N -dimensional
space spanned by the set Fωe . Equation (22) follows after considering
the superposition property of the inner product.
Note that Proposition 2 makes explicit use of the extended signal
generator (18) to compute an N -dimensional approximation of π in
terms of the set Fωe by projecting the residual equation (23) into
the same set of functions, analogously to what done in the family of
WRMs. In other words, the extended signal generator, which defines
the set Fωe , generates the function space used to approximate the
corresponding moment (see also Remark 9).

Corollary 1: Let Assumptions 1, 2 and 5 hold, and suppose E = 0
in (21). Then

R(Π̃, Le, ωe) = 0 ⇔ 〈R(Π̃, Le, ωe), ωe
ᵀ〉 = 0. (24)

Proof: (⇒) This implication is straightforward as the inner
product of any function with the zero function is zero by definition.

(⇐) Under Assumption 5, each component of the residual function
Rk(Π̃, Le, ωe) ∈ H , for k ∈ Nn, where Rk denotes the k-th row
of R. Then, for all k ∈ Nn,

〈Rk(Π̃, Le,ωe), ωe1〉 = 0

...

〈Rk(Π̃, Le,ωe), ωeN 〉 = 0

 ⇒ Rk(Π̃, Le, ωe) = 0, (25)

as a direct consequence of the fact that the elements of the set Fωe

are orthogonal in H [19].
Corollary 1 implies that, if E = 0 in (20), i.e. π can be exactly

written as Π̃ωe, then the approach of Proposition 2 effectively recovers
the exact solution Π̃.

Remark 8: If, additionally, Assumption 3 holds and the zero
equilibrium of the system ẋ = f(x, 0) is locally exponentially stable,
then h(Π̃ωe), with Π̃ computed as in Proposition 2, approximates
the steady-state response of the output of the interconnected system
(5) (see Theorem 1).

We now re-write the system of algebraic equations (22) of
Proposition 2 in a more convenient form, in which the contribution of
the linear and nonlinear parts of system (3) can be easily identified.

Corollary 2: Let Assumptions 1, 2 and 5 be satisfied. Then the
system of nonlinear algebraic equations (22) can be equivalently
written as

(Π̃Se −AΠ̃−BLe)− Fnl(Π̃, Le)Ω−1 = 0, (26)

where Ω = 〈ωe, ω
ᵀ
e 〉, the matrix Fnl(Π̃, Le) ∈ Rn×N is given by

Fnl(Π̃, Le) =


〈fnl1(Π̃ωe, Leωe), ωᵀ

e 〉
...

〈fnln(Π̃ωe, Leωe), ωᵀ
e 〉

 , (27)

and fnli is the i-th row of the mapping fnl.
Proof: Straightforward once noted that 0 /∈ σ(Ω), since Ω =

Ωᵀ � 0 as a direct consequence of the excitability assumption of the
pair (Se, ωe(0)).

Remark 9: The term Fnl(Π̃, Le)Ω−1 in (26) is the projection of
fnl(Π̃ωe, Leωe) onto the function space spanned by the set Fωe .

Corollary 2 provides the approximating solution in a very specific
form: the linear Sylvester equation (7) appears explicitly with a
nonlinear “correction” term.

Remark 10: If fnl(x, u) = 0, then Fnl(Π̃, Le) = 0, and the
solution of (26) can be straightforwardly computed as Π̃ = Π̃l =
[Π̂ 0], with Π̂ the solution (provided it exists) of the Sylvester equation
AΠ̂− Π̂S = −BL. In other words, if system (3) is linear, then the
solution of the proposed method coincides with that of the classical
approach (discussed in Section II-B).

Remark 11: State-of-the-art numerical routines, such as those
described in [21], can be readily used to solve the homogeneous
system of algebraic equations (26) in Π̃.

Remark 12: The choice of an appropriate initial guess Π̃0 is crucial
for the fast convergence of any numerical routine when solving (26).
In most cases a sensible initial point is the solution of (26) with
fnl(x, u) = 0 in (3), i.e. we select Π̃0 = Π̃l, with Π̃l as in Remark 10.

Remark 13: From the previous remark we note that the use of the
“phantom” input, which does not appear in the linear part (because of
the block of zeros in Le = [L 0]), is instrumental to interpolate the
nonlinear term in equation (22).

To conclude this section, we illustrate the proposed method by
means of the following example.
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Example 1: Consider the forced Van der Pol oscillator with a
nonlinear output map described by the differential equations

ẋ1 = x2, ẋ2 = −3

2
(1− x2

1)x2 − x1 + u, y = x2
2, (28)

where u(t) = Au cos(f0t), with Au ∈ R and f0 ∈ R+ \ {0}. We
can write u using the signal generator

ω̇ = Sω, u = Lω, (29)

with
S =

[
0 f0

−f0 0

]
, L = [Au 0] , ω(0) = ε2. (30)

Note that, with this selection of matrices, the triple (L, S, ω(0))
is minimal. For this example, the set describing the input signal is
Fω = {ω1, ω2} = {cos(f0t),− sin(f0t)}. Following (18), we define
the extended signal generator

ω̇e = Seωe, u = Leωe. (31)

with matrices

Se =
k⊕
p=1

[
0 pf0

−pf0 0

]
, Le = [L 0] , ωe(0) = εν , (32)

where N = 2k, with k ∈ N. Note that the pair (Se, ωe(0)) is excitable
and Fω ⊂ Fωe . The parameters of u are selected as Au = 1 and
f0 = 1

2 .
Given that, for this example, the origin of ẋ = f(x, 0) is locally

exponentially stable and the matrix S of the signal generator (31)
has all simple eigenvalues with zero real part, the assumptions of
Theorem 1 are fulfilled, and hence the moment of (28) computed along
a particular trajectory ω(t) coincides with the steady-state response
of the output of the interconnected system. Thus, the moment of the
system can be computed along ω(t) using a numerical integration
method. This allows for a direct comparison with the approximated
moment.

Note that, defining Ξ = [t, t+ T0], with T0 = 2π/f0, implies that
the elements of the set Fωe = {ωei}

2k
i=1 are orthogonal on L2(Ξ)

under the inner product definition in (8) with weighting function
w(t) ≡ 1. Furthermore, note that Assumption 5 holds for this example
with H = L2(Ξ), as discussed in the following. Given the nature
of the signal generator defined in (29) the input u is always T0-
periodic. Moreover, since the zero equilibrium of ẋ = f(x, 0) is
locally exponentially stable, the (well-defined) steady-state solution
of the interconnection between (28) and (29) is T0-periodic [22,
Section VI], i.e. xss(t) = xss(t − T0). Since, as discussed in the
previous paragraph, Theorem 1 holds, i.e. xss(t) = π(ω(t)), it is
straightforward to conclude that each element of the mapping π
belongs to L2(Ξ).

To illustrate the method proposed, we compute Π̃ as in (26), for a
different number of basis functions {ωei}, with ωe as in (31). The
algorithm used to solve (26) is based on the interior-reflective Newton
method described in [21].

Figure 1 (top) depicts the time histories of h(π(ω(t))) (i.e. the
moment of system (28) along ω(t)) computed using a Runge-
Kutta method (solid-black line), and the corresponding approximated
moment, i.e. h(Π̃ωe(t)) = ([0 1]Π̃ωe(t))2 for k ∈ {3, 5, 10} (dot-
dashed-blue, dotted-red and dashed-cyan lines, respectively). Note that
a clear improvement can be appreciated with an increasing number
of basis functions. This is further confirmed in Figure 1 (bottom), in
which the time histories of the absolute value of the approximation
error, i.e. |h(π(ω(t)))− h(Π̃ωe(t))|, is plotted for each value of k
considered. Note that Figure 1 (top) also shows the associated linear
solution Π̃l (solid-grey line), which is used as initial guess to solve
(26) (see Remark 12).
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Fig. 1: Top: time histories of the approximated moment for the
forced Van der Pol oscillator driven by the signal generator (31) for
different values of k. Bottom: time histories of the corresponding
absolute errors.

IV. APPROXIMATION OF MOMENTS: THE EXPLICIT SIGNAL
GENERATOR CASE

The mathematical formalism behind moments has been extended to
the case in which system (3) is linear and the input is given in explicit
form [12], [23]. This provides an extension of the moment-based
framework for a very general class of inputs, including discontinuous
periodic signals. Motivated by this, in this section we first provide
a further extension of the notion of moment to nonlinear systems
driven by explicit signal generators. Then, based and inspired by the
methods developed in Section III, we propose a method to compute
an approximation of such a moment.

A. Moment for nonlinear systems at explicit signal generators

From now on we focus our interest on signals described by a
T -periodic explicit form signal generator as

ωΛ(t) = Λ(t)ωΛ(0), ωΛ(t) = ωΛ(t− T ), u(t) = LωΛ(t), (33)

t ≥ T , where the matrix Λ(t) ∈ Rν×ν is non-singular for all t ∈ R+.
Analogously to the implicit signal generator case of Section II-A, we
now introduce a set of assumptions required to formalise the definition
of moment.

Assumption 6: There exists a unique mapping π(t, ωΛ), defined
in a neighbourhood of (x, ωΛ) = (0, 0), which is the solution of the
integral equation

π(t, ωΛ) = lim
t̄→−∞

∫ t

t̄
eA(t−τ)BLωΛ(τ)dτ +

lim
t̄→−∞

∫ t

t̄
eA(t−τ)fnl(π(τ, ωΛ(τ)), LωΛ(τ))dτ.

(34)

Assumption 7: The vectors L and ωΛ(0) in (33) are such that
σ(L{LΛ(t)ωΛ(0)}) = σ(L{Λ(t)}).

Definition 4: Consider system (3) and the signal generator (33).
Suppose Assumptions 6 and 7 hold. Then we call the function h ◦ π
the moment of system (3) at (Λ, L).
Analogously to the linear case discussed in [12], [23], defining the
moment of system (3) according to Definition 4 is justified by the
equivalence, when an implicit model of (33) is available, between the
new and the classical definition (see Definition 2).
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Assumption 8: ωΛ(t) in (33) is Laplace transformable and such
that σ(L{ωΛ(t)}) ⊂ C0.
Assumption 7 plays the role of the minimality condition of Assump-
tion 2 for the implicit signal generator case, while Assumption 8
corresponds to the persistence of excitation condition of Assumption
3. We now formulate a proposition which relates the moment as in
Definition 4 with the steady-state output response of system (3) driven
by (33).

Proposition 3: Consider system (3) and the signal generator (33).
Suppose Assumptions 7 and 8 hold and that the zero equilibrium of sys-
tem ẋ = f(x, 0) is locally exponentially stable. Then, Assumption 6
holds and the moment of (3) at (Λ, L) computed along the trajectory
ω(t) coincides with the (locally well-defined) steady-state output
response of system (3) driven by (33), i.e. yss(t) = h(π(t, ωΛ)).

Proof: We begin by noting that the input u is bounded and
periodic by Assumption 8. Then, since the zero equilibrium of ẋ =
f(x, 0) is locally exponentially stable, the steady-state response xss
is locally well-defined [22, Section VI] and, using the well-known
“variation of parameters formula”, can be written as

xss(t) = lim
t̄→−∞

∫ t

t̄
eA(t−τ)BLωΛ(τ)dτ +

lim
t̄→−∞

∫ t

t̄
eA(t−τ)fnl(xss(τ), LωΛ(τ))dτ.

(35)

The proof follows by noting that xss(t) = π(t, ωΛ) in (34) and hence
yss(t) = h(π(t, ωΛ)).
In the following, we explicitly exploit the T -periodicity of ωΛ to
simplify the computation of the mapping π for the case in which the
zero equilibrium of ẋ = f(x, 0) is locally exponentially stable.

Corollary 3: Suppose Assumptions 7 and 8 hold and the zero
equilibrium of system ẋ = f(x, 0) is locally exponentially stable.
Then given that (33) is T -periodic, equation (34) becomes

π(t, ωΛ) = P

[∫ t

t−T
eA(t−τ)BLωΛ(τ)dτ +∫ t

t−T
eA(t−τ)fnl (π(t, ωΛ(τ)), LωΛ(τ)) dτ

]
,

(36)

with P ∈ Rn×n a constant matrix defined as P =
(
In − eAT

)−1
.

Proof: Under the above assumptions, if the input is T -periodic,
the (locally well-defined) steady-state solution is also T -periodic [22,
Section VI], i.e. xss(t) = xss(t− T ). Since under the same set of
assumptions the equality xss(t) = π(t, ωΛ) holds (see Proposition 3),
it is straightforward to conclude that π(t, ωΛ) is T -periodic. Finally,
equation (36) follows analogously to the proof of [2, Corollary 5.5].

In other words, the result of Corollary 3 indicates that (under the
above assumptions) the moment of (3) at (Λ, L) can be fully described
by computing (34) over only one time period T .

Remark 14: The mapping π, solution of (34), can always be
expressed as π(t, ωΛ(t)) = Π(t)ωΛ(t).

Remark 15: If system (3) is linear (i.e. fnl(x, u) = 0 and
hnl(x) = 0) then the solution πl(t, ωΛ) = Πl(t)ωΛ(t) of (34) with

Πl(t) = lim
t̄→−∞

∫ t

t̄
eA(t−τ)BLωΛ(τ)dτ Λ(t)−1, (37)

coincides with the solution obtained in [12], [24].

B. Approximation of Π(t) driven by (Λ, L)

In this section we present a method to approximate the moment
of a nonlinear system (3) driven by an explicit signal generator (33)

(as formalised in Definition 4). To achieve this, we introduce the
following assumption.

Assumption 9: The set FψM = {ψk(t)}Mk=1 ⊂ H ∗, with
ψk(t) ∈ R and where H ∗ is complete inner-product space with
(closed) domain Ξ ⊂ R, is a complete orthogonal set in Ξ and each
component of the mapping Π(t) = [Π(t)ij ]

n,ν belongs to H ∗, i.e.
it can be expressed as a unique linear combination of the set FψM as

Π(t)ij =

M∑
k=1

γijkψk(t) = ΓijΨM (t), (38)

where γijk ∈ R for k ∈ NM , ΨM (t) = [ψ1(t), . . . , ψM (t)]ᵀ and
Γij = [γij1 , . . . , γijM ].
Note that for this explicit signal generator case, we propose to
approximate the matrix valued function Π directly, and then reconstruct
the moment as π(t, ωΛ(t)) = Π(t)ωΛ(t).

Remark 16: Under Assumption 9, Π(t) can be written as Π(t) =
ΓΠ(Iν ⊗ΨM (t)) where ΓΠ ∈ Rn×Nν is given by

ΓΠ =
[
Γij
]n,ν

. (39)

Moreover, defining the vectors Ψ(t) = [ψ1(t) , . . . , ψN (t)]ᵀ with
N ≥ M and Ψ∗M (t) = [ψN+1(t) , . . . , ψM (t)]ᵀ, we can always
expand Π(t) as

Π(t) = Γ̃Π(Iν ⊗Ψ(t)) + E(Iν ⊗Ψ∗M (t)), (40)

where Γ̃Π = [Γ̃ij ]
n,ν , with Γ̃ij = [γij1 , . . . , γijN ], and E =

[Γ̄ij ]
n,ν , with Γ̄ij = [γijN+1

, . . . , γijM ].
As in the implicit signal generator case, we now propose a method

to compute an N -dimensional approximation Π̃(t) of Π(t) based on
a residual equation. This is considered in the following proposition.

Proposition 4: Consider the nonlinear system (3) driven by the
explicit signal generator (33). Suppose that Assumptions 6, 7 and 9
hold. Then the moment of system (3) at (Λ, L) can be approximated as
h(Π̃(t)ωΛ(t)), where Π̃(t) = Γ̃Π(Iν ⊗Ψ(t)) and Γ̃Π is the solution
of the system of algebraic equations〈

Π̃(t)ωΛ(t)−Πl(t)ωΛ(t)− Π̃nl(t),ΨΛ(t)ᵀ
〉

= 0 (41)

where ΨΛ(t) = (Iν ⊗Ψ(t))ωΛ(t) and

Πl(t) =

∫ t

0
eA(t−τ)BLωΛ(τ)dτ Λ(t)−1,

Π̃nl(t) =

∫ t

0
eA(t−τ)fnl(Π̃(τ)ωΛ(τ), LωΛ(τ))dτ.

(42)

Proof: We omit the proof since it is analogous to that of
Proposition 2, using the integral equation (34) and Remark 14.

Remark 17: If, additionally, Assumption 8 holds and the zero
equilibrium of ẋ = f(x, 0) is locally exponentially stable, then
h(Π̃(t)ωΛ(t)), with Π̃(t) computed as in Proposition 4, approximates
the steady-state output response of system (3) driven by (33). Addi-
tionally, exploiting the periodicity of the steady-state and following
the result of Corollary 3, it is possible to compute Πl and Π̃nl in
Proposition 4 as

Πl(t) = P

∫ T

t−T
eA(t−τ)BLωΛ(τ)dτΛ(t)−1,

Π̃nl(t) = P

∫ T

t−T
eA(t−τ)fnl(Π̃(τ)ωΛ(τ), LωΛ(τ))dτ,

(43)

and hence Π̃ can be fully described using only information over one
period.

Corollary 4: Let Assumptions 6, 7 and 9 be satisfied. Then, the
system of algebraic equations (41) can be equivalently written in
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matrix form as (
Γ̃Π −ΠΨ

l ∆−1
)
− Π̃Ψ

nl∆
−1 = 0, (44)

where the matrices ∆ ∈ R
νN×νN and ΠΨ

l , Π̃
Ψ
nl ∈ R

n×νN are
defined as

∆ = 〈ΨΛ(t),ΨΛ(t)ᵀ〉,
ΠΨ
l = 〈Πl(t)ωΛ(t),ΨΛ(t)ᵀ〉,

Π̃Ψ
nl = 〈Π̃nl(t),ΨΛ(t)ᵀ〉.

(45)

Proof: Note that, considering the orthogonality of the set FΨ =
{ψi}Ni=1 under Assumption 9, the matrix ∆ can be explicitly written as
∆ = ⊕νi=1⊕

N
j=1

∥∥ψjωΛi

∥∥2, where ‖·‖ denotes the norm induced by
the inner-product defined in (8). Then, it follows from the minimality
condition of Assumption 7 and the invertibility of Λ(t) for t ≥ 0,
that ωΛi 6= 0 for all i ∈ Nν and then

∥∥ψjωΛi

∥∥2
> 0 for all j ∈ NN

and i ∈ Nν . Hence, 0 /∈ σ(∆) since ∆ = ∆ᵀ � 0 and the proof
follows.
Analogously to the implicit case presented in Corollary 2, equation
(44) is decomposed in a specific form, in which the contribution of
the linear solution Πl appears explicitly, together with a nonlinear
“correction” term.

Remark 18: As in the case of equation (26), a sensible choice for
the initial guess Γ̃Π

0 secures a fast convergence rate when solving
(44). This can be chosen in terms of the linear solution of (44), i.e.
Γ̃Π

0 = ΠΨ
l ∆−1.

To conclude this section, we provide an example that illustrates the
applicability of the proposed method.

Example 2: Consider the nonlinear resonant inverter circuit de-
picted in Figure 2, with dynamics described by the differential
equations

C
dvc
dt

= il, L
dil
dt

= −vc −N(il) + u, y = il, (46)

where the voltage at the nonlinear resistor is given by N(il) =
R(il + αi2l ), with α > 0. The input u is a switching function which
is given by a square wave with angular frequency ωu, described in

+

−
Vs

il

N(il) L

C

+

−

vc

Fig. 2: Resonant converter.

explicit form as [23]

ωΛ(t) =

[
u(ωut+ π

2 ) − u (ωut)
u(ωut) u(ωut+ π

2 )

] [
1
0

]
,

u(t) =
[
Vs 0

]
ωΛ(t),

(47)

where u(t) = sign(sin(t)), with sign(0) = 0. We select the
parameters L and C of the system (46) as in [23], i.e. L = 229.3
[µ H], C = 10 [µ F], while the resistance is set to R = 5 [Ω]. The
characteristic of the source is set to Vs = 2, ωu = 1√

LC
and the

nonlinear resistor coefficient is set to α = 1.5. Note that the signal
generator (47) satisfies all the assumptions of Definition 4. In addition,
(47) satisfies Assumption 8 and the zero equilibrium of ẋ = f(x, 0)
is locally exponentially stable, hence the result of Proposition 3 holds,
and the moment of system (46) driven by (47) coincides with the
steady-state output response of such an interconnected system.

Given the periodic nature of the input we select trigonometric
polynomials as orthogonal set of basis functions in Ξ = [t; t+ Tu],
with Tu = 2π/ωu, i.e. the set {ψi} is chosen as FΨ = 1 ∪
{cos(pωut), sin(pωut)}kp=1. Figure 3 shows the time history of

Fig. 3: Top: time histories of the approximated moment for the
nonlinear resonant converter driven by the signal generator (47), for
different values of k. Bottom: time histories of the corresponding
absolute errors (logarithmic scale).

h(π(t, ωΛ(t))) computed using a Runge-Kutta method, and the time
history of h(Π̃(t)ωΛ(t)) considering a different number of basis
functions in the set FΨ, i.e. k = {10, 20, 100}. The large number of
components to successfully approximate the moment relates to the
discontinuous nature of the problem. In fact, it can be seen in Figure
3 (bottom) that the absolute value of the approximation error becomes
higher at the points where ωΛ(t) is discontinuous, though improving
with increasing k.

V. CONCLUSIONS

This technical note presents a framework to approximate the
moment of nonlinear systems driven by signal generators. The methods
proposed are inspired by a connection between moment-based theory
and the family of WRMs. This note formalises and exploits this
connection to propose a set of methods to approximate the moment of
a nonlinear system driven by an implicit signal generator. Furthermore,
we present the formal definition of moments for nonlinear systems
driven by explicit signal generators and we propose a method to
compute such moments, extending the applicability of the framework
to a very general class of inputs, including periodic discontinuous
sources. While our contributions are technical and strictly related
to the definition and computation of moments, these contributions
allow the computation and definition of new classes of reduced order
models, following the system-theoretic approach to nonlinear model
reduction by moment-matching presented in e.g. [2]. For instance,
using the contributions of this note, one can define and compute a
family of reduced models achieving moment-matching at an explicit
signal generator for a general class of nonlinear systems, extending
the framework presented in [2] for linear dynamical systems driven by
this class of input signals. Finally, we note that the methods proposed
in this note are illustrated by means of simple examples.
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