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Abstract

Electronic tactile sensing becomes an active research field whether for prosthetic applications,

robotics, virtual reality or post stroke patients rehabilitation. To achieve such sensing, an

array of sensors is used to retrieve human-skin like information, which is called Electronic

skin (E-skin). Humans through their skins, are able to collect different types of information

e.g. pressure, temperature, texture, etc. which are then passed to the nervous system, and

finally to the brain in order to extract high level information from these sensory data. In order

to make E-skin capable of such task, data acquired from E-skin should be filtered, processed,

and then conveyed to the user (or robot). Processing these sensory information, should occur

in real-time, taking in consideration the power limitation in such applications, especially

prosthetic applications. The power consumption itself is related to different factors, one

factor is the complexity of the algorithm e.g. number of FLOPs, and another is the memory

consumption.

In this thesis, I will focus on the processing of real tactile information, by 1)exploring

different algorithms and methods for tactile data classification, 2)data organization and

preprocessing of such tactile data and 3)hardware implementation. More precisely the focus

will be on deep learning algorithms for tactile data processing mainly CNNs and RNNs, with

energy-efficient embedded implementations.

The proposed solution has proved less memory, FLOPs, and latency compared to the

state of art (including tensorial SVM), applied to real tactile sensors data.

Keywords: E-skin, tactile data processing, deep learning, CNN, RNN, LSTM, GRU,

embedded, energy-efficient algorithms, edge computing, artificial intelligence.
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Chapter 1

Introduction

Tactile sensing systems attract the research interest in many application domains such as

robotics, prosthetic devices, and industrial automation [1, 2]. The main focus is in the areas

of sensors and transducers, front end electronics, and smart data processing algorithms. In

this chapter, we will give a real example of a tactile sensing system realised at COSMIC Lab,

where we explore the different components, and to highlight data processing part, subject of

this thesis.

1.1 Electronic Skin System

n electronic skin system (E-Skin) is composed of: 1) an array of tactile sensors to sense

the applied mechanical stimuli, 2) an interface electronics for signal conditioning and data

acquisition, and 3) an embedded digital processing unit for tactile data decoding. The

goal is either to mimic the human capabilities in capturing and interpreting tactile data or

to respond to the application demands. To be effective, tactile sensors have to sense and

extract meaningful information from the contact surface such as force direction and intensity,

position, vibrations, objects and texture, or touch modality classification. Such information

can be extracted by employing algorithms rooted in machine learning, which have proven

their effectiveness in processing tactile data. This processing needs to be real-time, while
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taking into consideration the power limitation in portable/wearable applications where no

continuous power sources are available e.g. prosthetics, Internet of things and mobile robots.

In order to achieve such real-time computation, two solutions are available, with their own

pros and cons:

1)To make near sensor processing, which means less latency but requires attention for the

power consumption, which is nowadays known as Edge Computing [3].

2)Sending raw data to a remote computing unit which has higher computing capabilities, and

continuous power source, but the latency will be higher, and attention should be taken to the

bandwidth.

In this scope we will explore a tactile sensing system presented in two versions, in

[4] where remote processing is employed, explained in subsection 1.1.1 , while in [5, 6]

near-sensor processing is employed as explained in subsection 1.1.2.

1.1.1 Remote Computing E-Skin

This electronic skin system is composed of :

• Tactile sensors: capacitive touch array sensor, which can deliver up to 13×9 positions,

through 22 electrodes.

• Interface electronics: the role here was to acquire data from sensors and send them

to the PC via USB interface for visualization, and then sending necessary command

to an electro-tactile stimulator, to convey the information to an amputee in a non

invasive way. A commercial capacitive touch controller is used, with an STM32

micro-controller board, connected together through an I2C interface.

• Processing algorithm: to collect the acquired data, process them, visualize them on a

graphical user interface, and finally send data to a stimulator via Bluetooth.



1.1 Electronic Skin System 3

• Electro-tactile Stimulator: The stimulator role is to send a stimulation to the user

according to the touch occurred in the tactile skin.
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As shown in Figure 1.1, from the left a capactive sensory array, connected to an MPR121

touch controller, raw data are sent to an STM32 Micro-controller connected to PC via USB,

then a software on the PC reads the data to visualize them on a Graphical User Interface

(GUI), and send stimulation commands to the stimulator via an external Bluetooth interface.

A snapshot of the graphical user interface is shown in Figure 1.2.

Codes used for the micro-controller and PC are listed in the Appendix B.

Fig. 1.2 Graphical user interface used for tactile data visualization, and sending commands
to the stimulator
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1.1.2 Edge Computing E-Skin

Another version of the previously mentioned system was reproduced by cancelling the

PC, and making all the processing on the micro-controller side, then sending them to an

electro-tactile stimulator via a Bluetooth interface

As shown in Figure 1.3, this system consists of:

• Tactile sensors: two different sensor arrays were tested: a)commercial 16×10 Force

Sensitive Resistors (FSR), b) 4×4 Piezo-electric sensors, designed at our laboratory (

COSMIC Lab) [7] .

• Interface electronics: A custom design interface electronics, equipped with a DDC232

for digital to analog conversion, and has a built-in Bluetooth interface.

• Processing algorithm: to collect the acquired data, process them, and finally send data

to a stimulator via Bluetooth. The algorithm was implemented on the interface’s MCU.

• Electro-tactile Stimulator: The stimulator role is to send a stimulation to the user

according to the touch occurred in the tactile skin.

The processing of data in these two systems was simple, such as: detecting shapes of

objects e.g. two shaped with two different sizes, and the direction of touch e.g. when sliding

an object in straight line on the array, and then mapping them to a channel in the stimulator

as mentioned in Figure 1.2. In the next chapters, we will explore more complex tactile data

processing, and higher complexity algorithms which requires higher computing capabilities

and therefore more power consumption, which is critical in portable applications.
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Fig. 1.3 Example of an E-skin System , with stimulation and on-edge processing

1.2 Artificial Intelligence

Artificial Intelligence (AI), invaded commercial and research fields in order to make machines

solve in a human-like way different problems [8].

A definition of intelligent agent from the literature: any device that perceives its en-

vironment and takes actions that maximize its chance of successfully achieving its goals

[9]. Colloquially, the term "artificial intelligence" is often used to describe machines (or

computers) that mimic "cognitive" functions that humans associate with the human mind,

such as "learning" and "problem solving" [8].

AI in brief is how a machine - especially a computing machine - is able to learn and solve

a problem, even without having the model; conventional programming was based on rules

and attributes were results are deterministic, i.e. for the same input you always have the same

output for the same problem, and for a single problem you have one and only one solution.

While in artificial intelligence, you can have different models for solving the same

problem, all solutions can be considered a good solution, they can differ by their complexity,

their accuracy (when comparing the ground truth with the response of an AI system), or even
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their structure. One important question here, is there the "Best" solution? There are good

solutions, and solutions that are better than others concerning the metrics on which they are

compared, but giving "the best" solution using AI, is not trivial. Unless you have an exact

model, and in this way you are not doing machine learning, instead you are dealing with a

well-defined model.

AI includes both machine learning and artificial neural networks(ANN). As an example

of machine learning algorithms, Support Vector Machine (SVM) [10], K-Nearest-Neighbor

(KNN) [11, 12], Random Forest [13], Decision Tree [14] etc. Artificial Neural Networks, or

simply Neural Networks (NN) as a sub-category of machine learning, are a set of intercon-

nected neurons, where connections have weights, and each neuron has an activation function.

In order to train these networks, i.e. to make them solve a problem by giving an output

similar to the expected, the weights should be modified through a training process [15, 16].

Machine learning tasks can be classified in two main categories, regression and classifi-

cation, in regression the output is a continuous value e.g. estimating a price of a currency

in the next day, while in classification the output is discreet and defined in a set value,

to discriminate that an example belongs to one or more categories. The learning can be

supervised or unsupervised, in an unsupervised learning, the role of the ML model is to make

a clustering of the data, because the dataset is not labeled i.e. for each X we do not have a

label Y , while in supervised learning, each sample of data is labeled, e.g. belongs to a certain

group called a class. Different architectures are used in NNs as explained in [17]. A widely

used NNs are Convolutional Neural Networks (CNNs) [18] used mainly in image processing,

also some neural networks are designed for time-series-data processing (RNNs) [19].

Nowadays, there are other types of NN, which can generate new data similar to previously

seen data, e.g. Generative Adversarial Networks (GAN). An example of a GAN network, is

to generate new faces having seen a dataset of faces [20], or even merging a drawing style

with a camera photo, in order to generate a painting from that photo, similar to the drawing
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style [21]. Even neural networks are used to explore the best network architecture to be used

for a solution [22].

1.2.1 Challenges and Constraints

There are a set of challenges for implementing AI algorithms on embedded platforms, for

which new solutions arise daily, which make them accessible even at a commercial level, not

only in research.

A. Latency

Latency is defined as the time difference between the generated output data and the

input data provided to the system. In [23], [24] and [25] ML/DL algorithms take more

than 1 second to classify different objects. This fact highlights the latency problem

faced in IoT devices when implementing ML/DL algorithms; since the application

must meet real time constraints.

B. Memory

Memory can be divided into two main categories, the program memory itself, which

the size occupied by the algorithms instructions and its variables, and the input/output

memory for data to be processed by that algorithm and the expected output respectively.

The program memory can be very high especially in the case of Deep Learning, for

storing the trainable parameters or even in some machine learning algorithms like the

support vectors in Support Vector Machine (SVM). However, occupying large program

memory induces a high amount of operations during computation due to the frequent

transfer data between processors and different memory levels (on-chip , off-chip). For

example more than 900 M operations of memory read and writes are needed in [26].

C. Complexity

By complexity we mean the number of floating point operations (FLOPs) needed in

order to execute an algorithm, basically computed based on a single core architec-
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ture. Moreover, using parallelism and multi-core technologies may help optimise the

execution of complex algorithms.

A. Power/Energy consumption

Energy consumption is the power consumed during the execution of the algorithm

when targeting embedded implementations (J =W × t) where W is the power in Watt,

t is the time in seconds, and J is energy in Joules. Energy efficiency is considered

as an important metric especially when dealing with applications such as portable,

medical/biomedical IoT devices. To emphasize the critical need of this metric, we

take an example of the implemented tensorial SVM on FPGA device for classifying

different touch modalities as shown in [27]. The proposed implementation is feasible

for real time classification while the amount of power consumed is 1.14 W. Similarly

as shown in [28] and [29] ML must be embedded into dedicated platforms in order

to reduce the power envelope constraint in wearable devices to the range of mW. In

Chapter 4, we achieved a tactile object recognition implementation, consuming 300

mW, and less than 1 mJ energy.

Therefore, the key challenge is to improve the power consumption while preserving the real

time constraints for longer battery life.

1.2.2 Energy Efficient Techniques

Saving energy can be applied on different layers of an architecture, i.e. starting from

the algorithmic level by reducing the complexity, down to the hardware level. Therefore

combining different optimization techniques, in addition to the choice of the correct hardware,

will be useful to implement an energy efficient embedded AI algorithm .
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12 Introduction

Different energy efficient techniques were employed in the literature. In Table 1.1 a

summary of these techniques and their usage at different levels, for embedded ML and DL

implementation on different hardware platforms is presented. The main techniques are:

Parallelism and data reuse, Approximation, and Network Sparsity. Finding the optimal

combination or usage of these techniques, is a challenging task in order to reduce the

power/energy consumption while still achieving the target application’s requirements. In our

perspective, a top-down approach can be followed in order to make this choice, e.g. starting

by choosing the right algorithm, then making the optimisation at the algorithmic level, search

a low power platform for the implementation, and finally apply a suitable techniques, details

can be found on our work [45]. Moreover, new emerging technologies are going beyond the

traditional computing architectures to make a boost in the computation while taking care of

the energy consumption, like using new materials and architectures e.g. Nano-wires-based

3D stacked architecture [46],or tensorial computing architectures as well as task-specific

accelerators, which are common in different applications e.g. CNN accelerators [47].
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1.3 Contribution

In this perspective, the main contribution can be summarised as :

• Using transfer learning from visual image processing domain, into touch modality

classification domain, by generating synthetic images from time series data coming

from (4×4) tactile array, published in [48].

• Optimisation and Embedded implementation of CNN based tactile data classifica-

tion neural network model, on various hardware platforms, published in [49]. This

work includes experimental study about energy, latency and power consumption, and

proved practically the feasibility of an embedded low-latency, low-energy tactile data

processing solution, based on CNN.

• Implementation of small-size(memory), low-latency, low-complexity tactile data clas-

sification model based on shared-weights recursive neural network models e.g. LSTM

and GRU, after applying a low-loss filtering and compression on tactile data, this work

is submitted to IEEE sensors, under revision. This work as well, has reduced more

than 99% of FLOPs, and more than 98% of model size with respect to the adopted

model at our Labs for tactile data processing, which will open the opportunities to

adopt this solution on embedded hardware in the next steps, with less processing and

memory requirements. A simple pipeline architecture is presented in this solution, to

make a simple parallelism between sensory data processing and acquisition, which

also contributes in reducing the latency.

• An overview perspective for embedded implementation optimization, and energy

efficient techniques, published in [30].

• An overview of approximate computing methods [45].

A complete list of all publications can be found in Appendix A.
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1.4 Thesis Outline

The thesis will be structured as follows: In Chapter 2, Transfer learning for tactile sensing

is explored, where real dynamic tactile touch modalities acquired from a 4x4 tactile array,

for a 10 seconds duration, are transformed into a single static image and classified by CNNs

using transfer learning. The work shows a higher accuracy with respect to the state-of-the-art

(SoA), but with more complex model compared to the SoA. The proposed solutions achieved

a best accuracy of 76.9% using Inception-Resnet.

Chapter 3 shows the use of LSTM and GRU for the same problem in the previous chapter

i.e. touch modality specification. In this work data are processed as time series data using

these two RNNs, a data organization process is proposed as well, the result was a higher

accuracy, lower memory, and lower FLOPs compared to previous SoA solutions. The higher

accuracy achieved is 84.23%,and a reduction of FLOPs by 99.98% and the memory storage

by 98.34% compared to the SoA.

Chapter 4 studies a single model based on AlexNet for tactile data classification, and

then different variations of input size are done. This study shows how smaller optimisations

are enough to reduce the model size and complexity while keeping a good accuracy, best

selected model in terms of accuracy and number of FLOPs is then implemented on different

embedded hardware platforms. An embedded implementation is achieved as well on different

hardware platforms. This solution achieved 11 to 43.6% decrease in the number of trainable

parameters, 10 to 45.8% decrease in the number of FLOPs, with a change of accuracy in the

range of [-5, 1.28]%

And finally, Chapter 5 contains the conclusion and future work.



Chapter 2

Touch Modality Classification through

Transfer Learning

In this chapter, we demonstrate a method to achieve touch modality classification using

pre-trained convolutional neural networks (CNNs). The 3D tensorial tactile data generated by

real human interactions on an electronic skin (E-Skin) are transformed into 2D images. Using

a transfer learning approach formalized through a CNN, we address the challenging task of

the recognition of the object that was touched by the E-Skin. The feasibility and efficiency

of the proposed method are proven using a real tactile dataset outperforming classification

results obtained with the same dataset in the literature.

2.1 Introduction

The development of E-Skin systems has been motivated by the possible applications in

many domains such as robotics, prosthetics, and biomedical applications [1]. Processing

tactile information is a crucial task to respond to the application requirements (prosthetics

or robotics) or to mimic the human skin behaviour. The processing is employed to extract

tactile information e.g. material recognition, shape perception, grasping feedback or touch

modality classification [1]. For instance, in prosthetic applications, the tactile information
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can be processed within the prosthesis itself, then structured information are conveyed to the

brain in order to close the loop and achieve a tactile feedback [50]. An important task to be

addressed when developing the E-Skin system is to carefully select the appropriate method

that provides efficient results responding to the application demands.

Machine Learning (ML) techniques based on large-scale neural networks, kernel concepts,

or ensemble models have emerged recently as very promising methods assisting in predicting

(recognizing or classifying) data or events using previously gained training experience. In

tactile sensing applications, where the problem cannot be easily modeled, ML is a promising

way to classify tactile data. In particular, deep neural networks (DNNs) have been applied

recently to many domains such as image [26] and speech recognition [51], and medical

image analysis [52]. DNNs have successfully produced results comparable to or overcoming

previous techniques and, in some cases human tests [53]. Experiments mainly demonstrated

that a DNN trained on a large number of images can be used to extract features from

other images which are not part of the training dataset [54]. This transfer learning (or

domain adaptation) process is accomplished through DNNs, by reusing a pre-trained model,

previously developed for a task, as the starting point for a different task, and retraining a

subset of its upper layers [54]. It provides a solution for cross-domain learning problems

giving the possibility to benefit from data and models trained on a source domain, in order to

extract features and make predictions on a target domain (Figure 2.1). In this perspective,

this chapter takes benefit from the transfer learning capabilities of DNNs to propose a new

approach to touch modality classification. E-Skin data resulting from: Brushing, sliding and

rolling are reformulated in terms of a case-specific image format, and a DCNN is introduced

and trained for transfer learning purposes, by exploiting both a small training set in the target

tactile domain and a large pre-existing training set in a source domain of natural RGB images.

The rationale behind this approach is: 1)On one hand, to benefit from the highly promising

predicting power of deep net models. 2) On the other hand, to overcome the usual bottleneck
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Dataset	A
DCNN A

InputOutput

Hidden Layers

Dataset	B

Classfication	Layer	A

Classification	Layer	B
Feature	Extraction	(common)

DCNN B

InputOutput

Hidden Layers

B Classes

 A Classes

Fig. 2.1 Transfer Learning flow from domain A to domain B

in the use of deep learning in specific applications, i.e., the need for a large (most often huge)

training set.

The rest of this chapter will be organized as follows: Related work will be exposed In the

next section, Section 2.3 explains the used dataset and the proposed solution, while Section

2.4 discusses the results, finally in Section 2.5 the conclusion is presented.

2.2 Related Work

One of the first CNNs has been introduced in 1983 by Fukushima et al. [55] to recognize

handwritten Arabic numerals. Another example was the handwritten zip code recognition

in 1989 by Lecun et al. [56]. Later on different models have been introduced with different

numbers of layers, input sizes, and outputs. Indeed, while methodological ideas were in
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those early works already, highly successful CNN implementations have been much more

recent and have been made possible by the dramatically increased availability of parallel and

high-performance computing architectures [57]. Impressive results have been obtained in

multiple applications [57] and international competitions (e.g. [58]). The layers commonly

used in different CNNs are: Convolution, Pooling and Fully Connected layers. Convolution

and Pooling layers are generally used for feature extraction, and fully connected layers for

the final phase i.e. classification [57].

Various machine learning methods have been applied for tactile sensing systems targeting

object [59] and texture recognition [60], or to estimate the grasping force based on slip

detection in industrial applications [61].

Few works in the literature have addressed touch modalities classification. Silvera et al. [62]

used Electrical Impedance Tomography (EIT)-based artificial sensitive skin, authors have

used LogitBoost classifier to classify eight touch modalities i.e. ‘tap,’ ‘pat,’ ‘push,’ ‘stroke,’

‘scratch,’ ‘slap,’ ‘pull,’ ‘squeeze’ and ‘no touch’. Same modalities were applied to humans to

compare artificial and human classification.

Deep CNNs (DCNNs) have also been used for tactile data processing. Gandarias et al.

used a 25×80 tactile sensor array attached to a robotic arm to get RGB pressure images

[63], they used a CNN to classify eight objects: finger, hand, arm, pen, scissors, pliers,

sticky tape, and Allen key. Two approaches have been tested: the first with Speeded-Up

Robust Features (SURF) descriptor, while the second one employs a pre-trained DCNN

for feature extraction and a Support Vector Machine (SVM) for classification. The work

presented in [64] deals with active clothing material perception based on an automatic robotic

system for grasping the clothes. Authors used images coming from a large pressure sensor

18.6mm×14.0mm which produces RGB pressure images of 640×480 pixels. Using a pre-

trained DCNN for feature extraction, the goal was to classify into 11 labels, those labels

may have binary values (e.g soft or hard), or multiples values (e.g. discriminating among 20

textile types). In [63] and [64] the original data coming from sensors using a robotic setup
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Fig. 2.2 Scheme of touch modalities, Tactile acquisition system and Dataset Properties.

are visually identified, because they describe the 3D representation of the objects. Kaboli

et al. [65] worked on the same eight touch modalities presented in [62] for a multi-modal

artificial skin composed of 32 cells attached to a robot: 16 cells on the front and 16 on

the back, each cell has one local processor, one three axis accelerometer, one proximity

sensor, three normal-face sensor, and a temperature sensor. The paper introduced new feature

descriptors: Activity, mobility, complexity, linear correlation coefficient and non-linear

correlation coefficient. Touch modalities were applied by humans to the robot’s skin. SVM

was used for classification, after finding optimal label parameters by 5 fold cross validation.

Finally, Gastaldo et al. 2014 [66], used a 4×4 piezoelectric tactile sensor array; voltage levels

generated by those sensors were collected over a definite time period, to distinguish between

three touch modalities: Brushing a paintbrush, Rolling a washer, and Sliding a finger. Two

algorithms were used: Tensor-SVM and tensor regularized least squares (RLS).
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2.3 Approach and Methods

The experiments presented in this chapter have employed transfer learning to classify the

same three touch modalities presented in [66]. The same dataset collected by Gastaldo et

al. [66] have been used. Data were collected from 70 volunteers: each one tried three touch

modalities: Brushing a paintbrush, rolling a washer, and sliding a finger. The same touch

modality was repeated both horizontally and vertically by each volunteer twice, as illustrated

in Figure 2.2 The total number of collected touch modalities is 840 (70 participants × 3

modalities × 2 trials × 2 directions). Tactile sensors are implemented by an array of 4×4

piezoelectric sensors, raw sensory data were recorded for 10 seconds for each trial, at a

frequency of 3 kHz, which means that each trial output is a set of 4×4×30,000 samples (array

dimension × time). Figure 2.3 shows the real sensory array’s printed-circuit-board used in

the experiment.

Fig. 2.3 Printed Circuit Board for the real sensory array used in the experiment.

In [66], only the second trial of each modality was taken into account, while the first try

was not included in either training or testing. The rationale was that most volunteers were

more comfortable in their interactions with the instrument on their second than on their first

trials. Hence, the second-trial data were overall more regular and less noisy. Moreover, five

participants were excluded since considered extremely noisy [66]. In this work all samples

in the dataset have been included, i.e. no trials have been excluded. The dataset contains 840
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tensors, i.e. 840 3D arrays of size 4×4×30,000 distributed evenly among: Brushing, rolling

and sliding. Figure 2.4 shows a plot of a raw data for a rolling sample.

Fig. 2.4 Plot of raw data, where each channel (sensor), is represented by a color, here the
touch starts around the sample number 14000, acquired at frequency of 3 kHz.

On one hand, the small width and height of the frames captured at once (4×4) prevents

to successfully apply computer vision algorithms directly. Furthermore, in this application

time is an important dimension, since a single 4×4 frame taken at a single time is generally

insufficient to identify the modality, whereas the time series of many such frames can be

discriminative enough.

On the other hand, CNNs are most often used to classify larger image size. Moreover, the

pre-training of a CNN architecture with vast image databases is especially available in the

case of natural RGB images. Therefore, in the proposed approach, a case-specific procedure

has been defined to transform raw data coming from the tactile sensory array, i.e. 4×4×30,000
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Fig. 2.5 Tactile images embedding, 90 samples for each class are embedded in a single image
for visualisation only, they nearly impossible to be recognized by human eyes.

samples for each modality, were transformed into 400×400 RGB images, Figure 2.5 shows an

embedding of the obtained images. In this way, larger images which have closer size to those

used for CNNs pre-training without large scaling ratios (up or down), were obtained. The

obtained images were fed to different CNNs trained on ImageNet [67] - a dataset containing

millions of visually identified labeled images categorized into more than one thousand classes

- in order to benefit from feature extraction layers. Only the last layer (i.e. essentially the

classifier) is retrained using the aforementioned tactile training dataset.

Figure 2.1 illustrates this transfer learning concept from domain A to domain B, where

the same feature extraction layers trained for domain A are used in the case of domain B,

and then only the classification layer is re-trained with domain B data. The re-trained CNN

is then used in the proposed solution; a general block diagram is shown in Figure 2.6.

2.4 Experiments and Results

The experiments for the proposed solution were made under the following setup:
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Fig. 2.6 Block diagram of the proposed solution

1. Hardware: Training and testing were made on Jetson TX2 development kit donated by

Nvidia Corporation [68].

2. Software: Tensorflow 1.8.0 under Ubuntu 16.04 LTS.

3. Dataset: 840 images distributed evenly among the three classes: Brushing, sliding and

scrolling.

4. Neural networks: ResNet v2-50, ResNet v2-152 [69, 70], MobileNet v2-035-2 [43],

Inception v3 [71], Inception ResNet [72].

All experiments have been made using 80% of the dataset for training, 10% for validation

(i.e for optimizing hyper-parameters), and 10% for testing. The training/ validation/ testing

split was randomly selected. According to Figure 2.7, Inception ResNet (76.9%) and Incep-

tion v3 (75.8%) outperformed the average accuracy results in [66] for both Tensor-SVM

(71%) and Tensor-RLS (73.7%). The latter results have been obtained by averaging the
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Fig. 2.7 Proposed solution vs Average tensor RLS/SVM accuracy

results of 5 different variations of tensor-SVM and tensor-RLS. Inception-ResNet outper-

formed also the best accuracy of tensor-SVM (76.6%), while tensor-RLS (77.3%), performed

better than our best solution by 0.4% which is theoretically less than one sample in the

experimental dataset. In [66], an effective model selection algorithm was also introduced to

boost generalization performance, and only the second try of each modality was taken into

account.

Compared to the work in [66], the proposed inference model is not affected by the number of

training samples, i.e. the model size will remain intact in case more samples are provided for

training. On the contrary, in the previous solution [66], three distinct models were trained in

order to have three-class classification, and for N classes this number will grow at least to N

models.

Moreover, feature selection was not introduced in the proposed method, instead tactile sen-
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sory data were transformed into images, in order to benefit from automatic feature extraction

achieved by DCNN in the proposed approach.

2.5 Conclusion

This chapter has proposed a DCNN approach for tactile sensory data classification based

on transfer learning. The achieved results suggest the potential of current deep learning

approaches to solve the challenging task of discriminating tactile touch modalities. Indeed,

those results are very close to those obtained in human recognition experiments, which

showed (e.g. in [65]) 71% human accuracy to discriminate touch modalities. Re-training a

CNN designed for natural images, is proven in this work to be an efficient transfer learning

solution to deal with non-image tensorial data collected by touch sensors over time. In the

proposed solution classical tactile data classification [66] was outperformed by CNN, by

transforming tensorial sensory data into images, then using transfer learning and CNN to

achieve automatic feature extraction and then classification.

With the high progress and performance of CNN accelerators, which reached in some cases

4.4 TOPs/W [73], embedding the proposed solution into real prosthetic applications, opens

new opportunities.

After proving the concept of the usage of deep learning in such problem, the complexity is

still high, and the time latency as well (75ms), the dynamic energy consumption was 55.5mJ.

In order to reduce the complexity of the proposed solution, another solution is proposed in

the next chapter (Chapter 3), which relies on Recursive Neural Networks, and solve both

complexity, latency and memory consumption





Chapter 3

Touch Modality Classification through

Recursive Neural Networks

Recurrent Neural Networks (RNNs) are mainly designed to deal with sequence prediction

problems and they show their effectiveness in processing data originally represented as

time series. This chapter investigates the time series characteristics of RNNs to classify

touch modalities represented as spatio-temporal 3D tensor data. In this chapter, different

approaches are followed in order to propose efficient RNN models aimed at tactile data

classification.The main idea is to capture long-term dependence from data that can be used

to deal with long sequences represented by employing Gated Recurrent Unit (GRU) and

Long Short-Term Memory (LSTM) architectures. Moreover, a case specific approach to

dataset organization of the 3D tensor data is presented. The proposed approaches achieve a

classification accuracy higher than state of art solution providing more effective performance

in terms of hardware complexity by reducing the FLOPs by 99.989%. Results demonstrate

that the proposed computing architecture is scalable showing acceptable complexity when

the system is scaled up in terms of input matrix size and number of classes to be recognized.

Keywords: Tactile sensing systems, recurrent neural network, deep learning, tactile data

classification.
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3.1 Introduction

The adoption of tactile sensing systems in real world application is still limited and chal-

lenging [74], [75]. One key aspect is the complexity of the processing algorithms (basically

the number of Floating Point Operations - FLOPs) when the hardware implementation is

targeted. This affects mainly the energy consumption and time latency.

In this work, a novel touch modality classification framework using Recurrent Neural

Networks (RNNs) is proposed. RNNs are mainly designed to deal with sequence prediction

problems. They have been very successful in processing natural language, i.e., working on

sequences of texts and spoken language that are represented as time series [76, 77]. Data

acquired from tactile sensors have 3-dimension tensor structure (similar to a video) where

the first two dimensions are defined by the geometry of the sensor array while time defines

the third dimension. Hence, given this representation of tactile data, in this chapter we adopt

RNNs as they are effective in processing time-series-data.

The main contributions of this work are summarized as follows:

- We explore the potential of RNN models for touch modality classification. For this

purpose, we specifically propose two methods that are based on two separate RNN architec-

tures, namely Long Short Term Memory (LSTM) [78] and Gated Recurrent Unit (GRU) [79]

networks to capture long-term dependence from tactile data.

- We propose a case-specific approach for dataset organization to address the peculiarities

of tactile data within the aforementioned architectures. For both LSTM and GRU models,

averaging with overlap is applied to the input tensor aiming to maintain data about previous

time-step in the current time-step.

The proposed RNN framework for tactile data classification has been experimentally

validated with a real dataset and compared to the state of the art achievements. The achieved

results demonstrate that the proposed approach achieves a classification accuracy of 84.23%

on a 3-class touch modality data set (explained in Section 3.4), which is higher than state

of art solutions [66, 48]. The proposed solutions reduce the number of FLOPs by 99.989%
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compared to the same problem in the state of the art [32]. The computing architecture is

scalable, i.e. the complexity is still acceptable when the system is scaled up in terms of input

matrix size and number of classes to be recognized.

The rest of the chapter is organized as follows. Section 3.2 reviews the related works in

tactile data processing. Section 3.3 gives a brief discussion on the methodology followed in

the proposed approach. Section 3.4 introduces the experimental setup with the details of the

different proposed models. In Section 3.5, we report and analyze the experimental results

with a discussion. Finally, we conclude the chapter in Section 3.6.

3.2 Related Work

Different works in the literature have addressed tactile data processing using machine learning

and deep learning, including the use of LSTM networks. In [63] two approaches are used to

classify eight objects, i.e., finger, hand, arm, pen, scissors, pliers, sticky tape, and Allen-key,

using a 28×50 tactile sensory array attached to a robotic arm. For feature extraction, the first

approach uses Speeded-Up Robust Features (SURF) descriptor [80], while the second uses a

pre-trained AlexNet CNN [81]. Finally, a Support Vector Machine (SVM) [82] classifier is

employed for both approaches. In [64], a CNN is used for active tactile clothing perception.

Color RGB pressure maps generated from a large tactile sensor attached to a robotic arm

grasping clothes, are used to classify different textile properties: thickness, smoothness,

textile type, washing method, softness, stretchiness, durability, woolen, and wind-proof.

Different CNN models are experimented, the best performing being the VGG-19 pre-trained

on ImageNet [67]. Rouhafzay et al. [83] employ a combination of virtual tactile sensors

(32×32) and visual guidance to distinguish eight classes of simulated objects. Two neural

networks are used: a 3D ConvNet for the series of object images coming from tactile sensors

and a 1D ConvNet for the series of the normal vectors to the object surface. Abderrahmane et

al. [84] introduce a zero-shot object recognition framework, to identify previously unknown
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objects based on haptic feedback using BioTac sensors [85]. Two CNNs are employed:

one for visual data and another for tactile data. In [86], authors use a shallow CNN (only

three convolutional layers inside) based on AlexNet to identify 22 objects using pressure

maps, collected from a 28×50 tactile sensory array. While in [49], an optimised embedded

implementation of the latter solution is achieved on various hardware platforms. Various

works on tactile data processing can be found in [87], [88], and [89] as well. In [90], authors

collect frames of pressure maps from squeezing an object in contact with a TekScan 6077

tactile sensor(1700 taxels). 3D CNN are compared to 2D CNN in order to classify three

different datasets achieving a higher accuracy when 3D CNN have been employed.

The aforementioned works generally have a high complexity in the learning and inference

phases, especially when deep learning is used, which raises challenges for hardware imple-

mentation requirements [91]. Here arises the need of low-complexity, high-accuracy touch

modality classification solutions suitable for the embedded hardware implementation, where

resources are usually limited (e.g., power, memory). In this respect, LSTM is a promising

candidate.

LSTM networks have recently attracted attention in tactile data processing, especially for

the case of data presented in time-series, i.e., each sensor acquires time series of readings,

defined by the data readout frequency. In [92], an LSTM is used to predict shape independent

hardness of objects from data generated as video from a GelSight sensor with a grid of 960

× 720 pixels. Features from five video frames are extracted using a CNN and then used as

an input for an LSTM network. In [93], authors use an LSTM for slipping prediction over

six different material surfaces, using three different tactile sensors, attached to three fingers

of a robotic arm. A 20-neuron single-layer LSTM is used in this work. In [94], authors use a

CNN and a Graph Convolutional Network [95] for binary grasp stability detection, and an

LSTM and a ConvLSTM for detecting slipping direction (translational and rotational). The

number of LSTM units is not mentioned for LSTM, instead for ConvLSTM, five ConvLSTM

layers were used, then pooling, and two fully connected layers, the input for ConvLSTM
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is 11×12 RGB image. In [96], Dong et al. use high resolution tactile sensor (GelSlim) to

control the insertion of objects in a box-packing scenario, they employ two distinct models

based on CNN+LSTM, the first network for detecting the direction of the error, and the

other for detecting the magnitude of the error, the CNN model used to extract features is a

pre-trained AlexNet model; the LSTM contains 170 units.

While the aforementioned works address tactile data processing, few of them address touch

modality classification. In [62] and [65], they classify nine touch modalities (tap, pat, push,

stroke, scratch, slap, pull, squeeze, and no-touch) using LogitBoost [97] and SVM respec-

tively. LogitBoost in [62] degrades in performance when trained on 40 participants (71%),

while SVM achieves an accuracy range of [80.10 - 81.85%] in [65]. Gastaldo et al. [66]

propose tensor-SVM and tensor-RLS to classify three touch modalities, while in our work

[48] ( Chapter2), we address the same problem using Deep Convolutional Neural Network

(DCNN) and transfer learning. In the latter, we transform tensorial sensory data into synthetic

RGB images, and use pre-trained CNN models on ImageNet [67] for feature extraction.

To the best of our knowledge, no works were done, yet, to explore the potential of LSTM for

solving the touch modality classification problem.

3.3 Methodology

According to the state-of-art, different methods were used to address tactile data processing

and touch modality classification. In this framework, the capability of deep learning architec-

tures to extract meaningful data representations from high-dimensional spatio-temporal data,

without the need for handcrafting features, conveys an especially promising potential. Here,

we leverage on this potential to propose two novel methods for tactile data classification,

based on recurrent architectures.

On one hand, the planar topology of a tactile array may generally prompt the use of CNN

architectures. This strategy is expected to be promising especially if large-area arrays, made
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of many individual sensors and acquiring tactile imagery with relatively high resolution,

are used. On the other hand, highly effective CNN architectures may include a large set of

parameters, which creates a challenge for real-time processing, power consumption, and

training set size.

Touch modality data have relevant spatio-temporal characteristics: touch occurs in

time (temporal aspect) and takes place on the surface of the tactile sensory array (spatial

aspect). Using CNN in [48], necessitates to transform temporal characteristics into spatial

characteristics, by generating a single synthetic image for each tensorial sample. Instead,

RNN intrinsic capabilities to capture time-dependent behaviors makes them a promising

approach for the analysis of such data. This is achieved by making a recursive input into the

network, which comes from the output at previous time-step. Another important consequence

of using RNNs is that the weights are shared across time, i.e., weights are defined for a single

RNN block, and these weights will be shared upon execution over all time-steps. This means

a reduction in number of stored trained parameters and of complexity as well.

Here, the RNN approach to the classification of touch modalities is explored and two RNN

models (LSTM and GRU) are proposed. The description of each architecture will follow in

the next subsections.

3.3.1 LSTM network

LSTM networks are RNNs capable of modeling long-range temporal dependencies [98].

RNNs are composed of a chain of units whose output is connected not only to the next layer

but also fed back to the unit itself as an input, thus allowing the information to persist. LSTM

behaves in a temporal manner that is appropriate for learning sequential models [99]. A clear

example of LSTM usage is the prediction of the next word in a sentence, having observed

the previous words [100]. Moreover, LSTM can act as a classifier for time series of data

[101, 102]. A key characteristic of LSTM is its memory cell, which acts as an accumulator of



3.3 Methodology 33

Fig. 3.1 (a) LSTM unit (b) GRU unit (c) LSTM\GRU Execution pipeline

the state information. Several self-parameterized controlling gates are used to access, write,

and clear the cell (output, input, and forget gates).

Figure 3.1.a illustrates the architecture of the LSTM unit. It is composed of a cell, which

is characterized by a state vector ct and a hidden state vector ht (t ∈ {1,2, . . . ,T }) indicates

the time index and T is the number of time-steps. Each LSTM unit uses a forget gate,

associated with a sigmoid activation function (σ1), to decide which information it should

forget from the previous state ct−1. A new input xt (t ∈ {1,2, . . . ,T }) is accumulated to the

state of the memory cell ct using a hyperbolic tangent activation function (tanh) and an input

gate with sigmoidal activation function σ2. At the end of the LSTM unit, an output gate

using sigmoidal (σ3) and tangential (tanh) activation functions are used to decide the outputs

of the LSTM unit (ct and ht). Note that xt is a vector with dimensionality equal to the number

N of features, which represents the number of individual sensors in the array.
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In order to get the number of parameters in an LSTM unit, the formula is the following :

p = 4× (H× (D+H)+H) (3.1)

where H is the number of hidden layers(neurons), D the dimension of the input vector (in our

case 16). For each sigmoid function, the input is the concatenation of xt and ht , hence the

total dimension of the input is D+H, this number is multiplied by number of neurons H, in

addition we have H biases for each sigmoid function. so that the total number of weights of

each sigmoid function is (H× (D+H)+H). Since an LSTM unit is composed of 4 sigmoid

functions according to Figure 3.1, this number is multiplied by 4 as shown in equation 3.1.

More details about LSTM networks can be found in [100].

3.3.2 GRU network

Similar to the LSTM unit, the GRU unit has gates that modulate the flow of information

inside the unit. However, it does not use the memory cell state and uses the hidden state ht to

transfer information [79]. A typical GRU cell is composed of only two gates, the reset gate

(whose role is similar to the forget gate of the LSTM) and the update gate (whose role loosely

matches the input gate of the LSTM). Thus, a single GRU unit involves fewer operations and

trainable parameters compared to a single LSTM unit. Figure 3.1.b shows the architecture of

the GRU unit. In order to get the number of parameters in a GRU unit, the formula is the

following :

p = 3× (H× (D+H)+H) (3.2)

The only different compared to equation 3.1,is the number 3 instead of 4, because the

GRU block is composed of Three sigmoid functions instead of Four in the case of LSTM, as

illustrated in Figure 3.1.
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3.3.3 CNN-LSTM network

CNN-LSTM is a the series of a CNN and LSTM. The CNN-LSTM model is based on using

pre-trained CNN layers, to produce a fixed-length vector representation of an input image to

be used as a feature vector. This consists of cutting out the classification layer of the CNN,

and just keeping all the layers before, whose final output is the feature vector. The feature

vectors are then passed into an LSTM network, to implement the classification of a sequence

of images. Figure 3.3 depicts the structure of the CNN-LSTM model.

3.3.4 ConvLSTM network

ConvLSTM networks [98] are used for capturing Spatio-temporal information in an image

data sequence. These networks use convolutional layers inside their cells instead of fully

connected layers used in standard LSTM networks. The main difference between LSTM

and ConvLSTM is the type of operations performed in their units, but the logic keeps the

same. That is, ConvLSTM networks still have a memory cell ct that keeps a state at time

t, and uses the same gates used in the LSTM unit to access, clear, and write the memory

cell. However, a ConvLSTM operates with 3D tensors (e.g., RGB images) instead of 1D

vectors (feature vectors) so it performs spatial convolutions with the data that go through

it. Therefore,tensorial tactile images that presents a touch modality, can be used to train the

ConvLSTM model and predict the type of such touch.

Based on the general architecture of the LSTM unit, three parameters are required to build

an LSTM network: feature vector length, time-steps, and the number of neurons; the same

applies to GRU as well. For these two RNN models, each input pattern is a feature vector

representing a sampled time signal. In this perspective, raw data should be pre-processed in

order to be suitable for RNN models. The pre-processing has three main objectives: 1) reduce

the input data size to simplify the training, 2) normalise the data as a general consideration

in training neural networks, and 3) make the dataset format compatible with the network’s

input format.
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Fig. 3.2 Dataset Organisation
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The feature vector length for both LSTM and GRU was chosen equal to the size of the

tactile array, therefore each sensor in the tactile array is considered as a feature. The number

of neurons was selected on trial basis, in order to have the fewest trainable parameters

possible, while achieving an acceptable accuracy with respect to the state of the art. Detailed

description of each model is presented in Section 3.4.B.

3.4 Experimental Setup

The dataset collected in [66] has been considered in this chapter. Seventy subjects were asked

to perform predetermined touch modalities i.e. sliding the finger, brushing a paintbrush,

and rolling a washer. Each participant touches the top surface of a 4×4 piezoelectric tactile

sensory array in two moving directions twice. For every single touch, 10 seconds acquisition

was done at 3 kSamples/second, the collected data were arranged into a 3-dimensional tensor:

tactile sensory array size × number of acquired samples = 4×4×30000. 280 patterns per

touch modality in a total of 840 patterns are available. This dataset can be downloaded from:

https://data.mendeley.com/datasets/dmcdp33ctt/2

3.4.1 Dataset Organisation

In order to use RNNs for this dataset, pre-processing was applied to the dataset. The first

step is to generate a 3D tensor that contains only the useful touch information from the

original raw data. In other words, in the first step, we selected the time period where touch is

applied as shown in Figure 3.2.A. This was done by checking at which time instant T any

of the sensor output value exceeds a predefined threshold. The resulting time T indicates

the starting point of the useful touch data. To have a constant number of frames over all the

patterns, we fixed the size of the data to 6144 samples per sensor, i.e., in the [T,T +6143]

range. The average activity time duration for all users is around 2 seconds i.e., 6000 samples.

We selected 6144 samples per sensor i.e., 6144 × 16 to make the tensor size a multiple of

https://data.mendeley.com/datasets/dmcdp33ctt/2
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64×64, which make it suitable for comparison with CNN based networks, mentioned in

section 3.4.B.

Algorithm 1: Generate Dataset (C)
Input: Dataset (A), Output: Dataset (C)
a = single pattern from Dataset (A);
K = number of frames in a;
C = output pattern;
F = number of sensors;
N = number of output frames;
slot← K/N;
for i← 1 to F do

sen← a(1 : end, i); // sen: single sensor output
u← 1;
for j← 1 to N do

if u < N then
C( j, i)← Average(sen(u : slot +u));

if u = N then
C( j, i)← Average(sen(u : end));

u← u+ slot/2;

The result from the first step is a 3D tensor of size 4×4×6144 each, having the same

original frequency of 3 kSamples/second, and starting at time instant T until reaching 6144

frames. Sixty patterns out of 840 were excluded since no sensor readings exceeded the

activity threshold in these patterns. The refined dataset referred later on as Dataset (A), is

composed of D×(4×4×6144) tensors per touch modality(three touch modalities), where D

is the number of patterns (D = 260). From Dataset (A) are then derived two different datasets

that fit the used models.

CNNs use convolutional layers to transform images into feature vectors, following that

requirement, each pattern in Dataset (A) of size 4×4×6144 has been transformed into a

time series of larger images. Each pattern is presented by 64×64×24 samples (image size ×

time-steps). The resulted dataset is called Dataset (B). It is important to note that the time

sequence order was also maintained within each 64×64 image (im64), i.e., each im64 consists

of 256 images of 4×4 pixels as shown in Figure 3.2.B.
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The third dataset called Dataset (C) is composed of five different sub-sampling of Dataset

(A), as shown in Figure 3.2.C. An averaging with 50% overlap was used to down-sample the

tensor from 4×4×6144 to 4×4×N, where N represents the number of the input time-steps

for the LSTM and GRU networks. N varies in the following set of values 20, 50, 100, 200,

and 256. The overlapping helps maintaining data about previous time-step in the current

time-step, the increment of (slot/2) in the sub-sampling algorithm clarify this overlapping.

The whole process is described in Algorithm 1.

The three datasets are shown in Figure 3.2, where one pattern was used as an example to

illustrate the difference in the presentation of the original dataset. The pre-processing code is

presented in Appendix C.1.

3.4.2 Implementation

As mentioned in Section 3.3, two models have been implemented. For each model a dense

layer is added at the end for the classification. For a further comparison, two CNN-based

models are tested.

LSTM network

the LSTM network composed of one LSTM layer (10 neurons) and a flat input layer of length

16, was trained on Dataset (C). As for the time-steps, the LSTM network was trained for

each of the time-step configurations i.e., N ∈ {20,50,100,200,256}.

GRU network

The GRU network is composed of a single GRU layer, applied within two alternatives: 10

neurons and 12 neurons per GRU layer. This GRU network has as well a flat input layer of

length 16. As for the time-steps, the training process was done only on (N = 20) configuration

of Dataset (C), based on the best achieved results with LSTM.
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Fig. 3.3 CNN-LSTM Structure.

CNN-LSTM network

Four different pre-trained CNN models (ResNet50 [103], ResNet150V2 [70], MobileNetV2

[43] and VGG16 [104]) were considered for comparison purposes to play the role of the

CNN model shown in Figure 3.3. The four CNN models were trained using the ImageNet

dataset [67]. These models were selected based on the results of our previous work [48],

which showed that the four models were effective in extracting features from the considered

dataset. The models were used to transform each image in Dataset (B) into a fixed-length

feature vector. Therefore, each CNN model transform Dataset (B) into a 4-Dimension tensor

of shape D×24×1×K, where D is the number of patterns, K is the size of the output feature

vector in each model, and 24 is the time-steps in each pattern. Thus, the input of the LSTM

block has K features, and 24 time-steps.

ConvLSTM network

The second CNN-based model used for comparison is composed of single ConvLSTM

layer (32 filters of 3 × 3) followed by one fully-connected layer with 100 units and ReLU

activation. Dataset (B) is used, the input of the network is a im64, and the time-steps are 24.

3.4.3 Training

The training and application of the proposed networks were done using Keras with Tensorflow

back-end on an NVIDIA GPU. Dataset (C) was normalized before being used to train and

test the LSTM and GRU models. Full code can be found in Appendix C.2.
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Fig. 3.4 (a) Average Accuracy achieved varying the input to the CNN-LSTM network for five
different folds of Dataset B; (b) Average Accuracy of ConvLSTM network for five different
folds of Dataset B; (c) Average Accuracy achieved varying the input to the LSTM network
for five different folds of Dataset C; (d) Average Accuracy achieved varying the number of
neurons in the GRU network for five different folds of N = 20 Dataset C.
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For training / testing split, an 80 / 20 percentage was chosen. Five folds were generated, in

a way that the intersection of testing samples is empty across all folds. The Adam optimiser

[105] was used to train the networks, with categorical cross entropy as a loss function and

Softmax activation for the output layer. Different runs were made also for each fold, including

different batch sizes and epochs, in order to find the hyper-parameters that lead to better

accuracy. Finally the choice was limited to batch_size = [48,69] and epochs = [48,96], such

that we have 4 combinations in total. For each combination, ten training runs with random

initialization and random batch selection have been made i.e., the batch size is fixed, but

choosing the samples for a batch is random. Therefore, for each model mentioned in 3.4.B,

4×10×5 (combinations×runs×folds) training runs have been made. Finally the accuracy is

obtained by averaging all runs across a fold for all the combinations of (batch_size,epochs).

Results in the next section corresponds to the best (batch_size,epochs) combination, i.e., the

combination that gave the highest accuracy, in our case it is batch_size= 48 and epochs= 96.

Figure. 3.4 shows the accuracy obtained on each fold, for the selected (batch_size,epochs)

combination, using the four different models.

3.5 Results and Discussion

According to Figure 3.4.c, the use of LSTM with N = 20 time-steps referred later as LSTM20,

i.e. using the Dataset (C) with sub-sampling into 20 samples for each pattern, shows a higher

accuracy according to other sub-sampling alternatives, and with respect to other tested

models. LSTM20 has achieved the highest accuracy: 84.23%, the smallest number of

trainable parameters: 1113, and the smallest number of FLOPs: 2950 per LSTM block as

shown in Table 3.1.

Regarding the GRU, GRU20 also proved a high accuracy with a smaller number of

parameters and a comparable number of FLOPs with respect to LSTM20 as shown in Figure

3.4.d. The 10-neuron GRU achieved an accuracy of 81.92% with 843 trainable parameters
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Table 3.1 Comparison of accuracy, number of parameters, and FLOPs

Model Best Accuracy Average Accuracy ± Stdev (%) Model parameters FLOPs

ResNet50-LSTM 67.56 60.82 ± 6.74 26M 107M
ResNet150V2-LSTM 37.58 34.48 ± 3.10 61M 246M
VGG16-LSTM 69.67 62.39 ± 7.28 15M 62M
MobileNetV2-LSTM 60.76 57.5 ± 3.26 4M 17M

ConvLSTM 65.56 59.3 ± 6.26 314M 1G

LSTM20 (10 neurons) 84.23 74.02 ± 6.56 1113 2950×20
LSTM50 (10 neurons) 79.84 70.72 ± 6.24 1113 2950×50
LSTM100 (10 neurons) 73.26 65.98 ± 5.01 1113 2950×100
LSTM200 (10 neurons) 74.67 61.92 ± 7.29 1113 2950×200
LSTM256 (10 neurons) 68.07 59.47 ± 5.03 1113 2950×256

GRU20 (10 neurons) 81.92 72.06 ± 6.60 843 2228×20
GRU20 (12 neurons) 83.78 73.07 ± 6.53 1083 2960×20

Tensor-SVM [66] [32] 76.6 71±5.6 67200 545M
Tensor-RLS [66] 77.3 73.7 ± 3.6 - -

DCNN (InceptionResNetV2) [48] 76.9 54M 109M

and 2228 FLOPs. While a 12-neuron GRU, with 1083 trainable parameters, and 2960 FLOPs

per single GRU block achieved 83.78% as shown in Figure 3.5 and Table 3.1. Both the GRU

and LSTM models have achieved an accuracy higher than the best accuracy achieved by

state-of-the-art approaches applied to the same dataset, whether in tensor-SVM (76.6%) and

tensor-RLS (77.3%) [66], or using DCNN (76.9%) [48]. If we take the average accuracy, we

can see that LSTM20 has achieved the higher average accuracy across all of them.

As per ConvLSTM and CNN-LSTM, these models did not converge well, and the obtained

accuracies did not exceed the 70% as shown in Figure 3.4.a and Figure 3.4.c. One reason

behind it, is the large number of features and therefore trainable parameters, compared

to the small dataset size. Notwithstanding that, the previous results in DCNN [48] were

higher, but that was done using transfer learning, i.e. all the used networks (except the

classifier), were pre-trained on millions of images from ImageNet [67] and thousands of

classes, then a classifier was trained on the subject dataset. Instead in CNN-LSTM we are

using pre-trained CNNs to extract features from Dataset (B), the resulting feature vector may

range from 2K (VGG16) to 8K (Resnet150v2) features. These features are fed into an LSTM
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Fig. 3.5 Accuracy of the best performing networks. LSTM20(10) stands for LSTM network
with 10 neurons and N = 20. GRU20(12) stands for GRU network with 12 neurons and
N = 20.

network to train it from scratch, compared to 16 features in LSTM or GRU with Dataset (C),

which induces higher number of trainable parameters for both CNN-LSTM and ConvLSTM

compared to GRU and LSTM, as shown in Table 3.1. Raising the number of LSTM layers

and number of neurons for ConvLSTM and CNN-LSTM lead to better results, but still not

reaching a comparable accuracy.

LSTM achieved many benefits:

1) FLOPs and memory occupation i.e., number of trainable parameters are less, compared to

the SOA.

2) As for the computation, data can be fed into an LSTM network, as soon as all features are

ready for a single time-step, i.e., when data are ready at time t, they can be forwarded into
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Fig. 3.6 (a) Number of sensors and classes versus number of FLOPS. (b) Number of sensors
and classes versus Model parameters.

an LSTM block, without waiting for the data from all time frames. Also, data occuring at

time t +1 can be collected in parallel with respect to the execution of LSTM block of data at

time t, as illustrated in Figure 3.1.c. Unlike other solutions like CNN or tensor-SVM, all data

should be assembled before bein processed.

3) Higher accuracy is obtained.

4) The model is highly scalable and independent on the size of the dataset, in terms of both

FLOPs and number of trainable parameters, as illustrated in Figure 3.6. Unlike SVM, where

the model size depends on the number of training samples and does not support multi-class

labeling directly [106]. In addition, since LSTM used shared weights, e.g., when training an
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LSTM of N = 20 time-steps, weights are shared across all time-steps, which makes a model

trained on N time-steps data still usable for M time-steps data.

3.6 Conclusion

In this chapter, we have investigated the potential of RNNs for touch modality classification.

Two different approaches based on LSTM and GRU architectures have been proposed to

extract long-term dependence from tactile data. Proposed approaches have been validated on

real tactile data acquired from 4×4 piezoelectric tactile arrays. Experimental results have

shown that the achieved accuracy is of 84.23% and 83.78% for LSTM and GRU respectively

compared with a value of 76.9% for the best achieved accuracy in literature [66, 48]. On the

other hand, the proposed architectures reduce drastically the number of FLOPs considered

as the main factor affecting the hardware complexity of the system. The number of FLOPs

has been reduced of 99.989% compared to the same problem in the state of the art [32]

which will have the impact on time latency, hardware resources, memory storage and energy

consumption when the hardware implementation will be targeted. Another important aspect

offered by the proposed approach is the scalability in the computing architecture. This means

that the complexity of the system remains acceptable when the system is scaled up in terms

of input matrix size and number of classes to be recognized which was a main drawback

limiting similar state of art solutions [106]. To mention that the proposed solution achieved

less than 5ms latency time on NVIDIA GPU, compared to 75ms for the same problem

using DCNN in Chapter2. As a conclusion, the proposed work represents a good candidate

to be embedded together with tactile sensing system for robotic or prosthetic applications

[1, 2]. Such applications require near-sensor processing with critical constraints such as

small hardware area, low energy budget due to the limited battery size, and the low latency

needed to perform real time functions.



Chapter 4

Embedded CNN Implementation for

Tactile Object Recognition

Embedding Machine Learning methods into the data decoding units may enable the extraction

of complex information, making intelligent the tactile sensing systems. This chapter presents

the efficient implementations of a Convolutional Neural Network model on different hardware

platforms for tactile data decoding. Experimental results show comparable classification

accuracy of 90.88%, overcoming similar state of art solutions. In terms of time inference,

the proposed implementation achieves a time inference of 1.2 ms while consuming around

900 µJ. Such embedded implementation of intelligent tactile data decoding algorithms

enables real-time tactile sensing systems in different application domains such as robotics,

and prosthetic devices.

4.1 Introduction

Embedding intelligence near to the sensor location may enable tactile sensing systems to be

incorporated in many application domains such as prosthetics, robotics, and internet of things.

Decoding tactile information concerns different kind of tasks which could be categorized

as simple or complex processing, depending on the algorithm’s complexity. For the simple
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processing, an example of the information retrieved is temperature, intensity of the contact

force, contact location, direction and distribution. Concerning the complex processing, more

intelligent tasks are expected such as patterns, textures, and roughness classification, or touch

modalities discrimination. Employing the complex processing approach enables intelligence

in tactile sensing systems. It is achieved by applying some complex data decoding algorithms

able to extract the meaningful information from sensors e.g. Machine learning (ML), and

Deep Learning (DL).

However, embedding machine learning algorithms on hardware platforms near to the sensors

location is challenging due to the complexity such algorithms impose in terms of time latency

and energy consumption. Our main goal is to achieve a tactile sensing system able to perform

AI tasks. This system is intended to be portable/wearable in which the energy budget is

limited. Moreover, for the target applications i.e. robotics and prosthetic, the lightweight is a

critical constraint limiting the hardware and battery size.

In this perspective, this chapter presents the implementation of CNN algorithms on

different hardware platforms. The main contribution of this chapter may be summarized as

follow:

• It proposes an optimized CNN model, adopted and used from [86], based on reduced

data which demonstrates to provide comparable results in terms of accuracy i.e. 90.88%

with reduced hardware complexity.

• It presents efficient implementations of the CNN model on different hardware platforms

for embedded tactile data processing. Proposed implementations achieve a time

inference of 1.2 ms while consuming around 900 µJ. The work demonstrates its

suitability for real-time embedded tactile sensing systems.

• It raises discussion about integrating intelligence into tactile sensing systems and how

it enables tactile sensing systems in different application domains.
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The remainder of this chapter is organized as follows: Section 4.2 reports the state of

the art showing the recent embedded CNN implementations; In Section 4.3, we illustrate

the experimental setup and methodology; In Section 4.4 the hardware implementation is

explained; Results and discussion are presented in Section 4.5, followed by conclusions in

Section 4.6.
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4.2 Related Work

Different works have addressed the tactile data classification problem, using different methods

including and not limited to machine learning, and deep learning [2, 107–110]. While most

of work done was focusing on the methodology itself, few addressed the implementation

on embedded platforms where should reside the real application. Other related works are

mentioned in the previous chapters like [63], [64], [83], [84, 111], [87–89]. In [86], they

used light CNN based (only 3 Convolutional layers inside) on AlexNet, to identify 22 objects

using their pressure map, collected from a 28×50 tactile sensory array, we will use the same

dataset for the embedded implementation.

While all these previous works were not implemented in an embedded environment, we

can find few others targeting embedded implementation for tactile sensing applications. The

need of embedded implementation arises from the need of having low power, small form

factor electronics to process the tactile information, especially in prosthetic applications

[50]. Osta et al. [32] demonstrated an energy efficient system for binary touch modality

classification, based on SVM and implemented on custom hardware architecture, the energy

per inference was 81mJ, and the inference time is 3.3 s. Ibrahim et al. [106] presented

a real-time implementation on FPGA for touch modality classification, using SVM they

achieved 350 ms inference time and 945 mJ inference energy for 3-class classification, and

970 ms/ 6.01 J for 5-class classification.
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4.3 Experimental Setup and Methodology

4.3.1 Dataset

Targeting the classification of tactile data, the use of the dataset collected in [86] is considered.

Tactile data have been collected by a high resolution (1400 pressure taxels) tactile array which

has been attached to the 6 DOF robotic arm AUBO Our-i5 [86]. A set of piezo-resistive

tactile sensors are distributed with density 27.6 taxels/cm2 forming a matrix of 28 rows

by 50 columns. The dataset is composed of pressure images that present the compliance

of 22 objects with the tactile sensors. These images are divided into 22 classes labeled as

Adhesive, Allen key, arm, ball, bottle, box, branch, cable, cable pipe, caliper, can, finger,

hand, highlighter pen, key, pen, pliers, rock, rubber, scissors, sticky tape, and tube. Figure 4.1

shows an example of tactile images of three objects used for the training of the CNN model.

Each taxel in the tactile array presents a pixel in the pressure image, thus each pressure

image is of size 28×50×3. Therefore the color of the pixel presents the pressure applied

at the corresponding taxel. Where the minimum pressure is presented by Black color and

the maximum pressure is presented by red color. Pressure images are then transformed into

gray-scale images (image size=28×50×1) forming the tactile dataset.

4.3.2 Tested Model

Due to computational and memory limitations in the embedded application, a light CNN

model is required to perform classification tasks with high accuracy and less number of

parameters. In this work, we choose to use one of the models implemented in [86] as a base

model to classify the objects in the aforementioned dataset. Among all the implemented

networks we chose to use the custom network TactNet4 because it is the best network that fits

the embedded application (less number of parameters with high accuracy [86]). The model

is based on AlexNet which is usually used in computer vision for object classification [112].

The network is composed of 3 Convolutional layers ([Conv1, Conv2, and Conv3]) with filters
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Fig. 4.1 Examples of visual (top) vs pressure (Middle) vs Tactile images (bottom) for common
objects.

sizes ([5×5], 8), ([3×3], 16), and ([3×3], 32) respectively. Each Convolutional layer is

followed by Batch Normalization (BaN), Activation (ReLU), and Max Pooling (Maxpool)

layer respectively, where all pooling layers use 2×2 max-pooling with a stride of two. A

fully-connected layers (FC = [fc4]) with 22 neurons followed by a Softmax layer are used

to classify the input tactile data and give the likelihood of belonging to each class (object).

The input shape of the model is configured to the size of the collected tactile data. Figure

4.2 shows the detailed structure of the used network. The network has been implemented in

Matlab R2019b using the Neural Network Toolbox. A total of 1100 tactile images have been

used to train the model. The learning process has been implemented on Matlab by dividing

the tactile data into three sets: training, validation, and test set.

When having an adequate dataset, the validation set is expected to be a good statistical

representation of the entire data set. If not, the results of the training procedure highly depend

on how the dataset was divided.

To avoid this, In this work, we have used cross-validation method. The data is partitioned

into five folds, each fold is divided into training, validation and test set. The training set

forms 80% of the dataset, and the validation and test sets forms 10% each. This process is
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Fig. 4.2 Architecture of the tested model

then repeated five times until all the folds are used, without having common elements across

all folds for validation and test set as shown in Figure 4.3 .

For each training process, the training set is composed of 880 images, 40 images for each

label, whilst each of the validation and test set is composed of 110 images. Training the

model from scratch requires a large dataset to achieve high accuracy. For that reason, data

augmentation techniques i.e. flipping, rotation, and translation in the X and Y axis have been

applied to the dataset. Hence, the amount of tactile data available for training and validation

is increased to 5280, and 660 respectively. The performance of the implemented model is

evaluated based on the recognition rates achieved in a classification experiment of the test set

composed of 110 original images(objects) from 22 classes.

For embedded applications, with computational, memory and energy constraints, it is

necessary to decrease the number of trainable parameters in the CNN model. In this work,

we chose to decrease the number of parameters of the trained model by decreasing the input

image size (i.e. lower resolution images), an example is shown in Figure 4.4. For that reason,

several experiments have been done to choose the smaller size of the input data keeping the

same classification accuracy. The input shapes were chosen in a way that each shape induces
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Fig. 4.3 Visual Representation of Train, Test, and validation split using cross validation

Fig. 4.4 Example of image resize for a "sticky tape" object, the red canvas is drawn for
illustration, which illustrates the original image size (28×50).

a reduction in the number of parameters. This number is obtained using t f .model.summary()

method from TensorFlow [113].

Table 4.1 shows how the number of parameters of the layers depends on the input shape.

The change in the input shape affects only the number of parameters of the fully connected

layer. This is due to the fact that the number of parameters in the Convolutional layer depends

only on the size and number of the filters assigned for each layer ((width o f the f ilter×

height o f the f ilter)+1)×no.o f f ilters), while in the FC layer the number of parameters

(no.o f neurons in FC layer ×(no. o f neurons in previous layer+1)) is affected by the size

of the input image and the output layer. The performance of the model was studied with five

different input shapes shown in Table 4.1. Thus resulting five different model with different

input shapes, each one trained from scratch 5 times (one time per fold), which outputs 25

trained NNs. Figure 4.5 shows the training and validation accuracy over epochs,for the first
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Table 4.1 Distribution of number of parameters on the models’ layers

Layers Model 1 Model 2 Model 3 Model 4 Model 5
(28×50) (26×47) (28×40) (28×32) (24×32)

Conv1 208 208 208 208 208
BaN1 16 16 16 16 16
Conv2 1168 1168 1168 1168 1168
BaN2 32 32 32 32 32
Conv3 4640 4640 4640 4640 4640
BaN3 64 64 64 64 64

FC 19734 16918 14102 11286 8470
Total 25862 23046 20230 17414 14598

three models among the five models. The figure shows that the accuracy achieved of the three

models is close to 100%. Each model was evaluated on Matlab by running a classification

task on the test set.

Fig. 4.5 Learning accuracy for the 3 configurations of the TactNet4 model: (a)Training, (b)
Validation

Figure 4.6 shows the change in the number of trainable parameters and the average

classification accuracy, with respect to the change in the input shape as well as the FLOPs.

The classification accuracy presents the average test accuracy among the five folds. The
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figure shows that it is possible to decrease the input size from 28×50×1 to 26×47×1

or to 28×40×1 and achieve an increase in the classification accuracy from 90.70% to

91.98% and 90.88% respectively. Decreasing the input size of the model results in a drop

in the trainable parameters from 25862 to 23046, and 20230 parameters respectively for

the aforementioned models. This decrease in number of parameters, will also induce a

decrease of number of Floating Point Operations (FLOPs) as shown in Figure 4.6, the

average ratio of the decrease of number of parameters with respect to the decrease in number

of FLOPs is 1/44 i.e with each decrease of number of parameters, there is 44 times decrease

of FLOPs. The number of FLOPs in Figure 4.6, corresponds to Convolutional layers only

where resides most of the FLOPs, these FLOPs are calculated according to the following

formula [114]: FLOPs = n×m× k, where n is the number of kernels, k is the size of the

kernel (width×height×depth) and m the size of output feature map (width×height), the

depth in the kernel size corresponds to the depth of the input feature map.

Fig. 4.6 Comparison of the performance, number of trainable parameters, and FLOPs in
Convolution layers.
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4.4 Embedded Hardware Implementations

The models obtained from Matlab, are converted to Open Neural Network Exchange (ONNX)

format [115]. ONNX provides an open source format for AI models, both deep learning and

traditional ML, which enables the inter-operability between different frameworks. Figure

4.7. shows how the CNN model is converted into different formats for different hardware

platforms. Figure 4.6 shows the number of trainable parameters and the corresponding

accuracy for each model. It is clearly shown that all models preserve comparable accuracy,

but the best are the first three i.e. Model 1, Model 2, and Model 3. However, since

Model 2 and Model 3 have demonstrated a reduced number of training parameters and

accordingly a reduced number of operations (FLOPs), they have been selected for the

hardware implementation. This choice is based on the fact that reducing FLOPs reduces the

inference time and power consumption.

The reason behind the selection of hardware platforms:

1. Custom architecture targeting embedded implementation of Neural Networks e.g.

Movidius NCS2.

2. High usability of ARM processors in embedded architectures e.g. Raspberry Pi 4.

3. High performance architecture, designed for parallel processing in general, and also

optimised for embedded applications: e.g. NVIDIA Jetson TX2 .

4. Support for execution of pre-trained Neural Network models coming from different

platforms without retraining.

4.4.1 Movidius Neural Compute Stick2 (NCS2)

Movidius NCS2 is a hardware accelerator designed by Intel for on-chip neural network

inference especially CNNs, equipped with Intel Movidius MyriadX Vision Processing Unit

(VPU), it contains 16 SHAVE cores (Streaming Hybrid Architecture Vector Engine) [116],
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Fig. 4.7 Implementation Flow
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and a dedicated hardware neural network accelerator. It requires a host to flash the neural

network, and also to feed it with data and invoke the inference to get the results back via the

USB 3.0 port. The host can be a Linux, Windows or Mac Based machine. To achieve these

tasks, Intel provides OpenVINO: Open Visual Inference and Neural network Optimisation

Toolkit, a cross platform toolkit that enables deep learning inference and easy heterogeneous

execution across multiple Intel® hardware (VPU, GPU, CPU, FPGA). Optimisation offered

by OpenVINO are: Batch-Normalisation and Scale-Shift, linear operations merge and linear

operations fusion. Details are mentioned in [117].

4.4.2 Jetson TX2

NVIDIA’s Jetson TX2 [118] is a power-efficient embedded AI computing device, designed

mainly for edge AI, belongs to Pascal™-family GPU, loaded with 8 GB of memory and 59.7

GB/s of memory bandwidth. In this experiment we used TensorFlow [113] for the inference,

as well as NVIDIA TensorRT [119] under Ubuntu OS. TensorFlow is an open source end-

to-end machine learning platform, while TensorRT is a platform for high-performance deep

learning inference dedicated for NVIDIA hardware, It includes a deep learning inference

optimizer and a runtime that delivers low latency and high-throughput for deep learning

inference applications.

As an optimisation for TensorFlow, TensorFlow Lite (TFLite) [120] is an open source

deep learning framework for on-device inference. The same TensorFlow model can be

converted into TFLite model. To perform an inference with a TFLite model, The TFLite

interpreter is required, which uses a static graph ordering and a custom (less-dynamic)

memory allocator to ensure minimal load, initialization, and execution latency [120], also

reducing weights’ precision e.g. floating point, vs fixed point precision without affecting the

accuracy.
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4.4.3 ARM

As for the implementation on ARM architecture, we used Raspberry Pi 4, equipped with

a Quad core Cortex-A72 (ARM v8) 64-bit System on Chip (SoC) @ 1.5 GHz and 4 GB

RAM. For the inference on this hardware, we used TFLite runtime library(interpreter), under

Ubuntu OS.

For all the mentioned platforms, both power consumption and inference time were

calculated. The inference time was calculated by averaging 110 inferences, which correspond

to the test set size. As for the power consumption, two methods were used:

1. Using provided APIs in Jetson TX2, which provides readings about voltage, power,

and input current to the GPU.

2. By using external USB multimeter, connected in serial to the power source for both

Raspberry Pi, and the Movidius NCS2.

Table 4.2 Accuracy results for 10 runs on Model 2, Fold 4

Trials Accuracy (%)

1 96.36
2 92.73
3 94.55
4 91.82
5 97.27
6 93.64
7 92.73
8 95.45
9 96.36

10 92.73
Average ± Stdev 94.36 ± 1.904 %
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4.5 Results And Discussion

In this work, we did achieve a better accuracy in tactile data classification using CNN, com-

pared to the original model obtained in [86], even by resizing the input therefore decreasing

the number of trainable parameters.The chosen models reduced the number of trainable

parameters by a maximum of 21.77% of original trainable parameters, and also increased the

accuracy by a maximum of 1.28%, noting that Model5 (24×32×1) with 0.8% less accuracy

than the original model, has 42% less trainable parameters. Choosing the right model depends

on the implementation, i.e. a trade-off between accuracy and hardware complexity should

take place: if the best accuracy is targeted then Model 2 should be selected; while the choice

of Model 3 would be when less hardware complexity is needed but with a small accuracy

degradation. Reducing the input size while still keeping the same, or even better accuracy

can be explained in three points:

1. The random initialization of the weights may lead in different runs to different accuracy

results, e.g. 10 different runs for training the fold 4 of Model 2, with same hyper-

parameters give different results as shown in Table 4.2, which shows an average of

94.36% and a standard deviation of 1.904%.

2. Random selection of batch data, and data shuffling will affect also the update of the

weights and make them different from a training to another.

3. Features extraction process achieved by CNN is error-resilient [121]. A CNN can still

extract features even with some manipulation of the input image. This is one of the

reasons of data augmentation [122] when training neural networks, which is to let

the neural network learn the features even from augmented images (scaled, rotated,

flipped, etc..) instead of learning only the samples in the original dataset . In our case

the features are still detectable even after image resize, as shown in Figure 4.4.

According to Table 4.3 and Table 4.4, the smallest power consumption and inference

time were obtained using TensorRT under Jetson TX2, which is 153 mW dynamic power
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Table 4.3 Comparison of the inference time between models

Platform Inference time (ms)
Hardware Software Model 1 Model 2 Model 3

Jetson TX2 TensorRT 5.5597 5.2905 5.919
TensorFlow 6.2943 5.4691 5.946

TFLite 1.3384 1.2181 1.2445
Core i7 Matlab 3.245 2.6139 2.4715

Movidius NCS2 OpenVINO 1.9 1.9 1.86
Raspberry Pi4 TFLite 1.615 1.473 1.21

within 5.29 ms as inference time, implies 0.809e−3 Joules dynamic energy. While the most

dynamic energy consumption was for the Intel Movidius NCS2, 1.9 ms×800 mW =1.52e−3

Joules as shown in Table 4.5. Regarding the power consumption, since the neural network

used, is small compared to the hardware capacity, the power consumption was almost the

same for the three models, noting that the accuracy on the USB power meter, is on 10 mW

scale, so that a difference less than 10 mW between two measurements, cannot be detected

using this instrument.

Table 4.4 Power consumption

Platform Current (mA) Voltage (V) Consumed Power (mW)
Hardware Software Static Total Static Total Dynamic

Jetson TensorRT 8 16 19.072 152 305 153
TensorFlow 8 16 19.072 152 305 153

Movidius NCS2 OpenVINO - 160 5 - 800 800
Raspberry Pi4 TFLite 560 700 5 2800 3500 700
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Table 4.5 Energy consumption

Platform Energy consumption ( µJ)
Hardware Software Model 1 Model 2 Model 3

Jetson TX2 TensorRT 850.6341 809.4465 905.607
TensorFlow 963.0279 836.7723 909.738

Movidius NCS2 OpenVINO 1520 1520 1488
Raspberry Pi4 TFLite 1130.5 1031.1 847

4.6 Conclusions

This chapter presented the implementation of smart tactile sensing system based on embed-

ded CNN approach. The proposed model has optimized a state of art model proposed in

[86] by reducing the input data size. Experimental results have shown comparable results in

terms of accuracy after reducing the size from (28×50) to (26×47) and (28×40). The hard-

ware implementation on different hardware platforms namely Movidius NCS2, NVIDIA’s

Jetson TX2, and Cortex-A72 (ARM v8) have been provided. The proposed models have

shown better performance on embedded hardware platforms when time inference has been

compared. Power consumption has also been measured and compared among different

platforms. Targeting portable tactile sensing systems, the proposed work has demonstrated

the feasibility of integrating machine learning methods on embedded hardware platform to

enable intelligence for such system. This may pave the way for the smart tactile sensing

systems to be applied in prosthetics and robotics.





Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have proposed different AI based solutions for tactile data processing in an

embedded environment. The focus was on deep learning, with a feasibility study concerning

the power consumption and latency on different embedded commercial hardware platforms

e.g. Jetson TX2, Intel Neural Compute Stick 2 and Raspberry PI. Two case studies were

selected, one on touch modality classification, and the other on tactile object recognition. The

main difference between these two case studies, is the sensor size and data type i.e. static vs

dynamic. In the tactile object recognition problem mentioned in Chapter 4, the sensory array

is large enough (28×50) to give a heat-map for an object, and static data is considered, while

in the touch modality classification problem, data is dynamic (tensorial), and the sensory

array was small (4×4).

To solve the touch modality classification, two approaches were considered, one is to

transform tensorial data into static data and then apply traditional CNNs trained on natural

images through transfer learning into synthetic tactile images, and the other is to employ

solutions where time is considered as a dimension e.g. Recursive Neural Networks, as shown

in Chapter 3, after proposing a data organisation and subsampling that reduced -together with
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the proposed solution- the FLOPs up to 99.98% and the model size by 89.3% with respect to

SoA solutions on the same dataset, as well as a high accuracy up to 84.23%.

One important property in this solution, is 1) the processing can start once a single

reading from the sensor array is ready, which was not present in the previous SoA solutions

for this problem, and 2) a parallelism between the data reading and processing can be done

by a simple pipeline as explained in Figure 3.1.c. On the other hand, it is proven that it is

possible to achieve a real time tactile application with a latency less than 2ms, and an energy

consumption of less than 1000 µJ as shown in Table 4.5. For more practical application,

a tactile system equipped with a 1000 mAh, 5 V battery (two times less power than most

smartphone batteries), and a Jetson TX2 GPU device executing the Model3 of the tactile

object recognition mentioned in Chapter 4. The time duration this power bank can last, is

calculated according to the following equations:

TotalEnergyPowerbank(T E pb)= 1000 mAh×5 V= 5000 mWh= 5 Wh= 5×3600 J= 18000 J

(5.1)

TotalLi f eTime=T E pb/SingleIn f erenceTotalEnergy∗= 18000 J/1000 µJ= 18×106 in f erences

(5.2)

*The total energy per inference is less than 1000 J , we considered this number for simplifica-

tion. If we consider that the system consumes at worst in sleep time, the same energy con-

sumed while executing the inference. The system will last for 5.92 ms ×18×106 = 106560

s = 29.6 h.
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5.2 Directions for Future Research

Having chosen an effective algorithm for touch modality classification, the final goal is:

1. To embed the LSTM/GRU based solution on a custom-made circuit, including the

tactile sensors and the interface-electronics, to be embodied in the prosthetic or other

tactile-based solutions. This circuit will endorse up to 16 sensors, Data Acquisition,

Analog-to-Digital conversion, and the proposed algorithm, the pre-processing will be

done on hardware also. This work has already started with an [123] architecture, the

proposed solution in Chapter 3 is suitable for such interface, because it can fit easily

within its memory and computation limits.

2. In a further step, energy-efficient techniques introduced in Subsection 1.2.2 should be

applied in order to achieve more reduction in the power consumption.

3. Different problems should be addressed, not only touch modality classification, in

order to mimic as much as possible the functionality of real human-skin.

Finally, a critical point concerning all the aforementioned solutions for touch modality

classification, is that all the proposed solutions require all the data to be ready in order to

give a decision (i.e. a classification output), while in real human-skin, people are able to

identify objects sometime by a single touch, and sometime by palpation or continuous touch.

This kind of decision should be supported by tactile skin processing algorithm, where at

each instant T a local decision can be made, and at each time interval [T,T + interval] a

cumulative global decision is done as well. The cost of pre-processing should be studied as

well.





References

[1] Ravinder S. Dahiya, Philipp Mittendorfer, Maurizio Valle, Gordon Cheng, and
Vladimir J. Lumelsky. Directions Toward Effective Utilization of Tactile Skin: A
Review. IEEE Sensors Journal, 13(11):4121–4138, November 2013.

[2] G. Cheng, E. Dean-Leon, F. Bergner, J. R. G. Olvera, Q. Leboutet, and P. Mittendor-
fer. A Comprehensive Realization of Robot Skin: Sensors, Sensing, Control, and
Applications. Proceedings of the IEEE, pages 1–18, 2019.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[4] Marta Franceschi, Lucia Seminara, Strahinja Dosen, Luigi Pinna, H Fares, Moustafa
Saleh, Maurizio Valle, and Dario Farina. Live demonstration: Electrotactile feedback
from an electronic skin through flexible electrode matrix. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–1. IEEE, 2018.

[5] Mohamad Alameh, Moustafa Saleh, Flavio Ansovini, Hoda Fares, Ali Ibrahim, Marta
Franceschi, Lucia Seminara, Maurizio Valle, Strahinja Dosen, and Dario Farina. Live
demonstration: System based on electronic skin and cutaneous electrostimulation
for sensory feedback in prosthetics. In 2018 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pages 1–1. IEEE, 2018.

[6] M. Saleh, A. Ibrahim, F. Ansovini, Y. Mohanna, and M. Valle. Wearable system for
sensory substitution for prosthetics. In 2018 New Generation of CAS (NGCAS), pages
110–113, 2018.

[7] Moustafa Saleh, Yahya Abbass, Ali Ibrahim, and Maurizio Valle. Experimental
assessment of the interface electronic system for pvdf-based piezoelectric tactile
sensors. Sensors, 19(20):4437, 2019.

[8] J. Russell Stuart and Peter Norvig. Artificial intelligence: a modern approach. Prentice
Hall, 2009.

[9] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelligence. 1998.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, September 1995. Company: Springer Distributor: Springer Institution:
Springer Label: Springer Number: 3 Publisher: Kluwer Academic Publishers.

[11] TM Cover and P Hart. Nearest neighbor decision rule. In IEEE Transactions on
Information Theory, volume 12,2, pages 272–+. IEEE-INST ELECTRICAL ELEC-
TRONICS ENGINEERS INC 345 E 47TH ST, NEW YORK, NY . . . , 1966.



70 References

[12] S. A. Dudani. The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-6(4):325–327, April 1976. Conference
Name: IEEE Transactions on Systems, Man, and Cybernetics.

[13] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

[14] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics, 21(3):660–674, 1991.

[15] Daniel Svozil, Vladimír Kvasnicka, and Jiri Pospichal. "introduction to multi-layer
feed-forward neural networks". Chemometrics and Intelligent Laboratory Systems,
39(1):43 – 62, 1997.

[16] Thomas P Vogl, JK Mangis, AK Rigler, WT Zink, and DL Alkon. Accelerating the
convergence of the back-propagation method. Biological cybernetics, 59(4-5):257–
263, 1988.

[17] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi.
A survey of deep neural network architectures and their applications. Neurocomputing,
234:11–26, 2017.

[18] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Gang Wang, and Jianfei Cai. Recent advances in
convolutional neural networks. Pattern Recognition, 77:354–377, 2018. Publisher:
Elsevier.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[20] Jon Gauthier. Conditional generative adversarial nets for convolutional face genera-
tion. Class Project for Stanford CS231N: Convolutional Neural Networks for Visual
Recognition, Winter semester, 2014(5):2, 2014.

[21] Xinyuan Chen, Chang Xu, Xiaokang Yang, Li Song, and Dacheng Tao. Gated-gan:
Adversarial gated networks for multi-collection style transfer. IEEE Transactions on
Image Processing, 28(2):546–560, 2018.

[22] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural archi-
tecture search. arXiv preprint arXiv:1905.01392, 2019.

[23] Lorenzo Cunial, Ahmet Erdem, Cristina Silvano, Mirko Falchetto, Andrea C Ornstein,
Emanuele Plebani, Giuseppe Desoli, and Danilo Pau. Parallelized convolutions for
embedded ultra low power deep learning soc. In 2018 IEEE 4th International Forum
on Research and Technology for Society and Industry (RTSI), pages 1–4. IEEE, 2018.

[24] Lei Clifton, David A Clifton, Marco AF Pimentel, Peter J Watkinson, and Lionel
Tarassenko. Gaussian process regression in vital-sign early warning systems. In 2012
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 6161–6164. IEEE, 2012.



References 71

[25] Zidong Du, Krishna Palem, Avinash Lingamneni, Olivier Temam, Yunji Chen, and
Chengyong Wu. Leveraging the error resilience of machine-learning applications for
designing highly energy efficient accelerators. In 2014 19th Asia and South Pacific
design automation conference (ASP-DAC), pages 201–206. IEEE, 2014.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,
May 2017.

[27] Ali Ibrahim and Maurizio Valle. Real-time embedded machine learning for tensorial
tactile data processing. IEEE Transactions on Circuits and Systems I: Regular Papers,
65(11):3897–3906, 2018.

[28] Boris Murmann, Daniel Bankman, Elaina Chai, Daisuke Miyashita, and Lita Yang.
Mixed-signal circuits for embedded machine-learning applications. In 2015 49th
Asilomar conference on signals, systems and computers, pages 1341–1345. IEEE,
2015.

[29] Vivienne Sze. Designing hardware for machine learning: The important role played
by circuit designers. IEEE Solid-State Circuits Magazine, 9(4):46–54, 2017.

[30] Mario Osta, Mohamad Alameh, Hamoud Younes, Ali Ibrahim, and Maurizio Valle.
Energy efficient implementation of machine learning algorithms on hardware plat-
forms. In 2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pages 21–24. IEEE, 2019.

[31] Simone Benatti, Fabio Montagna, Victor Kartsch, Abbas Rahimi, Davide Rossi, and
Luca Benini. Online learning and classification of emg-based gestures on a parallel
ultra-low power platform using hyperdimensional computing. IEEE transactions on
biomedical circuits and systems, 13(3):516–528, 2019.

[32] M. Osta, A. Ibrahim, M. Magno, M. Eggimann, A. Pullini, P. Gastaldo, and M. Valle.
An Energy Efficient System for Touch Modality Classification in Electronic Skin
Applications. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 2019-May, pages 1–4. IEEE, may 2019.

[33] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. ACM SIGARCH Computer
Architecture News, 44(3):367–379, 2016.
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Appendix B

Touch Classfication Demonstration

Codes

B.1 GUI code

/ / FORM3 CODE
u s i n g System ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g System . ComponentModel ;
u s i n g System . Data ;
u s i n g System . Drawing ;
u s i n g System . IO . P o r t s ;
u s i n g System . Linq ;
u s i n g System . Text ;
u s i n g System . Windows . Forms ;

namespace Devcorp . ColorSpaceSample
{
p u b l i c p a r t i a l c l a s s Form3 : Form
{
S e r i a l P o r t sp ;
s t a t i c c h a r AMP = ( c h a r ) 1 2 ;
c h a r [ ] SIM_ON = ">ON< " . ToCharArray ( ) ; / / >T< t r i g g e r
c h a r [ ] SIM_OFF = ">OFF < " . ToCharArray ( ) ;
c h a r [ ] CMD_SD = ">SD ; xxxx < " . ToCharArray ( ) ;
c h a r [ ] SIM_TRIGGER = ">T < " . ToCharArray ( ) ;
c h a r [ ] cmdC1 = { ’ > ’ , ’C ’ , ( c h a r ) 1 , ’ ; ’ ,

AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
’ < ’} ; / / e l e c t o d e 1

c h a r [ ] cmdC2 = { ’ > ’ , ’C ’ , ( c h a r ) 2 , ’ ; ’ ,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
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AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
’ < ’} ; / / e l e c t o d e 2

s t a t i c c h a r AMP_Z = ( c h a r ) 0 ;
c h a r [ ] cmdC1_ZERO = { ’ > ’ , ’C ’ , ( c h a r ) 1 , ’ ; ’ ,

AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
’ < ’} ;

c h a r [ ] cmdC2_ZERO = { ’ > ’ , ’C ’ , ( c h a r ) 2 , ’ ; ’ ,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
’ < ’} ;

c h a r [ ] cmdSA = { ’ > ’ , ’S ’ , ’A’ , ’ ; ’ ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , ’ < ’} ;
/ / f o r f o u r e l e c t r o d e s t o g e t h e r / / s e l e c t e d c h a n n e l s

c h a r [ ] cmdSAc = { ’ > ’ , ’S ’ , ’A’ , ’ ; ’ ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF ,
0xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , ’ < ’} ;

c h a r [ ] Tamp ={AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP} ;

c h a r [ ] cmdSF = ">SF ; HL< " . ToCharArray ( ) ;
c h a r [ ] cmdSW = ">SW; HL< " . ToCharArray ( ) ;

p u b l i c Form3 ( )
{

CMD_SD[ 4 ] = ( c h a r ) 0 ;
CMD_SD[ 5 ] = ( c h a r ) 0 ;
CMD_SD[ 6 ] = ( c h a r )0 x13 ;
CMD_SD[ 7 ] = ( c h a r )0 x88 ;

/ /
cmdSF [ 4 ] = ( c h a r ) 0 ;
cmdSF [ 5 ] = ( c h a r ) 5 0 ;

/ /
cmdSW[ 4 ] = ( c h a r )0 x01 ;
cmdSW[ 5 ] = ( c h a r )0 x00 ;

/ /
/ / c h a r cmdC2 [ 2 1 ] = ">Cf ; xxxxxxxxxxxxxxxx < " ; / / e l e c t r o d e 2

/ /
I n i t i a l i z e C o m p o n e n t ( ) ;

}
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p r i v a t e vo id b t n S e r i a l _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

sp = new S e r i a l P o r t ( c b o P o r t s . S e l e c t e d V a l u e . T o S t r i n g ( ) ,
115200 , P a r i t y . None , 8 , S t o p B i t s . One ) ;

/ /
sp . Da taRece ived += S e r i a l D a t a R e c e i v e d ;

i f ( ! sp . IsOpen )
t r y
{

sp . Open ( ) ;
b t n S e r i a l . BackColor = Colo r . Green ;

}
c a t c h ( E x c e p t i o n )
{

b t n S e r i a l . BackColor = Colo r . Red ;
MessageBox . Show ( " E r r o r open ing p o r t " ) ;

}
e l s e MessageBox . Show ( " POrt a l r e a d y open ! ! " ) ;
/ / b t n S e r i a l . BackColor = Colo r . Green ;

}
d e l e g a t e vo id S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( s t r i n g t e x t , Co lo r c o l o r ) ;

p r i v a t e vo id S e r i a l D a t a R e c e i v e d ( o b j e c t s ende r ,
S e r i a l D a t a R e c e i v e d E v e n t A r g s e )
{

S e r i a l P o r t sp = ( S e r i a l P o r t ) s e n d e r ;
s t r i n g s = sp . R e a d E x i s t i n g ( ) ; ;
u p d a t e G r i d S e t T e x t ( s , Co lo r . Green ) ;
/ / I n v o k e R e q u i r e d r e q u i r e d compares t h e t h r e a d ID of t h e
/ / c a l l i n g t h r e a d t o t h e t h r e a d ID of t h e c r e a t i n g t h r e a d .
/ / I f t h e s e t h r e a d s a r e d i f f e r e n t , i t r e t u r n s t r u e .

}

p r i v a t e vo id u p d a t e G r i d S e t T e x t ( s t r i n g t e x t , Co lo r c o l o r = new Colo r ( ) )
{

i f ( t h i s . l i s t V i e w 1 . I n v o k e R e q u i r e d )
{

S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e d ;
d= new S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( u p d a t e G r i d S e t T e x t ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { t e x t , c o l o r } ) ;

}
e l s e
{

i f ( t e x t . EndsWith ( " < " ) )
t e x t = t e x t + " \ r \ n " ;

L i s t V i e w I t e m l v i t e m = t h i s . l i s t V i e w 1 . I t e m s . Add ( t e x t ) ;
l v i t e m . F o r e C o l o r = c o l o r ;
l i s t V i e w 1 . S c r o l l a b l e = t r u e ;

/ / add o u t p u t t o f i l e
}

}

p r i v a t e vo id Form3_Load ( o b j e c t s ende r , EventArgs e )
{

c b o P o r t s . Da taSource = S e r i a l P o r t . GetPortNames ( ) ;

Da taGr idViewTextBoxCel l t x t = new DataGr idViewTextBoxCel l ( ) ;
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f o r ( i n t i = 0 ; i < 1 6 ; i ++)
{

dgvChanne ls . Rows . Add ( t x t ) ;
dgvChanne ls . Rows [ i ] . C e l l s [ 0 ] . Value = i +1 ;
dgvChanne ls . Rows [ i ] . C e l l s [ 1 ] . Value = f a l s e ;
dgvChanne ls . Rows [ i ] . C e l l s [ 2 ] . Value = 0 ;

}

dgvChanne ls . AllowUserToDeleteRows = f a l s e ;
dgvChanne ls . AllowUserToAddRows = f a l s e ;

}

p r i v a t e vo id btnFREQ_Click ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP ( cmdSF ) ;
}

p r i v a t e vo id wr i teToSP ( c h a r [ ] Command )
{ i f ( sp == n u l l )

{
MessageBox . Show ( " P o r t n o t Open ! " ) ;
r e t u r n ;

}
i f ( ! sp . IsOpen )
{

MessageBox . Show ( " P o r t n o t Open ! " ) ;
r e t u r n ;

}

sp . Wr i t e ( Command , 0 , Command . Length ) ;
u p d a t e G r i d S e t T e x t ( new s t r i n g ( Command )+ " \ r \ n " ) ;

}

p r i v a t e vo id b t n P u l s e w i d t h _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP (cmdSW ) ;
}

p r i v a t e vo id btnCURRENT_Click ( o b j e c t s ende r , EventArgs e )
{

c h a r [ ] cmdc1temp = cmdC1_ZERO ;
c h a r [ ] cmdc2temp = cmdC2_ZERO ;
/ / i n t p o s i t i o n = 1 ;
/ / cmdc1temp [4 + p o s i t i o n ] = ( c h a r ) 3 0 ;
DataGr idViewTextBoxCel l c h k b o x C e l l ;

f o r ( i n t i = 0 ; i < 1 6 ; i ++)
{

c h k b o x C e l l = ( DataGr idViewTextBoxCel l ) ( dgvChanne l s . Rows [ i ] . C e l l s [ 2 ] ) ;
cmdc1temp [4 + i ] = ( c h a r ) ( I n t 3 2 . P a r s e ( c h k b o x C e l l . Value . T o S t r i n g ( ) ) ) ;

}

wr i teToSP ( cmdc1temp ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 3 ) ;
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/ / cmdc2temp [4 + 20 −16] = ( c h a r ) 3 0 ;
/ / wr i teToSP ( cmdc2temp ) ;

wr i teToSP ( cmdC2_ZERO ) ;

}

p r i v a t e vo id btnCHANNELS_Click ( o b j e c t s ende r , EventArgs e )
{

/ / f o r ( i n t j =0 ; j <cmdSAc . Length −5; j ++)
/ / cmdSAc [4 + j ] = ( c h a r ) 2 5 5 ;
cmdSAc = cmdSA ;
DataGridViewCheckBoxCel l c h k b o x C e l l ;
f o r ( i n t i = 0 ; i < 1 6 ; i ++)
{

c h k b o x C e l l = ( DataGridViewCheckBoxCel l ) ( dgvChanne l s . Rows [ i ] . C e l l s [ 1 ] ) ;
cmdSAc [4 + i ] = ( c h a r ) ( ( ( Boolean ) c h k b o x C e l l . Value ? i : 2 5 5 ) ) ;
/ / i = ( c h a r ) 0 ;
/ / cmdSAc [4 + i ] = i ;

}
/ / cmdSAc [4+20] = ( c h a r ) 2 0 ;

wr i teToSP ( cmdSAc ) ;
}

p r i v a t e vo id btnON_Click ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP (SIM_ON ) ;
}

p r i v a t e vo id btnTRIGGER_Click ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP ( SIM_TRIGGER ) ;
}

p r i v a t e vo id btnOFF_Cl ick ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP ( SIM_OFF ) ;
}

p r i v a t e vo id l i s t V i e w 1 _ S e l e c t e d I n d e x C h a n g e d ( o b j e c t s ende r , EventArgs e )
{

}

p r i v a t e vo id CLEAR_Click ( o b j e c t s ende r , EventArgs e )
{

l i s t V i e w 1 . I t e m s . C l e a r ( ) ;
}

p r i v a t e vo id b u t t o n 1 _ C l i c k _ 1 ( o b j e c t s ende r , EventArgs e )
{

/ / wr i teToSP ( txtCommand . Text . Trim ( ) . ToCharArray ( ) ) ;
wr i teToSP (SIM_ON ) ;

/ / wr i teToSP ( cmdSF ) ;

c h a r [ ] p a c k e t = new c h a r [ 1 1 1 ] ;
f o r ( i n t j = 0 ; j < 6 9 ; j ++)

p a c k e t [ j ] = cmdSAc [ j ] ;

f o r ( i n t j = 0 ; j < 2 1 ; j ++)
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p a c k e t [ j + 69] = cmdC1_ZERO [ j ] ;
f o r ( i n t j = 0 ; j < 2 1 ; j ++)

p a c k e t [ j + 69 + 21] = cmdC2_ZERO [ j ] ;
/ /

wr i teToSP ( p a c k e t ) ;
}

p r i v a t e vo id btnRESET_Click ( o b j e c t s ende r , EventArgs e )
{

wr i teToSP ( cmdSA ) ; / / r e s e t a c t i v e c h a n n e l s
System . T h r e a d i n g . Thread . S l e e p ( 3 ) ;
/ / / FIRST TESTS WITH RESET C1 , C2 , SA
wri teToSP ( cmdC1_ZERO ) ;

/ / System . T h r e a d i n g . Thread . S l e e p ( 3 ) ;
wr i teToSP ( cmdC2_ZERO ) ;

/ /
/ / wr i teToSP ( cmdSA ) ; / / r e s e t a c t i v e c h a n n e l s

}

p r i v a t e vo id dgvChanne l s_Ce l lVa lueChanged ( o b j e c t s ende r , Da taGr idViewCe l lEven tArgs e )
{

DataGridView s e n d e r g r i d = ( DataGridView ) s e n d e r ;
i f ( s e n d e r g r i d . Rows . Count <= 0)

r e t u r n ;
i f ( s e n d e r g r i d . S e l e c t e d C e l l s [ 0 ] . ColumnIndex == 1) / / t h e checkbox
{

DataGridViewCheckBoxCel l c h k b o x C e l l = ( DataGridViewCheckBoxCel l ) ( s e n d e r g r i d . Rows [ s e n d e r g r i d . S e l e c t e d C e l l s [ 0 ] . RowIndex ] . C e l l s [ 1 ] ) ;

i f ( ( Boolean ) c h k b o x C e l l . Value == t r u e )
{

i f ( s e n d e r g r i d . Rows [ s e n d e r g r i d . S e l e c t e d C e l l s [ 0 ] . RowIndex ] . C e l l s [ 2 ] . Value . T o S t r i n g ( ) == " 0 " )
s e n d e r g r i d . Rows [ s e n d e r g r i d . S e l e c t e d C e l l s [ 0 ] . RowIndex ] . C e l l s [ 2 ] . Value = t x t D e f a u l t A m p s . Text ;

}
e l s e

s e n d e r g r i d . Rows [ s e n d e r g r i d . S e l e c t e d C e l l s [ 0 ] . RowIndex ] . C e l l s [ 2 ] . Value = 0 ;

}

}
}
}

/ / / / / / / / / / / / / / / / / / / / / / / /
/ / FORM
/ / / / / / / / / / / / / / /
u s i n g System ;
u s i n g System . Drawing ;
u s i n g System . Windows . Forms ;
u s i n g System . IO . P o r t s ;
u s i n g System . C o l l e c t i o n s ;
u s i n g System . IO ;
u s i n g System . Net . S o c k e t s ;

namespace Devcorp . ColorSpaceSample
{

p u b l i c p a r t i a l c l a s s Form2 : Form
{

S e r i a l P o r t s p B l u e t o o t h = n u l l ;
A r r a y L i s t p o i n t s ;
S e r i a l P o r t sp ;
c h a r [ ] r x B u f f e r ;
S t r e a m W r i t e r f s = new S t r e a m W r i t e r ( " o u t p u t . t x t " , f a l s e ) ;
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S t r e a m W r i t e r f s S h a p e ;
H a s h t a b l e s h a p e s = new H a s h t a b l e ( ) ;
S t r i n g L a s t L i n e = " " ;
So ck e t s o c k e t = new S ock e t ( Addres sFami ly . I n t e r N e t w o r k , SocketType . Dgram , P r o t o c o l T y p e . Udp ) ;
i n t [ ] e l e c t r o d e s = new i n t [ ] {11 ,6 ,11+16 ,6+16 ,

1 0 , 7 , 1 , 7+ 16 ,
9 , 8 , 2 , 8 + 1 6 ,
12 ,5 ,12+16 ,5+16 ,
13 ,4 ,13+16 , 4+16 ,
14 ,3 ,14+16 ,3+16} ;

p u b l i c Form2 ( )
{

p o i n t s = new A r r a y L i s t ( ) ;
r x B u f f e r = new c h a r [ 1 4 ] ;
I n i t i a l i z e C o m p o n e n t ( ) ;

/ / addShapes ( ) ;

/ / DataGridViewRow dr0 = new DataGridViewRow ( ) ;

/ / D a t a G r i d V i e w B u t t o n C e l l b = new D a t a G r i d V i e w B u t t o n C e l l ( ) ;
/ / i n t rowIndex = da taGr idView1 . Rows . Add ( b ) ;
/ / da taGr idView1 . Rows [ rowIndex ] . C e l l s [ 0 ] . Value = " name " ;
DataGr idViewTextBoxCel l c = new DataGr idViewTextBoxCel l ( ) ;
f o r ( i n t i = 0 ; i < 13+3; i ++)
{

da taGr idView1 . Rows . Add ( c ) ;
f o r ( i n t j = 0 ; j < 9+1; j ++)

da taGr idView1 . Rows [ i ] . C e l l s [ j ] . Value = " " ;

}
da taGr idView1 . EndEdi t ( ) ;

f o r ( i n t i = 0 ; i < 6 ; i ++)
{

da taGr idView2 . Rows . Add ( c ) ;
f o r ( i n t j = 0 ; j < 4 ; j ++)

da taGr idView2 . Rows [ i ] . C e l l s [ j ] . Value = ( e l e c t r o d e s [ j +4* i ] )%16;

}

da taGr idView2 . EndEdi t ( ) ;
}

p r i v a t e vo id S e r i a l D a t a R e c e i v e d ( o b j e c t s ende r , S e r i a l D a t a R e c e i v e d E v e n t A r g s e )
{

S e r i a l P o r t sp = ( S e r i a l P o r t ) s e n d e r ;
s t r i n g s = sp . ReadLine ( ) ; ;
u p d a t e G r i d S e t T e x t ( s ) ;
L a s t L i n e = s ;

/ / th row new Not Imp lemen tedExcep t ion ( ) ;
}

p r i v a t e vo id S e r i a l D a t a R e c e i v e d 2 ( o b j e c t s ende r , S e r i a l D a t a R e c e i v e d E v e n t A r g s e )
{

S e r i a l P o r t sp = ( S e r i a l P o r t ) s e n d e r ;
s t r i n g s = sp . ReadLine ( ) ; ;
u p d a t e G r i d S e t T e x t 2 ( s ) ;
L a s t L i n e = s ;

/ / th row new Not Imp lemen tedExcep t ion ( ) ;
}
p r i v a t e vo id u p d a t e G r i d S e t T e x t 2 ( s t r i n g t e x t D a t a )
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{

/ / I n v o k e R e q u i r e d r e q u i r e d compares t h e t h r e a d ID of t h e
/ / c a l l i n g t h r e a d t o t h e t h r e a d ID of t h e c r e a t i n g t h r e a d .
/ / I f t h e s e t h r e a d s a r e d i f f e r e n t , i t r e t u r n s t r u e .
i f ( t h i s . t x t O u t p u t . I n v o k e R e q u i r e d )
{

S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e d = new S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( u p d a t e G r i d S e t T e x t ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { t e x t D a t a } ) ;

}
e l s e
{

t h i s . t x t O u t p u t . AppendText ( t e x t D a t a ) ;
/ / add o u t p u t t o f i l e

}

c h a r [ ] d a t a = t e x t D a t a . ToCharArray ( ) ;
i n t x , y ;
f o r ( i n t i = 0 ; i < d a t a . Length −1; i ++)
{ i f ( d a t a [ i ] == 1)

{
x = ( i % 4) * 2 + 1 ;
y = ( i / 4 ) * 2 + 1 ;
Coord xy = new Coord ( x , y , 0 ) ;
upda teUI ( xy , f a l s e ) ;

}

}

}

d e l e g a t e vo id S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( s t r i n g t e x t ) ;
d e l e g a t e vo id C o o r d A r g R e t u r n i n g V o i d D e l e g a t e ( Coord xy , Boolean c l e a r ) ;
d e l e g a t e vo id V o i d R e t u r n i n g V o i d D e l e g a t e ( ) ;
p r i v a t e vo id u p d a t e G r i d S e t T e x t ( s t r i n g t e x t )
{

/ / I n v o k e R e q u i r e d r e q u i r e d compares t h e t h r e a d ID of t h e
/ / c a l l i n g t h r e a d t o t h e t h r e a d ID of t h e c r e a t i n g t h r e a d .
/ / I f t h e s e t h r e a d s a r e d i f f e r e n t , i t r e t u r n s t r u e .
i f ( t h i s . t x t O u t p u t . I n v o k e R e q u i r e d )
{

S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e d = new S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( u p d a t e G r i d S e t T e x t ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { t e x t } ) ;

}
e l s e
{

t h i s . t x t O u t p u t . AppendText ( t e x t ) ;
/ / add o u t p u t t o f i l e

}
/ / S t r i n g f o r m a t :
/ / " X:%d ;Y:%d;%d;%c;%c;%c;%c;%c;%c;%c;%c;%c;%c;%c;%c ; "
/ / , getX ( p o s i t i o n ) , getY ( p o s i t i o n ) , p o s i t i o n , RxBuffe r [ 4 ] , RxBuffe r [ 6 ] , RxBuffe r [ 8 ] , RxBuffe r [ 1 0 ] ,
/ / RxBuffe r [ 1 2 ] , RxBuffe r [ 1 4 ] , RxBuffe r [ 1 6 ] , RxBuffe r [ 1 8 ] , RxBuffe r [ 2 0 ] , RxBuffe r [ 2 2 ] , RxBuffe r [ 2 4 ] , RxBuffe r [ 2 6 ] )

i f ( t e x t . S t a r t s W i t h ( "X : " ) && t e x t . C o n t a i n s ( "Y : " ) )
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{
Coord xy = p a r s e X Y S t r i n g ( t e x t ) ;

/ / b y t e c a p a c i t a n c e = g e t C a p a c i t a n c e ( xy ) ;
upda teUI ( xy , f a l s e ) ;
i f ( ( xy . x != −1) && ( xy . y != −1))
{

p o i n t s . Add ( xy ) ;

S t r i n g [ ] t i m e d a t a = t e x t . S p l i t ( ’ , ’ ) ;

i f ( t i m e d a t a . Length > 1)
{

/ / f s . Wr i t e ( ( xy . x + ( xy . y − 1) * 9 ) + " " + t e x t . S p l i t ( ’ , ’ ) [ 1 ] ) ;
f s . Wr i t e ( ( xy . x + ( xy . y − 1) * 9 ) + " \ n " ) ;
f s . F l u s h ( ) ;

}
}

}
e l s e

{
u p d a t e U I M u l t i ( ) ;
/ / TODO h e r e we s h o u l d implement a n o t h e r method t o show t h e c a p a c i t a n c e

}
}

p r i v a t e b y t e g e t C a p a c i t a n c e ( Coord xy )
{

i n t c a p a c i t a n c e X = 0 ;
i n t c a p a c i t a n c e Y = 0 ;
/ / g e t e l e c t r o d e number f o r X
/ / g e t e l e c t r o d e number f o r y
s w i t c h ( xy . x )
{ / / t h e r x b u f f e r has a t i n d e x 0 t h e t o u c h r e g i s t e r v a l u e

c a s e 1 :
c a p a c i t a n c e X = r x B u f f e r [ 1 ] ;
b r e a k ;

c a s e 2 :
c a p a c i t a n c e X = ( r x B u f f e r [ 1 ] + r x B u f f e r [ 2 ] ) / 2 ;
b r e a k ;

c a s e 3 :
c a p a c i t a n c e X = r x B u f f e r [ 2 ] ;
b r e a k ;

c a s e 4 :
c a p a c i t a n c e X = ( r x B u f f e r [ 2 ] + r x B u f f e r [ 3 ] ) / 2 ;
b r e a k ;

c a s e 5 :
c a p a c i t a n c e X = r x B u f f e r [ 3 ] ;
b r e a k ;

c a s e 6 :
c a p a c i t a n c e X = ( r x B u f f e r [ 3 ] + r x B u f f e r [ 4 ] ) / 2 ;
b r e a k ;

c a s e 7 :
c a p a c i t a n c e X = r x B u f f e r [ 4 ] ;
b r e a k ;
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c a s e 8 :
c a p a c i t a n c e X = ( r x B u f f e r [ 4 ] + r x B u f f e r [ 5 ] ) / 2 ;
b r e a k ;

c a s e 9 :
c a p a c i t a n c e X = r x B u f f e r [ 5 ] ;
b r e a k ;

}

r e t u r n 255 ;
}

p r i v a t e vo id u p d a t e U I M u l t i ( )
{

/ * Here we w i l l r e a d xy from t h e t o u c h r e g i s t e r d i r e c t l y
we w i l l make t h e rows columns c a l c u l a t i o n
t h e r e s u l t s h o u l d be a m u l t i p o i n t xy
draw each p o i n t w i t h o u t c l e a r .
A c l e a r s h o u l d a p p e a r on new d a t a
TODO n e x t , make t h e c l e a r on t h e r e l e a s e t r i g g e r

* /
/ / th row new Not Imp lemen tedExcep t ion ( ) ;

}
p r i v a t e vo id c l e a r U I ( )
{

i f ( t h i s . da taGr idView1 . I n v o k e R e q u i r e d )
{

V o i d R e t u r n i n g V o i d D e l e g a t e d = new V o i d R e t u r n i n g V o i d D e l e g a t e ( c l e a r U I ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { } ) ;

}
e l s e
{

f o r ( i n t j = 0 ; j < 9 +1; j ++) / / columns
f o r ( i n t i = 0 ; i < 13 +3; i ++) / / rows

da taGr idView1 . Rows [ i ] . C e l l s [ j ] . S t y l e . BackColor = Colo r . White ;

f o r ( i n t j = 0 ; j < 4 ; j ++) / / columns
f o r ( i n t i = 0 ; i < 6 ; i ++) / / rows

da taGr idView2 . Rows [ i ] . C e l l s [ j ] . S t y l e . BackColor = Colo r . White ;

}
p o i n t s . C l e a r ( ) ;

}
p r i v a t e vo id upda teUI ( Coord xy , Boolean c l e a r )
{ / / t h i s i m p l e m e n t a t i o n does n o t p r o v i d e m u l t i _ t o u c h

/ / / i t r e t u r n s s i n g l e X and Y , f o r each Touch

i n t xs ; / / x f o r s t i m u l a t o r g r i d
i n t ys ; / / y f o r f o r s t i m u l a t o r g r i d

/ / I n v o k e R e q u i r e d r e q u i r e d compares t h e t h r e a d ID of t h e
/ / c a l l i n g t h r e a d t o t h e t h r e a d ID of t h e c r e a t i n g t h r e a d .
/ / I f t h e s e t h r e a d s a r e d i f f e r e n t , i t r e t u r n s t r u e .
i f ( t h i s . da taGr idView1 . I n v o k e R e q u i r e d )
{

C o o r d A r g R e t u r n i n g V o i d D e l e g a t e d = new C o o r d A r g R e t u r n i n g V o i d D e l e g a t e ( upda teUI ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { xy , c l e a r } ) ;

}
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i f ( c l e a r )
{

/ / f o r ( i n t j = 0 ; j < 9 ; j ++) / / columns
/ / f o r ( i n t i = 0 ; i < 1 3 ; i ++) / / rows
/ / da taGr idView1 . Rows [ i ] . C e l l s [ j ] . S t y l e . BackColor = Colo r . White ;
c l e a r U I ( ) ;

}
i f ( ( xy . x == 0) | | ( xy . y == 0 ) ) r e t u r n ;
e l s e
{

DataGr idViewTextBoxCel l c ;

/ / / end c l e a r
/ / /
/ / end i f
i f ( xy . x == −1)
{

/ / f o r ( i n t j = 0 ; j < 9 ; j ++) / / columns
/ / {
/ / c = ( DataGr idViewTextBoxCel l ) da taGr idView1 . Rows [ xy . y − 1 ] . C e l l s [ j ] ;
/ / / / Co lo r c o l o r = Colo r . FromArgb ( new Random ( ) . Next ( ) * 255 * 255 * 255 * 2 5 5 ) ;

/ / c . S t y l e . BackColor = Colo r . Red ;
/ / / / c . S t y l e . BackColor = c o l o r ;
/ / / / c . S t y l e . BackColor = Colo r . FromArgb ( ( i * 100 + j * 10) % 256 , ( i * 10 + j * 100) % 256 , (200 * i + j * 300) % 2 5 6 ) ;
/ / da taGr idView1 . EndEdi t ( ) ;
/ / }
r e t u r n ;

}

i f ( xy . y == −1)

{
/ / f o r ( i n t i = 0 ; i < 1 3 ; i ++) / / rows
/ / {
/ / c = ( DataGr idViewTextBoxCel l ) da taGr idView1 . Rows [ i ] . C e l l s [ xy . x − 1 ] ;
/ / c . S t y l e . BackColor = Colo r . Red ;
/ / da taGr idView1 . EndEdi t ( ) ;
/ / }
r e t u r n ;

}
e l s e

{
c = ( DataGr idViewTextBoxCel l ) da taGr idView1 . Rows [ xy . y − 1 ] . C e l l s [ xy . x − 1 ] ;
c . S t y l e . BackColor = Colo r . Red ;
da taGr idView1 . EndEdi t ( ) ;
/ / map t o xy s t i m u l a t o r
/ / map c o l o r xy s t i m u l a t o r

xs = ( i n t ) ( Math . F l o o r ( ( xy . x −1 ) / 2 . 5 ) ) ;
ys = ( i n t ) ( Math . F l o o r ( ( xy . y −1 ) / 2 . 6 6 ) ) ;
c = ( DataGr idViewTextBoxCel l ) da taGr idView2 . Rows [ ys ] . C e l l s [ xs ] ;
c . S t y l e . BackColor = Colo r . Green ;
da taGr idView2 . EndEdi t ( ) ;

r e t u r n ;

}

/ / do t h e r e s t f o r u p d a t i n g t h e v a l u e
}
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}

p r i v a t e s t r u c t Coord

{
p u b l i c i n t x , y ;
b y t e i n t e n s i t y ;

p u b l i c Coord ( i n t p1 , i n t p2 , b y t e i n t e n s )
{

x = p1 ;
y = p2 ;
i n t e n s i t y = i n t e n s ;

}

}
p r i v a t e Coord p a r s e X Y S t r i n g ( S t r i n g d a t a )
{

s t r i n g X = " 0 " ;
s t r i n g Y = " 0 " ;
/ / i n t d a t a p o s = 0 ;
Coord xy = new Coord ( 0 , 0 , 2 5 5 ) ;
/ / i f ( d a t a . S t a r t s W i t h ( "X:")&& d a t a . C o n t a i n s ( "Y : " ) )
/ / {

X = ( ( d a t a . S u b s t r i n g ( 2 ) ) . S p l i t ( ’ : ’ , ’Y’ , ’ ; ’ ) ) [ 0 ] ;
Y = d a t a . S u b s t r i n g ( d a t a . IndexOf ( ’Y’ ) + 2 ) . S p l i t ( ’ \ r ’ , ’ \ n ’ , ’ ; ’ ) [ 0 ] ;
s t r i n g YValueAndData = d a t a . S u b s t r i n g ( d a t a . IndexOf ( ’Y’ ) + 2 ) ;
s t r i n g [ ] RemainingData = YValueAndData . S u b s t r i n g ( YValueAndData . IndexOf ( ’ ; ’ ) + 1 ) . S p l i t ( ’ ; ’ ) ; / / / 999 ; neededData

r x B u f f e r = s t r i n g . J o i n ( " " , RemainingData ) . ToCharArray ( ) ;

/ / }
I n t 3 2 . T r y P a r s e (X, o u t xy . x ) ;
I n t 3 2 . T r y P a r s e (Y, o u t xy . y ) ;
r e t u r n xy ;

}

p r i v a t e Coord p a r s e H e x S t r i n g ( S t r i n g d a t a )
{

Coord xy = new Coord ( ) ;

r e t u r n xy ;

}
p r i v a t e vo id b u t t o n 1 _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

/ / da taGr idView1 . Rows [ 0 ] . C e l l s [ 0 ] . Value = new Bu t ton ( ) ;
Da taGr idViewTextBoxCel l c ;
f o r ( i n t i = 0 ; i < 13+3; i ++)
{

f o r ( i n t j = 0 ; j < 8+1; j ++)
{

c = ( DataGr idViewTextBoxCel l ) da taGr idView1 . Rows [ i ] . C e l l s [ j ] ;
/ / Co lo r c o l o r = Colo r . FromArgb ( new Random ( ) . Next ( ) * 255 * 255 * 255 * 2 5 5 ) ;

c . S t y l e . BackColor = Colo r . FromArgb ( ( i * 100 + j * 10) % 256 , ( i * 10 + j * 100) % 256 , (200 * i + j * 300) % 2 5 6 ) ;
}
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}
da taGr idView1 . EndEdi t ( ) ;

}

p r i v a t e vo id b t n S e r i a l _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

sp = new S e r i a l P o r t ( c b o P o r t s . S e l e c t e d V a l u e . T o S t r i n g ( ) , 115200 , P a r i t y . None , 8 , S t o p B i t s . One ) ;
i f ( ! chkpacketNew . Checked )
{

sp . Da taRece ived += S e r i a l D a t a R e c e i v e d ;
sp . Da taRece ived −= S e r i a l D a t a R e c e i v e d 2 ;

}
e l s e
{
sp . Da taRece ived += S e r i a l D a t a R e c e i v e d 2 ;

sp . Da taRece ived −= S e r i a l D a t a R e c e i v e d ;
}
i f ( ! sp . IsOpen )

t r y
{

sp . Open ( ) ;
b t n S e r i a l . BackColor = Colo r . Green ;

}
c a t c h ( E x c e p t i o n )
{

b t n S e r i a l . BackColor = Colo r . Red ;
MessageBox . Show ( " E r r o r open ing p o r t " ) ;

}
e l s e MessageBox . Show ( " POrt a l r e a d y open ! ! " ) ;
/ / b t n S e r i a l . BackColor = Colo r . Green ;

}

p r i v a t e i n t b i t R e a d ( i n t number , i n t p o s i t i o n )
{

/ / we assume i t i s 16 b i t p o s i t i o n
/ / r e t u r n ( ( number << (16 − p o s i t i o n ) ) >> 16) ;
r e t u r n ( ( number & (0 x0001 << p o s i t i o n ) ) >> p o s i t i o n ) ;

}

p r i v a t e vo id b u t t o n 2 _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

f s S h a p e = new S t r e a m W r i t e r ( " shape . t x t " , f a l s e ) ;
i f ( ( L a s t L i n e . S p l i t ( ’ ; ’ , ’ , ’ ) ) . Length < 3)

{
t e x t Bo x 2 . Text = " Shape Not Found " ;
f s S h a p e . Wr i t e ( " 0 " ) ;
f s S h a p e . C lose ( ) ;
r e t u r n ;

}
i n t d a t a = I n t 3 2 . P a r s e ( ( L a s t L i n e . S p l i t ( ’ ; ’ , ’ , ’ ) ) [ 2 ] ) ;
t e x t Bo x 2 . Text = ( L a s t L i n e . S p l i t ( ’ ; ’ , ’ , ’ ) ) [ 2 ] ;
i f ( ! s h a p e s . Conta insKey ( d a t a ) )
{

t e x t Bo x 2 . Text = " Shape Not Found " ;
f s S h a p e . Wr i t e ( " 0 " ) ;
f s S h a p e . C lose ( ) ;

}
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e l s e
{ s t r i n g shapeCode ;

t e x t Bo x 2 . Text = s h a p e s [ d a t a ] . T o S t r i n g ( ) ;
i f ( t e x t B o x 2 . Text . C o n t a i n s ( " i r c l e " ) )

shapeCode = " 1 " ;
e l s e

shapeCode = " 2 " ;
f s S h a p e . Wr i t e ( shapeCode ) ;
f s S h a p e . C lose ( ) ;

}
/ / i n t d a t a = I n t 3 2 . P a r s e ( t e x t B o x 2 . Text ) ;
/ / i n t newData = d a t a ;
/ / i n t i =0 ;
/ / Coord p t = new Coord ( 0 , 0 , 2 5 5 ) ;
/ / upda teUI ( pt , t r u e ) ;
/ / w h i l e ( ( newData != 0) && ( i <255))
/ / {
/ / p t = new Coord ( 0 , 0 , 2 5 5 ) ;
/ / i ++;
/ / p t . x= TouchPadHelper . getX ( da t a , o u t newData ) ;
/ / t x t O u t p u t . AppendText ( newData . T o S t r i n g ( ) + " \ r \ n " ) ;
/ / p t . y = TouchPadHelper . getY ( newData , o u t newData ) ;
/ / t x t O u t p u t . AppendText ( newData . T o S t r i n g ( ) + " \ r \ n " ) ;
/ / t x t O u t p u t . AppendText ( "X: " + p t . x + "Y: " + p t . y + " \ r \ n " ) ;
/ / i f ( p t . x > 0 && p t . y > 0)
/ / upda teUI ( pt , f a l s e ) ;
/ / }
/ / i = 0 ;
/ / w h i l e ( ( newData != 0) && ( i < 2 5 5 ) )
/ / {
/ / p t = new Coord ( 0 , 0 , 2 5 5 ) ;
/ / i ++;
/ / p t . x = TouchPadHelper . getX ( newData , o u t newData ) ;
/ / t x t O u t p u t . AppendText ( newData . T o S t r i n g ( ) + " \ r \ n " ) ;
/ / p t . y = TouchPadHelper . getY ( da t a , o u t newData ) ;
/ / t x t O u t p u t . AppendText ( newData . T o S t r i n g ( ) + " \ r \ n " ) ;
/ / t x t O u t p u t . AppendText ( "X: " + p t . x + "Y: " + p t . y + " \ r \ n " ) ;
/ / i f ( p t . x > 0 && p t . y > 0)
/ / upda teUI ( pt , f a l s e ) ;
/ / }

}

p r i v a t e boo l on lyOneLef t ( )
{

throw new Not Imp lemen tedExcep t ion ( ) ;
}

p r i v a t e vo id b t n C l e a r _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

c l e a r U I ( ) ;
t x t O u t p u t . C l e a r ( ) ;
f s . C lose ( ) ;
f s = new S t r e a m W r i t e r ( " o u t p u t . t x t " , f a l s e ) ;

}

p r i v a t e vo id Form2_Load ( o b j e c t s ende r , EventArgs e )
{

da taGr idView1 . Rows [ 0 ] . C e l l s [ 0 ] . S e l e c t e d = f a l s e ;
da taGr idView2 . Rows [ 0 ] . C e l l s [ 0 ] . S e l e c t e d = f a l s e ;
c b o P o r t s . Da taSource = S e r i a l P o r t . GetPortNames ( ) ;
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}

p r i v a t e vo id b u t t o n 3 _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

i f ( p o i n t s . Count > 2)
{

Coord p t 1 = ( Coord ) p o i n t s [ 0 ] ;
Coord p t 2 = ( Coord ) p o i n t s [ p o i n t s . Count − 1 ] ;
i f ( ( Math . Abs ( p t 1 . x − p t 2 . x ) <= 1) && ( Math . Abs ( p t 1 . y − p t 2 . y ) > 2 ) )
{

t x t O u t p u t . AppendText ( " \ r \ n V e r t i c a l l i n e " ) ;
/ / s l o p e can be i n f i n i t e

}
e l s e
i f ( ( Math . Abs ( p t 1 . y − p t 2 . y ) <= 1) && ( Math . Abs ( p t 1 . x − p t 2 . x ) > 2 ) )
{

t x t O u t p u t . AppendText ( " \ r \ n H o r i z o n t a l l i n e " ) ;
/ / r e t u r n ; we can g e t t h e s l o p e

}

e l s e
{

do ub l e s l o p e = g e t S l o p e ( ) ;
t x t O u t p u t . AppendText ( " \ r \ n " ) ;
t x t O u t p u t . AppendText ( "LSM s l o p e =" + s l o p e . T o S t r i n g ( " # . # # " ) ) ;
t x t O u t p u t . AppendText ( " \ r \ n " ) ;
t x t O u t p u t . AppendText ( " F i r s t − L a s t s l o p e =" + ( p t 2 . y − p t 1 . y ) / ( p t 2 . x − p t 1 . x ) ) ;

}

}
e l s e
{

t x t O u t p u t . AppendText ( " P o i n t s < 2 " ) ;

}
c l e a r U I ( ) ;
p o i n t s . C l e a r ( ) ;

}

p r i v a t e dou b l e g e t S l o p e ( )
{

Coord p t 1 = ( Coord ) p o i n t s [ 0 ] ;
Coord p t 2 = ( Coord ) p o i n t s [ p o i n t s . Count − 1 ] ;
/ / i f ( f a l s e )

/ / r e t u r n ( p t 2 . y − p t 1 . y ) / ( p t 2 . x − p t 1 . x ) ;
/ / e l s e
{

/ / a n o t h e r method / l e a s t s q u a r e method

do ub l e Ymean = 0 ;
do ub l e Xmean = 0 ;
do ub l e D e l t a x y =0;
do ub l e D e l t a x x =0;
f o r ( i n t i = 0 ; i < p o i n t s . Count ; i ++)
{

Xmean += ( ( Coord ) p o i n t s [ i ] ) . x ;
Ymean += ( ( Coord ) p o i n t s [ i ] ) . y ;

}
Xmean = Xmean / p o i n t s . Count ;
Ymean = Ymean / p o i n t s . Count ;
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f o r ( i n t i = 0 ; i < p o i n t s . Count ; i ++)
{

D e l t a x y += ( ( ( Coord ) p o i n t s [ i ] ) . x − Xmean )* ( ( ( Coord ) p o i n t s [ i ] ) . y − Ymean ) ;
D e l t a x x += Math . Pow ( ( ( ( Coord ) p o i n t s [ i ] ) . x − Xmean ) , 2 ) ;

}
r e t u r n ( D e l t a x y / D e l t a x x ) ;
/ / we may need f i l t e r i n g o f t h e r e d u n d a n t p o i n t s
/ / maybe by ad d i ng a key v a l u e h a s h t a b l e

}

}

p r i v a t e vo id b u t t o n 4 _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

c h a r AMP = ( c h a r ) 1 2 ;

c h a r [ ] SIM_ON = ">ON< " . ToCharArray ( ) ; / / >T< t r i g g e r
c h a r [ ] SIM_OFF = ">OFF < " . ToCharArray ( ) ;
c h a r [ ] CMD_SD = ">SD ; xxxx < " . ToCharArray ( ) ;

c h a r [ ] cmdC1 = { ’ > ’ , ’C ’ , ( c h a r ) 1 , ’ ; ’ ,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
’ < ’} ; / / e l e c t o d e 1

/ / c h a r cmdC2 [ 2 1 ] = ">Cf ; xxxxxxxxxxxxxxxx < " ; / / e l e c t r o d e 2
c h a r [ ] cmdC2 = { ’ > ’ , ’C ’ , ( c h a r ) 2 , ’ ; ’ ,

AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,
’ < ’} ; / / e l e c t o d e 2

c h a r AMP_Z = ( c h a r ) 0 ;
c h a r [ ] cmdC1_ZERO = { ’ > ’ , ’C ’ , ( c h a r ) 1 , ’ ; ’ ,

AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
’ < ’} ;

c h a r [ ] cmdC2_ZERO = { ’ > ’ , ’C ’ , ( c h a r ) 2 , ’ ; ’ ,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
AMP_Z, AMP_Z, AMP_Z, AMP_Z,
’ < ’} ;

c h a r [ ] cmdSA = ">SA ; xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx < " . ToCharArray ( ) ; / / f o r f o u r e l e c t r o d e s t o g e t h e r / / s e l e c t e d c h a n n e l s
c h a r [ ] cmdSAc = ">SA ; xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx < " . ToCharArray ( ) ;
c h a r [ ] Tamp ={AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,

AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP,
AMP,AMP,AMP,AMP,AMP,AMP,AMP,AMP} ;

c h a r i = ( c h a r ) 1 ; / / z e r o based / / a c t i v e c h a n n e l
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cmdSAc [4 + i ] = i ;

CMD_SD[ 4 ] = ( c h a r ) 0 ;
CMD_SD[ 5 ] = ( c h a r ) 0 ;
CMD_SD[ 6 ] = ( c h a r )0 x13 ;
CMD_SD[ 7 ] = ( c h a r )0 x88 ;
c h a r [ ] cmdSF = ">SF ; HL< " . ToCharArray ( ) ;
cmdSF [ 4 ] = ( c h a r ) 0 ;
cmdSF [ 5 ] = ( c h a r ) 5 0 ;

c h a r [ ] cmdSW = ">SW; HL< " . ToCharArray ( ) ;
cmdSW[ 4 ] = ( c h a r )0 x01 ;
cmdSW[ 5 ] = ( c h a r )0 x00 ;

i f ( s p B l u e t o o t h == n u l l )
{

s p B l u e t o o t h = new S e r i a l P o r t ( c b o P o r t s . S e l e c t e d V a l u e . T o S t r i n g ( ) , 115200 , P a r i t y . None , 8 , S t o p B i t s . One ) ;
/ / s p B l u e t o o t h . Da taRece ived += S e r i a l D a t a R e c e i v e d B T ;

}
i f ( ! s p B l u e t o o t h . IsOpen )

s p B l u e t o o t h . Open ( ) ;
S t r i n g s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / s p B l u e t o o t h . Wr i t e ( SIM_OFF , 0 , SIM_OFF . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / s p B l u e t o o t h . Wr i t e ( Tamp , 0 , Tamp . Length ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 3 ) ;
/ / s p B l u e t o o t h . Wr i t e ( cmdSA , 0 , cmdSA . Length ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 1 0 ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / aLL CHANNELS OFF

/ / s p B l u e t o o t h . Wr i t e ( cmdC1_ZERO , 0 , cmdC1_ZERO . Length ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 1 0 ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / s p B l u e t o o t h . Wr i t e ( cmdC2_ZERO , 0 , cmdC2_ZERO . Length ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 1 0 ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 1 0 ) ;
/ / s p B l u e t o o t h . Wr i t e (cmdSW, 0 , cmdSW . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / System . T h r e a d i n g . Thread . S l e e p ( 1 0 ) ;
/ / s p B l u e t o o t h . Wr i t e ( cmdSF , 0 , cmdSF . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;

/ / / / run

/ / s p B l u e t o o t h . Wr i t e (SIM_ON , 0 , SIM_ON . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
c h a r [ ] p a c k e t = new c h a r [ 1 1 1 ] ;
f o r ( i n t j = 0 ; j < 6 9 ; j ++)

p a c k e t [ j ] = cmdSAc [ j ] ;

f o r ( i n t j = 0 ; j < 2 1 ; j ++)
p a c k e t [ j + 69] = cmdC1 [ j ] ;

f o r ( i n t j = 0 ; j < 2 1 ; j ++)
p a c k e t [ j + 69 + 21] = cmdC2 [ j ] ;

/ / / / / t h i s b l o c k was r e p l a c e d by below
/ / s p B l u e t o o t h . Wr i t e ( cmdSAc , 0 , cmdSAc . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / i f ( ! s . C o n t a i n s ( "OK" ) )
/ / MessageBox . Show ( " e r r r o r +" + s ) ;
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/ / s p B l u e t o o t h . Wr i t e ( cmdC1 , 0 , cmdC1 . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / i f ( ! s . C o n t a i n s ( "OK" ) )
/ / MessageBox . Show ( " e r r r o r +" + s ) ;

/ / s p B l u e t o o t h . Wr i t e ( cmdC2 , 0 , cmdC2 . Length ) ;
/ / s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / i f ( ! s . C o n t a i n s ( "OK" ) )
/ / MessageBox . Show ( " e r r r o r +" + s ) ;
/ / / / / t h i s b l o c k was r e p l a c e d by below

s p B l u e t o o t h . Wr i t e ( packe t , 0 , 1 1 1 ) ;
s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
i f ( ! s . C o n t a i n s ( "OK" ) )

MessageBox . Show ( " e r r r o r +" + s ) ;

s p B l u e t o o t h . Wr i t e (SIM_ON , 0 , SIM_ON . Length ) ;
s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
i f ( ! s . C o n t a i n s ( "OK" ) )

MessageBox . Show ( " e r r r o r +" + s ) ;

/ / / / / / / / / / / / / / / / / / /
s p B l u e t o o t h . Wr i t e ( SIM_OFF , 0 , SIM_OFF . Length ) ;

s = ( S t r i n g ) s p B l u e t o o t h . R e a d E x i s t i n g ( ) ;
/ / s p B l u e t o o t h . Wr i t e ( cmdSA , 0 , cmdSA . Length ) ;

/ / s p B l u e t o o t h . Wr i t e ( SIM_OFF , 0 , SIM_OFF . Length ) ;
/ / s p B l u e t o o t h . Wr i t e (CMD_SD, 0 , CMD_SD. Length ) ;

}

p r i v a t e vo id chkpacketNew_CheckedChanged ( o b j e c t s ende r , EventArgs e )
{

i f ( sp != n u l l )
i f ( chkpacketNew . Checked )

{
sp . Da taRece ived −= S e r i a l D a t a R e c e i v e d ;
sp . Da taRece ived += S e r i a l D a t a R e c e i v e d 2 ;

}
e l s e
{

sp . Da taRece ived += S e r i a l D a t a R e c e i v e d ;
sp . Da taRece ived −= S e r i a l D a t a R e c e i v e d 2 ;

}

}

p r i v a t e vo id S e r i a l D a t a R e c e i v e d B T ( o b j e c t s ende r , S e r i a l D a t a R e c e i v e d E v e n t A r g s e )
{

S e r i a l P o r t sp = ( S e r i a l P o r t ) s e n d e r ;
o b j e c t s = sp . R e a d E x i s t i n g ( ) ;
i f ( t h i s . t x t O u t p u t . I n v o k e R e q u i r e d )
{

S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e d = new S t r i n g A r g R e t u r n i n g V o i d D e l e g a t e ( u p d a t e G r i d S e t T e x t ) ;
t h i s . Invoke ( d , new o b j e c t [ ] { s } ) ;

}
e l s e
{

t h i s . t x t O u t p u t . AppendText ( ( s t r i n g ) s ) ;
/ / add o u t p u t t o f i l e
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}

/ / th row new Not Imp lemen tedExcep t ion ( ) ;
}

p r i v a t e vo id b t n T e s t F o r m _ C l i c k ( o b j e c t s ende r , EventArgs e )
{

Form3 frm3 = new Form3 ( ) ;
frm3 . ShowDialog ( ) ;

}

p r i v a t e vo id cboPor t s_MouseDoub leCl i ck ( o b j e c t s ende r , MouseEventArgs e )
{

c b o P o r t s . Da taSource = S e r i a l P o r t . GetPortNames ( ) ;
}

}

}

B.2 Arduino Code

/ *
Snowforce . i n o
Get f o r c e d a t a from onboard m a t r i x c o n t r o l l e r and send i t t o PC .
C o p y r i g h t ( c ) 2014 −2016 K i t r o n y x h t t p : / / www. k i t r o n y x . com
GPL V3 . 0
Th i s code i s made f o r BIOCAS 2018 Demo .
Author : Mohamad Alameh
COSMIC LAB / DITEN / UNIGE
mohamad . alameh@edu . u n i g e . i t
a lameh . mhd@gmail . com

* /

# i n c l u d e <Wire . h>
# i n c l u d e <Snowforce . h>

Snowforce snowfo rce ;
c h a r AMP = 0 ;
b y t e d a t a [ 1 6 0 ] = {0 , } ;
c h a r e l e c t r o d e s [ 2 4 ] = {11 , 6 , 11 + 16 , 6 + 16 ,

10 , 7 , 1 , 7 + 16 ,
9 , 8 , 2 , 8 + 16 ,
12 , 5 , 12 + 16 , 5 + 16 ,
13 , 4 , 13 + 16 , 4 + 16 ,
14 , 3 , 14 + 16 , 3 + 16

} ;
c h a r SIM_ON [ ] = ">ON< " ;
c h a r SIM_TRIGGER [ ] = ">T < " ;
c h a r SIM_OFF [ ] = ">OFF< " ;
c h a r CMD_SD [ ] = ">SD ; xxxx < " ; / / d e l a y a f t e r t r i g g e r

c h a r cmdSF [ ] = ">SF ; HL< " ;

c h a r cmdSW [ ] = ">SW; HL< " ;
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c h a r p a c k e t [ 1 1 1 ] ;
b o o l e a n f l a g = t r u e ;
/ / c h a r cmdC1 [ 2 1 ] = ">Cf ; xxxxxxxxxxxxxxxx < " ; / / e l e c t o d e 1
c h a r cmdC1 [ ] = { ’ > ’ , ’C’ , 1 , ’ ; ’ ,

AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
’ < ’

} ; / / e l e c t o d e 1

/ / c h a r cmdC2 [ 2 1 ] = ">Cf ; xxxxxxxxxxxxxxxx < " ; / / e l e c t r o d e 2
c h a r cmdC2 [ ] = { ’ > ’ , ’C’ , 2 , ’ ; ’ ,

AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP,
’ < ’

} ; / / e l e c t o d e 1
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

c h a r cmdC1ZERO [ ] = { ’ > ’ , ’C’ , 1 , ’ ; ’ ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
’ < ’

} ; / / e l e c t o d e 1

/ / c h a r cmdC2 [ 2 1 ] = ">Cf ; xxxxxxxxxxxxxxxx < " ; / / e l e c t r o d e 2
c h a r cmdC2ZERO [ ] = { ’ > ’ , ’C’ , 2 , ’ ; ’ ,

0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
’ < ’

} ; / / e l e c t o d e 1
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / s a : 69
c h a r cmdSA [ ] =
{ ’ > ’ , ’S ’ , ’A’ , ’ ; ’ ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
’ < ’} ;
/ / f o r f o u r e l e c t r o d e s t o g e t h e r / / s e l e c t e d c h a n n e l s
c h a r cmdSAc [ ] ={ ’ > ’ , ’S ’ , ’A’ , ’ ; ’ ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,
’ < ’} ;
c h a r Tamp [ ] = {AMP, AMP, AMP, AMP, AMP, AMP, AMP, AMP,
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AMP, AMP, AMP, AMP, AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP, AMP, AMP, AMP, AMP,
AMP, AMP, AMP, AMP, AMP, AMP, AMP, AMP

} ;

vo id s e t u p ( )
{
/ /

cmdSF [ 4 ] = 0 ;
cmdSF [ 5 ] = 5 0 ;

/ /
cmdSW[ 4 ] = 0 ;
cmdSW[ 5 ] = 200 ;

/ /
CMD_SD [ 4 ] = 0 ;
CMD_SD [ 5 ] = 0 ;
CMD_SD [ 6 ] = 0 ;
CMD_SD [ 7 ] = 2 0 ;
Wire . b e g i n ( ) ; / / s t a r t communica t ion wi th t h e onboard f o r c e c o n t r o l l e r
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ; / / s t a r t s e r i a l f o r o u t p u t
/ / d e l a y ( 5 0 0 0 ) ; / / l e a v e t ime f o r b l u e t o o t h

S e r i a l 1 . b e g i n ( 1 1 5 2 0 0 ) ;
snowfo rce . b e g i n ( ) ; / / s t a r t t a c t i l e s e n s i n g p a r t o f snowboard
/ / S e r i a l . p r i n t ( "A " ) ;
d e l a y ( 5 0 0 0 ) ;

/ /
/ / S e r i a l 1 . p r i n t (SIM_ON ) ;
/ /

S e r i a l 1 . w r i t e ( cmdC1ZERO , 2 1 ) ;
S e r i a l 1 . w r i t e ( cmdC2ZERO , 2 1 ) ;

/ / S e r i a l 1 . w r i t e (cmdSW, 7 ) ;
/ / S e r i a l 1 . w r i t e ( cmdSF , 7 ) ;

S e r i a l 1 . w r i t e ( cmdSA , 6 9 ) ;
w h i l e ( S e r i a l 1 . a v a i l a b l e ( ) > 0 )

S e r i a l 1 . r e a d ( ) ;

/ / S e r i a l 1 . w r i t e ( cmdC1 , 2 1 ) ;
/ / S e r i a l 1 . w r i t e ( cmdC2 , 2 1 ) ;
/ / S e r i a l 1 . w r i t e ( SIM_OFF , 5 ) ;
/ / d e l a y ( 2 ) ;
S e r i a l 1 . w r i t e (SIM_ON , 4 ) ;

S e r i a l . p r i n t ( " s e n d i n g commands " ) ;
/ / t o be removed :
cmdC1 [ 4 + 2 ] = 3 0 ;
cmdC1 [ 4 + 1 ] = 3 0 ;
/ / cmdC2[4+20 −16] = 3 0 ;
cmdSAc [ 4 + 2 ] = 2 ;
cmdSAc [ 4 + 1 ] = 1 ;

/ / cmdSAc [4+20] = 2 0 ;
S e r i a l 1 . w r i t e ( cmdSAc , 6 9 ) ;
S e r i a l 1 . w r i t e ( cmdC1 , 2 1 ) ;
S e r i a l 1 . w r i t e ( cmdC2 , 2 1 ) ;

d e l a y ( 1 0 0 0 ) ;
w h i l e ( S e r i a l 1 . a v a i l a b l e ( ) >0)

S e r i a l . p r i n t ( S e r i a l 1 . r e a d S t r i n g ( ) ) ;

}

vo id loop ( )
{

snowfo rce . r e a d ( d a t a ) ;
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/ / p r e s s u r e mapping d a t a
/ / t a c t i l e s e n s i n g p a r t a lways g i v e maximum
/ / number o f d a t a (10 x16 = 160)
/ / cmdSAc = cmdSA ; / / t odo
/ / S e r i a l 1 . p r i n t ( "A " ) ;
/ / Wire . w r i t e ( "A " ) ;
/ / send d a t a on ly pc wants i t
d e l a y ( 5 0 ) ;
/ / i f ( S e r i a l . a v a i l a b l e ( ) > 0 )
/ / {
i n t i n B y t e = S e r i a l . r e a d ( ) ;
/ / S e r i a l . p r i n t ( i n B y t e ) ;

/ / snowfo rce . r e a d ( d a t a ) ;

f o r ( i n t i = 0 ; i < 160 ; i ++)
{

i f ( d a t a [ i ] > 1 )
{

i n t x = i % 10 + 1 ;
i n t y = ( i / 10) + 1 ;
S e r i a l . p r i n t ( "X : " ) ; / / a
S e r i a l . p r i n t ( x ) ; / / a
S e r i a l . p r i n t ( " ; " ) ; / / a
S e r i a l . p r i n t ( "Y : " ) ; / / a
S e r i a l . p r i n t ( y ) ; / / a
/ / / / S e r i a l . p r i n t ( d a t a [ i ] ) ;
S e r i a l . p r i n t ( " ; " ) ; / / a
i n t xs = ( i n t ) ( f l o o r ( ( x − 1 ) / 2 . 5 ) ) ;
i n t ys = ( i n t ) ( f l o o r ( ( y − 1 ) / 2 . 6 6 ) ) ;
/ / S e r i a l . p r i n t ( xs ) ;
/ / S e r i a l . p r i n t ( " ; " ) ;
/ / S e r i a l . p r i n t ( ys ) ;
S e r i a l . p r i n t ( " \ r \ n " ) ; / / a

/ / S e r i a l . w r i t e ( "A " ) ;
/ / xs and xy ’ s a r e t h e p o s i t i o n on t h e s t i m u l a t o r (0 i n d e x based )
s t i m u l a t e ( xs , ys ) ;

}

}

r e s e t B u f f e r s ( ) ;
/ / }
/ / S e r i a l . p r i n t l n ( d a t a [ 1 5 9 ] ) ;
/ / d i g i t a l W r i t e ( LED_BUILTIN , LOW) ;

}
vo id s t i m u l a t e ( i n t xs , i n t ys ) {

c h a r r e a l E l e c t r o d e N u m = e l e c t r o d e s [ xs + ( ys * 4 ) ] ;
i n t e l = 4 + r e a l E l e c t r o d e N u m − 1 ;
cmdSAc [4 + r e a l E l e c t r o d e N u m − 1] = r e a l E l e c t r o d e N u m − 1 ;
i f ( e l <16)

cmdC1 [ e l ] = 30 ;
i f ( e l >=16)

cmdC2 [ e l %16] = 30 ;

/ / t odo change a l s o a m p l i t u d e s
/ / i f ( xs + ( ys * 4) >= 24 )
/ / S e r i a l 1 . p r i n t ( "XXXX" ) ;
/ /

f o r ( i n t i = 0 ; i < 6 9 ; i ++ )



B.2 Arduino Code 105

p a c k e t [ i ] = cmdSAc [ i ] ;
/ /

f o r ( i n t i = 0 ; i < 2 1 ; i ++ )
p a c k e t [ i + 69] = cmdC1 [ i ] ;

f o r ( i n t i = 0 ; i < 21 ; i ++ )
p a c k e t [ i + 69 + 21] = cmdC2 [ i ] ;

/ / S e r i a l 1 . w r i t e ( packe t , 1 1 1 ) ;

i f ( f l a g )
{

S e r i a l 1 . w r i t e (SIM_ON , 4 ) ;
d e l a y ( 3 ) ;
f l a g = f a l s e ;
S e r i a l . w r i t e ( " On i s c a l l e d " ) ;

}

S e r i a l 1 . w r i t e ( cmdSAc , 6 9 ) ;
d e l a y ( 1 ) ;

S e r i a l 1 . w r i t e ( cmdC1 , 2 1 ) ;
d e l a y ( 1 ) ;
S e r i a l 1 . w r i t e ( cmdC2 , 2 1 ) ;
d e l a y ( 1 ) ;

S e r i a l 1 . w r i t e (CMD_SD, 9 ) ;
d e l a y ( 2 ) ;

S e r i a l 1 . w r i t e ( SIM_OFF , 5 ) ;
d e l a y ( 1 ) ;

f l a g = t r u e ;
S e r i a l . p r i n t ( " \ r \ n " ) ;
/ / S e r i a l 1 . w r i t e (SIM_ON , 4 ) ;
/ / d e l a y ( 2 ) ;

}

vo id r e s e t B u f f e r s ( ) {
f o r ( i n t i = 4 ; i < 69 − 1 ; i ++) / / b u f f e r l e n g t h − 2
/ / b e c a u s e t h e l a s t one i s a t e r m i n a t o r

cmdSAc [ i ] = cmdSA [ i ] ;
f o r ( i n t i = 4 ; i < 2 0 ; i ++)

cmdC1 [ i ] = cmdC1ZERO[ i ] ;
f o r ( i n t i = 4 ; i < 2 0 ; i ++)

cmdC2 [ i ] = cmdC2ZERO[ i ] ;

}





Appendix C

Recursive Neural Network Codes

All codes of this appendix can be found on:

https://github.com/alamehm/IEEE_SENSORS_Touch_modality_

C.1 Data Preprocessing

C.1.1 Dataset A

%%%Matlab Code
c l c
c l o s e a l l
c l e a r a l l
m a i n f i l e = ’C : \ input_PATH \ ’ ;
D e s t f i l e = ’C : \ d e s t i n a t i o n ’ ;
P a r t s = d i r ( m a i n f i l e ) ;
P a r t s l i s t = { P a r t s . name } ;
P a r t l i s t = P a r t s l i s t ( 3 : end ) ;
ST = z e r o s ( 6 4 , 7 6 8 ) ;
ED = z e r o s ( 6 4 , 7 6 8 ) ;
f o r j =1:3

Partnum = P a r t l i s t { j } ;
P a r t f i l e = s p r i n t f ( ’% s%s%s ’ , m a i n f i l e , ’ \ ’ , Par tnum ) ;
P a r t D e s t f i l e = s p r i n t f ( ’% s%s%s ’ , D e s t f i l e , ’ \ ’ , Par tnum ) ;
F i l e s = d i r ( P a r t f i l e ) ;
f i l e l i s t = { F i l e s . name } ;
f i l e l i s t = f i l e l i s t ( 3 : end ) ;
f o r z =1:260

f i l e N = f i l e l i s t { z } ;
f i l e n a m e = s p r i n t f ( ’% s%s%s ’ , P a r t f i l e , ’ \ ’ , f i l e N ) ;
f i l e n a m e D e s t = s p r i n t f ( ’% s%s%s ’ , P a r t D e s t f i l e , ’ \ ’ , f i l e N ) ;
a l l d a t a = i m p o r t d a t a ( f i l e n a m e ) ;
d a t a = a l l d a t a ( : , 2 : end ) ;
f i r e = −1;
f o r p= 1:30000

https://github.com/alamehm/IEEE_SENSORS_Touch_modality_
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i f f i r e > 0
b r e a k

end
f o r k = 1 :16

i f d a t a ( p , k ) <1 .62 | | d a t a ( p , k ) >1 .68
f i r e = p ;
b r e a k ;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i f f i r e > 50

s t a r t = f i r e − 5 0 ;
e l s e i f f i r e < 50

s t a r t = 1 ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
image= d a t a ( s t a r t : end , : ) ;
[ ImR , ImC ] = s i z e ( image ) ;
ST ( j , z ) = s t a r t ;
ed = −1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f o r p= ImR : −1 : 1

i f ed > 0
b r e a k

end
f o r k = 1 :16

i f image ( p , k ) <1 .62 | | image ( p , k ) >1 .68
ed = p ;
b r e a k ;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i f s t a r t > 23856

t a k e = 29999 ;
s t a r t = 23856 ;

e l s e i f ed − s t a r t < 6143
t a k e = ed + (6143 −( ed − s t a r t ) ) ;

e l s e i f ed − s t a r t > 6143
t a k e = s t a r t +6143;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

image= d a t a ( s t a r t : t ake , : ) ;
% s i z e ( image )

F ig =image ;
f i n a l D e s t = e r a s e ( f i l e n a m e D e s t , ’ . lvm ’ ) ;
f i l e s a v e = s p r i n t f ( ’% s%s ’ , f i n a l D e s t , ’ . t x t ’ ) ;
w r i t e m a t r i x ( Fig , f i l e s a v e ) ;

end
end

C.1.2 Dataset B

%%%Matlab Code
c l c
c l o s e a l l
m a i n f i l e = ’ P a t h t o d a t a s e t \ D a t a s e t ’ ;
D e s t f i l e = ’ o u t p u t p a t h \ Images (RGB) ’ ;
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P a r t s = d i r ( m a i n f i l e ) ;
P a r t l i s t = { P a r t s . name } ;
P a r t l i s t = P a r t l i s t ( 3 : end ) ;
f o r j =1:3

Partnum = P a r t l i s t { j } ;
P a r t f i l e = s p r i n t f ( ’% s%s%s ’ , m a i n f i l e , ’ \ ’ , Par tnum ) ;
P a r t D e s t f i l e = s p r i n t f ( ’% s%s%s ’ , D e s t f i l e , ’ \ ’ , Par tnum ) ;
F i l e s = d i r ( P a r t f i l e ) ;
f i l e l i s t = { F i l e s . name } ;
f i l e l i s t = f i l e l i s t ( 3 : end ) ;

B = z e r o s ( 4 , 4 ) ;
A = z e r o s ( 6 4 , 6 4 ) ;
f o r z =1:260

f i l e N = f i l e l i s t { z } ;
f i l e n a m e D e s t = s p r i n t f ( ’% s%s%s ’ , P a r t D e s t f i l e , ’ \ ’ , f i l e N ) ;
f i l e n a m e = s p r i n t f ( ’% s%s%s ’ , P a r t f i l e , ’ \ ’ , f i l e N ) ;
d a t a = i m p o r t d a t a ( f i l e n a m e ) ;
n =0; x =0; u =0; l =1 ; o =0;
B = z e r o s ( 4 , 4 ) ;
A = z e r o s ( 6 4 , 6 4 ) ;
f o r i =1:256

C = d a t a ( i , : ) ;
f o r e =1:4

B( e , : ) = C( e *4 −3: e * 4 ) ;
end
o=o +1;
A( l *4 −3: l *4 , o *4 −3: o *4)= B ;
i f rem ( i , 16 )==0

l = l +1 ;
o =0;

end
end
f i n a l D e s t = e r a s e ( f i l e n a m e D e s t , ’ . t x t ’ ) ;
f i l e s a v e = s p r i n t f ( ’% s%s ’ , f i n a l D e s t , ’ . bmp ’ ) ;
Im = u i n t 8 ( ( ( A−min ( min (A ) ) ) / ( max ( max (A)) − min ( min (A ) ) ) ) * 2 5 6 ) ;
rgb image = c a t ( 3 , Im , Im , Im ) ;

% GrayImage = mat2gray (A , [ min ( min ( d a t a ) ) max ( max ( d a t a ) ) ] ) ;
% imshow ( GrayImage ) ;

i m w r i t e ( rgbimage , f i l e s a v e ) ;
end

end

C.1.3 Dataset C

%%%Matlab Code

c l c
c l o s e a l l
c l e a r a l l
m a i n f i l e = ’C : \ i n p u t _ p a t h \ ’ ; %% D a t a s e t f i l e
D e s t f i l e = ’C : \ D e s t i n a t i o n \ ’ ; %% D e s t i n a t i o n f i l e
P a r t s = d i r ( m a i n f i l e ) ;
P a r t s l i s t = { P a r t s . name } ;
P a r t l i s t = P a r t s l i s t ( 3 : end ) ;

f o r j =1:3
Partnum = P a r t l i s t { j } ;
P a r t f i l e = s p r i n t f ( ’% s%s%s ’ , m a i n f i l e , ’ \ ’ , Par tnum ) ;
P a r t D e s t f i l e = s p r i n t f ( ’% s%s%s ’ , D e s t f i l e , ’ \ ’ , Par tnum ) ;
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F i l e s = d i r ( P a r t f i l e ) ;
f i l e l i s t = { F i l e s . name } ;
f i l e l i s t = f i l e l i s t ( 3 : end ) ;
f o r z =1:260

f i l e N = f i l e l i s t { z } ;
f i l e n a m e = s p r i n t f ( ’% s%s%s ’ , P a r t f i l e , ’ \ ’ , f i l e N ) ;
f i l e n a m e D e s t = s p r i n t f ( ’% s%s%s ’ , P a r t D e s t f i l e , ’ \ ’ , f i l e N ) ;
a l l d a t a = i m p o r t d a t a ( f i l e n a m e ) ;
o u t = 2 0 ;
s l o t = 614 ;
B = z e r o s ( out , 1 6 ) ;
f o r i =1:16

C = a l l d a t a ( : , i ) ;
u =1;
f o r e =1: o u t

i f e< o u t
B( e , i ) = mean (C( u : s l o t +u ) ) ;

e l s e i f e== o u t
B( e , i ) = mean (C( u : end ) ) ;

end
u=u+ s l o t / 2 ;
end

end
f i l e s a v e = s p r i n t f ( ’% s ’ , f i l e n a m e D e s t ) ;
w r i t e m a t r i x (B , f i l e s a v e )

end
end

C.2 LSTM/GRU Network Training

# t h i s f u n c t i o n s l o a d s t h e d a t a s e t from t h e f i l e s ( py thon )
d e f l o a d _ d a t a s e t 5 ( f o l d = 0 , p r e f i x = ’ ’ ) :

# p r i n t ( p r e f i x )

X1 = r e a d _ c s v ( p r e f i x + ’ r o l l i n g / ’ + ’ r o l l i n g _ a l l . t x t ’ , h e a d e r =None , d e l i m _ w h i t e s p a c e = F a l s e )
X2 = r e a d _ c s v ( p r e f i x + ’ s l i d i n g / ’ + ’ s l i d i n g _ a l l . t x t ’ , h e a d e r =None , d e l i m _ w h i t e s p a c e = F a l s e )
X3 = r e a d _ c s v ( p r e f i x + ’ b r u s h i n g / ’ + ’ b r u s h i n g _ a l l . t x t ’ , h e a d e r =None , d e l i m _ w h i t e s p a c e = F a l s e )
p r i n t ( p r e f i x )

mu = np . a v e r a g e ( [ np . a v e r a g e ( X1 ) , np . a v e r a g e ( X2 ) , np . a v e r a g e ( X3 ) ] )
s t d = np . s t d ( [ np . s t d ( X1 ) , np . s t d ( X2 ) , np . s t d ( X3 ) ] )
n _ f e a t u r e s = 768# t a c t n e t 2 8 5 0 896#8192#2048#
t i m e l e n g t h = 24#20#200

#A=X1 . v a l u e s
#B=X2 . v a l u e s
# Xlen= X1 . shape [ 0 ]
X1=X1 . v a l u e s
X2=X2 . v a l u e s
X3=X3 . v a l u e s

X = np . z e r o s ( ( X1 . shape [ 0 ] * 3 , X1 . shape [ 1 ] ) )
X [ 0 : X1 . shape [ 0 ] , : ] = X1
X [ X1 . shape [ 0 ] : X1 . shape [ 0 ] * 2 , : ] = X2
X [ X1 . shape [ 0 ] * 2 : X1 . shape [ 0 ] * 3 , : ] = X3
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#X = (X−mu ) / s t d ; p r i n t ( " w i th r e g u l a r i z a t i o n " ) ;
p r i n t ( " w i t h o u t r e g u l a r i z a t i o n " )
X = np . r e s h a p e ( (X) , (X. shape [ 0 ] / / t i m e l e n g t h , −1 , n _ f e a t u r e s ) )

Y = r e a d _ c s v ( p r e f i x + ’ y . t x t ’ , h e a d e r =None , d e l i m _ w h i t e s p a c e =True )
Y = Y. v a l u e s
y= Y
#y = t o _ c a t e g o r i c a l (Y)
#X, y = s h u f f l e (X, y )
s k f = S t r a t i f i e d K F o l d ( n _ s p l i t s =5 , s h u f f l e = F a l s e , r a n d o m _ s t a t e =None )
# p r i n t ( s k f . g e t _ n _ s p l i t s (X, y ) )
l s t = l i s t ( s k f . s p l i t (X, y ) )
t r a i n _ i n d e x , t e s t _ i n d e x = l i s t ( s k f . s p l i t (X, y ) ) [ f o l d ]
r e t u r n X[ t r a i n _ i n d e x ] , t o _ c a t e g o r i c a l ( y [ t r a i n _ i n d e x ] ) , X[ t e s t _ i n d e x ] ,
t o _ c a t e g o r i c a l ( y [ t e s t _ i n d e x ] )

# T r a i n i n g and T e s t i n g

# f i t and e v a l u a t e a model
d e f e v a l u a t e _ m o d e l ( t r a i n X , t r a i n y , t e s t X , t e s t y , epochs , b a t c h _ s i z e ) :
# B u i l d i n g and t r a i n i n g t h e LSTM network

# number o f p a r a m e t e r s o f a s i n g l e LSTM l a y e r :
# (4 * ( ( s i z e _ o f _ i n p u t + 1 ) * s i z e _ o f _ o u t p u t + s i z e _ o f _ o u t p u t ^ 2 ) )
v e r b o s e = 0
n _ t i m e s t e p s , n _ f e a t u r e s , n _ o u t p u t s = t r a i n X . shape [ 1 ] , t r a i n X . shape [ 2 ] , t r a i n y . shape [ 1 ]
# p r i n t ( " f e a t u r e s " , n _ f e a t u r e s )
# p r i n t ( " O u t p u t s " , n _ o u t p u t s )
model = S e q u e n t i a l ( )

# model . add (LSTM( 1 0 0 , i n p u t _ s h a p e =( n _ t i m e s t e p s , n _ f e a t u r e s ) , r e t u r n _ s e q u e n c e s =True ) ) ; p r i n t ( " f i r s t l s t m l a y e r 100 n e u r o n s " ) # o r i g i n a l 100
model . add (LSTM( 1 0 , i n p u t _ s h a p e =( n _ t i m e s t e p s , n _ f e a t u r e s ) ) ) ; p r i n t ( "LSTM l a y e r 10 n e u r o n s " ) # o r i g i n a l 100 ;
# model . add ( Dropout ( 0 . 5 ) )
# model . add ( Dense ( 1 0 , a c t i v a t i o n = ’ r e l u ’ ) ) # o r i g i n a l 200
model . add ( Dense ( n _ o u t p u t s , a c t i v a t i o n = ’ sof tmax ’ ) )
# model . summary ( )
model . compi l e ( l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ , o p t i m i z e r = ’adam ’ , m e t r i c s =[ ’ accu racy ’ ] )
# f i t ne twork
h i s t o r y = model . f i t ( t r a i n X , t r a i n y , epochs =epochs , b a t c h _ s i z e = b a t c h _ s i z e , v e r b o s e = v e r b o s e )

p r i n t ( d a t e t i m e . utcnow ( ) . s t r f t i m e ( ’%Y−%m−%d %H:%M:%S.% f ’ ) [ : − 3 ] ) # e v a l u a t e model
_ , a c c u r a c y = model . e v a l u a t e ( t e s t X , t e s t y , b a t c h _ s i z e = b a t c h _ s i z e , v e r b o s e =0)
p r i n t ( t e s t y . shape [ 0 ] , " sample s " )
p r i n t ( d a t e t i m e . utcnow ( ) . s t r f t i m e ( ’%Y−%m−%d %H:%M:%S.% f ’ ) [ : − 3 ] )
p r i n t ( s t r f t i m e ("%d/%m/%Y %H:%M:%S +0000" , gmtime ( ) ) )
p r i n t ( " v e r b o s e " , ve rbose , " epochs " , epochs , " b a t c h _ s i z e " , b a t c h _ s i z e )
r e t u r n a c c u r a c y

d e f evaluate_model_GRU ( t r a i n X , t r a i n y , t e s t X , t e s t y , epochs , b a t c h _ s i z e ) :
# B u i l d i n g and t r a i n i n g t h e GRU network

v e r b o s e = 0
n _ t i m e s t e p s , n _ f e a t u r e s , n _ o u t p u t s = t r a i n X . shape [ 1 ] , t r a i n X . shape [ 2 ] , t r a i n y . shape [ 1 ]

model = S e q u e n t i a l ( )

model . add (GRU( 1 2 , i n p u t _ s h a p e =( n _ t i m e s t e p s , n _ f e a t u r e s ) ) ) ; p r i n t ( "GRU l a y e r 12 n e u r o n s " ) # o r i g i n a l 100 ;

model . add ( Dense ( n _ o u t p u t s , a c t i v a t i o n = ’ sof tmax ’ ) )
# model . summary ( )
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model . compi l e ( l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ , o p t i m i z e r = ’adam ’ , m e t r i c s =[ ’ accu racy ’ ] )
# f i t ne twork
h i s t o r y = model . f i t ( t r a i n X , t r a i n y , epochs =epochs , b a t c h _ s i z e = b a t c h _ s i z e , v e r b o s e = v e r b o s e )

# e v a l u a t e model

_ , a c c u r a c y = model . e v a l u a t e ( t e s t X , t e s t y , b a t c h _ s i z e = b a t c h _ s i z e , v e r b o s e =0)
p r i n t ( " v e r b o s e " , ve rbose , " epochs " , epochs , " b a t c h _ s i z e " , b a t c h _ s i z e )
r e t u r n a c c u r a c y

# summarize s c o r e s
d e f s u m m a r i z e _ r e s u l t s ( s c o r e s ) :

p r i n t ( s c o r e s )
m, s = mean ( s c o r e s ) , s t d ( s c o r e s )
p r i n t ( ’ Accuracy : %.3 f%% (+/ −%.3 f ) ’ % (m, s ) )

# run an e x p e r i m e n t
d e f r u n _ e x p e r i m e n t ( myDataset , epochs , b a t c h _ s i z e , r e p e a t s = 3 ) :

# l o a d d a t a
t r a i n X , t r a i n y , t e s t X , t e s t y = myDatase t
# r e p e a t e x p e r i m e n t
s c o r e s = l i s t ( )
f o r r i n r a n g e ( r e p e a t s ) :

s c o r e = e v a l u a t e _ m o d e l ( t r a i n X , t r a i n y , t e s t X , t e s t y , epochs , b a t c h _ s i z e )
# s c o r e = e v a l u a t e _ m o d e l ( t r a i n X , t r a i n y , t e s t X , t e s t y , epochs , b a t c h _ s i z e )
s c o r e = s c o r e * 100 .0
# p r i n t ( ’>#%d : %.3 f ’ % ( r +1 , s c o r e ) , s t r f t i m e ("%d/%m/%Y %H:%M:%S +0000" , gmtime ( ) ) )
s c o r e s . append ( s c o r e )

# summarize r e s u l t s
s u m m a r i z e _ r e s u l t s ( s c o r e s )
p r i n t ( s t r f t i m e ("%d/%m/%Y %H:%M:%S +0000" , gmtime ( ) ) )

p r i n t ( " s t a r t i n g . . . . . . " )
gc . e n a b l e ( )
f o r f f i n r a n g e ( 0 , 2 ) :

myDatase t = l o a d _ d a t a s e t 5 ( f o l d = f f , p r e f i x = ’ p a t h / t o / d i r e c t o r y ’ )
p r i n t ( " s t a r t i n g Fold " , f f )
f o r i i n [ 4 8 ] : # [ 4 8 , 9 6 ] :

f o r j i n [ 9 6 ] : # [ 4 8 , 9 6 ] :

p r i n t ( " Fold " , f f , " epochs : " , i , " , b a t c h : " , j )
r u n _ e x p e r i m e n t ( myDataset , epochs = i , b a t c h _ s i z e = j , r e p e a t s = 10)
gc . c o l l e c t ( )

p r i n t ( " f i n i s h e d ! " )
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