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Abstract

In the last decade, the remote sensing world has dramatically evolved. New
types of sensor, each one collecting data with possibly di�erent modalities,
have been designed, developed, and deployed. Moreover, new missions have
been planned and launched, aimed not only at collecting data of the Earth’s
surface, but also at acquiring planetary data in support of the study of the
whole Solar system. Indeed, such a variety of technologies highlights the
need for automatic methods able to e�ectively exploit all the available in-
formation. In the last years, lot of e�ort has been put in the design and
development of advanced data fusion methods able to extract and make use
of all the information available from as many complementary information
sources as possible. Indeed, the goal of this thesis is to present novel machine
learning and pattern recognition methodologies designed to support the ex-
ploitation of diverse sources of information, such as multisensor, multimodal,
or multiresolution imagery. In this context, image registration plays a major
role as is allows bringing two or more digital images into precise alignment
for analysis and comparison. Here, image registration is tackled using both
feature-based and area-based strategies. In the former case, the features of
interest are extracted using a stochastic geometry model based on marked
point processes, while, in the latter case, information theoretic functionals
and the domain adaptation capabilities of generative adversarial networks
are exploited. In addition, multisensor image registration is also applied in a
large scale scenario by introducing a tiling-based strategy aimed at minimiz-
ing the computational burden, which is usually heavy in the multisensor case
due to the need for information theoretic similarity measures. Moreover, au-
tomatic change detection with multiresolution and multimodality imagery is
addressed via a novel Markovian framework based on a linear mixture model
and on an ad-hoc multimodal energy function minimized using graph cuts or
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belied propagation methods. The statistics of the data at the various spatial
scales is modelled through appropriate generalized Gaussian distributions
and by iteratively estimating a set of virtual images, at the finest resolution,
representing the data that would have been collected in case all the sensors
worked at that resolution. All such methodologies have been experimentally
evaluated with respect to di�erent datasets, and with particular focus on the
trade-o� between the achievable performances and the demands in terms of
computational resources. Moreover, such methods are also compared with
state-of-the-art solutions, and are analyzed in terms of future developments,
giving insights to possible future lines of research in this field.
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An Introduction to Remote
Sensing

1.1 Remote Sensing Imagery
The field of remote sensing usually refers to the discipline aiming at retrieving
information about a given "object" by exploiting observation data acquired
by sensors which are not in physical contact with the object itself [1]. More
specifically, the “object” taken into account by remote-sensing methodolo-
gies dealing with Earth-Observation (EO) applications is typically a given
geographical area of interest. It includes, but is not limited to, the mapping
of land cover, land use, and of geophysical or biophysical properties of the
observed surface, statically at a single time or dynamically along a tempo-
ral series. Indeed, what is “of interest” (or what is not) is an application-
dependent dilemma [2].

This type of technology has been acquiring a growing interest from the
viewpoints of environmental monitoring and management, thanks to the
repetitive geographical area coverage it provides to the end user. In fact,
thanks to the increasing number of missions devoted to putting EO satel-
lites in orbit and to the corresponding growing availability of extensive EO
imagery, the remote-sensing technology presents huge potentialities for envi-
ronmental applications both on a global scale (e.g., global warming monitor-
ing or analysis of changes in the Earth system) and on a regional-scale (e.g.,

3
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weather forecasting and modelling, desertification studies), and on a local
scale (e.g., crop monitoring, urban-areas mapping). More generally, remote-
sensing data can provide valuable information for a large variety of appli-
cations, from vegetation-resource management and ecology (e.g., precision
farming, forest mapping and inventory) to urban and land-use applications,
from meteorological, oceanographic, and hydrological applications (e.g., ice,
snow-cover, and drought monitoring, water-quality assessment) to geological
(e.g., stratigraphy studies) and geophysical (e.g., crustal-dynamic monitor-
ing, Earth magnetic field studies) applications. In addition, remote sensing
can also provide a crucial support for handling natural disasters (e.g., forest
fires, floods, landslides, earthquakes, or seaquakes), both for prevention pur-
poses (e.g., through the generation of risk maps for flooding events) and as
a support to crisis management and to post-crisis damage assessment (e.g.,
through the generation of maps of burnt areas after a fire event).

The remote sensor is usually carried by airborne or spaceborne plat-
forms, and the data set acquired by the sensor is typically expressed as a
digital (either scalar-valued or vector-valued) image of the area of interest [1]
(for additional details refer to Section 1.1.1). From this viewpoint, the goal of
the remote-sensing technology turns out to be the extraction from such im-
age of thematic, geophysical, and geographical information being of interest
to the end-user (see Figure 1.1).

Indeed, the following sub-sections will provide additional details on the
platforms deployed to carry the remote sensors, including the airborne and
spaceborne categorization, the di�erent types of orbit and their character-
istics, and will also provide details on the acquired digital images and the
underlying concepts that will be the basis for the algorithms and methods
addressed in later Chapters.

1.1.1 Digital Images, Platforms and Orbits
Practically speaking, remote sensing images are 2D tables of points, named
pixels (abbreviation of “picture elements”), which are associated with one or
more discrete values (pixel intensities) [3]. Given a digital image collected by
a certain sensor, the meaning of the pixel intensities in terms of measurements
of physical quantities substantially depend on the sensor itself [4].

From a signal-processing viewpoint, an image can be viewed as a real-



1.1. IMAGES, PLATFORMS AND ORBITS
5

Figure 1.1: An overview of remote sensing data processing.

ization of a 2D stochastic process (also often named random field) defined
on the discrete lattice of the pixel grid [5]. This perspective is especially
convenient whenever probabilistic and statistical modeling are necessary, a
frequent situation when processing and analysis tasks have to be addressed.

Other than in the pixel lattice, remote sensing data is also discrete in
terms of measured values. Indeed, when collected by the sensor, remote
sensing images always undergo a digitization process. Scalar-valued and
vector-valued random fields are used in the cases of a unique intensity or
of multiple intensities associated with each pixel, respectively. From a com-
putational standpoint, a scalar-valued image is actually a rectangular matrix
whose numbers of rows and columns correspond to the height and width of
the image, respectively. Analogously, a vector-valued image can be pictured
as a data cube, whose sizes correspond to the width, the height, and the
number of components of the vector-valued pixel intensities (a third-order
tensor) [6].

As anticipated in Section 1.1, the platforms carrying the actual imaging
sensors can be broadly categorized as airborne and spaceborne. Major exam-
ples of airborne platforms include aircrafts, balloons, and unmanned aerial
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vehicles (UAVs), also referred to as drones [1]. Aircrafts that can be equipped
with EO sensors are usually available at national or international organiza-
tions (e.g., military authorities) and at specialized companies. Balloons are
overall less frequently employed for EO, but their use is steadily growing
and may probably increase in the future. UAVs and drones have been get-
ting increasingly popular lately because of their low cost and, especially in
case of drones, their capability to fly at lower altitude and in more cluttered
scenarios. Nevertheless, as a drawback, they usually exhibit limitations on
the maximum weight of the sensors they can carry. With both aircrafts and
UAVs, altitude and orientation a�ect the geometry of the image, and acqui-
sitions occur through ad-hoc flights. Helicopters are also sometimes used for
airborne remote sensing, especially for specific applications.

A spaceborne platform is generally an artificial satellite orbiting around
the Earth [1]. Exceptions include missions, such as the Spaceborne Imaging
Radar-C / X-band Synthetic Aperture Radar (SIR-C/X-SAR) and the Shut-
tle Radar Topography Mission (SRTM), in which sensors were put on-board
of the NASA Space Shuttles [7]. Using the language of satellite missions,
in a spaceborne EO system, the satellite represents the space segment while
the ground segment is the infrastructure on the Earth surface that receives,
validates, and pre-processes the acquired data. The space segment of an EO
mission includes the mission payload, i.e., the sensor(s) that the satellite is
designed to carry, and all necessary infrastructures for power, orbit manage-
ment, on-board pre-processing, recording, and transmission to the ground
segment [8].

The path of a satellite along its orbit is an ellipse [1]. The plane that
includes this ellipse is named orbital plane. The orbits used for EO are geo-
stationary or near polar. A geostationary orbit (or geosynchronous equatorial
orbit, GEO) is circular, its orbital plane is the plane of the Earth Equator,
and the orbiting period around the Earth is 24 hours [9]. Therefore, a sensor
on-board a geostationary platform (geostationary sensor) always observes the
same portion of the Earth surface. Simple calculations based on Newton’s
gravitation law imply that the altitude of a geostationary orbit is approxi-
mately 36000 km above the Earth Equator (for comparison purposes, recall
that the mean Earth radius is estimated as 6371 km). Weather satellites
(e.g., Meteosat Second Generation, MSG) are most often geostationary.

In the case of a near polar orbit, the angle between the orbital plane
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and the plane of the Equator is approximately 80° - 85° (or equivalently
95° - 100°). Note also that, by convention, angles greater than 90° refer
to retrograde orbits, that are typical for sun-synchronous Earth observation
satellites. Altitude is generally 400 - 1000 km, a range that is included within
the broader family of low Earth orbits (LEO) [9]. Owing to the combination
of the motion of the satellite around the Earth and of the rotation of the
Earth itself on its axis, a sensor on-board a near polar satellite (near polar
sensor) collects data over almost all the Earth surface. The projection of the
satellite path on the Earth surface is usually named satellite ground track.

A special and very often used case of near polar orbit is the Sun-
synchronous orbit (also known as heliosynchronous orbit). In this case, the
angle between the orbital plane and the segment joining the centers of the
Earth and the Sun is nearly constant in time [9]. Therefore, a sensor on-
board a Sun-synchronous satellite (Sun-synchronous sensor) observes a given
ground area at approximately the same time of the day on each consecutive
overpass. This contributes to minimizing the di�erences in Sun illumination
conditions across di�erent observation times.

1.2 Active and Passive Remote Sensing
Remote sensors for EO applications can be broadly categorized into two
classes, i.e., passive sensors and active sensors. In the case of active sensors,
a signal is transmitted toward the considered surface and the resulting "echo"
is backscattered and measured. Conversely, in the case of passive sensors, no
signal is transmitted, but the radiation coming from the considered surface
is directly received and measured (see Figure 1.2).

1.2.1 Passive Sensors
According to [2], a passive sensor receives the electromagnetic radiation that
comes from the considered portion of the Earth surface either because it orig-
inates from the reflection of incident solar radiation or because it is sponta-
neously emitted by the surface itself.

The physical quantity measured by a passive EO sensor is the spectral
radiance (or specific intensity). It is a radiometric quantity that characterizes
the distribution of radiation in space and represents the power per unit of
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Figure 1.2: Di�erence between active and passive sensors [10].

wavelength that travels in a unitary solid angle centered on a given direction
through a unitary surface, and it is measured in [W · m≠2 · sr≠1 · µm≠1] [9].

In the case of radiation in the visible portion of the electromagnetic
spectrum (i.e., with wavelength between approximately 0.4 and 0.7 µm), in
the near infrared range (NIR, 0.7 - 1.1 µm), and in the short-wave infrared
range (SWIR, 1.1 - 1.35 µm, 1.4 - 1.8 µm, and 2 - 2.5 µm), spontaneous
thermal emission from the Earth surface is negligible as compared to reflected
solar radiation [11]. Therefore, the spectral radiance received by a passive
sensor operating in these ranges depends on the reflective properties of the
observed surface.

Vice versa, in the case of radiation in the thermal infrared (TIR, also
known as long-wave infrared, LWIR) portion of the spectrum (i.e., approxi-
mately 8 - 9.5 µm and 10 - 14 µm), the reflected solar radiation is negligible
as compared to the Earth thermal emission [11]. Therefore, the received ra-
diance depends on the properties of the observed surface that characterize
its capability to spontaneously emit radiation. Because of the well-known
Planck’s law, these quantities include the surface temperature [K] and emit-
tance [adimensional] [11]. In the intermediate case of mid-wave infrared
radiation (MWIR, i.e., around 3 - 4 µm and 4.5 - 5 µm), reflection-based and
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emission-based contributions are comparable, and their reciprocal weights
generally depend on all the aforementioned surface properties.

In all such cases, the spectral radiance that reaches the sensor first has
to propagate through the portion of the atmosphere that is in between the
surface and the sensor itself. In the case of reflected solar radiation, propaga-
tion through the atmosphere occurs twice, first downward from the direction
of the Sun along the path from the top of the atmosphere to the surface and
then upward from the surface to the sensor. Propagation through the atmo-
sphere, which is composed of a large number of particles, a�ects a spectral
radiance field due to: (i) the thermal emission of radiation by the atmo-
sphere itself; and (ii) the extinction of the propagated radiance field due to
absorption (i.e., conversion of part of the energy associated with the radiation
to heat) and to scattering from one propagation direction to another (i.e.,
redistribution of the energy associated with the radiation through di�erent
directions) [12]. These phenomena are quantitatively well described by the
so-called radiative transfer equation, which is an integro-di�erential equation
that can be explained in terms of conservation of energy and of scattering in
random media [12]. The solution is generally a complex problem for which
specific numerical techniques have been developed [12].

Once the physical quantities that passive remote sensing refers to has
been introduced, it is worth briefly describing the imaging technologies that
have been developed and that are commonly used for passive acquisitions.
Those range from traditional cameras, to scanners that record images of the
Earth’s surface by moving the instantaneous field of view (IFOV) of the
instrument across the surface to record the upwelling energy. The forward
motion of the vehicle allows an image strip to be built up from the raster
scans, and the portion of the ground (in the across-track direction) that is
observed while the platform travels his orbit is called swath width and it is
determined by the field of view (FOV) of the sensor [1] (Figure 1.3).

With the availability of reliable detector arrays based on charge coupled
device (CCD) technology, an alternative and more recent image acquisition
mechanism utilises what is commonly called a "push-broom" technique. In
this approach a linear CCD imaging array is carried on the satellite normal to
the platform motion as shown in Figure 1.4. As the satellite moves forward,
the array records a strip of image data, equivalent in width to the field of
view seen by the array. Additionally, each individual detector records a strip
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Figure 1.3: The image acquisition process by mechanical line scanning [1].

that is equivalent, in width, to the size of a pixel. Because of the larger time
that is available (per pixel) for the integration of the energy emanating from
the Earth’s surface, the spatial resolution that can be achieved with push
broom technology is better than with mechanical scanners [1].

Two dimensional CCD arrays are also available and find application in
satellite imaging sensors. However, rather than recording a two-dimensional
snapshot image of the earth’s surface, the array is employed in a push broom
manner. The second dimension is used to record simultaneously a number
of di�erent wavebands for each pixel. Such an arrangement is shown in
Figure 1.5. Such devices are often referred to as imaging spectrometers, and
the resulting data is referred to as multispectral or hyperspectral imaging,
depending on number and the bandwidth of the channels that are recorded
[1]. For additional details on multispectral and hyperspectral imagery refer
to Section 1.3.

As anticipated in the previous paragraph, a passive EO sensor is most
often designed to be multispectral, i.e., it collects data simultaneously from
multiple wavelength ranges, named bands or channels. In particular, one
speaks of a hyperspectral sensor if a large number (usually hundreds) of
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Figure 1.4: The image acquisition process by push-broom scanning [1].

Figure 1.5: The image acquisition process by push-broom scanning with an
array that allows the recording of several wavelengths simultaneously [1].
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channels with narrow bandwidths are collected. Vice versa, a sensor designed
to acquire only one channel, which usually encompasses the whole visible (and
possibly NIR) range, is named panchromatic [13].

Multispectral acquisition can be accomplished using prisms and optical
filters, which split the incoming radiance into di�erent wavelength ranges, or
using separate cameras that operate in distinct wavelength ranges directly.
Figure 1.6 shows a multispectral image acquired in 2004 by the IKONOS sen-
sor over Metaponto, Italy. The image is composed of four channels, approx-
imately corresponding to the blue, green, red, and NIR wavelength ranges.
Examples of color composites, in which the R, G, and B components of a
displayed color image are associated with three of the available channels of
the multispectral remote sensing images, are also shown in Figure 1.6(e) and
(f). It is worth noting that, because of the aforementioned physical processes
that lead to image formation, data collected by passive sensors are obviously
a�ected by atmospheric (e.g., cloud cover) and Sun-illumination conditions.

1.2.2 Active Sensors
According to [2], an active sensor transmits an electromagnetic pulse toward
the considered portion of the Earth surface and receives the resulting "echo"
signal. For the purpose of 2D remote sensing image acquisition, microwave
signals are typically used, and the imaging system is based on a radar (RAdio
Detection And Ranging) instrument [1].

It is worth noting that a laser source can also be used for active remote
sensing in a LiDAR (Light Detection And Ranging) instrument, also known
as airborne laser scanning (ALS) or LaDAR (Laser Detection And Ranging)
[14]. LiDAR is one of the most prominent technology for 3D mapping through
remote sensing. However, since this type of data will not be tackled in
this thesis, the LiDAR technology will not be discussed any further. For
additional details refer to [14].

A radar imager for EO periodically emits a short-duration microwave
pulse that is irradiated by a directive antenna as an electromagnetic wave
in space. Part of the irradiated energy hits the considered surface that re-
irradiates it in multiple directions, a phenomenon known as scattering [12].
The portion of the re-irradiated signal that is backscattered in the direction
of the antenna is received by the antenna itself. In the application of radar to
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Figure 1.6: Example of a multispectral image acquired by the passive IKONOS
sensor over Metaponto, Italy (1250 ◊ 1250 pixels). The di�erent panels

correspond to: (a) blue, (b) green, (c) red, and (d) NIR radiation; (e) the true
color composite, in which the R, G, and B components of the displayed image

are associated with the red, green, and blue channels of the multispectral image,
respectively; and (f) a false color composite, in which the R, G, and B

components of the displayed image are associated with the NIR, red, and green
channels of the multispectral image, respectively.
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positioning, the backscattered signal can be used for detecting the presence
of a given target object (e.g., an aircraft), for measuring the distance of this
target through the time taken by the pulse to reach the target and get back to
the antenna and for estimating the speed of the target through the Doppler
e�ect [15].

In the case of remote sensing image acquisition, the antenna is put on-
board an airborne or spaceborne platform, and the goal is to use the backscat-
tered signal to measure electromagnetic properties of the considered portion
of the Earth surface in the microwave range. In the basic configuration of a
single-frequency and single-polarization radar system for EO, the main prop-
erty that is measured is the backscattering coe�cient [adimensional], which
is related to the average power of the return signal [15]. It is a�ected by nu-
merous factors, including the roughness of the surface, its moisture content if
it is a soil area, the presence on the surface of 3D structures (e.g., buildings),
the carrier frequency of the microwave pulse, and the radar polarization.

Regarding the carrier frequency and the corresponding wavelength, we
recall that, in general, the word "microwave" broadly refers to electromagnetic
waves with frequency between 1 and 100 GHz, although precise definitions
may vary. Specifically, using the IEEE Std 521 standard for radar frequency
bands, we can mention the L-band (i.e., 1 - 2 GHz of carrier frequency or
equivalently 15 - 30 cm of wavelength), the C-band (i.e., 4 - 8 GHz or 3.75 -
7.5 cm), and the X-band (i.e., 8 - 12 GHz or 2.5 - 3.75 cm) among the most
common ranges for radar EO.

The pulse signal used by a radar for EO exhibits a narrowband spectrum
in a neighborhood of the carrier frequency and is most usually a linearly
frequency-modulated signal known as chirp [1]. This choice, together with
appropriate filtering of the return signal, makes it possible to achieve high
spatial resolution along the looking direction of the radar (named the range
direction) [15].

A further radar acquisition technique is the so called synthetic aperture
radar (SAR), which makes use of the motion of the platform along its path
to simulate a long antenna, which, in turn, makes it possible to achieve high
spatial resolution along the flight direction (named the azimuth direction)
from both airborne and spaceborne platforms [15]. The SAR data acquisi-
tion process is portrayed in Figure 1.7, while four examples of SAR images,
acquired respectively by Sentinel-1A, RADARSAT-2, COSMO-SkyMed, and
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Figure 1.7: Synthetic aperture radar imaging. As the antenna beam travels
over the features on the ground, the pulses transmitted from the platform to the

ground generate many echoes that, once received, are processed to generate a
very high resolution image of such features [1].

PALSAR-2, are shown in Figure 1.8.

It is worth noting that a radar system for EO operates regardless of
Sun illumination, because it makes use of its own source of transmitted en-
ergy, and that the resulting data are almost insensitive to cloud cover and
atmospheric conditions [1]. Therefore, unlike passive instruments, radar sen-
sors for EO provide day-and-night and all-weather acquisition capability, thus
complementing the properties of passive multispectral imagery. This comple-
mentarity between the physical natures and properties of the two typologies
of remote sensing data is among the main reasons explaining the potential
and relevance of their joint use within data fusion schemes.

In addition to the basic single-frequency and single-polarization mode,
other configurations of radar EO also exist. Polarimetric SAR (PolSAR)
collects (usually complex-valued) measurements associated with multiple po-
larizations simultaneously. Interferometric SAR (InSAR) exploits measure-
ments of the phase of the radar return (and not only of its power) to ex-
tract 3D information on the observed surface. Di�erential InSAR (DInSAR)
further extends InSAR to map slow movements of the surface (e.g., due to
seismic phenomena). SAR tomography uses measurements taken from di�er-
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ent altitudes (e.g., di�erent orbits) to characterize the vertical structures of
the targets. Multifrequency SAR uses multiple antennas on-board the same
platform to collect data at multiple carrier frequencies. Bistatic SAR uses
distinct antennas for transmittance and reception to investigate the scatter-
ing behavior in multiple directions.

1.3 The Role of Resolution
The word "resolution" intuitively refers to the precision with which a given
instrument captures details on the observed surface. More precisely, there are
multiple meanings for the term "resolution", each one defined by the specific
domain that is referred to.

First, spatial resolution is the size of the smallest spatial detail that can
be distinguished in a remote sensing image [1]. It is related to the size of
the ground area associated with a pixel. However, it can be slightly coarser
because of the blurring e�ects that occur within the acquisition chain. In the
case of a passive sensor, the spatial resolution depends on the sensor optics
and on the altitude of the platform. In particular, the portion of the ground
(in the across-track direction) that is observed while the platform travels his
orbit is determined by the field of view of the sensor, while the instantaneous
field of view determines the smallest detail that the sensor can capture, hence
the spatial resolution Figure 1.9. In the case of a SAR instrument, it is possi-
ble to prove that the spatial resolution is related to the chirp processing and,
within SAR technology, the resolution is also independent on the platform
altitude [1].

The spatial resolutions of current satellite sensors for civil applications
are approximately a few kilometers in the case of geostationary sensors (e.g.,
3 km for the TIR bands of the SEVIRI sensor), a few tens of meters in
the case of moderate resolution sensors (e.g., the Landsat series of satellite
missions), and up to 30 cm - 1 m with recent very high resolution (VHR)
near polar sensors (e.g., WorldView-2 and -3, Pléiades, COSMO-SkyMed,
and TerraSAR-X). Spatial resolutions up to a few centimeters can usually
be obtained using airborne acquisitions. For example, Figure 1.10 displays
portions of six remote sensing images with the same size in pixels (400 ◊ 400
pixels) and with very di�erent spatial resolutions (3 km, 500 m, 30 m, 10 m,
2 m, and 5 cm). The di�erence in the spatial details that can be appreciated
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Figure 1.8: Examples of SAR images: (a) Sentinel-1A image acquired over
Marseille, France (2100 ◊ 2400 pixels); (b) RADARSAT-2 image acquired over

Port-au-Prince, Haiti (1536 ◊ 781 pixels); (c) COSMO-SkyMed (COnstellation of
small Satellites for Mediterranean basin Observation) image acquired over the

same area of Figure 1.6 shortly after a flood (2000 ◊ 2000 pixels); and (d)
PALSAR-2 (Phased Array type L-band Synthetic Aperture Radar 2, on-board
the Advanced Land Observing Satellite 2, ALOS-2) image of a vegetated area

and of Lake Bayano in Panama (9228 ◊ 3471 pixels)
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Figure 1.9: Definition of spatial resolution in remote sensing imagery [1].

in these images is visually evident.

The temporal resolution of a spaceborne sensor is the frequency with
which a given ground area is repetitively observed. It is generally expressed
in terms of the revisit time, i.e., the time between two consecutive satellite
overpasses [1]. Typical values range from a few tens of minutes for geostation-
ary sensors (e.g., approximately 15 min for MSG) to a few days or weeks for
near polar sensors (e.g., one day for the Visible Infrared Imaging Radiome-
ter Suite, VIIRS, and 16 days for Landsat-8). The use of multiple satellites
in a constellation favors shorter revisit time (e.g., up to 12 hours for the
COSMO-SkyMed constellation composed of four satellites). It is also worth
noting that current near polar sensors often exhibit a pointing functional-
ity, i.e., their observation directions can be steered upon agreement with the
agency or company in charge of mission operations. This allows more fre-
quent observations to be obtained on a given area but could sometimes make
revisit times no more periodical and less predictable.

The spectral resolution is associated with passive multispectral sensors
and is the precision with which the incoming radiation is sampled along the
electromagnetic spectrum. It is usually expressed in terms of the number
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Figure 1.10: Color composites of channels from six multispectral images of size
equal to 400 ◊ 400 pixels: (a) SEVIRI image of South Africa; (b) Sentinel-3 Sea
and Land Surface Temperature Radiometer (SLSTR) image of the south coast of
France; (c) Landsat-8 Operational Land Imager (OLI) image of Nice, France; (d)

Sentinel-2 image of Genoa, Italy; (e) Pléiades image of Venice, Italy; and (f)
image collected by an airborne sensor over Zeebruges, Belgium. The spatial

resolution is indicated below each image.
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of channels of the sensor and of the widths of the corresponding wavelength
ranges. Current sensors for civil applications range from a few bands of
moderate width (70 - 100 nm each) to the case of hyperspectral sensors with
a few hundreds narrow bands (2 - 10 nm each). For reasons associated with
signal-to-noise ratio, a trade-o� usually exists between the spectral and the
spatial resolutions of a given passive sensor [11]. Therefore, several current
satellite passive systems carry both a multispectral sensor, with several bands
in the visible and NIR range, and an additional panchromatic sensor, which
has obviously poorer spectral resolution but achieves finer spatial resolution
than the multispectral bands.

Finally, radiometric resolution is related to the precision with which
di�erences in the considered physical quantities can be appreciated and mea-
sured in the recorded image [1]. It is related to the signal-to-noise ratio of
the sensor [11] and to the digitization process that is included in the acqui-
sition chain. The intensity of a pixel in a digital image (or in each band of
a multispectral digital image) is encoded with a finite number of bits, which
correspond to a finite number of levels in a predefined discrete set (named
quantization levels in the signal processing literature and often digital num-
bers in the remote sensing literature). The radiometric resolution of a sensor
is generally expressed in terms of the number of bits that are used to encode
each quantized intensity and are associated with each pixel (number of bits
per pixel, bpp, sometimes also named bit depth). As shown in Figure 1.11,
typical values range from 8 bpp (256 levels) to 12 bpp (4096 levels) and 16
bpp (65536 levels).

1.4 Methodological Contributions of the The-
sis

This introductory chapter is meant to introduce the reader to the concepts
underlying the remote sensing field, with details on the di�erent types of
sensors, acquisition modalities, measured physical quantities, and platforms
carrying the remote sensors. Such a variety of technology highlights the need
for automatic methods able to e�ectively exploit all the available informa-
tion. Indeed, in the last years, lot of e�ort has been put in the design and
development of advanced data fusion methods able to extract and make use
of all the information available from as many information sources as possible.
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Figure 1.11: Definition of radiometric resolution in remote sensing imagery [1].

More specifically, in the broader context of data fusion, image regis-
tration plays a major role as accurate registration algorithms are essential
in supporting Earth and planetary scientists [16]. Indeed, through image
registration it is possible to bring two or more digital images into precise
alignment for analysis and comparison. The main reason for the increased
significance of image registration in remote sensing is the operational involve-
ment in many important applications including, for example, the manage-
ment of natural disasters, the assessment of climate changes, the management
of natural resources, and the preservation of the environment. All such ap-
plications involve the monitoring of the Earth’s surface over time and using
as many information sources as possible. Furthermore, there is an increas-
ing availability of images with di�erent characteristics, thanks to shorter
revisiting times of satellites, increased flexibility of use (di�erent acquisition
modalities) and the evolution of sensor technologies. Therefore, being able to
simultaneously process di�erent data for information extraction and fusion
has become paramount in remote sensing. This includes the comparison of
newly acquired images with previous images taken with di�erent sensors or
with di�erent acquisition modalities or geometric configurations. The remote
images can, therefore, be multitemporal (taken at di�erent dates), multi-
source (derived from multiple sensors), multimode (obtained with di�erent
acquisition modalities), or stereo-images (taken from di�erent viewpoints).

In the present thesis, this framework is addressed by operating in the
context of machine learning and pattern recognition methodologies and by
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proposing several innovative data fusion and image registration techniques
aimed at solving specific problems of information extraction from remote-
sensing images while making use of multi-source data. Furthermore, such
innovative methodologies are applied to di�erent typologies of data, ranging
from planetary images (including images of Mars and the Moon), to images
of the Earth surface, and taking into consideration both passive and active
sensors. Moreover, the proposed methodologies are designed for supporting
di�erent applications, such as planetary science studies, the study of the
climate change and how it is correlated with the changes in the Earth surface,
and the identification of changes in a given area, possibly due to natural
disasters or changes due to human intervention over the years.

In the context of planetary science studies, because of the large variety of
planetary sensors and spacecraft already collecting data and with many new
and improved sensors being planned for future missions, there is a strong need
for integrating numerous multimodal image sources and, as a consequence,
accurate and robust registration algorithms are required. Leveraging on the
large variety of sensors and spacecraft already collecting planetary data, and
based on the variety of new and improved sensors being planned for future
missions, Chapter 2 deals with the need for automatic methods for the in-
tegration of such a large and heterogeneous amount of data. Indeed, the
goal of the chapter is to propose and analyze a novel method for planetary
image registration. The novel solution is based on a two-step registration
process. The first step is based on matching a set of spatial features (i.e., the
craters) extracted from the input images using a novel method based on the
stochastic geometry modelling capabilities of marked point processes (MPP).
The second step is based on an area-based information-theoretic functional
optimized via simulated annealing, generalized pattern search, and genetic
algorithms, which are computationally heavier, but restricted to a subset
of the general registration problem thanks to the results achieved by the
previous step.

While Chapter 2 focuses on the data fusion problem in the context of
single-sensor data, Chapter 3 and Chapter 4 move the focus to those problems
where the input data have been collected by di�erent sensors (e.g., optical and
radar imagery). More in details, the two chapters propose two novel solutions
for the multisensor image registration problem. Chapter 3 proposes the use of
the domain adaptation capabilities of the conditional generative adversarial
networks to move the multisenor registration problem to the single-sensor
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case, thus allowing the use of simpler and less computationally demanding
similarity metrics. On the contrary, Chapter 4 proposes a solution for the
same problem in a large-scale scenario. In this case, the goal is the design of
a method that is accurate and robust, but that also requires few resources
from the computational viewpoint to favor application to large-scale imagery
in a climate-change application.

Finally, Chapter 5 deals with the case of multiresolution fusion and
with another application in the context of Markov random field and machine
learning methodologies applied to remotely sensed images. In particular, the
chapter proposes a novel unsupervised change detection method that is able
to cope with multimodality and multiresolution SAR imagery acquired at
di�erent times. From an application-oriented viewpoint, the method takes
advantage of the multiresolution and multimodality acquisition capabilities
of current satellite SAR missions. From a methodological perspective, given
a pair of multiresolution and multimodal SAR images, the method is able
to iteratively compute a change map at the finest resolution available in
the input dataset. The method is based on Markovian probabilistic graphi-
cal models, graph cuts, linear mixtures, generalized Gaussian distributions,
Gram–Charlier approximations, maximum likelihood and minimum mean
squared error estimation. The statistics of the data at the various spatial
scales is modelled through appropriate generalized Gaussian distributions
and by iteratively estimating a set of virtual images that are defined on the
pixel grid at the finest resolution and represent the data that would have been
collected if all the sensors could work at that resolution. A Markov random
field framework is adopted to address the detection problem by defining an
appropriate multimodal energy function that can be minimized using graph
cuts or belied propagation methods.

On a broader perspective and with an eye on the future trends, the
remote sensing community is currently giving primary attention to the ap-
plication of machine learning and pattern recognition methodologies to big
data scenarios. As a consequence, more and more interest is currently sur-
rounding data fusion methodologies like the ones proposed in this thesis.
Indeed, they allow not only to extract information from specific data types,
but also to jointly exploit multiple data sources. The collection of radar and
optical data by Sentinel-1 and Sentinel-2, which is made available by the
European Space Agency, together with the Landsat archives by NASA and
USGS, and the recent international contests organized by communities like
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the Geoscience and Remote Sensing Society, are a clear example of such an
interest. Novel data fusion methodologies based on machine learning and
pattern recognition have a huge impact in this scenario. Indeed, they allow
integrating complementary data sources in diverse applications and, due to
the heterogeneous nature of their input data, are flexible enough to meet
the requirements of the ever growing sets of diverse data that are currently
available and that will be available in the future.


