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Abstract
Imagery is a preferred tool for environmental surveys within

marine environments, particularly in deeper waters, as it is non-

destructive compared to traditional sampling methods. However,

underwater illumination effects limit its use by causing extremely

varied and inconsistent image quality. Therefore, it is often nec-

essary to pre-process images to improve visibility of image fea-

tures and textures, and standardize their appearance. Tone map-

ping is a simple and effective technique to improve contrast and

manipulate the brightness distributions of images. Ideally, such

tone mapping would be automated, however we found that exist-

ing techniques are inferior when compared to custom manipula-

tions by image annotators (biologists).

Our own work begins with the observation that these user-

defined tonal manipulations are quite variable, though on av-

erage, are fairly smooth, gentle waving operations. To predict

user-defined tone maps we found it sufficed to approximate the

brightness distributions of input and user adjusted images by

Weibull distributions and then solve for the tone curve which

matched these distributions from input to output. Experiments

demonstrate that our Weibull Tone Mapping (WTM) method is

strongly preferred over traditional automated tone mappers and

weakly preferred over the users’ own tonal adjustments.

Index Terms - Underwater image enhancement, Tone

mapping, Histogram Specification, Weibull Distribution, Con-

trast Limited Histogram Equalization

Introduction
Underwater optical imaging is challenging, particularly

with respect to illumination. Increasing light attenuation with

depth, due to increased wavelength absorption and scattering,

can result in colour reduction, low contrast and blurring effects in

images. This attenuation drives the requirement for strong artifi-

cial lighting on camera platforms which causes non-uniform illu-

mination and shadows within images [1]. Image lighting patterns

are also inconsistent, through use of multiple imaging platforms

and lighting adjustments to limit interest of fish shoals; which can

obstruct seafloor imaging and impede investigation. As a result,

images are varied in quality, with image features such as seafloor

dwelling organisms, often poorly visible. Features may also be

irregular in appearance, reducing correspondence between im-

ages. These issues are a severe hindrance to both manual and

automated annotation tasks [2].

Manipulation of image histograms, or brightness distribu-

tions, through tone mapping, can be effective in suppressing un-

wanted lighting effects and enhance appearance and/or the vis-

ibility of image features.. Algorithms that operate in this way

are often fast and simple, requiring no a priori knowledge on

the imaging environment, such as depth field, water quality, or

distance between a camera and a target. Yet few have been suc-

cessfully applied in the underwater image domain [3, 4]. For a

detailed review of underwater image processing, see [5].

Tone mapping is illustrated in Figure 1. In (a) we show an

input image which lacks details and appears flat. In (c), we plot a
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Figure 1: Tone mapping example: a) input image, b) output image, c)

tone map, d) input brightness distribution and e) output brightness distri-

bution

simple tone curve to map input to output brightnesses, generating

a modified output image (b) from (a). Clearly, there are more

image details after tone adjustment. Note that for this example

and for the remainder of the paper, adjustments are made for the

brightness signal only, with colour saturation and hue kept the

same.

Often tone mapping is framed as a problem of mapping an

input brightness distribution to a target output distribution. In

Figure 1, we show the brightness histogram (d) of the unen-

hanced input image (a) and in (e) the target brightness distribu-

tion and corresponding image in (b). Notice that the distribution

shown in (e) is more uniform, or flatter, than (d). Intuitively,

the flatter the brightness distribution, the more conspicuous im-

age details will be, since the whole range of brightness values

is used (and almost equally). In an information theoretic sense,

a flatter distribution has more information or higher entropy; it

requires more bits to encode [6]. One might therefore think that

the goal of all tone mapping would be to map the input bright-

ness histogram to a perfectly uniform counterpart. Indeed, this is

exactly what, possibly the oldest, image enhancement method

called Histogram Equalisation (HE) does. However, the tone

curve that generates a perfectly equalised (uniform) histogram

often has ranges where the curve has very high or low slopes.

High slopes generally correlate with the appearance of artefacts

such as contouring (e.g. false regions in the sky) or unnatural

contrast, as is evident in image (b); the contrast seems too high.

Alternatively, low slopes can result in the loss of important visual

details.

A powerful modification of HE, Contrast Limited His-

togram Equalization (CLHE), performs more limited equaliza-

tion generating a tone curve with a bounded slope, i.e. never

too large or small. CLHE proceeds in three steps: (1) the in-

put brightness histogram is approximated, (2), we solve for the

tone curve that equalises the approximated histogram and (3) the

same tone curve is applied to the input image. Although a signifi-

cant step forward and widely deployed, CLHE too has problems.
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Figure 2: Enhancement example: a) Unenhanced image, b) HE image and c) CLHE image (max slope = 2/256)

Chief amongst these is that a tone curve bounded by a minimum

and maximum slope is stepped and wiggly; technically its second

derivative can cross the x-axis many times. Not only can this in-

troduce banding artefacts in images, it is a behaviour that we do

not mimic when we manually adjust the tonality of an image.

In this paper, we focus on tone mapping problems in un-

derwater imagery, with the long-term aim of developing auto-

mated image enhancement tools. As comprehension of desirable

underwater image enhancements, for analytical purposes, is in

its infancy, we began by investigating images processed by end-

users in the field i.e. biologists, who manually manipulated in-

put images so that details sought for analytical purposes were

more conspicuous and did not contain artefacts. While the users

could choose fairly arbitrary tone maps, we found that those se-

lected were broadly, fairly smooth increasing functions that gen-

tly waved; some exhibiting linearly stretched S-shaped patterns.

This observation led us to develop a new method for the adjust-

ment of underwater images which we call Weibull Tone Map-

ping, or WTM.

A Weibull distribution (WD) is a smooth and highly gen-

eralisable function with a single peak and varying width, pa-

rameterised by two numbers. We found that by fitting a WD to

brightness histograms of input and user-adjusted output images

and solving for the tone map that mapped these distributions to

each other, it resulted in an enhancement similar to those created

by users. However, Weibull approximations of user tone curves

were typically smoother and even simpler in shape. This begs

the question of whether our approximate tone map works as well

as the user’s own tonal adjustment.

To test the efficacy of WTM we therefore ran preference ex-

periments. Pairs of images were drawn from unenhanced input

images, and those adjusted by CLHE, users and WTM. Image

pairs were shown to underwater image analysts who were tasked

to select the image which best shows details they seek for analy-

sis. A Thurstonian analysis reveals that our WTM is clearly pre-

ferred over CLHE and the original image and weakly preferred

over users’ own adjustments.

Importantly, we draw the readers attention to the fact that

the WTM method is not constructive. Rather, just now, to ap-

ply our method we need a user to make an adjustment which we

then improve upon. However, WTM is clearly a way of helping

users reach a better final endpoint, more quickly i.e. WTM gen-

erally creates an output image that appears similar or a little im-

proved. We are aware that by choosing a WD, we are enforcing

uni-modality on the underlying histogram, however, remarkably

our preference tests show that people prefer this restriction. We

are now investigating how the output Weibull distribution can be

predicted given information inferred from the input image. Our

preliminary work indicates that this inference cannot be based on

the input image brightness alone but, rather, will require spatial

image analysis.

Background
An image histogram, h, is a vector containing the frequency

of pixels assigned to any given value, or bin. This can be used to

either visualize pixel values in each of the colour channels of an

image, I(x,y,z), where z = [R,G,B], or in the case of a brightness

histogram, represents the intensity or brightness of each pixel in

a single-channel greyscale image, I(x,y). Note that for this paper,

all greyscale brightness images are extracted from max(I(x,y,z)),
to correspond with software used in Experiment I. For a typi-

cal 8-bit encoded image, there are 256 possible values; integers

in the interval [0, 255]. However for simpler explanation, we

map the image values to the interval [0,1] i.e. we divide each

pixel value by 255. It follows that if h is a vector of 256 values,

then h j, where j is in [1,256], encodes the frequency that the jth

brightness - which is calculated as (( j−1)/255) - appears in the

image.

The arguments we set forth below hold for any number of

bins in the histogram, or intensity levels, and are denoted by the

integer L. Also, it is often useful if h is normalised, by dividing

the raw frequencies by the sum of the histogram. In the con-

tinuous domain, a normalised histogram such as this is called a

probability density function (PDF). Henceforth, we assume all

histograms sum to 1.
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Figure 3: Tone mapping methods HE & CLHE: a) HE PDF, a) HE tone

curve (CDF), c) CLHE PDF constrained by upper and lower slope bounds

of 2/L and 0.5/L respectively, where L = 256 bins, and d) CLHE tone

curve. Dashed lines in c) and d) depict upper and lower slope bounds.

A relatively simple approach to enhance an image, by mod-

ifying the tonality and contrast, is to map the brightness distribu-

tion h to match a target distribution h′. A popular enhancement



method that operates in this way is histogram equalization (HE).

Here h′ is a uniform or equalised histogram. In HE, the cumula-

tive distribution function (CDF) of h maps the input brightnesses

so that the resulting image brightness histogram is uniform [7].

The HE tone map, c, is calculated as

ci =
i

∑
j=1

h j (1)

where 0 ≤ ci ≤ 1, and i =1, 2, ..., L, for a histogram of L bins.

A computationally cheap and revertible method, HE can im-

prove segmentation and identification of features in an image, as

well as standardize the appearance of features under different il-

lumination [8]. However, it can often generate an undesirable

output image that is over enhanced, with significant and abnor-

mal brightness changes, and where any background noise is am-

plified. In Figure 2, an input image (a) is histogram equalised (b).

Figure 3a. shows the corresponding input image histogram and

(b) the tone curve that results from HE. Clearly, the tone curve

has regions where its slope is both very small and very large.

These are precisely the main conditions where HE can produce

poor results. In this example, the small slope in the bright pixel

range has resulted in the loss of details in the fish (Sebastidae

sp.), in the HE image.

Contrast Limited Histogram Equalisation is a modification

of HE, in which limits can be placed on the slopes [3, 4]. A de-

tailed summary can be found in [9]. Given that the tone map for

HE is simply the cumulative distribution of the normalised his-

togram, or equivalently the integral of the PDF, the slope of the

histogram is therefore directly related to the relative frequency

of the histogram; since differentiation of the CDF returns the

PDF. The intuition behind CLHE therefore, is to find an ap-

proximation of the input histogram, in which relative frequen-

cies across all bins are bounded. This in turn, bounds the min-

imum and maximum slopes of the curve. Figure 3c. demon-

strates the CLHE modification to the input brightness distribu-

tion in (a), with slopes limited to be above 0.5 and below 2, (d)

shows the corresponding tone curve. The enhancement provided

by CLHE to Figure 2a., is shown in Figure 2c. This image is a

significant improvement on the input; the image does not look

over-enhanced, there are no new artefacts and, compared to the

original, details are far more visible.

As well as simplifying the input distribution to find a tone

curve with desirable properties, such as a bounded slope in

CLHE, it has also been argued that the target distribution should

also have particular properties i.e. it should not always be a

uniform histogram. For example, it has been suggested that a

Rayleigh distribution (RD) is a favourable target distribution for

underwater images [10], see Figure 4. This is a continuous prob-

ability distribution for positive-valued random variables, often

resembling a bell-shape, and has been frequently enforced within

a variant of the CLHE algorithm for underwater image enhance-

ment [10, 11, 12, 13]. The Rayleigh PDF and CDF is given by

PDFRayleigh =
x

a2
e−x2/(2a2), x ≥ 0, a > 0, (2)

CDFRayleigh = 1− e−x2/(2a2), x ∈ (0,∞), (3)

where x is the brightness value and a the scale parameter.

For underwater images, particularly those in deeper waters,

it is important to preserve the fact that it is dark. If the target

distribution does not tail toward zero, as Rayleigh does, then the

processed image will be over-enhanced including dark noisy pix-

els may become apparent. As underwater images are often dom-

inated by a strong ‘spot-light ’in a region of interest and floating

particulates, there are often many extremely bright pixels which

should be reduced in intensity. Mapping to the Rayleigh distribu-

tion preserves the darkness of pixels that should not be enhanced

as well as bringing back details that are compressed within the

spot illumination.

Given these factors and its popularity with underwater im-

age enhancement, we explored the use of the RD as an automated

tool. However, we found that matching the histograms of bright-

ness images to a RD did not provide compelling improvements

or mimic the adjustments made by end-users.

Weibull Tone Mapping (WTM)
The Weibull probability distribution (WD) exhibits similar-

ities to the RD and as one of the contributions of this paper, we

propose it has desirable properties that make it a good target dis-

tribution for underwater images. Although not yet used for this

purpose, to our knowledge, it has been demonstrated that the WD

can explain the contrast statistics of natural images [14, 15] and

is correlated with our own perception of natural images [16]. In

its two-parameter form, the Weibull PDF and CDF are denoted

as

PDFWeibull =
k

λ

( x

λ

)k−1
e−(x/λ )k

,

x ≥ 0, λ > 0, k > 0,

(4)

CDFWeibull = 1− e−(x/λ )k

, x ∈ (0,∞), (5)

where x is the brightness value, k is the shape parameter and λ

is the scale parameter. Weibull distributions are smooth and uni-

modal, with k and λ accounting for the peak position and the

spread of the distribution. In comparison to the RD, the WD can

exhibit a greater variety of properties, see Figure 4. For example,

it is able to approximate characteristics of Rayleigh, when λ =
λ/

√
2 & k = 2, as well as Exponential, when λ = 1/λ & k = 1
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Figure 4: The Rayleigh distribution (a = 4) and 3 variations of the

Weibull distribution.

Our Weibull Tone Mapping (WTM) method proceeds in

three steps; 1) we calculate the best Weibull approximations to

an input image and the corresponding user-enhanced output im-

age, 2) we calculate the tone map that matches the input WD

to the corresponding output WD and 3) we apply the calculated

tone curve to the original input image; in so-doing we approxi-

mate the user-adjusted output image.



Figure 5: WTM example: a) Input image, b) Output image by biologist and c) WTM approximation of Output image (b).

Approximating a brightness distribution using
the Weibull function

To find a WD that best matches a brightness distribution,

Kullback-Leibler divergence (KLD) can be used. Also known

as information divergence or relative entropy, KLD determines

the difference between two probability distributions, and can be

calculated as follows

KLD = ∑
x∈χ

P(x) log

(

P(x)

Q(x)

)

(6)

where P is an input brightness distribution, Q denotes a

target distribution, here a WD. KLD provides a measure of the

amount of information in P that allows discrimination of P and Q.

If the two distributions are highly similar then the KLD will be

low, with 0 reached only when P=Q. Remembering that the WD

is parameterised by k (broadly, peak position) and λ (broadly,

slope), we can therefore search for parameter pairs that create a

WD that best fits a given input and output distribution, by those

that achieve the lowest KLD. In our study we test the parameter

pairs of λ in the interval [0.1:0.1:3] and k in [0.1:0.1:15]. This

resulted in the comparison of each brightness distribution to 4500

possible Weibull models.

Calculating the Weibull Tone Map
It is well known that histogram matching - finding the curve

that maps an input distribution to a target output distribution -

can be implemented as a forward and inverse HE step. Let us

have two images, I(i, j) and O(i, j), corresponding to an input

and a user tone-mapped output. Let hI(x) and hO(x) denote

the Weibull input and output distributions, that approximate the

brightness distributions of I(i, j) and O(i, j), and CI(x) and CO(x)
their corresponding cumulative distributions. Remembering that

the tone map that implements histogram equalisation is defined

by the CDF of the images’ brightness distribution, it follows that

the Weibull tone-mapped image ÎO(i, j) is therefore calculated

as ÎO(i, j) = C−1
O (CI(I(i, j))). The brightness distributions of

ÎO(i, j) and IO(x,y) are the same.

It is important to note, that in the discrete image domain

we cannot in fact carry out exact HE. In order to obtain a uni-

form histogram, some of the brightnesses in the input image,

with value v, might be mapped to either v1 or v2 in the output

image. In tone mapping, this is not possible, as every input maps

to each output uniquely. However, for almost all images this de-

tail is insignificant. Also noteworthy, we process only the bright-

ness channel. If a pixel at R, G and B, are intensities in [0,1], our

brightness channel, w, is equal to w=max(R,G,B). After WTM,

each w is mapped to an output counterpart w′. Correspondingly,

the new RGB is set to be equal to R w′

w , G w′

w and B w′

w . Choosing

the maximum as the definition of brightness has the advantage

that the output RGB image is also, and always, in [0,1]. There-

fore, values will not map out of the display range, see[17]. It also

ensured our tone-mapping methodology complied with software

used in Experiment I.

In Figure 5. we show a worked example to illustrate the me-

chanics of our tone mapping approach. We show that our WTM

method applied to image (a) results in image (c) that is almost

indistinguishable from the target output image in (b). In Figure

6a. we see that the Weibull distribution closely matches the input

brightness distribution of image 5a. and in 6c. we see that it also

well approximates the target brightness distribution of image 5b.

The respective tone maps to transform image 5a. to 5b & c. can

be seen in Figure 6b. Here we demonstrate the close approxima-

tion of the target tone map by WTM, accounting for extremely

similar output images. The tonal adjustments in this case pro-

duce a slightly darker output image. However, the visibility of

fine morphological features that can aid annotation, is improved,

such as osicles on the white sponge (likely Mycale lingua).
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Figure 6: WTM method showing a) Input brightness PDFs, of a target

output image and its WTM approximation, b) Tone maps used to adjust

input PDFs and c) Output PDFs.

Experiment I: User tone mapping
This experiment involved the development of custom-per-

image tone maps by analysts, to determine the type of enhance-

ments that will aid their annotation efforts. For this, our collab-

orator, Gardline Ltd., provided a large set of underwater survey

images. From this, 60 RGB (.jpeg) images, of size 3236x4320x3

pixels, were randomly selected. This selection contained im-

ages of 6 broad habitat classes (10 of each), representing the

breadth of biological and physical features expected in the Gard-

line dataset. Our data set is intentionally small as we later test

preference using pairwise comparisons, a time consuming pro-

cess.

For these 60 images we asked three image analysts to, man-



ually, tonally adjust the images so that details required to anno-

tate the content of the image (i.e. the habitat) are made as con-

spicuous as possible. Tone curves were created using an open

source ‘GNU image manipulation programme ’(GIMP), and had

to be conventional i.e. strictly increasing functions of brightness.

Each analyst performed tone mapping on a unique randomiza-

tion of the data-set under ISO standard 3664:2009 conditions

[18]; sitting approximately 70 cm from the display in a neutrally

painted and darkened room. On average, they each needed ≈ 90

minutes to complete the experiment.

The shape of tone curves created by analysts was variable

within this study, however a large proportion were mildy wavy

and linear patterns, with some appearing as stretched S-shaped

curves; indicating more gentle contrast enhancement. Some

curves were also more exponential-like in shape, causing some

compression of the mid-tones. Figure 7. shows some example

tonal adjustments performed by users.
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Figure 7: Some examples of user tone maps.

Experiment II: Quantative Analysis
Using our Weibull Tone Mapping method, we approximated

the user tone mappings from Experiment I, henceforth defined as

‘Custom’. We found that WTM can closely mimic the bright-

ness distributions created by end-users with a low average KLD

of 0.12, but is often smoother and simpler in shape, see Figure

6. Indeed there are other smooth functions that could likely fit

the data. However, we chose Weibull because it is well-known

and it’s two parameters intuitively control the peak position and

width of the fitted histogram.

The similarity of resulting Weibull images, that approxi-

mate their Custom counterparts, was assessed quantitatively us-

ing Universal Quality index (UQI) [19], Peak Signal to Noise Ra-

tio (PSNR) and Mean Squared Error (MSE). This showed images

to be highly similar, achieving an average UQI of 0.98, PSNR of

31.84 and MSE of 85.25.

Experiment III: Psychophysical Evaluation
Given the good performance of WTM in Experiment II, we

undertook a pair-wise comparison experiment to determine to

what extent analysts prefer - for their purpose of image inter-

pretation - our WTM adjustment compared with 1) an existing

enhancement algorithm CLHE, 2) their own custom enhance-

ments from Experiment I and 3) the original images that are un-

enhanced.

Following the same experimental environment as Experi-

ment I, a team of 10 analysts at Gardline, 3 of which created the

custom images, were presented with, uniquely randomized, pairs

of images. For each, they were asked to ‘Choose the image that

best allows identification of the habitat (class) therein, or no pref-

erence if the images are equivalent’. Analysts could thus choose

one of three options for each image; Image 1, Image 2 or No

Preference.

For each of the original images we have n = 4 variants,

therefore there are n/2(n−1) = 6 pair-wise comparisons. Since

each pair of images is viewed twice, left-right order switched, the

total number of comparisons is 60x2x6=720 pairs; too many to

compare in a reasonable time frame. We therefore chose a ran-

dom selection of 18 images, 3 per habitat class (total=6), for the

pairwise experiment. Each analyst therefore considered 6x2x18

= 216 pairwise comparisons. A week later we repeated the exper-

iment with a second random subset (of the same size), from the

original 60 images. On average, each analyst took approximately

≈ 30 minutes to complete the experiment.

For each pair, the image chosen by an analyst was given

a score of 1 and the other a score of 0. If no preference was

selected, each image was given a score of 0, to remove the no-

preference vote. Splitting the votes between the two pairs diluted

the test result (signal-to-noise ratio); by assuming that within

these comparisons analysts would respond randomly, a signifi-

cant preference would be missed [20]. More detailed analysis of

the pairwise data will be carried out in future work.

The data for each analyst, in each experimental sitting, was

converted to a 4x4 frequency matrix, of which the value at [i, j]
represents the frequency of votes in which enhancement type i

was preferred over type j across the 18 images. Each frequency

matrix was then converted to a z-score (standard score) ma-

trix using Thurstone’s Law of Comparative Judgments, or Thur-

stone’s Case (5) [21].

The expert-informed enhancements were considered, on av-

erage, somewhat more desirable than unenhanced input images

and those enhanced with CLHE, see Figure 8. Although more

tailored and preferable, the development of custom-per-image

enhancements is time-consuming and therefore in-practical. At-

tempts must be made to develop an automated approach, that at

the very least performs equivalently. Clear from these results is

that, although popular, CLHE is not up to the task. However, our

WTM shows good relative performance.
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Figure 8: Mean Z scores for each image variant

Indeed, our WTM method performed best out of the pair-

wise comparisons. Figure 8 shows that end-users significantly

prefer WTM images, over the original image and those enhanced

with CLHE, to conduct their analysis. In Figure 9 we see a com-

parison of an unenhanced input image and its a corresponding

WTM and CLHE enhancement. It is apparent that the CLHE en-

hancement is unsuitable here, over-enhancing the brightest pix-

els, emphasizing the spotlight, and resulting in a loss of details.

The WTM enhancement however, although more subtle in this

case, offers a more appropriate enhancement, improving visibil-

ity and conspicuousness of the community therein. Figure 8 also

shows that analysts even weakly prefer WTM images over their

own enhancements, see Figure 8. This is not unexpected given

the good approximation of the custom images by WTM.



Figure 9: Image comparison of a) an unenhanced input image and the output image due to enhancement by b) WTM (λ = 1,κ = 2) and c) CLHE (Max

slope = 3.2/256, Min slope = 2.56e−03/256).

Conclusion
In this paper, we developed a method for tonally adjusting

underwater images called Weibull Tone Mapping (WTM). Given

an input and a user tone-mapped image, WTM provides an output

image derived from the input-output pair. The method works by

approximating the input and output distribution, with a Weibull

PDF, and calculating the tone curve that maps between these dis-

tributions. This WTM map, is then applied to the input image to

generate a new output.

The WTM method is designed, by construction, to approx-

imate user adjustments but result in smoother and simpler tone

maps. Experiments validate our method, showing that when

compared to automatic image adjustments our method is strongly

preferred. Compared with users’ own adjustments, there is a

weaker preference signature in WTM’s favour.

Finally, we note that WTM, at this stage, is ‘existential’in

nature. Given user adjustment it provides even better tone maps.

We are currently investigating how a WTM can be derived auto-

matically from images.
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