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Impact of non-pharmaceutical interventions against COVID-19 in Europe: a 
quasi-experimental non-equivalent group and time-series design study  
 
 
ABSTRACT 
 

Introduction 

The current epidemic of COVID-19 is unparalleled in recent history as are the social distancing 

interventions that have led to a significant halt on the economic and social life of so many countries.  

Objective 

We aimed to generate empirical evidence about which social distancing measures had the most 

impact in reducing case counts and mortality.  

Methods 

We report a quasi-experimental (observational) study of the impact of various interventions for 

control of the outbreak. Chronological data on case numbers and deaths were taken from the daily 

published figures by the European Centre for Disease Control and dates of initiation of various 

control strategies from the Institute of Health Metrics and Evaluation website and published 

sources. Our complementary analyses were modelled in R using Bayesian generalised additive mixed 

models and in Stata using multi-level mixed effects regression models.  

Results 

From both sets of modelling, we found that closure of education facilities, prohibiting mass 

gatherings and closure of some non-essential businesses were associated with reduced incidence 

whereas stay at home orders and closure of additional non-essential businesses was not associated 

with any independent additional impact.  

Conclusions 

Our pertinent findings are that schools and some non-essential businesses operating “as normal“ as 

well as allowing mass gatherings were incompatible with suppressing disease spread.  Closure of all 

businesses and stay at home orders are less likely to be required to keep disease incidence low.  Our 

results can help inform strategies for staying out of lockdown.   

 

Keywords: COVID-19; control measures; stay at home; collinearity; Bayesian generalised additive 

mixed models  
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INTRODUCTION 

The current pandemic of COVID-19 is unprecedented in modern history. Not only is the impact of 

the epidemic being measured by the number of cases and deaths, but also by its impact on 

overloaded health services and deleterious impacts on quality of life and near-future economic 

prospects. Wider society was subjected at times to an almost total stasis of social and cultural life.  

The benefits of social distancing was shown earliest in China, Italy and Spain that turned the tide on 

their country’s epidemics using often severe social distancing strategies. What these examples do 

not do is indicate the relative importance of the different non-pharmaceutical/ social distancing 

interventions. Given the potentially high economic and social costs arising from stringent control 

measures [1-5], it has been imperative to determine which social distancing measures are most 

effective at controlling the pandemic. Imposition and relaxation of control measures should be 

informed by such knowledge. Early on in pandemic response, much policy was driven by the results 

of mathematical models [6]. However, there has been debate about the validity and limitations of 

the different models for policy making and modelling approaches that have been used [7-10].  It is 

also useful to assess empirical evidence of what aspects of currently applied non-pharmaceutical 

interventions (NPIs) have or have not been effective.   

  

A quasi-experimental study design is an observational study where the allocation to receive the 

intervention (or not) is not randomly made [11, 12].  Most European states introduced a similar suite 

of interventions aimed at reducing contact between individuals to reduce transmission. However, 

the different types of intervention used and their timing varied from one country to another, and 

was in response to political processes in each country, rather than arose through a randomised 

assignment.  No measure was imposed by all European countries.  Where measures were put in 

place, they were often imposed at different points in the development of the epidemics.  By late 

April 2020, some European countries were easing control measures so late April was a good point to 

take stock of intervention effects.  This situation offered a unique opportunity to investigate the 

putative impacts of the various types of intervention, as each individual-country epidemic forms 

what is effectively a chrono-sequence of disease spread.  The intervention strategies could then be 

compared as interrupted time series.   

 

We report here analyses of trends in both reported cases and deaths across 30 European countries 

with rather different approaches to and timing of restrictions. We use a quasi-experimental 

approach to identify what affects such restrictions may have had on the control of the epidemic.  
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METHODS 

 

Data 

Data on new cases and deaths reported by all countries were obtained by the European Centre for 

Disease Control (https://www.ecdc.europa.eu/en/publications-data/download-todays-data-

geographic-distribution-covid-19-cases-worldwide).  Data up to 24th April are included. For the UK 

we used only pillar 1 case numbers. Pillar 1: swab testing in Public Health England laboratories and 

National Health Service hospitals for those with a clinical need, and health and care workers. Pillar 2 

results (swab testing for health, social care and other essential workers and their households) as 

reported daily on https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-

public#history  were removed from the case numbers, as pillar 2 sampling was only introduced late 

in the course of the UK epidemic and inflated total case numbers relative to earlier in the UK 

outbreak. We also adjusted by the number of tests reported per 1 million population taken as of 16th 

April from worldometer (https://www.worldometers.info/coronavirus/). In order to compare time 

series for different countries with different dates of onset for their own epidemics we chose to 

define the onset as the first day after the latest time where there were two or more consecutive 

days with no cases reported. 

 

The dates when (if at all) each of the various social restrictions were imposed for 30 European 

countries were given by the Institute of Health Metrics and Evaluation Data (IHME) 

(https://covid19.healthdata.org/). The six categories are “Mass gathering restrictions”, “Initial 

business closure”, “Educational facilities closed”, “Non-essential services closed” and “Stay at home 

order” and “Travel severely limited”. However, no country was listed in the dataset as having severe 

travel restrictions during the monitoring period so this was dropped from any further analysis. The 

IHME definitions of these measures are given on their website. Paraphrasing the definitions.  

 

• Mass gathering restrictions are mandatory restrictions on private or public gatherings of any 

number.  

• The first time that there was any mandatory closure of businesses, not necessarily all 

businesses. Usually such initial closures would primarily affect business such as 

entertainment venues, bars and restaurants. 

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-public#history
https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-public#history
https://www.worldometers.info/coronavirus/
https://covid19.healthdata.org/)
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• Where non-essential businesses are ordered to close, this usually include many more 

businesses than were in the first closure category.  The second wave of closures likely 

includes general retail stores and services such as hairdressers. 

• Education facilities closure includes all levels (primary, secondary and higher) education that 

stop direct teacher to student teaching. 

• Stay at home orders affect all individuals unless travelling for essential services. They allow 

close contact only with people of the same household and perhaps some outdoors exercise. 

 

In three countries (Germany, Italy and Spain) the restrictions were not implemented uniformly 

through the country on precisely the same dates so we took the median date for the nation; the 

actual variations in dates were extremely small in Italy and Spain and only somewhat diverse in 

Germany.  See Supplemental Material 1.  Among the 16 German states, 15 states imposed mass 

gathering restrictions within 2 days of the median date used; 9 states had initial business closures 

within 2 days of the median date; 15 states closed educational establishments within 2 days of the 

median date; 9 states closed non-essential businesses within 2 days of the median German date; all 

states imposed stay at home orders within 2 days of the median national date.  All models adjusted 

for when countries started to advise or mandate their citizens to wear face masks or coverings 

(dates of face cover measures are listed in Supplemental Material 2).  We included when countries 

either mandated or encouraged the wearing of face coverings or masks in public places as an 

independent control measure in the models. However, it was obvious that how such advisories or 

mandates were implemented considerably from one country to another. For example, in some 

countries face masks were required both outdoors and indoors in public and in others only in indoor 

settings. Sometimes, mask wearing was required in relatively few settings such as on public 

transport, other times in several settings such as on public transport, in shops and in schools.  Also  

mask-wearing mandates where implemented were only introduced relatively late in the monitoring 

period, even as other control measures were being relaxed, which complicates interpretation of how 

much masks may have helped reduce transmission. Consequently, although we included the wearing 

of face coverings in the analyses, we caution against drawing any strong conclusions over their value 

based on these analyses alone. We also adjusted by the number of tests reported per 1 million 

population taken on the 17th April from WorldoMeter (www.worldometers.info/coronavirus).  Ethics 

approval was not required because this is an analysis of data in the public domain. 

 

 

Analyses 
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We undertook two sets of analyses. In order to ensure comparability between countries with 

different timing of their outbreaks we counted dates as being from the start of the growth phase of 

the epidemic in that country. The epidemic in each country was assumed to have commenced on the 

first day after the last time that no cases were reported as occurring on two consecutive days.  

 

The first analysis was done in R using Bayesian generalised additive mixed effects models.  These 

incorporate both fixed and random effects  (ie mixed effects) to adjust for spatial dependency in 

disease between nation states.  Random effects correspond to those for which levels are samples 

from a larger population, whereas fixed effects correspond to average effects for the whole 

population.  Examples of fixed effects would be interventions such as shutting all schools and making 

people work at home.  Other sources of variation that contribute may be more random, and 

associated with unmeasured  features of the sampling unit (the nation state).  Key here is the fact 

that the nation states will differ culturally and in other features such as recording methods. We have 

not measured the source of the variation but we know it is associated with the sampling unit (state) 

with which the response is recorded through time.  In addition we also anticipate that there are 

spatial effects associated with the fact that nation states suffering from COVID-19 epidemics are 

geographically juxta-positioned (eg Germany abuts Austria along a land border). We expect that 

there will be some spatial dependency between states as the closer they are to each other the more 

likely it is that they have similar patterns of disease.   Bayesian models are very useful as they allow 

us to quantify the relative contributions of fixed, random, temporal and spatial dependency in the 

same modelling framework. 

 

The variance in the COVID-19 data was four orders of magnitude larger than the mean number of 

cases, and three orders of magnitude larger than the mean number of deaths. Consequently, models 

were fit using a negative binomial specification to account for potential over-dispersion in the data, 

and within a conditional autoregressive model (Besag-York-Mollié) framework [13] to allow for 

potential spatial autocorrelation and unstructured between-country variation. 

 

Let Yi,t be the number of COVID-19 cases or deaths for country i = 1, ⋯, I at time t = 1, ⋯, T 

The general algebraic definition of the models is given by: 

 

Yi,t∣μi,t,ϕ∼NegBin(μi,t,ϕ), 

 



7 
 

where Yi,t is the number of COVID-19 cases or deaths for country i = 1, ⋯, I at time t = 1, ⋯,  μi,t is the 

predicted number of COVID-19 cases or deaths for country i and time t, and ϕ > 0 is the negative 

binomial dispersion parameter. A logarithmic link function of the expected number of cases or 

deaths was modelled as: 

 

log(μi,t)= α + log(Pi,d[t]) + δDi,d[t] + ϵRi,d[t] + ∑ 𝛽𝛽𝛽𝛽𝑖𝑖,𝑡𝑡,𝑘𝑘𝑘𝑘   + ui + νi, 

 

where α corresponded to the intercept; log(Pi,d[t]) denotes the logarithm of the population at risk for 

country i and day d[t] was included as an offset to adjust case counts by population.  Di,d[t] is a linear 

term for the number of days since the outbreak started, with coefficient δ.  Ri,d[t] is a linear function 

of the number of COVID-19 tests carried out per country i at day d[t], with regression coefficient ϵ.  X 

is a matrix of k intervention measures (e.g. school and business closures) with regression coefficients 

β. Intervention measures comprise of an index of 1, ⋯,N number of days following the intervention 

being implemented (day 1 was the day following the intervention implementation).  We assumed 

that the imposition of each intervention led to cumulative changes in effect.  Intervention measures 

were included in the model as a random effect to account for potential non-linearities in the 

exposure-response relationship.   A random effect adjustment was appropriate because the 

observation data (case counts) were samples from a larger population (due to limited testing to 

confirm symptomatic cases and possible asymptomatic cases).  Unknown confounding factors with 

spatial dependency that represent, for example, human mobility, were incorporated using spatially 

correlated (i.e. structured) random effects (ui) and  independent, identical and normal distributed 

(i.e. unstructured) random effects (νi) for each country i. Spatial random effects were specified using 

a Besag-York-Mollie model to account for spatial dependencies and unstructured variation between 

countries [14] .  Goodness of fit was evaluated using the Deviance Information Criterion (DIC). 

Models were fitted in R version 3.6.1 using the INLA package. 

 

The second analysis was a multi-level mixed effects regression analysis in STATA v 16.1.  We used a 

mixed effects negative binomial regression model with cases or deaths on a specific day as the 

outcome variable, country population as the exposure variable, country as a mixed effect, and days 

from start of the epidemic as a fixed effect.  Fixed effect was appropriate for days elapsed because 

we were looking for possible effect of NPI relevant to a fixed start point and over the entire 

population.  All main interventions were included as categorical variables with the week number 

included as a linear variable after the start of the intervention.  Monitoring by week number was 

appropriate with regard to case counts, given that incubation period tends to be about 5 days [15-
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18], and a small lag between symptom onset and obtaining test results is likely: thus, total days 

elapsed from exposure to changes in recorded case counts has tended to be about 7 days.  A lag 

from symptom onset to hospitalisation of about 7 days [19, 20], and a similar subsequent lag (about 

7 days) from hospitalisation to death are reported in COVID-19 literature [19-21].  Figure 1 indicates 

these key likely onset of intervention impact on an exemplar epidemic curve.   For simplicity and 

brevity we report only on the results for the 7 day categorisation in this manuscript.  However, in 

view of the variation in incubation period and the possibility that this might have interfered with the 

parameter estimates, we repeated Analysis 2 for three alternative response time periods (post-

intervention) as sensitivity analyses.  These alternative response periods were 4 days, 10 days and 14 

days.  The resulting incident risk ratios (between our preferred response period of 7 days and 

alternatives) could then be compared for possible trend differences.  In further sensitivity and 

collinearity checks, we dropped each of the main predictor variables (intervention timings) from the 

final equation and noted if the regression parameter and standard errors of remaining predictor 

variables changed dramatically or if the coefficients reversed trend (eg., went from suggesting 

increase to suggesting decrease).    

 

We also checked for collinearity between the predictor variables by calculating the variance inflation 

factors (VIF) for the predictors and by calculating the condition number using the coldiag2 command 

in STATA. A VIF of < 10 suggests that model predictors do not have multi-collinearity problems.  VIF 

values > 10.0 need to be considered with regard to other model diagnostics, such as condition index 

and eigenvalues.   A condition number  > 15 with any variance proportions above 0.9, or if 

eigenvalues were < 0.01 could suggest collinearity that undermines confidence in coefficient 

estimates, according to guidance in Chatterjee and Hadi 2015 [22] and Regorz 2020 [23]. In addition, 

as sensitivity analysis, within analysis 2 we reran the model dropping each predictor variable in turn 

to determine whether or not the regression parameters and their standard errors were changed 

substantially. 

   

RESULTS 

Table 1 gives the estimated date of the start of the epidemic in each country and when each of the 

five intervention types were implemented, according to the IHME website.  “Mass gathering 

restrictions”, “initial business closure”, “educational facilities closed”, “non-essential services closed” 

and “stay at home order” were respectively implemented by 29, 28, 29, 23 and 19 countries.  Italy 

was the first country to enter the epidemic on 22nd February and Lithuania the last on 14th march. By 

our criteria, half of all countries had their epidemic start on or before 27th February.  
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Table 1. Timing of estimated start of each country’s main epidemic and the introduction of social 
distancing measure across 30 European countries (all dates in 2020). 
 

Country 
Start of main 

epidemic 

Mass 
gathering 

restrictions 

Initial 
business 
closure 

Educational 
facilities 
closed 

Non-essential 
services 
closed 

Stay at 
home 
order 

 
Face covering 
encouraged 

or compulsory 

Austria 26/02 10/03 16/03 16/03 16/03 16/03 06/04 
Belgium 02/03 13/03 13/03 14/03 18/03 18/03 NA 
Bulgaria 12/03 13/03 13/03 13/03 13/03 17/03 30/03 
Croatia 11/03 09/03 19/03 16/03 19/03 17/03 NA 
Cyprus 10/03 24/03 24/03 13/03 24/03 24/03 NA 

Czech Rep 02/03 10/03 10/03 10/03 14/03 16/03 18/03 
Denmark 27/02 18/03 18/03 16/03 NA NA NA 
Estonia 11/03 13/03 13/03 16/03 NA NA 05/04 
Finland 27/02 12/03 18/03 18/03 04/04 NA NA 
France 26/02 04/03 14/03 12/03 14/03 16/03 05/04 

Germany 26/02 22/03 17/03 16/03 23/03 22/03 01/04 
Greece 05/03 08/03 12/03 11/03 22/03 23/03 NA 

Hungary 05/03 12/03 12/03 16/03 16/03 28/03 NA 
Ireland 04/03 12/03 15/03 12/03 24/03 27/03 NA 

Italy 22/02 11/03 11/02 05/03 11/03 11/03 06/04 
Latvia 08/03 13/03 NA 12/03 NA NA NA 

Lithuania 14/03 15/03 14/03 16/03 15/03 15/03 01/04 
Luxembourg 07/03 13/03 18/03 16/03 18/03 NA 20/04 

Malta 08/03 NA 17/03 13/03 23/03 NA NA 
Netherlands 28/02 10/03 21/03 15/03 NA NA NA 

Norway 27/02 12/03 12/03 12/03 NA NA 05/04 
Poland 07/03 10/03 31/03 12/03 NA 24/03 NA 

Portugal 03/03 19/03 16/03 16/03 19/03 19/03 16/04 
Romania 04/03 06/03 21/03 11/03 21/03 23/03 NA 
Slovakia 07/03 12/03 16/03 12/03 16/03 NA 14/03 
Slovenia 05/03 12/03 15/03 16/03 15/03 20/03 29/03 

Spain 25/02 15/03 15/03 14/03 15/03 15/03 13/04 
Sweden 27/02 11/03 NA NA NA NA NA 

Switzer’d 26/02 28/02 16/03 13/03 16/03 NA NA 
UK 28/02 23/03 20/03 23/03 24/03 23/03 NA 

Note: NA = not applicable, this control was not implemented. 
 

 

 

Analysis 1 
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Model metrics are presented in Table 2. The dispersion parameter evaluates whether the model is 

able to cope with potential dispersion in the data.  When the value is close to 1 (as it is here) the 

model is shown to do well at accounting for dispersion.   

 

Table 2.  Model metrics 
Model Deviance Information 

Criterion 
Watanabe-Akaike 

Information Criterion 
Conditional predictive 

ordinate 
Dispersion 

Cases 18009.4 18012.6 -9006.6 1.01 
Deaths 8032.4 8035.9 -4018.4 0.89 

 
Notes: The Watanabe-Akaike Information Criterion is described by Watanabe 2010 [24] and was 
developed to specifically help identify best model fit in Bayesian models.  Smaller W-AIC values 
mean better fit compared to alternative model specifications. The conditional predictive ordinate is 
a Bayesian diagnostic [25] that detects surprising observations.  
 

 
 
The exposure-response relationships estimated by the models are presented in Figures 2 (cases) and 

Figure 3 (deaths). The X axis represents the days since the intervention started and the Y axis 

indicates the logarithm of the risk ratio. It can be observed that mass gathering restrictions have a 

negative effect on the number of cases with fewer cases occurring as the number of days since 

intervention started increases. A similar effect is observed for the initial closure of business and the 

closure of education facilities with less cases occurring as the number of days since the intervention 

increases. The closure of non-essential business does not appear to have a significant effect on the 

number of COVID-19 cases. This is evident as the estimated relationship and its 95% credible interval 

stay close to zero on the Y axis. Surprisingly, stay-home measures showed a positive association with 

cases.  This suggests that as the number of lock-down days increased, so did the number of cases.  

Negative associations with deaths (Figure 3) were estimated for mass gatherings, initial business 

closure and the closure of educational facilities; while a non-significant effect was estimated for non-

essential business closure.  The stay-home measures showed an inverted U quadratic effect with an 

initial rise of deaths up to day 20 of the intervention followed by decrease. These results suggest 

that stay at home orders may not be required to ensure outbreak control and reduce outbreak 

harms, provided all the other control measures are implemented. Of course, if stay at home 

measures are implemented then all the other measures such as business closures, banning mass 

gatherings and school closures would also follow.   

 

The patterns seen in Figures 2 and 3 fit with the understood disease incubation, development and 

concurrent ascertainment processes.  The median incubation period is understood to be 4-7 days 
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[15-17], while case ascertainment tended to require an elapse of 2-10 more days [26].  For severe 

cases (those who are hospitalised), 8-14 days post symptom onset tends to coincide with start of a 

5-7 day long period of peak disease severity [20].  As a result, we expect no intervention should be 

cited as affecting case counts in under about 7 days, and no intervention is likely to strongly reduce 

counts of death in less than 2-3 weeks.   

 

For cases and deaths, mask wearing mandates/advisories seem to have either initial effects which 

were negative (case) or neutral (deaths), followed by rises (in cases or deaths).  The overall effect is 

quite small, which we confirmed with further sensitivity analysis show below.  The additional benefit 

of mask-wearing advisories/mandates to the other outbreak control measures seemed to be small 

and inconsistent.  However, for the reasons discussed above we hesitate to interpret these results as 

certain effects of face cover/mask mandates/advisories.  

 

Figures 4 and 5 shows the association between actual cases and deaths in each country, expressed 

as 7 day rolling means, and the numbers predicted by the models on cases and deaths. Although for 

many countries there is a reasonable correlation between the two this is not the case for all 

countries and particularly countries with smaller populations. The model outputs especially did not 

fit Sweden which had much lower numbers of cases and deaths than predicted.  This could be 

explained by partial implementation of controls and unmandated behavioural change in the 

population. We acknowledge that, at least for some countries, our model could not capture all the 

temporally changing variables influencing the spread of the disease.  

 

Figure 6 shows the maps of the posterior mean for the country-specific relative risks of (A) COVID-19 

cases, and (C) COVID-19 deaths. These country-specific risks enable comparisons of individual 

countries to case/death incidence in whole study area, having accounted for the effects of all other 

covariates in the model.  Figures 6-A and 6-C indicate whether the cases or deaths were relatively 

higher or lower in each country relative to full-region incidence (cases or deaths per 100,000). 

Posterior means in the top two categories (in shades of orange) indicate especially excess country-

specific risk relative to cases/deaths in the whole region.  Posterior means lower than 1.0 (dark blue) 

indicate a lower relative risk than that of the whole region.  Maps 6-B and 6-D show the country-

specific posterior probability (range 0-1) of observing a relative risk larger than one (compared to 

case/death incidence in all 30 countries).  The proportion of spatial variance explained by the models 

is 16% for the case-specific model, and 15% for the death-specific model. These values (15-16%) are 
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not high, indicating that the spatial components of the models are not highly explanatory of the 

variability in cases/deaths. 

 

 

Analysis 2 

For confirmation and comparison, the analysis was repeated using a multilevel mixed effects model 

with results shown in Table 3. The conclusions of this analysis were broadly the same as for the 

hierarchical probabilistic models described above.  The coefficients for these models assess the 

independent contributions of the interventions to the outcomes whilst holding the others at their 

mean (as we would expect from a multivariate linear model).   The Incident Risk Ratios (IRR) are 

shown in Table 3 with 95% confidence intervals, for each of deaths and cases, for each period (each 

week) after the intervention started.  Larger IRR values suggest greater effects; a value of 1 implies 

no effect, values above 1.0 suggest increase in cases/deaths, while values below 1 imply decrease. 

For time periods 1-7 and 8 -14 the IRR values were above 1, indicating a positive association 

between cases/death and the intervention variable.  For periods starting 15 days onwards the IRR 

was generally below 1 suggesting a negative association between the outcome and the intervention.  

This patterns probably reflects the time lag between exposure, latency and disease detection, so 

that impact interventions only ‘kick-in’ after what is effectively a lag period of 14 days.    Closing 

schools, banning mass gatherings and initial business closures most reduced cases and deaths.  

Other measures had smaller and less consistent effects.  In addition, we looked at the impact of 

removing each intervention or all interventions on the model log likelihoods (Table 4). The biggest 

impact came from removing educational closures from the model. The next biggest change came 

from removal of stay-home orders, but this intervention was associated with a smaller decline in 

epidemic risk (deaths).  We note that removing mask-wearing as a control measure had a moderate 

effect on case counts but very minor effect in mortality outcomes; this difference may reflect the 

relatively late imposition of mask-wearing mandates/advisories. 

 

 

Table 3. Results of mixed effects negative binomial model of effect of each intervention on case 
numbers and deaths 
  

Intervention Timing 
Cases 
IRR         L95%CI     U95%CI 

Deaths 
IRR           L95%CI    U95%CI 

Mass gathering 
restrictions Before 1  --  -- 1  --  -- 

 1-7 d after 1.32 1.10 1.57 0.76 0.55 1.03 

 8-14 d after 1.13 0.88 1.43 0.58 0.41 0.84 



13 
 

Intervention Timing 
Cases 
IRR         L95%CI     U95%CI 

Deaths 
IRR           L95%CI    U95%CI 

 15-21 d after 0.99 0.73 1.34 0.59 0.38 0.92 

 22-28 d after 0.80 0.56 1.15 0.56 0.33 0.93 

 29-35 d after 0.74 0.48 1.13 0.50 0.28 0.91 
  36+ d after 0.66 0.40 1.09 0.49 0.25 0.98 
Initial business 
closures Before 1  --  -- 1  --  -- 

 1-7 d after 1.18 0.96 1.46 1.07 0.80 1.43 

 8-14 d after 0.87 0.66 1.15 1.07 0.75 1.54 

 15-21 d after 0.69 0.49 0.96 0.72 0.47 1.11 

 22-28 d after 0.61 0.41 0.91 0.50 0.29 0.83 

 29-35 d after 0.47 0.29 0.76 0.42 0.22 0.77 
  36+ d after 0.32 0.18 0.56 0.37 0.18 0.77 
Educational facilities 
closed Before 1  --  -- 1  --  -- 

 1-7 d after 1.47 1.22 1.79 2.51 1.89 3.34 

 8-14 d after 1.38 1.05 1.80 3.14 2.14 4.62 

 15-21 d after 0.95 0.67 1.33 2.76 1.74 4.36 

 22-28 d after 0.52 0.35 0.78 2.02 1.19 3.43 

 29-35 d after 0.26 0.16 0.42 1.10 0.60 2.01 
  36+ d after 0.14 0.08 0.25 0.55 0.28 1.10 
Non-essential services 
closed Before 1  --  -- 1  --  -- 

 1-7 d after 1.14 0.92 1.41 1.40 1.03 1.90 

 8-14 d after 1.15 0.90 1.47 1.41 1.00 1.97 

 15-21 d after 1.02 0.78 1.33 1.42 0.99 2.03 

 22-28 d after 0.83 0.60 1.13 1.44 0.95 2.17 

 29-35 d after 0.76 0.52 1.10 1.04 0.65 1.68 
  36+ d after 0.76 0.46 1.26 0.77 0.42 1.39 
Stay at home 
order/advisory Before 1  --  -- 1  --  -- 

 1-7 d after 1.19 0.97 1.47 1.30 0.96 1.76 

 8-14 d after 1.95 1.56 2.44 2.01 1.45 2.77 

 15-21 d after 2.28 1.79 2.90 2.23 1.58 3.14 

 22-28 d after 2.55 1.94 3.35 1.99 1.36 2.89 

 29-35 d after 2.49 1.78 3.48 1.84 1.19 2.83 
  36+ d after 2.39 1.49 3.84 1.21 0.70 2.10 
Mask order/advisories Before 1  --  -- 1  --  -- 
 1-7 d after 0.66 0.55 0.79 0.91 0.75 1.11 
 8-14 d after 0.53 0.43 0.65 0.89 0.71 1.12 
 15-21 d after 0.52 0.40 0.67 0.97 0.73 1.29 
 22-28 d after 0.68 0.48 0.98 1.40 0.91 2.15 
 29-35 d after 1.15 0.70 1.87 1.36 0.72 2.55 
 36+ d after 1.06 0.56 2.01 1.45 0.60 3.54 
Days from epidemic 
start per day 1.14 1.12 1.15 1.17 1.15 1.19 
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Intervention Timing 
Cases 
IRR         L95%CI     U95%CI 

Deaths 
IRR           L95%CI    U95%CI 

Tests per 1000 
population as of 16 
Apr   1.06 1.04 1.07 1.02 0.99 0.06 
Random effects               
Country (Variance)  0.26 0.15 0.46 1.19 0.70 2.03 

 
Note: IRR = Incident Risk Ratio. The IRR is generated by exponentiating the results of the model raw 
outputs which were generated in a default log scale.  
 

 

 

Table 4. Log likelihood of each model for full model compared with models excluding each of the 
interventions and all interventions 
 

 Model Log likelihood Change 

 Full model (Cases) -9081  
Excluded Mass gathering restrictions -9096 -15 

 Initial business closures -9097 -16 

 Educational facilities closed -9157 -76 

 Non-essential services closed -9085 -4 

 Stay at home advisory -9112 -31 

 Face coverings -9109 -28 

 All interventions -9617 -536 

 Full model (Deaths) -4096  
Excluded Mass gathering restrictions -4101 -5 

 Initial business closures -4109 -13 

 Educational facilities closed -4163 -66 

 Non-essential services closed -4104 -8 

 Stay at home advisory -4113 -17 

 Face coverings -4100 -4 

 All interventions -4569 -472 
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Collinearity and sensitivity analyses 

Regression diagnostics for the alternative specifications of response time periods in Analysis 2 (4, 10 

or 14 rather than 7 days) are shown in Supplementary Material 5 with visual comparisons available 

in Supplementary Material 6.  There was little difference in the overall rate of decline in risk ratio 

with increased time since intervention regardless of time unit used.  There were noticeable outliers 

in a few model IRR values at the longest time periods (above 40 or 50 days) when data contributions 

tended to be from just one or two countries (see Supplemental Material 5 and 6).   

 

The VIF values for the predictor variables in Analysis 1 were all less that 10 (mean VIF 5.7) except for 

initial business closures which gave a VIF of 10.4 (Supplementary Material 3).  Collinearity 

diagnostics for Analysis 2 were almost identical, in that the VIF only just exceed the 10.0 threshold 

and only for the initial business closures variable (Supplementary Material 4). The condition index 

exceeded 15.0 in the 9th dimension and suggested some collinearity between initial and non-

essential business closure parameters.  However, corresponding variance proportions in all 

dimensions for each control measure were well below 0.9.  The smallest eigenvalue (Supplementary 

Material 4) was 0.059, which is above the suggested threshold of 0.01.    These tests as a group 

indicate that collinearity between predictor variables did not harmfully bias the apparent separate 

contributions of each disease control measure (as indicated by coefficient central estimates) in our 

models.  In addition, the standard errors of the predictors in both models were relatively small and 

in the sensitivity and collinearity checks, dropping each of the main predictor variables from the final 

equation of analysis 2 did not strongly change the coefficients and standard errors of remaining 

predictor variables.  We conclude that there was some collinearity in our models, notably between 

the business closure variables, but that this was not enough to affect our conclusions.  

 

Discussion 

Our analyses confirm that the imposition of non-pharmaceutical control measures have been 

effective in controlling epidemics in each country. However, we were unable to demonstrate a 

strong impact from every intervention. Closure of educational facilities, banning mass gatherings and 

early closure of some but not necessarily all commercial businesses were all associated with 

reduction of the spread of infection.  Widespread closure of all non-essential businesses and stay at 

home orders seem not to have had much additional value.   Other analyses of actual intervention 

impositions and subsequent case/death counts also have found that school closures were especially 

effective control measures for reducing spread of COVID-19  [27-30].   However, it is vital that we 

caveat this finding (about closing educational establishments) by noting that it relates to closing 
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schools that operated ‘as normal’ rather than when they operated with COVID-secure policies. We 

also do not attempt here to discuss what the best COVID mitigation measures might be within 

schools. 

 

It seems likely that many possible combinations of social distancing measures can be effective.  The 

apparent effects of the measures as described here may be biased by the measures themselves 

tending to have a sequence in common among all countries.  Measures imposed later may seem less 

effective simply because of the order in which they happened (additional benefits were small after 

other measures were put in place).  Other analysts have drawn this same conclusion about 

coronavirus NPIs [30].  Our analyses indicated that school closures and stopping mass gatherings 

were most effective, but we acknowledge that these measures were among the earliest taken in 

Europe; the data didn’t allow us to see what marginal gains might have been achieved if school 

closures had been the last of all measures taken.  Also, different measures reinforced and enabled 

each other: for instance, there was little incentive to leave home if schools and businesses are 

already closed and weather was inclement (as it often is in early spring in Europe, when most 

national lockdowns started).  Business and school closures usually preceded stay at home measures 

in Europe, so it may not have been possible for data on stay at home orders to be linked to large 

additional effects.  This potential ordering problem is at least somewhat mitigated for by our use of 

individual lag measures (in timing) from when each intervention was effected.  It is also worth noting 

that outside of institutional and crowded settings, there is evidence that much if not most COVID-19 

transmission was within households in this period [31]; stay at home orders intensify contact within 

households which would be expected to increase household transmission.  It could be therefore not 

surprising that stay at home measures on their own are not very effective outbreak control 

measures and may not generate large additional benefits.   

 

There has been uncertainty about how beneficial the closing of educational establishments can be 

on coronavirus respiratory disease transmission [30, 32-37], especially given that children often have 

mild or no symptoms [38].  We cannot resolve the lack of consensus in these lines of evidence about 

how likely children are to pass SARS-COV-2 to adults.  Emergences of novel and seemingly more 

infectious variants [39] of the virus may complicate attempts to understand transmission patterns 

between children and to adults using historical data, as well as understanding relatively 

effectiveness of specific non-pharmaceutical interventions.  Our study similarly does not identify 

which level of school closure has the most benefit whether it is primary, junior, senior school or even 

higher education, though more recent evidence tends to point towards schooling between 11 and 
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19 as being more likely to drive transmission than education for younger children [35].   Note that 

our own results are based on total closure rather than schools operating with at least partial social 

distancing.    The impacts of partial school closures or social distancing controls within open schools 

need to be evaluated separately. 

 

After closing educational establishments, the next greatest impact on the epidemiology of the 

European COVID-19 controls was from banning mass gatherings (which could be of any size), both 

public and private gatherings. A 2018 review of the impact of mass gatherings on outbreaks of 

respiratory infectious disease [40] found that most evidence was linked to the Islamic Hajj 

pilgrimage, where most infections were respiratory, mainly rhinovirus, human coronaviruses and 

influenza A virus. The evidence for respiratory disease outbreaks arising from other mass gatherings 

such as music festivals or sporting events is less established, but not absent. Several outbreaks of 

respiratory infectious disease have been linked to large festivals [40, 41]. For instance, during the 

2009 influenza season pandemic influenza A(H1N1)pdm09 outbreaks were recorded at three of 

Europe’s six largest music festivals, while some 40% of pandemic flu cases that season in Serbia were 

linked with the Exit music festival.  Analyses by other investigators using different approaches than 

ours on COVID-19 NPIs also tend to find that banning large gatherings can be especially effective for 

reducing disease transmission [30]. 

 

The types of business closures are interesting. We established that there was weak collinearity 

between the two types of business closures in the models.  However, the stronger association was 

with the initial business closures. Given that those initial closures were mostly directed at business 

where people congregate and have a purpose of facilitating socialising (i.e. the hospitality industry), 

this would suggest that control measures among these businesses are where the most impact may 

be had. Although outbreaks of food poisoning are frequently linked with venues where food is 

consumed, outbreaks of respiratory infections are much more rarely so. One exception was an 

outbreak of SARS at a restaurant where live palm civets were caged close to customer seating [42].  

The link with COVID-19 is probably much less about food and beverage consumption, and simply 

about time people spend in close proximity to each other. 

 

Similar to other authors who have tried to assess relative importance of possible NPIs in controlling 

COVID-19 and not found strong benefits for face-cover usage [43], we hesitate to interpret our 

findings on mask-wearing as definitive.  Mask-advisories have not been implemented in isolation, 

and were often implemented relatively late in the sequence of NPIs in the group of European 
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countries that we studied.  Mask-interventions were also implemented unevenly (as advisories or 

mandates) and usually only in limited settings. Our separate evidence review [44] found that mask-

wearing to stop respiratory disease transmission is likely to be only be modestly effective, but we 

agree that when it comes to a pandemic situation, small protective measures may have cumulative 

important benefits [45]. 

 

 

Limitations 

Although our study suggests that closures of educational interventions and banning mass gatherings 

are the most important measures, this is caveated with several observations.  Many interventions 

were implemented in different ways and at different points in the local epidemic.   We relied on 

published and observed data which may have suffered from problems of under-ascertainment; the 

true effect of specific interventions may depend on true community prevalence that was not 

measured accurately enough.  We did not undertake a systematic sensitivity analysis (excluding just 

one country per model, for instance) or adjustments in categorisations.  It is likely that there will be 

serial dependency in the data as the level of disease at one time point is dependent (inevitably) on 

prior states of disease in the nation state, but we did not attempt to measure serial dependency in 

our models which might have further informed relative NPI efficacy.  For example, in accordance 

with the IHME assignment, we treated Sweden as a country without school closures because schools 

for persons under 16 stayed open, although upper secondary and tertiary education facilities were 

actually shut in Sweden from late March 2020 [46]. Given recent evidence that secondary (age 11 to 

19) rather than junior schools that may play an important role in transmission of COVID, the 

educational closures in Sweden may explain in part the divergence from our predictions in that 

country [35]. Our models cannot allow for differences in school building construction materials or 

ventilation rates between countries that might influence transmissibility.  The findings in support of 

school closures to contain the virus can truly only refer to schools when schools operate ‘as normal’ 

and not with COVID mitigation practices in place.   The exact timing of restrictions being introduced 

varied over time in Italy, Spain and between individual federal states in Germany [47].  Which types 

of work places could stay open varied; while the acceptable reasons for being outdoors also varied 

between countries.   Stay at home orders in some countries was an advisory but not enforced whilst 

elsewhere stay-home orders were enforced by police with penalties. In some countries, children 

could go outside and outdoor exercise was permitted whilst in others either or both might be 

banned.  In some countries, severe travel restrictions were a separate intervention whilst in others 

travel bans were a consequence of a stay at home order and could not be identified separately.  
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Because of this variety in how interventions were implemented and described, the results for the 

potential of stay at home advisories especially may be under-estimated.  All models are 

simplifications of the complex nature of reality; our modelling was unable capture many subtle 

variations in how control measures were implemented. We acknowledge that lack of direct 

observation of these variations may have biased our results.   

 

 

Conclusion 

Relaxing stay-at-home orders and allowing reopening of non-essential businesses appeared to be 

the lowest risk measures to relax as part of plans to carefully lift COVID-19 lockdown measures.  

There is still even now relatively little unclear empirical evidence on the relative value of different 

interventions.  And yet, the reasons to implement minimal control measures are compelling, given 

the social and economic harm linked to tight control measures.  Hence, whilst we need to be 

cautious about using preliminary results, public health officials will have to use evidence as it 

emerges rather than expect to wait for a final full view to decide what might be (was) the best 

control strategy.  Careful monitoring of how relaxation of each control measure affects 

transmissibility of COVID-19 is required and will help to minimise the inevitably imperfect results. 
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Figure 1. Exemplar timeline of possible NPI impositions and potential epidemic response 
  
Figure 2. Incidence Rate Ratios (cases) following implementation of country level non-
pharmaceutical control measure and daily reported COVID 19 case numbers in 30 European 
countries. 
 
Figure 3. Incidence Rate Ratios (deaths) following implementation of country level non-
pharmaceutical control measure and daily reported deaths from COVID-19 in 30 European countries. 
 
Figure 4. Comparison of predicted daily reports of case numbers of COVID-19 with seven day rolling 
average actual numbers across 30 European countries. 
 
Figure 5. Comparison of predicted daily numbers of reports of deaths COVID-19 with seven day 
rolling average actual numbers across 30 European countries. 
 
Figure 6. Posterior mean of the country-specific risk ratio  of COVID-19 A) cases and C) deaths; and 
posterior probability of exceeding one COVID-19 B) case or D) death. 
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Figure 1. Exemplar timeline of possible NPI impositions and potential epidemic response 
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Figure 2. Incidence Rate Ratios (cases) following implementation of country level non-
pharmaceutical control measure and daily reported COVID 19 case numbers in 30 European 
countries. 
 

 
  
Figure 2 Notes: central line is posterior mean of the exposure-response relationship; shading is 95% 
confidence interval. 
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Figure 3. Incidence Rate Ratios (deaths) following implementation of country level non-
pharmaceutical control measure and daily reported deaths from COVID-19 in 30 European countries. 
 
 

 
 
Figure 3 Notes: central line is posterior mean of the exposure-response relationship; shading is 95% 
confidence interval. 
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Figure 4. Comparison of predicted daily reports of case numbers of COVID-19 with seven day rolling 
average actual numbers across 30 European countries. 
 

 
 
Figure 4 Notes: central line is posterior mean of the predictions made by the models (for individual 
countries over time); shading is 95% confidence interval.  
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Figure 5.  Comparison of predicted daily numbers of reports of deaths COVID-19 with seven day 
rolling average actual numbers across 30 European countries. 
 

 
 
 
Figure 5 Notes: central line is posterior mean of the predictions made by the models (for individual 
countries over time); shading is 95% confidence interval.  
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Figure 6.  Posterior mean of the country-specific risk ratio of COVID-19 A) cases and C) deaths; and 
posterior probability of exceeding one COVID-19 B) case or D) death. 
 
 

 
 

Note: Figure 6 shows the maps of the posterior mean for the country-specific relative risks of (A) 
COVID-19 cases, and (C) COVID-19 deaths compared to the whole of the study area after having 
accounted for the effects of all other covariates in the model. Figure 6 also shows the country-
specific posterior probability of exceeding (B) one case or (D) one death (per 100,000 persons after 
adjusting for covariates). 
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This supplementary material is hosted by Eurosurveillance as supporting information alongside the 
article “Impact of non-pharmaceutical interventions against COVID-19 in Europe: a quasi-
experimental non-equivalent group and time-series design study “, on behalf of the authors, who 
remain responsible for the accuracy and appropriateness of the content. The same standards for 
ethics, copyright, attributions and permissions as for the article apply. Supplements are not edited 
by Eurosurveillance and the journal is not responsible for the maintenance of any links or email 
addresses provided therein. 
 
 
SUPPLEMENTARY MATERIAL 1. Dates that restrictions were imposed in states/regions of Italy, 
Spain, and Germany 
 
Dates in March when restrictions were imposed: eg., 15 = 15 March, 

Spain massgath initbuscl educclosed nonessent SAHO 
Andalucia 15 15 14 15 15 
Aragon 15 15 14 15 15 
Asturias 15 15 14 15 15 
Islas B 15 15 14 15 15 
Basque C 15 15 14 15 15 
Canaries 15 15 14 15 15 
Cantabria 15 15 14 15 15 
C&Leon 15 15 14 15 15 
C-LaM 15 15 14 15 15 
Catalonia 11 12 14 15 15 
Ceuta 15 15 14 15 15 
C Madrid 15 13 11 13 15 
Extremadura 15 15 14 15 15 
Galicia 15 15 14 15 15 
La Rioja 15 15 14 15 15 
Melilla 15 15 14 15 15 
Murcia 15 15 14 15 15 
Navarre 15 15 14 15 15 
C Valencian 15 15 14 15 15 

      
medians 15 15 14 15 15 
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SUPPLEMENTARY MATERIAL 1. Dates that restrictions were imposed in states/regions of Italy, 
Spain, and Germany (continued) 
 
 
Dates in March when restrictions were imposed: eg., 11 = 11 March, -7 = 7 days before 1 March, or 
23 Feb. 

Italy massgath initbuscl educclosed nonessent SAHO 
Abruzzo 11 11 5 11 11 
Basilicata 11 11 5 11 11 
Calabria 11 11 5 11 11 
Campania 11 11 5 11 11 
Emilia-R 7 7 1 11 11 
F-V Giulia 11 11 5 11 11 
Lazio 11 11 5 11 11 
Liguria 11 11 5 11 11 
Lombardia -7 -7 1 8 8 
Marche 7 7 5 11 11 
Molise 11 11 5 11 11 
Piemonte 7 7 5 11 11 
di Bolzano 11 11 5 11 11 
di Trento 11 11 5 11 11 
Puglia 11 11 5 11 11 
Sardegna 11 11 5 11 11 
Sicilia 11 11 5 11 11 
Toscana 11 11 5 11 11 
Umbria 11 11 5 11 11 
V d'Aosta 11 11 5 11 11 
Veneto -7 -7 1 11 11 

      
medians 11 11 5 11 11 
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SUPPLEMENTARY MATERIAL 1. Dates that restrictions were imposed in states/regions of Italy, 
Spain, and Germany (continued) 
 

Dates in March when restrictions were imposed: eg., 22 = 22 March, -3 = 3 days before 1 March, or 
27 Feb. 

 massgath initbuscl educclosed nonessent SAHO 
Germany 21 21 17 21 21 

 21 17 16 21 21 

 23 14 23 23 23 

 23 17 18 17 17 

 17 20 16 20 22 

 22 15 16  22 
 22 15 16  22 

 23 27 16 27 23 

 23 18 16 18 23 

 23 -3 16 23 23 

 22 23 16 23 22 

 21 15 16  21 
 22 24 16 24 22 

 23 23 23 23 23 

 24 14 16 24 24 

 22 15 17  22 

      
medians 22 17 16 23 22 
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SUPPLEMENTARY MATERIAL 2:  Orders or recommendations to wear facemasks or face coverings, 
by sovereign territory in Europe 
 
 
Austria 6 April 2020 (compulsory) 
 
Compulsory in shops and most commercial premises from 6 April 2020, soon widened to public 
transport and shops that were due to re-open on 14 April. 
 
https://uk.reuters.com/article/us-health-coronavirus-austria/austria-to-make-basic-face-masks-
compulsory-in-supermarkets-idUKKBN21H16A 
 
https://uk.reuters.com/article/uk-health-coronavirus-austria-masks/austrian-supermarkets-hand-
out-face-masks-before-they-become-compulsory-idUKKBN21J5XP 
 
====================== 
 
Bulgaria 30 March 2020 (mix recommended/compulsory) 
 
Strong recommendation from 30 March; made compulsory in all public places from 12 April; 
extended to 13 May. 
 
https://sofiaglobe.com/2020/03/30/covid-19-bulgaria-makes-wearing-a-protective-mask-in-public-
places-compulsory/ 
 
https://www.bnr.bg/en/post/101257255/bulgaria-introduces-mandatory-wearing-of-masks-in-
public-from-april-12-until-april-26-inclusive 
 
https://www.novinite.com/articles/204264/The+Mandatory+Wearing+of+Protective+Masks+is+Exte
nded+until+May+13 
 
 
============================ 
 
Czechia 18 March 2020 (compulsory) 
Mandatory in all public spaces and many work places.  Order extended until end of June 2020. 
 
https://www.praguemorning.cz/face-masks-now-mandatory-in-all-prague-shops-and-offices/ 
 
https://news.expats.cz/weekly-czech-news/prymula-face-masks-to-remain-mandatory-in-czech-
republic-until-end-of-june/ 
 
===================== 
Estonia 5 April 2020 (highly recommended) statement by PM 
 
https://news.err.ee/1073236/prime-minister-we-are-unfortunately-still-in-coronavirus-deepening-
phase 
 
========================= 
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France 5 April (encouraged not required) 
 
https://www.thelocal.fr/20200406/mask-or-no-mask-what-is-the-official-coronavirus-advice-in-
france 
 
https://www.france24.com/en/20200405-coronavirus-abrupt-reversal-on-mask-policy-in-france-
and-the-us-raises-new-questions 
======================== 
 
Germany 1 April 2020 (recommendation that became compulsory) 
 
Variable rules for when must be worn vary by state and sometimes by city, introduced dates also 
variable.  Nationally mandated from 27 April on public transport & also in most shops before then. 
RKI formally endorsed mask-wearing on 1 April. 
 
https://www.thelocal.de/20200402/latest-face-masks-in-public-could-help-to-reduce-spread-of-
coronavirus-says-germanys-robert-koch-institute 
 
https://muscateer.om/en/news/europe-updategermany-new-face-mask-rules-in-idZ2trbg== 
 
======================== 
 
Italy 6 April mandatory in some regions, some settings by 6 April, endorsed by national govt 
previously but uneven uptake. 
 
Lombardy, Tuscany 6 April mandatory anywhere outdoors 
 
https://www.ansa.it/english/news/2020/04/06/coronavirus-lombardy-makes-face-masks-
compulsory_a852ffdb-a0dd-4c55-a725-e852c5a2fc43.html 
 
https://uk.reuters.com/article/us-health-coronavirus-italy-masks/scramble-for-masks-as-italian-
region-orders-coronavirus-cover-up-idUKKBN21O1Y0 
 
https://www.thelocal.it/20200406/coronavirus-where-should-you-wear-a-face-mask-in-italy 
 
========================= 
Lithuania 1 April (recommendation) 
 
https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-use-face-masks-
community.pdf 
 
===================== 
 
Luxembourg 20 April 2020 (compulsory in some situations , where can’t keep 2m apart) 
 
https://uk.reuters.com/article/us-health-coronavirus-luxembourg/luxembourg-enforces-use-of-
masks-as-lockdown-eases-idUKKBN2221W3 
 
====================== 
Norway 5 April (encouraged)  
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https://www.newsinenglish.no/2020/04/05/officials-change-their-minds-about-masks/ 
 
https://www.fhi.no/en/op/novel-coronavirus-facts-advice/facts-and-general-advice/hand-hygiene-
cough-etiquette-face-masks-cleaning-and-laundry/ 
 
====================== 
Poland 16 April (mandatory, most public places) 
https://www.aljazeera.com/news/2020/04/countries-wearing-face-masks-compulsory-
200423094510867.html 
 
 
===================== 
Slovakia 14 March (recommendation, followed by requirement from about 1 April) 
 
https://balkaninsight.com/2020/04/09/slovak-news-crews-hailed-for-covid-19-coverage/ 
 
https://www.npr.org/sections/coronavirus-live-updates/2020/04/01/825180019/in-big-adjustment-
some-european-countries-push-for-residents-to-wear-masks 
 
https://balkaninsight.com/2020/04/09/slovak-news-crews-hailed-for-covid-19-coverage/ 
 
https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-use-face-masks-
community.pdf 
 
========================= 
Slovenia 29 March (mandatory in many places) 
 
https://english.sta.si/2746850/slovenia-sticking-to-use-of-masks-in-indoor-public-places 
 
========================= 
 
Spain  13 April (recommended and sometimes freely given out, ie train stations, but not 
compulsory) 
 
https://www.rtve.es/noticias/20200413/como-colocar-retirar-desechar-mascarillas-higienicas-para-
evitar-contagio-coronavirus/2011879.shtml 
 
https://www.thelocal.es/20200424/what-are-the-rules-for-wearing-a-protective-mask-in-spain 
 
=================================== 
 
Countries with no predominant government recommendation or compulsion in place  
(as of noon 29.4) 
Belgium, Croatia, Republic of Cyprus (south), Denmark, Finland, Greece, Hungary, Ireland, Latvia, 
Malta, Netherlands, Portugal (likely soon), Romania, Sweden, Switzerland, UK 
 
 
Netherlands Masks are not a substitute for 1.5 m 
https://www.dutchnews.nl/news/2020/04/dutch-stay-firm-on-face-masks-but-they-may-have-an-
exit-strategy-role/ 
 

https://www.newsinenglish.no/2020/04/05/officials-change-their-minds-about-masks/


35 
 

Hungary 27 April mandatory, commuters & shoppers but in Budapest only 
https://www.themayor.eu/en/budapest-makes-masks-mandatory-for-shoppers-and-commuters 
 
UK  
Scotland’s first minister recommended (did not mandate) that face coverings (not surgical grade 
masks) should be worn in all enclosed public spaces, from 28 April 2020.  Because Scotland 
comprises 5.5 million (just 8.2% of the total UK population of approximately 67.9 million) we still (as 
of 29.4.20) treated the entirety of the UK as a country without an official endorsement of face 
coverings in our modelling.   
 
https://www.gov.scot/publications/coronavirus-covid-19-public-use-of-face-coverings/ 
 
 
 
 
SUPPLEMENTARY MATERIAL 3:  Variance Inflation Factors (VIF) for Analysis 1, run as linear models 
 
Variance inflation factors                                  
mass_gathering_restrictions  4.915550 
initial_business_closure    10.011556 
education_facilities         9.490315 
non_essential_services       6.253501 
stay_home                    3.514925 
masks                        1.432351 
tests per million population as of 16 April 2020            1.295814 
 
 
 
 
 
SUPPLEMENTARY MATERIAL 4:  Collinearity Diagnostics 
 
Variance inflation factors for Analysis 2 model fit as linear regression 

Variable VIF 1/VIF 
     
Initial business closures 10.44 0.095815 
Education closures 9.87 0.101302 
Mass gatherings banned 6.52 0.153397 
Non essential business closures 6.27 0.159552 
Days elapsed into main epidemic 6.15 0.162476 
Stay at home order 3.52 0.284366 
Mask advisory/mandate imposed 1.47 0.680742 
Tests per 1 million/population by 16 April 1.31 0.764803 
     
Mean VIF 5.69   

 
  

https://www.gov.scot/publications/coronavirus-covid-19-public-use-of-face-coverings/
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SUPPLEMENTARY MATERIAL 4:  Collinearity Diagnostics (continued) 
Analysis 2 Model when fit as linear regression, yielded condition indices and variance-decomposition 
proportions 

Dimension -
> 1 2 3 4 5 6 7 8 9 

Condition 
indices -> 
 

1 
 

2.61 
 

3.56 
 

5.08 
 

6.04 
 

9.37 
 

11.44 
 

14.71 
 

15.9 
 

Model 
Parameter Variance proportions 

Constant 0 0.03 0.01 0.01 0.31 0.21 0.14 0.26 0.03 

Mass gathering 
restriction 0 0 0 0.06 0 0.02 0.49 0.13 0.3 

Initial business 
closure 0 0 0 0 0.03 0.01 0.27 0.04 0.65 

Education 
facilities closed 0 0 0 0.01 0.02 0.04 0.1 0.33 0.5 

Non essential 
services closed 0 0 0 0.05 0.02 0.61 0.15 0.01 0.15 

Stay at home 
order 0 0.02 0.04 0.2 0.23 0.48 0 0.01 0.03 

Masks advisory 
or mandated 0 0.17 0.72 0.01 0.02 0.04 0 0.02 0.01 

Days elapsed 
from start main 
epidemic 

0 0 0 0.01 0 0 0 0.78 0.2 

Tests/1 mln 
population to 
16 April 

0 0.09 0.07 0.2 0.15 0.26 0.19 0 0.03 
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SUPPLEMENTARY MATERIAL 4:  Collinearity Diagnostics (continued) 
 
Principal components/correlation 
 
Number of observations = 1588 
 
 

Component Eigenvalue Difference Proportion Cumulative 

     
Comp1 5.2667 4.21318 0.6583 0.6583 
Comp2 1.05353 0.302265 0.1317 0.79 
Comp3 0.751261 0.26581 0.0939 0.8839 
Comp4 0.485451 0.3267 0.0607 0.9446 
Comp5 0.158751 0.041833 0.0198 0.9645 
Comp6 0.116918 0.008604 0.0146 0.9791 
Comp7 0.108315 0.049241 0.0135 0.9926 
Comp8 0.059073 . 0.0074 1 

 
 
 

SUPPLEMENTARY MATERIAL 5:  Please see separate document for full regression model 
specifications and outputs.  Alternative results using different time step units for epidemic 
response, Analysis 2.  Tested variations are 4 days, 7 days, 10 days or 14 day units.  The main 
manuscript describes the results when using 7 day time response periods, as there was little 
difference in the overall trends of a decline in risk ratios with time since interventions were imposed.  
Please see Supplementary Material 6 (below) for further detail showing between model  
comparisons.             
 
 
SUPPLEMENTARY MATERIAL 6 (following pages):  Alternative results using different time step 
units for epidemic response, Analysis 2 : Comparisons of Incident Risk Ratios (IRRs) when models 
were generated using different time step response units: 4, 7, 10 or 14 days. 
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 6A: IRRS for CASES 
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6A: IRRS for CASES (continued) 
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6A: IRRS for CASES (continued) 
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6B: IRRS for DEATHS  

  

 
  

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

In
ci

de
nt

 R
isk

 R
at

io
 ->

Days after intervention ->

IRRs for effects of Mass Gathering restrictions, 
using different time steps: Deaths

4 day steps 7 day steps 10 day steps 14 day steps

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

In
ci

de
nt

 R
isk

 R
at

io
 ->

Days after intervention ->

IRRs for effects of Education
closures, using different time steps: Deaths

4 day steps 7 day steps 10 day steps 14 day steps



42 
 

6B: IRRS for DEATHS (continued) 
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6B: IRRS for DEATHS (continued) 
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