
Cost-Aware Prediction of
Uncorrected DRAM Errors in the Field

Isaac Boixaderas
Barcelona Supercomputing Center

isaac.boixaderas@bsc.es

Darko Zivanovic
Barcelona Supercomputing Center

darko.zivanovic@bsc.es

Sergi Moré
Barcelona Supercomputing Center

sergi.more@bsc.es

Javier Bartolome
Barcelona Supercomputing Center

javier.bartolome@bsc.es

David Vicente
Barcelona Supercomputing Center

david.vicente@bsc.es

Marc Casas
Barcelona Supercomputing Center

marc.casas@bsc.es

Paul M. Carpenter
Barcelona Supercomputing Center

paul.carpenter@bsc.es

Petar Radojković
Barcelona Supercomputing Center

petar.radojkovic@bsc.es

Eduard Ayguadé
Barcelona Supercomputing Center,

Universitat Politècnica de Catalunya
eduard.ayguade@bsc.es

Abstract—This paper presents and evaluates a method to
predict DRAM uncorrected errors, a leading cause of hardware
failures in large-scale HPC clusters. The method uses a random
forest classifier, which was trained and evaluated using error
logs from two years of production of the MareNostrum 3
supercomputer. By enabling the system to take measures to
mitigate node failures, our method reduces lost compute time
by up to 57%, a net saving of 21,000 node–hours per year. We
release all source code as open source.

We also discuss and clarify aspects of methodology that
are essential for a DRAM prediction method to be useful in
practice. We explain why standard evaluation metrics, such as
precision and recall, are insufficient, and base the evaluation on
a cost–benefit analysis. This methodology can help ensure that
any DRAM error predictor is clear from training bias and has
a clear cost–benefit calculation.

Index Terms—Memory system, Reliability, Error prediction,
Machine learning, Random forest, Cost–benefit analysis.

I. INTRODUCTION

One of the main causes of hardware failure in large-scale
clusters is an uncorrected error in main memory [1]–[4].
Node failures are especially problematic in high-performance
computing (HPC) systems, where a single tightly-coupled job
may execute for days on thousands of nodes. If any of these
nodes fails, the whole job is terminated, typically wasting
all CPU hours since the last checkpoint. Memory system
reliability is therefore an important limit on the ability to
scale to larger systems.

Various studies propose use of machine learning methods
to predict DRAM errors. These studies are valuable to
understand correlated factors and features that can be used for
DRAM error prediction. It is not trivial, however, to quantify
the impact of the proposed methods on HPC system reliability.
There are two main reasons for this. First, most prior studies
focus on corrected DRAM errors. System reliability, however,
is impacted only by uncorrected errors [5]–[9], and there is no
direct relation between corrected and uncorrected errors [2],

[3], [8], [10], [11]. Second, previous studies evaluate the
proposed methods using classical prediction metrics, such
as precision, recall and F1-score. Although these classical
metrics are often suitable, various studies [12]–[15] and our
results show that they are insufficient for evaluation of HPC
failure predictors because they cannot be used to determine
whether prediction is useful in practice.

The main objective of our study is to help the community
set a basis for any following work on uncorrected DRAM
error prediction that would be practical in the field. This
paper makes two main contributions. Firstly, we present and
evaluate a method to predict DRAM uncorrected errors (UEs).
This method can enable the system to take active measures to
mitigate the predicted UE, e.g. perform a checkpoint or live
job migration. Secondly, we discuss and clarify several aspects
of methodology, relating to cost–benefit analysis and potential
sources of bias, that are essential for such a prediction method
to be useful in practice. We compare six machine learning
classifiers and design an error prediction method based on
random forest. The presented method predicts UEs based on
preceding warnings and errors (corrected and uncorrected), as
well as DIMM characteristics, and node–level events such
as reboots and DIMM installations. The method is trained
and evaluated using error logs from the MareNostrum 3
supercomputer [16], one of six Tier-0 HPC systems in Europe.
At the time of the study, the system comprised 3056 nodes
with more than 25,000 memory DIMMs. The error logs cover
a production period of more than two years, from October
2014 to November 2016, during which we detected 4.5 million
corrected errors and 333 uncorrected errors.

The objective of the HPC failure prediction mechanism is
to increase effective use of the HPC system by reducing the
compute time lost due to failures. We pay special attention to
the evaluation methodology and base the evaluation on a cost–
benefit analysis that compares the system resources needed for
training, failure prediction and failure mitigation against the

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/SC41405.2020.00065

saved compute time due to successful failure prediction and
mitigation [9]. Our results show that the precision, recall and
F1-score are not correlated with saved compute time or mitiga-
tion costs, and therefore cannot be used to decide whether and
for which model parameters the prediction is useful in practice.
This is because precision and F1-score put the same weight on
diverse prediction outcomes, whose costs differ by orders of
magnitude, and the recall metric ignores false positives, which
incur unnecessary and costly mitigation measures. Overall,
these standard data prediction metrics are insufficient to eval-
uate HPC failure predictors, and we suggest to complement
them with cost–benefit analysis in future studies.

We are the first to show that only a small fraction of uncor-
rected errors have an impact on system reliability. Uncorrected
DRAM errors, as many failure events, appear in bursts. In a
burst of UEs occurring in a short interval of time on the same
node, only the first UE has an impact on system reliability.
In our study, out of 333 detected UEs, only 67 (one fifth!)
have any impact and are therefore used for model training
and evaluation. The rest are much easier to predict (at least in
our dataset) but have no impact on the cost–benefit calculation.

We also address the bias that may have been introduced
by existing resiliency techniques employed in a production
supercomputer. State-of-the-art production systems, including
MareNostrum, already implement advanced resilience
mechanisms in hardware and software. During the monitoring
period, MareNostrum incorporated a pre-failure alert
mechanism that caused any DIMMs that were considered
to be close to failure to be retired from production. These
retired DIMMs can cause a bias in the model training. This
is the first DRAM error prediction study that discusses this
bias and proposes a methodology for its mitigation. All future
failure prediction methods trained on production logs should
also carefully consider and mitigate this bias.

Finally, we analyze the effect of the model decision thresh-
old, prediction frequency and prediction window on prediction
coverage and proficiency. We quantify the impact of these
parameters on the cost–benefit calculation, and explain the
behavior using the number of errors that the model can predict,
the number of correctly predicted errors and model overheads.

In summary, this paper presents and evaluates a method
that predicts DRAM uncorrected errors, reducing the compute
time lost due to DRAM failures by up to 57%. In our
production systems, the savings would be measured as
21,000 node–hours per year. We release the prediction
methods’ source code as open source [17]. We also aim
to help the community to define standard methodology for
log pre-processing, model training, parameter exploration
and evaluation. This methodology will help ensure that any
DRAM error prediction method is clear from bias during
training and has a clear cost–benefit calculation.

II. ENVIRONMENT DESCRIPTION

A. MareNostrum 3 error logs

Our prediction method is trained and evaluated on memory
error logs from the MareNostrum 3 supercomputer [16] over a

production period from October 2014 to November 2016. At
the time, MareNostrum 3 was one of the six Tier-0 (largest)
HPC systems in the Partnership for Advanced Computing in
Europe (PRACE) [18]. It comprised 3056 compute nodes, each
with two eight-core Intel Sandy Bridge-EP E5-2670 sockets
with a 2.6 GHz nominal clock frequency. We use the logs from
the compute nodes only, excluding the login and test nodes
which are not part of the same monitoring infrastructure and
whose failures do not impact large-scale compute jobs. The
MareNostrum 3 compute nodes included more than 25,000
DDR3-1600 DIMMs, and during the observation period we
collected measurements on more than 2,000 billion MB-hours.
The main workloads executed on MareNostrum 3 were large-
scale scientific HPC applications and the system utilization
typically exceeded 95%. We analyze DIMMs from all three
major memory manufacturers. These manufacturers have been
anonymized to protect the interested parties, and are referred
to as Manufacturer A, B and C. There are 6694, 5207 and
13,419 DIMMs from Manufacturer A, B and C, respectively.

MareNostrum 3 employed a Single Device Data
Correction (SDDC) ECC scheme, which could correct
all errors coming from a single x4 device, a level of resiliency
commonly referred to as Chipkill. For x8 devices, SDDC ECC
can correct up to 4-bit errors coming from the same DRAM
chip. The ECC check is performed on each application
memory read and by a patrol scrubber which periodically
traverses the whole physical memory and performs an ECC
check on each location.

During production, any DIMM that showed early signs of
failure was flagged by a pre-failure alert and retired by the
system administrators. This action was recorded in the system
log together with the date and time. Over the two-year period
analysed by this paper, 51 DIMMs were retired for this reason.

B. Data collection

Corrected errors (CEs) were logged by a daemon, based
on the mcelog Linux kernel module [19], that periodically
extracts information about corrected errors from the CPU
machine-check architecture (MCA) registers [19]. Each cor-
rected error was recorded in a log file, which specifies the error
time stamp, node and DIMM id, and the physical location of
the error in the DIMM including rank, bank, row and column.1

The log entry also indicates whether correction was done
during an application memory read or by patrol scrubbing.

The daemon accessed the MCA registers with a period
of 100 ms, which we selected because it was the shortest
time interval that caused negligible overhead to the production
applications. If more than one error occurred in a 100 ms
time interval, the MCA registers records the number of errors,
but only provide detailed information for one error in the
interval. Our logs therefore specify the exact total number of
corrected errors and provide detailed error information for a
subset of the errors. Increasing the sampling frequency would

1The address mapping to exact physical location is non-diclosed manufac-
turer information, and was done using help from a memory manufacturer.

2

increase the number of errors with detailed information, but
also increase the performance overhead of the error logging
daemon. Previous studies perform similar readings of the
memory error registers with a period of a few seconds [10],
[20], [21] or once per hour [22].

Uncorrected errors (UEs) were logged by IBM
firmware [23], which is part of the MareNostrum 3 monitoring
software. For each uncorrected error, the log specifies the
DIMM that failed and the cause of the error, i.e. whether
it occurred during an application memory read or patrol
scrubbing. The log also contains over-temperature conditions,
which are considered to be uncorrected errors. Finally, the log
records UE warnings generated when memory modules are
throttled to prevent an over-temperature condition and when
the correctable ECC logging limit has been reached.

Our prediction method is trained and evaluated using the
production MareNostrum 3 error logs. These production error
logs are considered sensitive, and as is the case for other field
studies, the production error logs cannot be released. However,
in order to enable future studies to quantify the real-world
impact of DRAM uncorrected errors and evaluate proposed
resiliency techniques, we have generated and released a
synthetic UE log that resembles the spatial and temporal
distributions of the MareNostrum 3 production errors [17].

C. UE reduction

Various studies have observed burstiness in HPC node
failure events [5], [7], including uncorrected DRAM errors [8].
This phenomenon affects both training and evaluation of UE
prediction methods. In a burst of UEs that occurred in a short
time period on the same node, only the first UE has an impact
on system reliability. The first UE leads to a node reboot and
the killing of all affected jobs. Subsequent UEs have no real
impact, but they are still reported by the system software. In
MareNostrum, after detecting one UE, the node is removed
from production for testing for one week. This means that
all UEs on the same node within one week after the first
UE occurrence have no impact on a production workload.
Performing data reduction, i.e. focusing only on UEs that
impact production workloads, significantly reduces the number
of UEs under study, from 333 UEs to 67 UEs. This makes a
major impact on the model design and evaluation.

D. MareNostrum 4 job logs

The cost–benefit evaluation is done in two ways: firstly,
based on assumptions on the average UE cost, which allows
an estimation of the behaviour on any system, and, secondly,
based on a real distribution of HPC job sizes. We unfortunately
do not have a log of the jobs running on MareNostrum 3, so
instead we employ a log of the jobs executed on the general-
purpose block of the successor system, MareNostrum 4 [24].
This log covers the period from March 2018 to March 2019.
MareNostrum 4 has 3456 nodes, each with two 24-core Intel
Xeon Platinum sockets with a 2.1 GHz clock frequency.

The MareNostrum 4 job size distribution has been taken
from a different and higher performance machine and a dif-

ferent production time period than was used for the MareNos-
trum 3 error logs. Nevertheless, we believe that this does not
significantly change any of the conclusions.

III. ERROR PREDICTION

A. Prediction methods

We perform uncorrected DRAM error prediction with six
classification methods: random forest [25], gradient boosting
decision tree [26], Gaussian naı̈ve Bayes [27], logistic re-
gression [28], support vector machine [29] and deep neural
network [30]. All the classifiers are implemented based on the
corresponding Python libraries. For random forest, Gaussian
naı̈ve Bayes, logistic regression and support vector machine
we use the sklearn library [31]. Gradient boosting decision
tree is implemented based on LightGBM [32], and the deep
neural network is deployed using TensorFlow [33].

The classifiers make separate predictions for each DIMM as
to whether or not it will experience an upcoming uncorrected
error. As described in the following section, prediction is done
periodically, e.g. every minute, and each prediction covers
a fixed length of time, e.g. the next day. Each classifier is
trained for all nodes. We use offline learning, where the model
is trained once and used to make predictions. It is common
practice to schedule a time interval for retraining, after which
new data is added to the existing data and the model is re-
trained. We tried two training intervals, every day and every
week. Both provided similar results. We trained and tested
each classifier applying the methodology described in Sec-
tion IV-A, with hyperparameter tuning and cross-validation.

We present detailed results for the random forest because it
provides the best results over a large range of uncorrected
DRAM error costs (see Section VI). Also, random forests
are relatively easy to tune and less likely to overfit than
other methods, they can quantify the importance of different
features, and training can be easily parallelized. Our results
confirm the findings of previous studies that have shown
that random forest works well for problems that involve
predicting failures over time, such as predicting corrected and
uncorrected DRAM errors [2], [34] and disk failures [35].

B. Time windows

Figure 1 illustrates how prediction is performed periodically.
In this figure, the prediction window refers to the length of
the (future) time interval for which a prediction is made. The
observation window refers to the length of the (past) period
that is observed in order to make the prediction. In our study
the observation window extends from the beginning of error
logging until the prediction moment, which is at the beginning
of the prediction window. The observation window therefore
increases in length over time, leading to better predictions. As
in most prior work, the prediction frequency is a constant,
with the time between successive predictions known as the
prediction interval and illustrated using ∆t in Figure 1. The
prediction interval must be no greater than the prediction
window, and is a trade-off between overhead, precision in time
and coverage of UEs. A full discussion is given in Section V-B.

3

t
0

t
1

t
2

t
3

t
4 time

Δt Δt Δt Δt ←

Observation window: t
0
−t

3
Prediction window

Triggering

events

xxx

Prediction frequency

(Prediction interval)

Fig. 1: Periodic prediction process over time, showing predic-
tion frequency, observation window and prediction window.

We propose a triggered prediction that provides high respon-
siveness with low prediction overhead. In Figure 1, predictions
are scheduled at regular time intervals, t1, t2, t3 and t4, but
a prediction will only be made if the preceding prediction
interval contains one or more trigger events: Corrected Errors,
Uncorrected Errors, Uncorrected Error Warnings, Node boots
or DIMM installs. In the figure, a prediction will only be made
at t3, triggered by the events detected in the t2–t3 interval. At
t1, t2 and t4 the system performs only a low-overhead check
to determine whether any trigger events have been detected.

C. DIMM retirement bias

MareNostrum incorporates a pre-failure alert that retires
from production any DIMMs that are considered to be close to
failure. Preventive DIMM retirement such as this is known to
cause bias when analyzing the dependency between corrected
and uncorrected errors [8]. Whether or not it also introduces
bias in the training or evaluation of an UE prediction method
depends on the characteristics of the method. In our case,
DIMM replacement after the end of the prediction window
has no impact on the model training and evaluation. For
most DIMMs, i.e. those that were not replaced, prediction can
therefore be evaluated until the end of the log files.

If the DIMM is replaced inside the prediction window, we
could not determine whether it would have experienced an UE
had it not been retired, because we could not obtain monitoring
data after DIMMs were replaced. We therefore remove these
samples from training and evaluation, which introduces a bias.
In order to remove this bias and to enable comparison between
the existing pre-failure mechanism and the new predictor, we
recommend that device health is monitored for some time, on
back-up or service nodes, after retirement from production.

D. Feature engineering

The features (input data structures) used by our prediction
method are listed in Table I. Most features are obtained directly
from the logs (see Section II-B). In addition, we include
features that describe the DIMM characteristics, such as
manufacturer, chip and DIMM capacity. Categorical attributes
are transformed into features using one-hot encoding, which
is known to improve the performance of machine learning
classification and regression methods. We compute the feature
values at the moment of the prediction, and also account for the
feature variation over time. For example, feature variation in
the last minute before the prediction moment is computed as:

Feat. variation (1min) =
Feat. value (Prediction moment)

Feat. value (Prediction moment – 1 min)

TABLE I: Observation features used for the prediction

Feature for prediction method

Per DIMM:
Number of corrected errors (CEs)
Number of ranks, banks, rows and columns with CEs
Average and standard deviation of errors per rank, bank, row and col.(a)
Number of uncorrected errors (UEs)
Number of warnings
Time since the DIMM was installed in its current position
Number of times the DIMM has changed its position in production
Manufacturer(b)

DIMM Capacity: 4, 8 or 16 GB(b)

Chip Capacity: 2 Gbit or 4 Gbit(b)

Data Width: x4 or x8(b)

Per socket:
Number of DIMMs with corrected errors
Sum of corrected errors in all the DIMMs
Number of DIMMs with uncorrected errors
Sum of uncorrected errors in all the DIMMs
Number of DIMMs with warnings
Sum of warnings in all the DIMMs

Per node:
Sum of each per-socket feature across sockets in the node
Number of node boots (starts) in the last minute, hour and day

(a)Considering only the ranks, banks, rows and columns with errors.
(b)Transformed into features using one-hot encoding.

It is set to zero if the denominator is zero. We consider lagged
time intervals of 1 minute, 1 hour and 1 day. The feature
variation over time is computed for the features listed in
Table I, except the DIMM characteristics, which do not change
in time, and the numbers of node boots in the last minute, hour
and day, which already include the notion of time.

E. Prediction classes: Positive and negative

The outcome of our prediction model is either:
• Positive: The model predicts that the DIMM will expe-

rience at least one UE in the prediction window, or
• Negative: The model predicts that the DIMM will expe-

rience no UE in the prediction window.
The classifiers estimate the probability that the sample
belongs to each class and classifies the sample as positive if
the probability of belonging to the positive class is greater
than a threshold known as the decision threshold, otherwise
it is classified as negative. The lower the decision threshold,
the more often the outcome is a positive prediction.

F. Class imbalance

For the vast majority of prediction windows, the correct
prediction is that there will be no UE. This case is about
300 times more frequent than the alternative, that of an UE
in the prediction window. We are therefore dealing with a
problem of highly imbalanced data. The classifiers aim to
minimize the overall error rate so they may not perform well
for the minority class of highly imbalanced data. Two common
approaches to address this problem are: data sampling during
training and the use of class weights.

4

Sampling techniques adjust the ratio of the sizes of the
majority and minority classes, in our case the negative and
positive classes respectively. We tried multiple sampling meth-
ods: random under-sampling [36], random over-sampling [36],
SMOTE [37] and balanced random forest [38], all of them
using the implementation in the Python imblearn library [39].
Sampling techniques take a parameter that specifies the desired
ratio of the sizes of the minority and majority classes. We set
this parameter to 1 so that training is done with a random
subset of the majority class of size chosen to obtain equal
numbers of samples with and without UEs.

Class weights address class imbalance by weighting the
misprediction penalty for different classes during training. In
our case the misprediction penalty is increased for samples in
the minority (positive) class and decreased for samples in the
majority (negative) class. We implement class weights with
the balanced option available in the sklearn library [31].

We tested all classifiers with class weights and different
training data sampling methods, and for each classifier we
selected the method that provided the best results. Random
under-sampling gave the best performance for random forest,
Gaussian naı̈ve Bayes, support vector machine and neural
networks. Class weights was best for logistic regression and
gradient boosting decision tree.

IV. EVALUATION METHODOLOGY

A. Method evaluation and cross-validation

1) Time Series Cross-validation: Our evaluation method-
ology is based on time series cross-validation, which is a
well-known technique to determine how well a predictive
model of time series data can predict new data that was
not available while training. The aim is to identify possible
problems (such as overfitting) and to quantify how well the
model will generalize to an independent dataset.

We perform a sequence of training and testing steps. For
each week of production time in the log, we train the model,
which includes hyperparameter tuning, on all data in the
dataset that precedes that week (training set). We then evaluate
the tuned model by using it to predict the upcoming week
(testing set). This process continues, week by week, until no
more data remains. The final results given in Section V cover
all iterations (weeks).

2) Evaluation on different HPC systems: Ideally, we would
demonstrate the general applicability of our method using
error logs from multiple HPC systems. We have carefully
reviewed previous DRAM errors studies (see Section VII)
and public repositories [40] and found no DRAM error
logs that could be used for additional verification of our
model. This is not a surprise because HPC system failure
data is considered to be sensitive. To increase the confidence
in the generality of our method, we have partitioned
the MareNostrum 3 error logs by DRAM manufacturer.
MareNostrum 3 comprises 6694, 5207 and 13,419 DIMMs
from anonymized Manufacturer A, B and C respectively.
Apart from a small number of exceptions, all DIMMs in a
given node are from the same DRAM manufacturer.

The evaluation was performed with two sets of experiments.
Firstly, we trained and evaluated the method on the whole
system (MN3/All). Secondly, we performed separate training
and testing for each subsystem comprising a single DIMM
manufacturer: MN3/A, MN3/B and MN3/C. All experiments
correspond to the case where the users download the open
source model [17] and train it on their systems. We believe
that this is the only reasonable approach given the variation
in system logs (i.e. model features), UE rates and UE cost
among production HPC systems.

B. Precision, recall and F1-score

Each prediction outcome can be classified as one of:

• True Positive (TP): UE predicted and UE occurs.
• True Negative (TN): UE not predicted and none occurs.
• False Positive (FP): UE predicted, but none occurs.
• False Negative (FN): UE not predicted, but UE occurs.

Previous studies that proposed error prediction methods [2],
[41]–[43] are evaluated using standard data prediction metrics:
precision, recall and F1-score.

Precision refers to the percentage of observations classified
as positives that are true positives. In our case, the precision
refers to the ratio between correctly predicted UEs (TPs) and
the total number of predicted UEs (TPs and FPs):

Precision =
Correctly predicted UEs

Total predicted UEs
=

TPs
TPs + FPs

Recall is the proportion of actual positives that are correctly
identified as such. In our case, this metric refers to the fraction
of UEs that are correctly predicted (TPs):

Recall =
Correctly predicted UEs

Total UEs occurred
=

TPs
TPs + FNs

False Negative Rate (FNR) is the proportion of actual
positives that are not identified as such. It is complementary
to the recall: FNR = 1 − Recall.

F1-score is the harmonic mean of precision and recall:

F1 = 2 × (Precision × Recall) / (Precision + Recall)

Although these classical metrics are often suitable, various
studies [12]–[15] show that they are insufficient for evaluation
of HPC failure predictors. This is because, as shown in Sec-
tion V-D, they are not correlated with a cost–benefit analysis,
and therefore cannot be used to decide whether and for which
model parameters the prediction is useful in practice.

C. Cost–benefit calculation

The objective of the HPC failure prediction mechanism is
to increase the effective use of the HPC system by reducing
the compute time lost due to failures [12], [13]. We therefore
perform a cost–benefit analysis that compares the system
resources needed for training, failure prediction and failure
mitigation against the saved compute time due to successful
failure prediction and mitigation.

5

1) Lost compute time without UE prediction and mitigation:
If an UE is detected, the job must typically be terminated and
all job node–hours since the last checkpoint (if any) are lost:2

Total UE cost = Number of UEs × Average UE cost

where Average UE cost is the average cost of a single UE,
measured in node–hours. To cover HPC systems of different
scales we perform a sensitivity analysis and consider average
UE costs of 5, 50 and 500 node–hours. We refer to these UE
costs as small, medium and large, respectively. We also show
results for the real distribution of HPC jobs executed on the
general purpose block of MareNostrum 4 (see Section II-D).
The average UE cost was derived using a Monte Carlo
simulation of a system executing jobs according to the real
distribution of MareNostrum 4 production, in which the UE
cost is the elapsed compute time, in node–hours, since the
beginning of the currently executing job.

After an uncorrected error is detected, the affected node is
removed from production for further testing (see Section II-C).
We do not include the testing node–hours as part of the overall
UE cost because we assume that the system has sufficient
spare nodes that could easily replace the one removed from
the production. In HPC systems for which this is not the case,
this node testing time should be added to the UE cost.

2) Net lost compute time with UE prediction and mitigation:
The total cost is the cost of the UEs that were not predicted
plus the total overheads of prediction model training, UE
prediction and mitigation measures.3

The total cost of the UEs that were not predicted is
given by Non-predicted UEs×Average UE cost. As discussed
in Section II-C, only the first UE in a burst has an impact on
system reliability. For this reason, we only consider the cost of
the first non-predicted UE in a burst of UEs that occur on the
same node within a week. It is also important to consider that
it is only useful to predict an error if this is done sufficiently
ahead of time, so that the system has time to complete the error
mitigation measure. This time interval is typically referred
to as the lead time. The lead time depends on the system,
application and mitigation strategy.

A recent study of Das et al. [44] analyzes various actions
that can mitigate the impact of node failures, such as live
job migration, node cloning and checkpointing. The authors
conclude that 2 min suffice for most of these actions. We
therefore select a lead time of 2 min and treat an UE that is
predicted with less than 2 min notice as a non-predicted UE.

The cost of model training depends on the amount of
data used for the training, which increases with the prediction
frequency. The model training is executed on a single CPU
core running a single process. With a prediction interval of 10
seconds, the model training requires 6.8 seconds and 3.1 GB;
with the interval of 1 day, the training requires 0.3 seconds and

2In HPC, nodes are usually not shared among multiple jobs. It is safe to
assume that reboot of an HPC node usually kills a single HPC job.

3In addition to this, on each prediction interval we have to check whether
there is a new event in the log (in the preceding observation window). In this
study, however, we estimate that this check causes negligible overhead.

2.5 GB of main memory. We also measure the cumulative cost
corresponding to model training while processing the whole
data log, i.e. corresponding to more than two years of the
system production. The cumulative cost for training is in the
order of node–minutes, which is a negligible factor in the
overall cost–benefit analysis. This paper reports the results
when the model training is performed once per week. We
repeated the experiments with a model training frequency of
1 day and we detected an insignificant difference in the model
predictions and the cost–benefit analysis.

The cost of UE prediction is incurred each time a new event
is detected in the log, as the algorithm processes the logs and
performs UE prediction. Each prediction is performed on a
single CPU core (running a single process) and requires 6 ms
and 4 MB. We measure the cumulative cost for UE prediction
to be on the order of node–minutes, which is also negligible.

The cost of mitigating UEs is incurred when an UE is
predicted, as the system performs an UE impact mitigation.
The UE impact mitigation overhead should be counted each
time the model predicts an UE (each time the model predicts
a positive), independently of whether the UE indeed occurred
or not (whether the prediction is a true or false positive).
Following the suggestions of Das et al. [44], we consider that
the overhead of a single UE impact mitigation is 2 minutes.

The net lost compute time is the sum of the above four
terms: total cost of the non-predicted UEs plus the total cost of
model training, UE prediction and UE mitigation. For the HPC
jobs that execute on healthy nodes the model introduces only
a negligible overhead due to the training and UE prediction.

V. RESULTS

A. Cost–benefit analysis

Figure 2 summarizes the results of the cost–benefit analysis
for the prediction model and mitigation. The assumptions
used in this figure, and throughout Sections V and VI are
given in Table II.

The x-axis of Figure 2 is the UE cost, covering generic
UE costs of 5, 50 and 500 node–hours and the average UE
cost calculated using the job size distribution from production
MareNostrum 4 HPC job logs (see Section IV-C1). The y-
axis in Figure 2a is the saved node–hours, which is the
reduction in lost compute time due to UE prediction and
mitigation (see Section IV-C2, model overheads are counted
as additional lost compute time), compared with the baseline
system without UE prediction and mitigation (Section IV-C1).
The y-axis in Figure 2b is the saved node–hours normalized
to the number of node–hours lost in the baseline system.
Different bars show the results for MareNostrum 3 as a
whole (MN3/All) and its different subsystems corresponding
to the DRAM manufacturer: MN3/A, MN3/B and MN3/C (see
Section IV-A2). Bars MN3/ABC show the overall results in
the case of the system partitioning: the sum of the node–hours
saved for MN3/A, MN3/B and MN3/C in Figure 2a and their
weighted average percentage savings in Figure 2b.

These results show that the effectiveness of the method
is similar across all scenarios considered: whether applied

6

TABLE II: Parameters used in Sections V and VI

Item Value

Cost of UE impact mitigation 2 minutes
Prediction frequency 1 minute
Prediction window 1 day
Decision threshold Optimal for given UE cost

and evaluated to MareNostrum 3 as a whole or separately
to MN3/A, MN3/B and MN3/C. The MN/ABC results also
closely match those for MN3/All. In terms of the percentage
savings in node–hours, in Figure 2b, all results are similar to
those for the whole system, MN3/All.

The results also clearly show that the cost–benefit calcu-
lation is strongly influenced by the average UE cost. For
a small UE cost of 5 node–hours, UE prediction has zero
effect on the saved compute time. We explore the reasons in
the following sections and see that in this case, the optimal
decision threshold is 1, so proactive UE mitigation is never
performed. For medium and large UE costs, however, savings
are seen in Figure 2a, of 586 node–hours (medium) and 16,541
node–hours (large). These are reductions of 18% and 49%
respectively (Figure 2b).

The node–hours savings computed based on the production
job logs reach 57% which is equivalent to 42,000 node–hours
or 21,000 node–hours per year. These savings are constrained
by the low number of uncorrected DRAM errors of MareNos-
trum 3, and may appear low relative to the overall system
size. Other studies, however, of field errors of DDR1, DDR2,
FBDIMM [3], DDR3 and GDDR5 [6] memory systems report
UE rates over a large range that in some cases [3] exceed
ours by up to three orders of magnitude. In these systems, the
UE costs and saved node–hours would increase in proportion,
reaching tens of percents of the total production time.

Another important finding of our study is that the saved
node–hours increase superlinearly with the average UE cost.
This is for two reasons. Firstly, the larger the UE cost, the
larger the savings from correct UE prediction, while the
overheads of the model and mitigation actions remain the
same. Secondly, larger UE costs allow the model to be more
aggressive, leading to a greater number of predicted errors that
more than compensates for the increased number of mitigation
actions (as discussed in Section V-C). We reach this conclusion
for all six classifiers explored in our study (Section VI). This
is because the finding is based on the cost–benefit analysis
in terms of the costs of the true and false positives. It is not
specific to any method and can therefore be applied to error
prediction methods in general.

B. Prediction window and frequency

The prediction window and frequency (Section III-B) pro-
vide a trade-off among the prediction model overhead, its
precision in time and the maximum coverage of UEs. The
overhead is mainly influenced by the prediction frequency.
The higher the prediction frequency, the higher the frequency

5 50 500 MN4
UE Cost

10,000

20,000

30,000

40,000 MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(a) Number of saved node–hours

5 50 500 MN4
UE Cost

0%

20%

40%

60%

(b) Percentage saved node–hours

Fig. 2: The model cost-efficiency depends on the UE cost.
For large UE cost, the savings are significant, measured in
thousands of node–hours over the two-year production period.

1min 15min 1h 1d 2d 4d 7d
Prediction window

0

20

40

Pr
ed

ic
ta

bl
e

U
Es Pred. freq.

10s
1min
15min
1h
1d

Fig. 3: Maximum number of UE that the model could poten-
tially predict depends on the prediction window and frequency.

of running the model and the higher the overhead of false
positives. The precision in time also depends on the length
of the prediction window, since a shorter prediction window
isolates any predicted UE to a shorter time window. The result
is that, on a true positive, i.e. if an UE indeed happens, less
time is wasted, on average, between the mitigation measure
and the UE error.

The relationship between the prediction window and fre-
quency and the maximum potential coverage of UEs is shown
in Figure 3. Of the 67 UEs that impact system reliability
(Section II-C), 13 UEs have no preceding event at all. These
UEs cannot be predicted by our method since there is no
information available to the model that could indicate that
an UE is likely. Assuming that there are preceding events,
however, if the prediction window is too short, then the
preceding events may be too far in the past. This happens
when the time since the preceding events is larger than the
prediction window, and it is a consequence of event triggered
prediction (Section III-B). On the other hand, if the prediction
interval is too long, then the preceding events may be followed
too quickly by an UE, without time to invoke prediction and
perform successful mitigation.

In general, as can be seen in Figure 3, the longer the
prediction window and the higher the prediction frequency,
the higher the number of UEs that are visible to the prediction
model. There is, however, a non-linear increase in the num-
ber of predictable UEs, and a point of diminishing returns.
Increasing the prediction window from 1 min to 1 hour and

7

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0

10

20

30

40
Pr

ed
ic

te
d

U
Es MN3/All

MN3/A
MN3/B
MN3/C
MN3/ABC

(a) The lower the threshold, the more correctly predicted UEs.

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0
50,000

100,000
150,000
200,000
250,000

Im
pa

ct
 m

iti
ga

tio
ns

MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(b) The lower the threshold, the more UE impact mitigations.

Fig. 4: Optimal threshold selection is a trade-off between the
number of predicted UEs and UE impact mitigations.

1 day significantly increases the number of visible UEs, while
further increasing it to 2, 4 or 7 days leads to a minor increase.

Taking into account all three factors (overhead, precision
and coverage), we select a prediction window of 1 day and a
prediction interval of 1 min. Due to the event triggered predic-
tion (Section III-B) and low-overhead prediction method (Sec-
tion IV-C), even at this high prediction frequency the overhead
of our method predictions is in the order of node–minutes.

C. Decision threshold

As explained in Section III-E, an UE is predicted if the
probability of an UE assigned by the random forest is greater
than the decision threshold. Varying the decision threshold,
which can be done at runtime or when the model is deployed,
provides a trade-off between true positives (which benefit in
lost node–hours) and the total number of positives (which
require mitigation measures).

This trade-off is shown in Figure 4. Again we show the
results for MareNostrum 3 as a whole (MN3/All), its different
partitions (MN3/A, MN3/B and MN3/C) and the cumulative
results in the case of the system partitioning (MN3/ABC).
In both subplots, the x-axis is the decision threshold. In
Figure 4a, the y-axis is the number of correctly predicted
UEs, which are the true positives. The lower the decision
threshold, the more positive outcomes and the more correctly
predicted UEs. In Figure 4b, the y-axis is the number of UE
impact mitigations, which are all the positive outcomes. For
small values of the decision threshold, there are up to 250,000
UE impact mitigations, which is almost 4000 UE impact
mitigations per UE error. The MN3/ABC curves show similar
values to MN3/All. The individual partitions MN3/A, MN3/B
and MN3/C show similar trends with values approximately
proportional to the size of the partition.

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0

−2000

−4000

−6000

−8000Sa
ve

d
no

de
-h

ou
rs

MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(a) UE cost = 5 node–hours (small)

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

−3000

−2000

−1000

0

1000

Sa
ve

d
no

de
-h

ou
rs

MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(b) UE cost = 50 node–hours (medium)

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0

5000

10,000

15,000

Sa
ve

d
no

de
-h

ou
rs

MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(c) UE cost = 500 node–hours (large)

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0

10,000

20,000

30,000

40,000

Sa
ve

d
no

de
-h

ou
rs

MN3/All
MN3/A
MN3/B
MN3/C
MN3/ABC

(d) MN4 Monte Carlo simulation

Fig. 5: Number of saved node–hours for different threshold
values. The threshold has a significant impact on the model
efficiency and the optimal value depends on the UE cost.

Figure 5 shows how this trade-off is reflected in the cost–
benefit analysis. In all plots, the y-axis is the saved node–
hours and the x-axis is the decision threshold. We focus
our explanation on the MN3/All results. As in previous
figures, the MN3/ABC curves are similar to MN3/All, while
MN3/A, MN3/B and MN3/C show the same trend with values
approximately proportional to the partition size. Figure 5a
shows the results for an UE cost of 5 node–hours. Although
the overhead of a single UE impact mitigation (2 minutes
per node) is much lower than the cost of an uncorrected
error (5 node–hours), the relatively large number of false
positives mean that the optimal decision threshold is 1. With
a decision threshold of 1, the model never suggests an error
mitigation and the only loss is the model overhead of a

8

5 10 25 50 100 250 500
1000

2500
5000

UE cost

0.00

0.25

0.50

0.75

1.00
Se

le
ct

ed
 T

hr
es

ho
ld

Fig. 6: Optimal threshold depending on UE cost: equal to 1
for small UE costs and converges to zero for large UE costs.

few node–minutes over the whole study. As the threshold is
reduced, the model losses increase, reaching 8200 node–hours
for a threshold of 0. For an UE cost of 50 node–hours, the
optimal threshold reaches a plateau around the value of 0.7.
Outside this range, the model efficiency drops especially as
the threshold decreases. For thresholds below 0.2, the model
generates additional losses that reach 6400 node–hours for a
threshold of 0 (not shown in the chart). For an UE cost of
500 node–hours, the model reaches the highest savings for
a decision threshold of 0.09, with a sharp decline on both
sides, as shown in Figure 5c. In this case, a good threshold
selection saves thousands of node–hours. Finally, for the job
size distribution from MareNostrum 4 production, the optimal
decision threshold is 0.02.

To further explore the dependency between the UE cost and
the decision threshold, Figure 6 shows the optimal threshold as
the UE cost varies between 5 and 5000 node–hours. The chart
has three areas. For small UE costs (5 and 10 node–hours), the
optimal threshold equals 1, so the system should not perform
error mitigation actions because their overhead would exceed
the benefits. For large UE costs (over 1000 node–hours) the
optimal threshold converges to 0. In this case, the system
should perform error mitigations whenever triggering events
are detected in the preceding prediction interval. In these two
UE cost areas, the error prediction is trivial—predict no UEs
for small UE cost and always predict an UE for large costs.
In the area of moderate UE costs, between 10 and 1000 node-
hours in our case, the prediction is more complex, requiring
proper prediction methods and careful threshold selection.

Production HPC systems execute jobs of different sizes and
with different failure mitigation strategies. On a given system,
the UE cost varies among jobs, and even within a single job de-
pending on the time since it started or last performed a check-
point. Our study shows that the UE prediction decision thresh-
old should be determined at runtime based on the UE cost,
i.e. based on the characteristics of the running HPC job. We
hope to motivate further discussion and development of error
prediction and mitigation methods that could be adapted to the
diversity of workloads executed on production HPC systems.

D. Precision, Recall and F1-score

Next we evaluate our prediction model using standard
data prediction metrics: precision, recall and F1-score (see

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0.00

0.01

0.02

Pr
ec

is
io

n MN3/All
MN3/A
MN3/B
MN3/C

(a) Precision

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0.00

0.25

0.50

0.75

R
ec

al
l MN3/All

MN3/A
MN3/B
MN3/C

(b) Recall

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

0.00

0.01

0.02

0.03

F1
-s

co
re MN3/All

MN3/A
MN3/B
MN3/C

(c) F1-score

Fig. 7: Precision, recall and F1-score for different threshold
values. These standard data prediction metrics are not corre-
lated with a cost–benefit analysis (Fig. 5), and therefore cannot
be used to decide whether prediction is useful in practice.

Section IV-B). The results are presented in Figure 7. The
precision is the ratio between correctly predicted UEs (true
positives) and the total number of predicted UEs (true and
false positives).

In our case, the dominant factor for the calculation of
the precision is the large number of false positives, which
leads to small values of the precision, typically below 1%.
Increasing the threshold reduces the number of false positives
and improves the precision, but its value remains small.

For MN3/A and MN3/B, and threshold values between 0.8
and 1.0, we detect higher variability in the precision. For these
threshold values, the number of predicted UEs in the MN3/A
and MN3/B subsystems is small (see Figure 4a), and each
predicted UE therefore makes a significant relative difference
to the value of the precision. The recall is the ratio between
the numbers of correctly predicted UEs (true positives) and
the total detected UEs (true positives and false negatives).
The recall chart has the same form as Figure 4a (number of
correctly predicted UEs), relative to the number of detected
errors in each system partition: MN3/All, MN3/A, MN3/B or
MN3/C. For Threshold=0 the recall reaches 0.63 for MN3/All

9

and 0.8 for MN3/A. The F1-score, as the harmonic mean
of precision and recall, is dominated by the low precision
numbers. It practically matches the precision curve, with
slightly higher values.

The results show that the precision, recall and F1-score are
not correlated with a cost–benefit analysis. There is nothing
in Figure 7 to indicate that the optimal decision threshold
is 1.0, 0.69 and 0.09 for small, medium and large UE cost,
respectively, or 0.02 for the MareNostrum 4 job distribution,
or that the net benefit for large UE cost is high. This is
because precision puts the same weight on different prediction
outcomes, true positives and false positives, whose costs
differ by orders of magnitude. Also, it does not consider
false negatives, which have a very high cost. Recall does
not consider false positives, which incur costly mitigation
measures when they are not needed. Also, in our case, the
F1-score is dominated by the low precision values. Overall,
these standard data prediction metrics are insufficient to decide
whether and for which parameters the prediction is useful in
practice, and we would suggest to complement them with cost–
benefit analysis in future studies.

E. Feature importance

We quantify the importance of the features used for pre-
diction (introduced in Section III-D) using the Gini impor-
tance [25], which is a common metric in the context of random
forest classifiers. Figure 8 shows the Gini importance, grouped
by category and excluding the first year of the study. We see
large error bars, indicating large changes in importance over
the course of the last 14 months of the study, which is due
to the small number of UEs and large changes in importance
as a consequence of individual UEs. The error bars would be
larger if the first year were included or if individual features
rather than categories were plotted.

We detect a high Gini importance (relevance to prediction)
of the features relating to the exact error location: rank,
bank, row and column. The column features have the highest
prediction relevance, with a Gini importance of 0.22, while
the cumulative rank, bank, row and column features have
a Gini importance reaching 0.38. This is important because
corrected DRAM error logs do not often include this level of
information. The machine-check architecture registers record
only the error address, and the mapping to the exact physical
location is not trivial and requires non-disclosed manufacturers
information. In our case, the mapping is done by a custom dae-
mon that is designed with help from a memory manufacturer.
We also see the importance of socket– and node–level events,
such as CEs, UEs, UE warnings (Section II-B) and boots.
DIMM characteristics, UEs and UE warnings, however, show
a small importance. After detailed analysis of the logs, for
instance, we detected that only eight DIMMs experienced an
UE warning within 24 hours before the uncorrected DRAM
error, and only five DIMMs had an UE warning within an
hour before the error. This is interesting because it contradicts
the intuition that DIMM UE warnings would be expected to
precede an uncorrected error.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Gini importance

Column
Node CEs

Node boots
Node UEs

Socket CEs
Bank
Rank

Node UE warns
DIMM CEs

Row
DIMM characteristics

Socket UEs
Socket UE warns
DIMM UE warns

DIMM UEs

Fig. 8: Gini importance for different feature categories.

F. Importance of UE reduction

In Section II-C we explained that UEs often arrive in bursts
but only the first UE in a burst impacts the system’s reliability.
In this section we illustrate why UE reduction (focussing only
on the UEs that impact production workloads) is important for
correct prediction model design and evaluation.

Table III shows the impact on the numbers and percentages
of UEs, with and without node–level UE reduction. The table
shows the results for a prediction frequency of 1 minute, a
prediction window of 1 day and a decision threshold of 0.5.
We obtained similar results and the same conclusions for
different values of these parameters.

We first consider the classification of UEs, which is clearly
affected by UE reduction. Without reduction, the total number
of UEs increases five-fold, from 67 to 333 UEs. The number
of critical over-temperature UEs increases by a factor of 22,
from 12 to 262 errors, which is an increase from 18% of all
UEs to 79% of UEs without reduction. This implies that over-
temperature UEs are especially likely to appear in bursts. We
also performed a DIMM–level reduction (not in the table),
which removed bursts of UEs in the same DIMM rather
than the whole node. A 1 week DIMM reduction reduces
the number of UEs to 105, indicating that most of the UE
bursts occur in the same DIMM. Nevertheless, as explained in
Section II-C, since the whole node is rebooted and removed
for testing following the first UE on that node, we continue
the analysis with node–level UE reduction.

The predictability of UEs is also affected by UE reduction.
Without UE reduction, a much higher fraction of errors have a
preceding event (95% rather than 81%) and could potentially
be predicted (90% rather than 63%). Also, since UEs in bursts
are easier to predict, the number of correctly predicted UEs
increases from 40% to 62%. Nevertheless, since bursts of
errors occur very fast, most of the successfully predicted UEs
are predicted with less than two minutes’ lead time, leaving
insufficient time to complete a mitigation measure before the
UE halts the node. Without UE reduction, out of 62% of the
correctly predicted UEs, only 19% are predicted with sufficient
lead time. With UE reduction, this problem is negligible.

10

TABLE III: Quantitative comparison of UE classification and
predictability with and without UE reduction.

With UE reduction:
1 week–node

No UE reduction

Detected UEs 67 100% 333 100%

UE classification:
Over-temperature 12 18% 262 79%
Application read 38 57% 43 13%
Patrol scrub 17 25% 28 8%

UE predictability:
UEs with preceding event 54 81% 318 95%
Predictable UEs(a) 42 63% 301 90%
Predicted UEs(a) 27 40% 205 62%
Predicted UEs ≥ 2min(a) 25 37% 63 19%

(a) Pred. freq = 1 min, Pred. window = 1 day, Decision threshold = 0.5

In summary, the numbers of UEs, their classification and
predictability are quantitatively different depending on whether
or not reduction is performed. Omitting UE reduction would
change not only the model evaluation, but also its design.
Keeping the UE bursts in the training datasets would en-
courage the model to predict such events. For example, when
UE reduction is correctly applied, the importance of features
that capture preceding node UEs is moderate, with an Gini
importance of 0.08, as in Figure 8. If UE reduction is omitted,
these features become the most relevant ones, with an impor-
tance of 0.28. These results would lead to different evaluation
outcomes, independent of the metrics used.

VI. OTHER PREDICTION METHODS

This section compares the results of six classifiers explored
in the study: random forest (RF), logistic regression (LR),
gradient boosting decision tree (GBDT), Gaussian naı̈ve Bayes
(GNB), support vector machine (SVM) and deep neural net-
work (NN). The assumptions used in this section are the same
as in Section V: cost of the UE impact mitigation is 2 minutes,
prediction frequency and window are 1 minute and 1 day,
respectively, and decision threshold is selected to be optimal
for the given classifier and UE cost.

Figure 9 shows the results of the cost–benefit calculation.
The figure plots the saved node–hours (y-axis) for various
UE costs (x-axis). Different bars show results for different
classifiers. Random forest shows the best overall results. It
is closely followed by logistic regression and then gradient
boosting and Gaussian naı̈ve Bayes methods. Support vector
machine shows the lowest savings, up to 20% below random
forest for a UE cost of 500 node–hours. Figure 9 shows
that for all the classifiers the UE cost strongly influences the
cost–benefit calculation. Also the saved node–hours increase
superlinearly with the average UE cost, which confirms the
analysis and findings presented in Section V-A.

Next, we compare the different classifiers using standard
data prediction metrics: precision, recall and F1-score. The
trends and conclusions closely match those for the random
forest (Section V-D). A large number of false positives leads
to small values of the precision, below 1% for all the methods.

5 50 500 MN4
UE Cost

10,000

20,000

30,000

40,000

Sa
ve

d
no

de
-h

ou
rs RF

LR
GBDT
GNB
SVM
NN

Fig. 9: For all the classifiers the UE cost strongly influences the
cost–benefit calculation. Random forest shows the best results.

5 10 25 50 100 250 500
1000

2500
5000

UE cost

0.00

0.25

0.50

0.75

1.00

Se
le

ct
ed

 T
hr

es
ho

ld

RF
LR
GBDT
GNB
SVM
NN

Fig. 10: For small UE costs, the optimal threshold equals 1;
for large UE costs it converges to 0. For moderate UE costs,
each prediction method requires a careful threshold selection.

For all classifiers the highest value of recall is 0.63 (for
Threshold=0), for which all classifiers always predict a UE
if there is a preceding event. For all classifiers, the range of
recall is zero (for Threshold=1) to 0.63, but there are slight
differences in the recall–threshold curves (outside the scope
of this paper). Finally, the F1-score, as the harmonic mean of
precision and recall, is dominated by the low precision. Recall
is 1% or below for all classifiers.

To further explore the dependency between UE cost and the
decision threshold for different classifiers, Figure 10 shows the
optimal threshold as the UE cost varies between 5 and 5000
node–hours. Similar to Figure 6, the chart has three areas.
For small UE costs, the optimal threshold equals 1 while for
large UE costs it converges to 0. In the area of moderate UE
costs, the prediction is more complex, and it requires a careful
threshold selection for each prediction method. Figure 10
confirms the need for runtime-adaptive error prediction and
mitigation methods that would adjust to the characteristics of
the HPC jobs and associated UE cost.

VII. RELATED WORK

A. Uncorrected DRAM errors

A study of Giurgiu et al. [2] uses random forest to predict
uncorrected DRAM errors. The proposed model is based
on preceding corrected errors and measurements from over
100 sensors that monitor system functioning. The goal of
Giurgiu et al. is to predict UEs while minimizing false
positives. For this reason, the method targets high precision
and tolerates low recall. Our goal is to maximize the number
of saved node–hours. We therefore target mid-high recall and
tolerate a higher number of false positives and low precision.

11

Our study extends the work of Giurgiu et al. in various
aspects. We perform detailed corrected error logging with
the exact error location (rank, bank, row, column) and show
the importance of observation features based on this data. In
the model evaluation we consider the lead time analysis and
perform a sensitivity analysis on the prediction frequency and
window. We also analyze burstiness of UEs and show that it
has an important impact on the design and evaluation of the
prediction model. Our study also considers a potential bias of
the DIMMs that are replaced due to the pre-failure alerts al-
ready implemented in the system under study. While Giurgiu et
al. evaluate their model with the precision, recall and balanced
accuracy, we also perform a detailed cost–benefit analysis.

B. Corrected DRAM errors

A few recent studies present machine learning methods to
classify or predict future corrected DRAM errors.

Costa et al. [42] propose an OS mechanism that monitors
memory health and predicts memory error repetition. Based
on the number of spatial repetitions and the error rates,
the proposed mechanism classifies memory pages as healthy,
unhealthy or fatal. The pages classified as fatal are offlined to
prevent future DRAM errors. The proposed OS mechanism is
implemented and evaluated on a Blue Gene/Q system.

Baseman et al. [34] use naı̈ve Bayes, logistic regression,
random forest and gradient boosted random forest classifiers
to categorize memory fault modes as Single bit, Single word,
Single row, Single column, Single bank, Multi bank or Multi
rank. Their objective is to classify the faults based on prior
detected errors, rather than predicting future errors. A follow-
up work [45] extends the proposed prediction methods to
predict which memory pages would experience future faults,
similar to the study of Costa et al. [42]. The proposed methods
are trained and tested on two large HPC systems, Hopper
and Cielo, and they show predictive performance improvement
compared with deterministic rule-based systems.

Sun et al. [41] use neural networks to predict disk and
DRAM errors. DRAM error prediction uses the features mem-
ory usage, memory corrected errors, memory speed, memory
power, other MCE-related errors, memory age and node load.
The DRAM error predictions are evaluated using logs that
contain hundreds of DRAM failures from an in-house system.
The proposed scheme outperforms the baseline long short-term
memory and random forest in precision, recall and F1-score.

Du and Li [43] propose a method to predict DRAM errors
in micro-level components, such as cell rows and columns.
The method is based on a kernel function that measures
the similarity between the current observation and a certain
previous observation in history. The advanced method also
accounts for memory failure propagation. The method is
evaluated on DRAM error logs from the IBM Blue Gene/P
HPC cluster (DDR2 memory) containing 140 thousand
corrected errors. The proposed error prediction method shows
better precision, recall and F1-score than various baseline
approaches that use the aggregated error data in history.

These studies are valuable to understand corrected DRAM
error rates, distributions, correlated factors and features that
can be used for their prediction. An important direction of
future work would be to explore how these findings could
lead to measurable improvements in system reliability. An
important issue is that reliability is only impacted by uncor-
rected errors [5]–[8], and there is no direct relation between
corrected and uncorrected errors [2], [3], [8]–[11]. Modifying
the proposed corrected error predictors to instead predict
uncorrectable errors may be challenging [43].

C. GPU memory errors
A few recent studies have analysed GPU errors in the

field [46], [47]. Nie et al. [47] analyze the GPU errors on the
Titan supercomputer, which comprises 18,688 K20X GPUs.
The authors study the system conditions and workload charac-
teristics that trigger GPU errors, and they propose and evaluate
several machine learning-based models: logistic regression,
gradient boosting decision tree, support vector machine, and
neural network. The study analyzes all corrected single-bit
errors together and does not distinguish between errors in
different memory structures: register files, caches and device
memory. A previous study that analyzes GPU errors on the
same system [48] reports that 98% of the detected errors come
from the L2 cache. The findings of Nie et al. [47], therefore,
could not be directly applied to device DRAM error prediction.

VIII. CONCLUSIONS

This paper presented and evaluated a method to predict
DRAM uncorrected errors that lead to node failure. Our cost–
benefit analysis shows that the prediction method reduces the
lost compute time by up to 57% for a real HPC production
workload mix, which is a net savings of 21,000 node–hours per
year. After comparison of six machine learning approaches, we
use a random forest classifier, which is trained and evaluated
using error logs from more than two years of production
of MareNostrum 3. All prediction methods’ source code is
released as open source. We also discuss and clarify several
aspects of methodology that are essential for any prediction
method to be useful in practice. Our cost–benefit analysis
shows that the effectiveness of our prediction scheme is highly
dependent on system and workload characteristics, pointing
the way to future work on adaptive resiliency techniques.
Overall, we hope that future researchers will build on our
work to improve the throughput of production HPC systems
as demonstrated by a clear cost–benefit calculation.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Science
and Technology (project PID2019-107255GB), Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272)
and the European Union’s Horizon 2020 research and innova-
tion programme and EuroEXA project (grant agreement No
754337). Paul Carpenter and Marc Casas hold the Ramon
y Cajal fellowship under contracts RYC2018-025628-I and
RYC2017-23269, respectively, of the Ministry of Economy
and Competitiveness of Spain.

12

REFERENCES

[1] HP, “How memory RAS technologies can enhance the uptime of HPE
ProLiant servers,” Hewlett Packard Enterprise, Technical white paper
4AA4-3490ENW, Feb 2016.

[2] I. Giurgiu, J. Szabo, D. Wiesmann, and J. Bird, “Predicting DRAM
Reliability in the Field with Machine Learning,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference: Industrial Track,
2017, pp. 15–21.

[3] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the
Wild: A Large-scale Field Study,” in Proceedings of the International
Joint Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), 2009, pp. 193–204.

[4] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implications
for system design,” ACM SIGPLAN Notices, vol. 47, no. 4, pp. 111–122,
2012.

[5] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in
High-Performance Computing Systems,” IEEE Transactions on Depend-
able and Secure Computing, vol. 7, no. 4, pp. 337–350, Oct 2010.

[6] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons Learned from the Analysis of System Failures at
Petascale: The Case of Blue Waters,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2014, pp. 610–621.

[7] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in Large
Scale Systems: Long-term Measurement, Analysis, and Implications,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2017, pp. 44:1–
44:12.

[8] D. Zivanovic, P. E. Dokht, S. Moré, J. Bartolome, P. M. Carpenter,
P. Radojković, and E. Ayguadé, “DRAM Errors in the Field: A Statistical
Approach,” in Proceedings of the International Symposium on Memory
Systems (MEMSYS), 2019, pp. 69–84.

[9] P. Radojkovic, M. Marazakis, P. Carpenter, R. Jeyapaul, D. Gizopoulos,
M. Schulz, A. Armejach, E. Ayguade, F. Bodin, R. Canal,
F. Cappello, F. Chaix, G. Colin de Verdiere, S. Derradji, S. Di Carlo,
C. Engelmann, I. Laguna, M. Moreto, O. Mutlu, L. Papadopoulos,
O. Perks, M. Ploumidis, B. Salami, Y. Sazeides, D. Soudris,
Y. Sourdis, P. Stenstrom, S. Thibault, W. Toms, and O. Unsal,
“Towards Resilient EU HPC Systems: A Blueprint.” European HPC
resilience initiative. White paper, April 2020. [Online]. Available:
https://resilienthpc.eu/blueprint2020

[10] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2012, pp. 76:1–
76:11.

[11] S. Levy, K. B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan, and
E. Baseman, “Lessons Learned from Memory Errors Observed over the
Lifetime of Cielo,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC),
2018, pp. 554–565.

[12] N. Taerat, C. Leangsuksun, C. Chandler, and N. Naksinehaboon, “Profi-
ciency Metrics for Failure Prediction in High Performance Computing,”
in International Symposium on Parallel and Distributed Processing with
Applications, 2010, pp. 491 – 498.

[13] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A practical
failure prediction with location and lead time for Blue Gene/P,” in Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W), 2010, pp. 15–22.

[14] D. Jauk, D. Yang, and M. Schulz, “Predicting Faults in High Per-
formance Computing Systems: An in-Depth Survey of the State-of-
the-Practice,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2019,
pp. 1–13.

[15] A. Frank, D. Yang, A. Brinkmann, M. Schulz, and T. Süss, “Reducing
False Node Failure Predictions in HPC,” in IEEE 26th International
Conference on High Performance Computing, Data, and Analytics
(HiPC), 2019, pp. 323–332.

[16] Barcelona Supercomputing Center, MareNostrum 3 User’s Guide, Apr.
2016.

[17] I. Boixaderas, D. Zivanovic, S. Moré, J. Bartolome, D. Vicente,
M. Casas, P. M. Carpenter, P. Radojković, and E. Ayguadé,
“UEPREDICT: A method for predicting DRAM Uncorrected Errors

and evaluating its model’s performance,” 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3872777

[18] “PRACE Research Infrastructure,” http://www.prace-ri.eu.
[19] A. Kleen, “MCELOG: Memory Error Handling in User Space,” in

International Linux System Technology Conference (Linux Kongress),
2010.

[20] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng Shui of Supercomputer Memory: Positional Effects
in DRAM and SRAM Faults,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2013, pp. 22:1–22:11.

[21] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015, pp. 297–310.

[22] X. Li, M. C. Huang, K. Shen, and L. Chu, “A Realistic Evaluation
of Memory Hardware Errors and Software System Susceptibility,” in
Proceedings of the USENIX Conference on USENIX Annual Technical
Conference (USENIXATC), 2010, pp. 6–6.

[23] System x iDataPlex dx360 M4 Types 7912 and 7913: Problem Determi-
nation and Service Guide, IBM, Apr 2014.

[24] Barcelona Supercomputing Center, “MareNostrum 4 (2017) System
Architecture,” https://www.bsc.es/marenostrum/marenostrum/technical-
information, 2017.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[27] G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd,
2017.

[28] J. A. Nelder and R. W. Wedderburn, “Generalized linear models,”
Journal of the Royal Statistical Society: Series A (General), vol. 135,
no. 3, pp. 370–384, 1972.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[30] K. L. Priddy and P. E. Keller, Artificial neural networks: an introduction.
SPIE press, 2005, vol. 68.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
in Advances in neural information processing systems, 2017, pp. 3146–
3154.

[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, 2016, pp. 265–283.

[34] E. Baseman, N. DeBardeleben, K. Ferreira, S. Levy, S. Raasch, V. Srid-
haran, T. Siddiqua, and Q. Guan, “Improving dram fault characterization
through machine learning,” in 2016 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop
(DSN-W). IEEE, 2016, pp. 250–253.

[35] M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wiesmann, “Predicting
Disk Replacement towards Reliable Data Centers,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2016, p. 39–48.

[36] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[37] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[38] C. Chen, A. Liaw, and L. Breiman, “Using Random Forest to Learn
Imbalanced Data,” University of California, Berkeley, vol. 110, no. 1-
12, p. 24, 2004.

[39] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine
Learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017.

13

[40] USENIX: The Advanced Computing Systems Association, “The Com-
puter Failure Data Repository (CFDR),” https://www.usenix.org/cfdr,
Jun 2020.

[41] X. Sun, K. Chakrabarty, R. Huang, Y. Chen, B. Zhao, H. Cao, Y. Han,
X. Liang, and L. Jiang, “System-Level Hardware Failure Prediction
Using Deep Learning,” in Proceedings of the 56th Annual Design
Automation Conference (DAC), 2019, pp. 1–6.

[42] C. H. A. Costa, Y. Park, B. S. Rosenburg, C.-Y. Cher, and K. D. Ryu,
“A system software approach to proactive memory-error avoidance,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, p. 707–718.

[43] X. Du and C. Li, “Memory Failure Prediction Using Online Learning,”
in Proceedings of the International Symposium on Memory Systems
(MEMSYS), 2018, p. 38–49.

[44] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday:
Predicting Which Node Will Fail When on Supercomputers,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), 2018, pp. 108–121.

[45] E. Baseman, N. DeBardeleben, K. Ferreira, V. Sridharan, T. Siddiqua,
and O. Tkachenko, “Automating dram fault mitigation by learning from
experience,” in 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). IEEE,
2017, pp. 137–140.

[46] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on gpus in the field,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016.

[47] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari, “Machine Learning Models for GPU Error Prediction in a
Large Scale HPC System,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2018, pp. 95–
106.

[48] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331–342.

14

