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Abstract: Recurrent drought and Striga hermonthica (Del.) Benth parasitism constrains maize 

production in sub-Saharan Africa (SSA). Transfer of resistance genes from wild relatives can 

improve resistance to drought and Striga in tropical maize. The objectives of this study were to (i) 

determine the combining ability of 12 extra-early yellow maize inbreds derived from Zea 

diploperennis and tropical maize germplasm; (ii) classify the inbreds into heterotic groups using 

heterotic grouping based on the general combining ability (GCA) of multiple traits (HGCAMT) 

method; (iii) examine hybrid performance under contrasting environments; and (iv) examine the 

stability of hybrid combinations involving the inbreds. Sixty-six diallel crosses involving the inbreds 

plus four checks were evaluated for two years under drought, Striga-infested and rainfed 

environments in Nigeria. Significant differences (p < 0.05) were observed for the effects of genotype, 

environment, genotype × environment, GCA and specific combining ability (SCA) on grain yield 

and other measured traits. Inbred lines such as TZdEEI 7 × TZEEI 63 derived from Z. diploperennis 

and tropical germplasm exceeded the checks by a range of 28 to 41%. Across environments, the 

hybrid TZdEEI 1 × TZdEEI 7, which was derived from Z. diploperennis, was the highest-yielding 

with a grain yield of 4302 kg ha−1. The results revealed the predominance of GCA over SCA effects 

for most measured traits, suggesting that additive gene action governed the inheritance of Striga 

resistance and drought tolerance related traits in the inbreds. The 12 inbreds were classified into 

three heterotic groups, while TZEEI 79 and TZdEEI 7 were identified as inbred testers and TZdEEI 

7 × TZEEI 12 as a single-cross tester across environments. Hybrid TZdEEI 9 x TZEEI 79 was the 

highest-yielding and most stable. Other promising hybrids were TZdEEI 7× TZEEI 79, TZdEEI 1 × 

TZdEEI 7 and TZdEEI 12 × TZEEI 95. These hybrids should be extensively tested on-farm for 

potential commercialization in SSA. Overall, our results highlighted the importance of harnessing 

beneficial alleles from wild relatives of maize for improvement of resistance to Striga and tolerance 

to drought in adapted maize germplasm. 
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1. Introduction 

Maize (Zea mays L.) is a widely adapted major staple food crop, providing calories 

for over 300 million people in sub-Saharan Africa (SSA). There is a rapid increase in the 

importance of the crop due to its wide adaptation to varying agroecologies, relative ease 

of production, processing, storage, and transportation [1]. However, Striga hermonthica 
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(Del) Benth parasitism and recurrent drought are fighting against its increased production 

and productivity, particularly in the savannas. The savannas constitute the maize belts of 

SSA and are characterized by high incident solar radiation, low night temperature and 

low disease and pest incidence [2]. Yield losses of 10 to 100% have been recorded under 

Striga infestation, depending on the type of cultivars grown, climatic conditions, soil 

fertility status and level of infestation [3]. Resistance to Striga describes the ability of the 

host plant to stimulate the germination of Striga seeds but prevent the attachment of the 

parasites to its roots or kill the attached parasites. Under Striga infestation, resistant 

cultivars support significantly fewer Striga plants and produce greater yield than 

susceptible cultivars [4–6]. Contrarily, tolerance to Striga denotes the ability of the host 

plant to support equal levels of Striga infestation as susceptible cultivars [7], without 

impairment of growth or grain yield losses [8,9]. Striga resistance and tolerance are highly 

complementary defense mechanisms. The combination of these two mechanisms is a good 

strategy for reducing Striga infection and reproduction levels in infested fields. Recurrent 

drought could result in yield loss of as high as 90% when it occurs from a few days before 

anthesis to the end of the grain-filling period [10]. Current climate change-related 

projections present more grim implications for agriculture in Africa, including maize 

production [11]. Studies have revealed that genetic enhancement of maize for drought 

tolerance could result in genetic gains [12,13]. Edmeades et al. [14] reported that the 

deployment of cultivars with drought-tolerance genes is an important strategy to stabilize 

maize production in areas with recurrent drought. Therefore, cultivars with enhanced 

tolerance to drought could serve as invaluable germplasm resources in environments with 

erratic occurrences of varying intensities of drought [15]. 

Over decades, the characterization of germplasm and breeding programs have 

revealed that cultivated plants, in general, have relatively lower levels of tolerance to 

biotic and abiotic stresses when compared to crop wild relatives [16]. Useful variation has 

been identified in teosinte (Zea diploperennis Iltis, Doebley and Guzman) and incorporated 

into maize gene pools via hybridization and backcrossing and/or selection [17]. This has 

provided proof that useful phenotypic variation can be tapped from teosinte for the 

improvement of domesticated maize. Tropical maize populations introgressed with 

various traits from teosinte have been developed. These include resistance to Striga [18–

20], gray leaf spot [21], southern corn leaf blight, southern corn rust, and maize streak 

virus [18], drought tolerance [22] and kernel composition traits [23]. Several outstanding 

varieties, inbreds and breeding populations with desirable characteristics, including 

resistance to Striga and tolerance to drought, have been developed [24]. They were 

developed by substituting three of the maize chromosomes with three chromosomes from 

Z. diploperennis, which was achieved by creating a BC1F3 generation of maize × perennial 

teosinte BC1F3 [24]. 

By 2008, several Striga tolerant extra-early maturing (80–85 days to physiological 

maturity) inbred lines and varieties with yellow-endosperm had been developed in the 

International Institute of Tropical Agriculture–Maize Improvement Program (IITA-MIP), 

Nigeria. The problem with the available Striga-tolerant inbred lines and varieties at the 

time was that they allowed the reproduction of the parasite, thereby increasing the Striga 

seed bank after each planting season. To overcome this problem, Z. diploperennis was 

crossed to an adapted intermediate maturing yellow maize variety SUWAN 1-SR. The 

resulting F1 was backcrossed four times to SUWAN 1-SR under artificial infestation with 

Striga to obtain a Z. diploperennis BC4 population from which the intermediate maturing 

inbred line TZSTRI 106 was extracted. The extra-early maturing inbred lines used in the 

present study were developed by crossing TZSTRI 106 to the extra-early yellow 

population TZEE-Y Pop STR C4 to improve the level of Striga resistance. 

Promotion and commercialization of maize hybrids by farmers as compared to the 

use of open-pollinated varieties (OPVs) are expected to increase grain yield by 50–100% 

[25]. However, the success of a commercial hybrid program depends on the availability 



Agronomy 2021, 11, 177 3 of 24 
 

of information on the combining ability and heterotic groupings of inbred lines. 

Combining ability analysis for determining the general (GCA) and specific combining 

ability (SCA) is a powerful tool for identifying cultivars that may be hybridized to exploit 

heterosis and to select outstanding crosses for direct use or further breeding [26]. Genetic 

analysis provides information on the type of gene action governing quantitative traits and 

thus assists breeders in selecting suitable parental lines for hybrid populations [27,28]. 

Several mating designs are used for determining the combining ability of maize cultivars. 

The diallel mating design allows statistical separation of progeny performance into GCA 

and SCA. 

By 2013, a large number of extra-early maturing yellow endosperm maize inbred 

lines were available. The classification of inbreds into heterotic groups would facilitate the 

production of high-yielding hybrids, involving lines of opposing heterotic groups. The 

heterotic grouping based on the GCA of multiple traits (HGCAMT) had been an effective 

method for classifying inbreds into heterotic groups [29], making them the method of 

choice for the present study. The objectives of this study, therefore, were to (i) determine 

the combining ability of a set of 12 newly developed yellow endosperm extra-early 

maturing maize inbreds derived from Z. diploperennis under Striga infestation and drought 

stress; (ii) classify the inbreds into heterotic groups using the HGCAMT method; (iii) 

identify extra-early maturing inbred and single-cross hybrid testers and (iv) examine the 

performance and stability of hybrid combinations involving the inbreds. 

2. Materials and Methods 

2.1. Genetic Materials Used for the Study 

In 2008, a program was initiated at IITA to develop Striga-resistant extra-early yellow 

inbred lines and varieties. Z. diploperennis was crossed to an adapted intermediate 

maturing yellow maize variety SUWAN 1-SR. The resulting F1 was backcrossed four times 

to SUWAN 1-SR under artificial infestation with Striga to obtain a Z. diploperennis BC4 

population from which the intermediate maturing inbred line TZSTRI 106 was extracted. 

The extra-early maturing inbred lines used in the present study were developed by 

crossing TZSTRI 106 to the extra-early yellow population TZEE-Y Pop STR C4 to improve 

the level of resistance to Striga. The BC2S1 families were evaluated under artificial Striga 

infestation at Abuja and Mokwa, Nigeria, in 2010, and the resistant lines were backcrossed 

to TZEE-Y Pop STR C4. Following repeated selfing of the BC2S1 families, the lines were 

advanced to the BC2S7 stage and were evaluated under Striga infestation and screened for 

drought tolerance. Based on the evaluations, several Striga-resistant and drought-tolerant 

extra-early yellow maize inbreds were identified for the IITA-MIP. Twelve Striga-resistant 

and/or drought-tolerant extra-early maturing yellow maize inbred lines (Table S1) 

derived from Z. diploperennis were selected for the present study. The inbred lines were 

crossed in all possible combinations using the diallel mating design Method 4, which 

involves F1‘s only [30], to obtain 66 single-cross hybrids in the breeding nursery at IITA, 

Ibadan, Nigeria, in 2013. Seeds from the reciprocal crosses were bulked, assuming no 

reciprocal effects on drought tolerance and Striga resistance in maize [31]. The 66 single-

cross yellow endosperm hybrids plus four hybrid checks were used for the present study. 

2.2. Field Evaluations 

The present study was conducted in three experiments under stress (one drought 

and two Striga-infested) and non-stress (two rainfed) environments in Nigeria, from 2013 

to 2014. In the first experiment, the 66 extra-early, yellow endosperm maize diallel crosses 

plus four hybrid checks were evaluated under artificial Striga infestation at Mokwa (9°18′ 

N, 5°4′ E, 457 m ASL, 1100 mm annual rainfall) and Abuja (9°16′ N, 7°201 20′ E, altitude 

300 m, 1500 mm annual rainfall) in the southern Guinea savanna of Nigeria during the 

2013 growing season. A 10 × 7 randomized incomplete-block design [32] with two 
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replications was used for each experiment. Each experimental unit comprised single-row 

plots, 4 m long, with an inter-hill spacing of 0.75 and 0.40 m between plant stands within 

the hill. The infestation with Striga was carried out as described in detail by Kim [33] and 

Kim and Winslow [34]. Briefly, the Striga seeds used for artificial infestation were collected 

from sorghum (Sorghum bicolor) fields at the end of the previous growing season and 

mixed with finely sieved sand in the ratio of 1:99. About 5000 germinable Striga seeds 

were placed in each planting hole. The sand served as the carrier material and provided 

adequate volume for rapid and uniform infestation. Three maize seeds were placed in the 

same hole with the Striga seeds at the same time, and the maize seedlings were thinned to 

two/stand about 2 weeks after emergence to give a final population density of 66,666 

plants ha−1. Fertilizer application was delayed until about 21 to 25 days after planting 

(DAP) when 30 kg ha−1 N, 30 kg ha−1 P, and 30 kg ha−1 K was applied as NPK 15–15–15. 

The reduced rate and delay in the application of fertilizer in Striga-infested plots were 

adopted to induce the production of strigolactones, which stimulate the germination of 

Striga seeds and attachment of the Striga plants to the roots of the host plants [33]. Weeds 

other than Striga were controlled by manual weeding. 

In the second experiment, the 66 single-cross hybrids and the four hybrid checks were 

evaluated under induced moisture stress at Ikenne (3°7′ E, 6°87′ N, 30 m ASL, 1200 mm 

annual rainfall) during the dry season of 2013/2014. The experimental design was the same 

as described in the first experiment. The managed drought stress was achieved using the 

method described by Badu-Apraku et al. [35]. During the first three weeks of growth, the 

plants were irrigated using a sprinkler irrigation system, which supplied 17 mm of water 

each week. Irrigation was withdrawn at 21 DAP so that the maize plants had to rely on 

water in the soil for growth. Apart from the water applied to the nonstress environments, 

all management practices were the same for both nonstress and drought experiments. 

Fertilizer was applied at the rate of 60 kg ha−1 each of N, P, and K at planting. An additional 

60 kg ha−1 N was top-dressed at 2 weeks after planting (WAP). 

In the third experiment, the 66 single-cross hybrids plus four hybrid checks were 

evaluated under rainfed conditions at Ikenne and Bagauda (12°00′ N, 8°22′ E, 580 m 

altitude, 800 mm annual rainfall) during the 2014 growing season. The experimental 

design and population density were the same as described above. Fertilizer was applied 

at the rate of 60 kg ha−1 each of N, P, and K at 2 WAP with an additional 60 kg ha−1 N top-

dressed at 5 WAP. The trials were kept weed-free by applying Atrazine and Gramoxone 

as pre- and post-emergence herbicides at the rate of 5 L ha−1 each of Primextra and 

paraquat, respectively, and subsequently complemented by manual weeding. 

2.3. Data Collection 

Data were recorded on both drought and well-watered plots for the number of days 

to 50% silking (DS) and 50% anthesis (DA). Anthesis silking interval (ASI) was determined 

as the difference between DS and DA. Plant and ear heights were obtained as the distance 

from the base of the plant to the height of the first tassel branch and the node bearing the 

upper ear, respectively. Root lodging (the percentage of plants that were leaning more 

than 30° from the vertical) and stalk lodging (the percentage of plants that had been 

broken at or below the highest ear node) were recorded. Stay green characteristic was 

determined for the drought trial at 70 DAP on a scale of 1 to 9, where 1 = almost all leaves 

were green and 9 = virtually all leaves were dead. Ear aspect (EASP) was based on free 

from disease and insect damage, ear size, uniformity of ears, and grain filling, and was 

determined on a scale of 1 to 9, where 1 = clean, uniform, large, and well-filled ears and 9 

= ears with unacceptable features. Plant aspect (PASP) was rated on a scale of 1 to 9 based 

on plant type, where 1 = excellent and 9 = poor. The number of ears per plant (EPP) was 

obtained by dividing the total number of ears harvested per plot by the number of plants 

in a plot. Husk cover (HUSK) was obtained using a scale of 1 to 5, where 1 = ears with 
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husks tightly arranged and extended beyond the ear tip and 5 = ears with tips completely 

exposed. 

The data recorded under Striga infestation were the same as those collected in the 

other experiments with the addition of Striga damage syndrome rating [33] and the 

number of emerged Striga plants (ESP) recorded at 8 and 10 WAP. Striga damage 

syndrome rating (SDR) was scored per plot on a scale of 1 to 9 where 1 = no damage, 

indicating normal plant growth and high level of resistance, and 9 = complete collapse of 

the maize plant, that is, highly susceptible [33]. For drought trials, ears harvested from 

each plot were shelled to determine the percentage of grain moisture. Grain yield in 

kilograms per hectare was computed from the shelled grain weight and adjusted to 15% 

moisture content. On the other hand, for the rainfed and Striga-infested trials, a shelling 

percentage of 80% was assumed for all entries, and grain yield, which was obtained from 

ear weight (after conversion to kg ha−1), was adjusted to 15% moisture content. 

2.4. Data Analysis 

Data on grain yield and other measured traits were subjected to analysis of variance 

(ANOVA) for each stress environment and across environments (one drought, two Striga-

infested and two rain-fed environments) to compute mean squares for each trait. The data 

were analyzed using SAS [36]. In the combined ANOVA, environments, replicates, and 

blocks were considered as random factors, while entries (66 hybrids and 4 checks) were 

considered as fixed effects. The following linear mixed models (Equations (1) and (2)) 

were used across environments and the drought environment. 

����� =  � + �� + �� + ���� +  ��� + ���� + ����� (1)

����� =  � + �� +  ��� + ����  + ����� (2)

where Yijrs was the phenotypic performance of the ith genotype at the jth environment in 

the rth replication of the sth incomplete block, Gi was the genetic effects of the ith 

genotype, Ej was the effects of the jth environment, Geij is the interaction effects of ith 

genotype and the jth environment, rkj was the effects of the kth replication at the jth 

environment, Bsjk was the effects of the sth incomplete block in the kth replication in the 

jth environment, and eijks was residual. 

Pearson’s correlation was also estimated for each stress environment. Effects of the 

GCA of the parents and SCA of the crosses, as well as their mean squares in each 

environment and across environments, were estimated for the 12 × 12 diallel crosses, 

according to Griffing’s method 4, model 1 (fixed model) restricted to F1’s only [30] and the 

DIALLEL-SAS program developed by Zhang et al. [37]. The effects of GCA and SCA for 

the measured traits were computed from the mean values adjusted for the block effects 

for each environment and across environments. The statistical model used for the 

combined diallel analysis across environments is as follows: 

���� =  � + �� + �� + �� +  ��� + ���� +  ���� + ����  (3)

where Yijk is the observed measurement for the ijth cross grown in the kth environment; 

µ is the grand mean; Ee is the environment; gi and gj are the GCA effects of the ith and jth 

inbreds, respectively; Sij is the SCA effect of the ijth cross; gEeg is the interaction effect 

between GCA and the environment; sEes is the interaction effect between SCA and the 

environment, and εijk is the error term associated with the ijth cross evaluated in the kth 

replication [35]. The following restrictions were imposed on the combining ability effects: 

∑gi = 0, ∑gj = 0 and ∑sij = 0 for each j [30]. GCA and SCA effects were tested for significance 

using a t-test. The standard errors of the GCA and SCA effects were estimated as the 
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square root of the GCA and SCA variances [30]. The relative importance of GCA and SCA 

was investigated using the method of Baker [38] as modified by Hung and Holland [39]. 

Inbred lines were classified into heterotic groups based on the HGCAMT method 

proposed by Badu-Apraku et al. [29]. The statistical model used for the HGCAMT method 

to assign the inbreds into the heterotic groups is as follows: 

� =  � �
�� − ���

�
� + ���

�

���

 (4)

where Y is HGCAMT, which is the genetic value measuring relationship among 

genotypes based on the GCA of multiple traits i to n; Yi is the individual GCA effect of 

genotypes for a trait i; Ῡi is the mean of GCA effects across genotypes for trait i; s is the 

standard deviation of the GCA effects of trait i; εij is the residual of the model associated 

with the combination of inbred i and trait j. 

Heterotic grouping by the HGCAMT method was performed by standardizing the 

GCA effects (mean of zero and standard deviation of 1) of observed traits that had 

significant mean squares across test environments to minimize the effects of different 

scales of the traits [29]. The standardized GCA effects were subsequently subjected to 

Ward’s minimum variance cluster analysis. 

Inbred and single-cross hybrid testers were identified, employing the method 

proposed by Pswarayi and Vivek [30]. The criteria for identification of an inbred as a tester 

were (i) display of significant positive GCA effects for grain yield, (ii) classification of the 

inbred into a heterotic group, and (iii) high per se grain yield of the inbred. The 

identification of a single-cross tester was based on (a) display of reasonably good GCA 

effects by the parental inbred lines constituting the single cross; (b) classification of the 

parental inbred lines of the single-cross hybrid into the same heterotic group; (c) display 

of high yield potential by the single-cross hybrid to qualify its use as a seed parent for a 

successful three-way and double-cross hybrid seed production [40]. 

To identify outstanding single-cross hybrids for commercial production across 

multiple environments, a modified version of the multiple trait base index (MI) proposed 

by Badu-Apraku et al. [41] was used. The MI integrated superior grain yield, EPP, 

anthesis-silking interval, plant and ear aspects, stay-green characteristic, Striga damage 

syndrome rating and a number of emerged Striga plants under multiple stress and 

outstanding grain yield under nonstress environments. This index was used to select the 

top 15 and worst 10 hybrids. Each trait was standardized to minimize the effects of the 

different scales. Hybrids with positive MI values were considered as tolerant/resistant to 

the multiple stresses, while those with negative values were regarded as susceptible. The 

multiple trait base index was computed according to the following equation: 

MI = [(2 × YSTR) + YNSTR + EPP − ASI − EASP − PASP − STGR

− (SDR8 + SDR10) − 0.5 (ESP8 + ESP10) 
(5)

where YSTR = grain yield across stress (drought and Striga-infested plots), YNSTR = grain 

yield across rainfed (nonstress) plots, EPP = number of ears per plant across stress, ASI = 

anthesis-silking interval across stress, EASP = ear aspect across stress, PASP = plant aspect 

under drought, STGR = stay green characteristic under drought, SDR8 and SDR10 = Striga 

damage rating at 8 and 10 WAP, ESP8 and ESP10 = number of emerged Striga plants at 8 

and 10 WAP. Therefore, a positive index value indicated tolerance/resistance across 

stresses, whereas a negative value indicated susceptibility across stresses. 

Furthermore, the yield data of the selected 25 hybrids using the MI plus those of the 

four hybrid checks were subjected to genotype main effect plus genotype × environment 

interaction (GGE) biplot analysis to decompose the G × E interactions across environments 
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[42,43]. The GGE biplot was used to identify outstanding single cross hybrids in terms of 

yield and stability across environments. The GGE biplot model equation is as follows: 

��� −  �� =  �������� +  �������� +  ��� (6)

where Yij is the genetic value of the combination between Entry i and Tester j for the trait 

of interest; βj is the mean of all combinations involving Tester j, and λ2 are the singular 

values for PC1 and PC2; ξi1 and ξi2 are the PC1 and PC2 eigenvectors, respectively, for 

Entry i; ηj1 and ηj2 are the PC1 and PC2 eigenvectors, respectively, for Tester j; and εij is the 

residual of the model associated with the combination of Entry i and Tester j. 

3. Results 

3.1. Analysis of Variance Across Multiple Environments 

Under optimal growing (Striga–and drought-free) conditions, significant effects for 

genotype (G), environment (E), genotype × environment (G × E) interaction, GCA and 

SCA were detected for all traits studied except E and G × E for plant and ear heights (Table 

1). The mean squares due to the environment for Striga damage at 8 and 10 WAP and G × 

E for a number of emerged Striga plants at 8 and 10 WAP were not significant under 

artificial Striga infestation. Significant effects of genotype and GCA was observed for all 

measured traits under drought condition except for anthesis-silking interval, ear height 

and ear aspect. While for the SCA effect, only days to silking, the number of ears per plant 

and stay-green characteristics were significant (Table 1). 

The analysis of variance across the environments revealed significant effects for 

genotype, environment, G × E, GCA and SCA mean squares for most of the measured 

traits (Table 1). The few exceptions included the mean squares of environment for Striga 

damage (8 and 10 WAP) and genotype for EPP. The mean squares of G × E for plant and 

ear heights, ears per plant and number of emerged Striga plants (8 and 10 WAP) were also 

not significant. In addition, the mean squares of SCA for ears per plant and the number of 

emerged Striga plants (8 and 10 WAP) across test environments were not significant. The 

GCA x E interaction mean squares were significant for all measured traits except for plant 

height, plant aspect and the number of emerged Striga plants (8 and 10 WAP) across 

environments. Significant SCA x E interactions mean squares were detected for only grain 

yield, days to anthesis, anthesis-silking interval and husk cover. The heritability of grain 

yield was 0.73 across environments (Table 1). The heritabilities of Striga damage at 8 and 

10 WAP were 0.71 and 0.77, respectively. The number of emerged Striga plants at 8 and 

10 WAP had heritabilities of 0.45 each. The heritability of stay-green characteristics under 

drought environments was 0.28. 

3.2. Performance of Hybrids Based on Multiple Trait Index Across Environments 

The mean grain yield of the entries was 4013 kg ha−1 under optimal growing 

conditions and 2729 kg ha−1 under Striga infestation (Table 2). The yield observed under 

Striga infestation represented 32% of the average yield expected under non-infested 

conditions. In addition, the best Striga-resistant hybrid, TZdEEI 7 × TZEEI 79 (4437 kg 

ha−1), exceeded check 2 (3202 kg ha−1), which was the best resistant check by 39%. Under 

drought conditions, the highest yielding hybrid was TZdEEI 12 × TZEEI 63 (3883 kg ha−1), 

followed by TZdEEI 7 × TZEEI 63 (3611 kg ha−1) and TZdEEI 9 × TZdEEI 12 (3599 kg ha−1). 

Under optimal growing conditions, the high yielding hybrid was TZdEEI 7 × TZEEI 63 

(5217 kg ha−1), and the lowest was TZdEEI 4 × TZdEEI 13 (2636 kg ha−1). TZdEEI 7 × TZEEI 

63 exceeded the checks by a range of 34 to 65%. Across all the environments, TZdEEI 1 × 

TZdEEI 7 was the highest yielding hybrid with a grain yield of 4302 kg ha−1, followed by 

TZdEEI 7 × TZEEI 79 (4214 kg ha−1) and TZdEEI 7 × TZEEI 79 (4177 kg ha−1). 

The single cross hybrid, TZdEEI 7 × TZEEI 79, produced the highest grain yield under 

both stress environments, while TZdEEI 12 × TZEEI 95 was the most outstanding in terms 
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of grain yield under nonstress environments (Table 3). The mean grain yield of the hybrids 

was 2629 kg ha−1 across stress environments compared with 4546 kg ha−1 across nonstress 

environments, indicating a yield reduction of 42% due to the multiple stresses. Grain yield 

ranged from 2063 kg ha−1 for TZdEEI 4 × TZdEEI 11 to 4438 kg ha−1 for TZdEEI 7 × TZEEI 

79 across multiple environments (Table 3). The top fifteen outstanding hybrids in terms 

of grain yield were not significantly different, but they significantly exceeded each of the 

four hybrid checks. Based on the multiple trait index, TZdEEI 7 × TZEEI 79 was the most 

outstanding hybrid, while TZdEEI 58 × TZEEI 63 was the lowest yielding. The outstanding 

grain yields of the top fifteen hybrids selected based on the multiple trait index were 

associated with increased ears per plant, reduced anthesis-silking interval, improved ear 

aspect and stay green characteristic, as well as reduced Striga damage under Striga 

infestation. 

3.3. Correlation Between Variables Under Each Stress Environment 

Under optimal conditions, highly significant (p < 0.001) correlations were observed 

between the variables (Table S2). Grain yield showed highly significant and negative 

correlations with days to anthesis, plant aspect and rear aspect. Days to anthesis were 

significantly and positively correlated with plant and ear heights, while days to silking 

showed no significant correlations with plant and ear height (Table S2). Across Striga 

environments, days to anthesis, days to silking, anthesis-silking interval, Striga damage (8 

and 10 WAP) and ear aspect had significant and negative correlations with grain yield 

(Table S3). The correlation between Striga damage (8 and 10 WAP) and emerged Striga 

counts (8 and 10 WAP) were positive and highly significant (p < 0.01). Plant and ear 

heights had negative correlations with both Striga damage and the number of emerged 

Striga plants. Days to anthesis, days to silking, anthesis-silking interval, ear aspect, plant 

aspect, and stay green characteristic were highly significant (p < 0.001) and positively 

correlated with grain yield (Table S4). The number of ears per plant was positively 

correlated with grain yield in each stress environment. 

3.4. General and Specific Combining Abilities of Inbred Lines Across Multiple Environments 

There was the preponderance of GCA effects over the SCA effects for grain yield and 

other measured traits in the set of inbred lines (Figure 1). The inbred TZdEEI 7 had 

significant positive GCA effects for grain yield under optimal (425**), Striga (767**) and 

across all environments (571) (Table 4). TZdEEI 4 had significant negative GCA effects in 

each environment and across environments. TZdEEI 12 had significant positive GCA 

effects under Striga, drought and across research environments. However, the inbred 

TZdEEI 5 had significant positive and negative GCA effects under Striga and drought 

conditions, respectively. TZdEEI 7, TZdEEI 12 and TZEEI 79 had significant and negative 

GCA effects for Striga damage (8 and 10 WAP). Significant and negative GCA effects for 

the number of emerged Striga plants (8 and 10 WAP) were detected for TZdEEI 4, TZEEI 

79 and TZEEI 95. The inbred TZdEEI 9 and TZdEEI 13 possessed negative and significant 

GCA effects for the stay-green characteristic. 



Agronomy 2021, 11, 177 9 of 24 
 

 

Figure 1. Proportion of additive (lower bar) and non-additive (upper bar) genetic variance for grain yield and other 

agronomic traits of 12 extra-early yellow inbred lines involved in diallel crosses evaluated across drought, Striga-infested 

and rainfed environments in Nigeria, 2013–2014. 

Table S5 shows the SCA effects of grain yield and agronomic traits of extra-early 

yellow maize hybrids under optimal, Striga, drought and across environments. The 

hybrids TZdEEI 1 × TZdEEI 11 had negative SCA effects for grain yield under optimal 

(−1322**), Striga (−1231), drought (−408) and across environments (−1276**). TZEEI 58 × 

TZEEI 63 had significant negative SCA effects for grain yield in each environment and 

across environments. TZdEEI 13 × TZEEI 95 had positive SCA effects for grain yield in 

each environment and across environments. Under Striga infestation, TZdEEI 13 × TZEEI 

63 (1063) had significant positive SCA for grain yield while TZEEI 58 × TZEEI 63 had 

significant positive SCA effects for Striga damage rating at 8 and 10 WAP. Under drought 

conditions, the hybrid TZdEEI 5 × TZdEEI 11 had the highest positive SCA for grain yield 

(1263**) followed by TZdEEI 1 × TZEEI 58 (882*). The SCA effects for the stay-green 

characteristic were not significant; however, TZdEEI 1 × TZdEEI 7 had the highest SCA 

(1.87), followed by TZdEEI 5 × TZdEEI 12 (1.47) and TZdEEI 5 × TZdEEI 7 (1.47). 

3.5. Classification of Inbred Lines into Heterotic Groups and Identification of Testers 

The 12 inbreds used in the present study were classified into three heterotic groups 

using the HGCAMT method (Figure 2). It is striking to note that the HGCAMT method 

classified the inbreds TZdEEI 4 and TZdEEI 13, with significant and negative GCA effects 

for grain yield into heterotic group 2 while inbreds TZdEEI 7 and TZdEEI 12 (two out of 

the three inbreds with significant and positive GCA effects for grain yield) were placed in 

heterotic group 3. Based on the criteria described earlier for the identification of an inbred 

tester, TZEEI 79 was selected as a tester for heterotic group 1 and TZdEEI 7 for heterotic 

group 3. However, no inbred in group 2 satisfied the criteria for selection as a tester. 

Furthermore, the hybrid TZdEEI 7 × TZdEEI 12 was identified as a single-cross tester 

because the parental lines (TZdEEI 7 and TZdEEI 12) were characterized by significant 

and positive GCA effects for grain yield. The parents were classified into the same 

heterotic group by the HGCMAT method, with the hybrid displaying a grain yield value 

that was higher than the mean grain yield of the hybrids in the trial. 
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Figure 2. Dendrogram of 12 extra-early maize inbred lines derived from the heterotic 

grouping based on the general combining ability (GCA) of multiple traits (HGCAMT) 

method using Ward’s minimum variance cluster analysis across research environments. 

 

Group 1 

Group 2 

Group 3 
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Table 1. Mean squares derived from the combined analysis of variance for grain yield and other agronomic traits of 66 hybrids evaluated across 5 environments (two 

Striga-infested, one drought and two rainfed environments) in Nigeria, 2013–2014. 

Optimal                

SOV † DF YIELD DS ASI PHT EHT PASP EASP EPP       

Env 1 1,506,994 ** 6.8 ** 1.6 ** 776.9 ** 332.8 ** 0.38 ** 0.31 ** 0.02 **       

Repetition 2 598,147 0.7 0.5 11.9 274.6 ** 0.22 3.23 ** 0.02       

Hybrid 65 865,461 * 2.2 ** 0.9 * 396.0 68.8 0.26 * 0.24 * 0.03 **       

Env*Hybrid 65 841,744 * 2.2 ** 0.8 385.6 68.9 0.27 * 0.23 ** 0.03 **       

GCA 11 2,998,626 ** 28.5 ** 3.9 ** 2651.7 ** 1450.4 ** 1.03 ** 0.46 ** 0.04 **       

SCA 54 1,203,143 ** 2.5 ** 1.2 ** 395.1 105.1 ** 0.26 * 0.28 ** 0.02 *       

GCA*Env 11 1,241,955 * 4.4 ** 2.1 ** 634.7 * 114.4 * 0.72 ** 0.42 ** 0.07 **       

SCA*Env 54 788,767 * 1.7 * 0.7 347.4 59.6 0.17 0.20 0.02 *       

Error 130 545,704 1.0 0.7 324.9 55..3 0.17 0.15 0.01       

Striga                

SOV † DF YIELD DS ASI PHT EHT SDR1 SDR2 ESP1 ESP2 EPP     

Env 1 39,455,484 ** 570.2 ** 78.6 ** 25,409.5 ** 6264.4 ** 0.09 1.83 3.63 ** 4.23 ** 0.62 **     

Repetition 2 784,070 6.4 0.1 1219.7 ** 534.6 * 2.43 0.52 0.43 ** 0.41 ** 0.05     

Hybrid 65 3,176,326 ** 12.5 ** 3.6 ** 452.8 ** 203.6 ** 4.49 ** 3.87 ** 0.12 * 0.09 * 0.11 **     

Env*Hybrid 65 1 094,354 * 5.6 ** 2.6 * 304.1 136.2 1.56 * 1.06 ** 0.08 0.06 0.03 *     

GCA 11 13,626,819 ** 52.6 ** 9.2 ** 1000.5 ** 547.3 ** 17.58 ** 16.55 ** 0.28 ** 0.21 ** 0.45 **     

SCA 54 1,047,522 * 4.4 2.4 341.2 * 133.6 1.82 * 1.29 ** 0.09 0.06 0.04 **     

GCA*ENV 11 1,345,046 8.5* 3.1 433.3 * 182.3 3.01 ** 2.58 ** 0.09 0.09 0.04     

SCA*ENV 54 1,043,287 5.4* 2.5 277.8 126.8 1.26 0.75 0.07 0.05 0.03     

Error 130 726,465 3.2 1.8 227.0 113.6 1.10 0.63 0.08 0.06 0.02     

Drought                

SOV † DF YIELD DS DA ASI PHT EHT EASP EPP PASP STGR     

Repetition 1 19,449 3.1 2.0 0.1 737.0 185.9 0.03 0.00 1.14 1.32     

Hybrid 65 874,713 ** 6.2 ** 3.1 ** 1.5 382.3 ** 176.4 0.71 0.02 ** 1.15 * 1.38 *     

GCA 11 2,165,504 ** 9.0 ** 17.4 ** 2.7 * 1004.4 ** 535.3 ** 1.63 ** 0.02 * 1.48 * 1.51 *     

SCA 54 611,774 1.9 * 3.9 1.3 255.6 103.3 0.66 0.02 ** 1.09 1.35 *     

Error 65 424,342 1.3 3.0 1.1 303.2 118.6 0.58 0.01 0.72 0.77     

Across                

SOV † DF YIELD DS DA ASI PHT EHT HUSK EASP EPP      
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ENV 5 219,814,222 ** 832.5 ** 965.3 ** 134.0 ** 30,657.3 ** 6062.6 ** 73.50 ** 266.12 ** 1.57 **      

Repetition 6 618,319 13.1 ** 8.6 ** 1.0 1243.6 ** 316.0 ** 0.89 ** 1.25 ** 0.09      

Hybrid 65 42,095,210 ** 26.8 ** 22.2 ** 4.0 ** 1197.8 ** 552.1 ** 0.89 ** 1.67 ** 0.15      

Hybrid*ENV 325 1,242,600 ** 4.5 ** 3.3 ** 1.5 ** 333.9 106.7 0.48 ** 0.59 ** 0.12      

GCA 11 14,196,154 ** 122.7 ** 109.0 ** 13.3 ** 4741.3 ** 2458.1 ** 3.14 ** 5.37 ** 0.22 *      

SCA 54 2,175,206 ** 7.3 ** 4.5 ** 2.1 ** 475.9 ** 163.8 ** 0.44 ** 0.91 ** 0.14      

GCA*ENV 55 2,590,061 ** 9.5 ** 7.2 ** 2.0 ** 434.8 * 140.6 * 1.46 ** 1.62 ** 0.18 **      

SCA*ENV 270 968,122 ** 3.4 2.6 ** 1.4 313.3 99.8 0.28 * 0.38 0.11      

Error 390 754,137 2.9 1.9 1.2 300.4 97.6 0.23 0.35 0.11      

  YIELD DS DA ASI PHT EHT EASP EPP PASP SDR1 SDR2 ESP1 ESP2 STGR 

Heritability  0.73 0.80 0.86 0.63 0.76 0.84 0.62 0.34 0.37 0.71 0.77 0.45 0.45 0.28 

† SOV = sources of variation; ENV = environment; DF = degrees of freedom; YIELD = grain yield; DS = days to silking; DA = days to anthesis; ASI = anthesis-silking interval; 

PHT = plant height; EHT = ear height; HUSK = husk cover; EASP = ear aspect; EPP = ears per plant; PASP = plant aspect; SDR1 and SDR2 = Striga damage rating at 8 and 

10 WAP; ESP1 and ESP2 = number of emerged Striga plants at 8 and 10 WAP; STGR = stay-green characteristic. **, * = significant F-test at 0.01 and 0.05 levels of probability, 

respectively.
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Table 2. Grain yield (kg ha−1) of the hybrids and checks under optimal, Striga, drought and across environments. 

PEDIGREE Optimal Striga Drought Across 

TZdEEI 1 × TZdEEI 4 2664 2285 1634 2394 

TZdEEI 1 × TZdEEI 5 3864 2924 2661 3179 

TZdEEI 1 × TZdEEI 7 4888 4478 2577 4302 

TZdEEI 1 × TZdEEI 9 4659 2516 2834 3476 

TZdEEI 1 × TZdEEI 11 2698 1359 2614 2196 

TZdEEI 1 × TZdEEI 12 4866 3796 2262 3824 

TZdEEI 1 × TZdEEI 13 3419 1728 2026 2650 

TZdEEI 1 × TZEEI 58 4434 2958 3480 3468 

TZdEEI 1 × TZEEI 63 4241 2945 3046 3632 

TZdEEI 1 × TZEEI 79 4428 3250 2900 3433 

TZdEEI 1 × TZEEI 95 3909 2730 3014 3101 

TZdEEI 4 × TZdEEI 5 3698 2405 1504 2544 

TZdEEI 4 × TZdEEI 7 3679 1964 1854 2627 

TZdEEI 4 × TZdEEI 9 3405 1696 1928 2394 

TZdEEI 4 × TZdEEI 11 3128 1453 2498 2435 

TZdEEI 4 × TZdEEI 12 3817 1844 2099 2651 

TZdEEI 4 × TZdEEI 13 2636 644 1139 1564 

TZdEEI 4 × TZEEI 58 4253 1810 1892 2682 

TZdEEI 4 × TZEEI 63 4102 1432 1823 2581 

TZdEEI 4 × TZEEI 79 3233 1965 1020 2173 

TZdEEI 4 × TZEEI 95 4077 2252 2366 2931 

TZdEEI 5 × TZdEEI 7 3916 3269 2102 3201 

TZdEEI 5 × TZdEEI 9 4846 3599 2051 3940 

TZdEEI 5 × TZdEEI 11 4680 2866 3303 3834 

TZdEEI 5 × TZdEEI 12 3585 3114 1036 3122 

TZdEEI 5 × TZdEEI 13 3473 2336 1346 2637 

TZdEEI 5 × TZEEI 58 3979 3190 1933 3258 

TZdEEI 5 × TZEEI 63 4169 2842 1781 3133 

TZdEEI 5 × TZEEI 79 4386 2925 2602 3427 

TZdEEI 5 × TZEEI 95 3579 3385 1559 2983 

TZdEEI 7 × TZdEEI 9 4600 3937 2680 3815 

TZdEEI 7 × TZdEEI 11 4483 3255 3022 3793 

TZdEEI 7 × TZdEEI 12 4081 3619 3254 3694 

TZdEEI 7 × TZdEEI 13 4108 2382 2439 3097 

TZdEEI 7 × TZEEI 58 3980 4065 2320 3805 

TZdEEI 7 × TZEEI 63 5218 3551 3611 4177 

TZdEEI 7 × TZEEI 79 4387 4437 3463 4215 

TZdEEI 7 × TZEEI 95 4337 4040 2160 3750 

TZdEEI 9 × TZdEEI 11 4066 1965 2607 3000 

TZdEEI 9 × TZdEEI 12 5008 3516 3599 4033 

TZdEEI 9 × TZdEEI 13 4598 888 1517 2357 

TZdEEI 9 × TZEEI 58 4712 2878 2183 3405 

TZdEEI 9 × TZEEI 63 4051 2569 2407 3178 

TZdEEI 9 × TZEEI 79 4530 3747 2838 3717 

TZdEEI 9 × TZEEI 95 4831 2974 2325 3549 

TZdEEI 11 × TZdEEI 12 4323 3463 2867 3738 

TZdEEI 11 × TZdEEI 13 4450 1336 2152 2616 

TZdEEI 11 × TZEEI 58 5066 2527 3150 3798 

TZdEEI 11 × TZEEI 63 5043 2634 3017 3796 
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TZdEEI 11 × TZEEI 79 3756 3620 2602 3429 

TZdEEI 11 × TZEEI 95 3358 2481 3092 3062 

TZdEEI 12 × TZdEEI 13 4742 1902 2864 3180 

TZdEEI 12 × TZEEI 58 4245 3446 3170 3681 

TZdEEI 12 × TZEEI 63 4349 2884 3883 3682 

TZdEEI 12 × TZEEI 79 3767 3355 3271 3612 

TZdEEI 12 × TZEEI 95 3673 3648 2874 3638 

TZdEEI 13 × TZEEI 58 4202 1300 2596 2567 

TZdEEI 13 × TZEEI 63 3974 2323 3121 3190 

TZdEEI 13 × TZEEI 79 3544 2469 2623 3029 

TZdEEI 13 × TZEEI 95 3769 2270 3149 3066 

TZEEI 58 × TZEEI 63 2674 1535 706 1533 

TZEEI 58 × TZEEI 79 3050 3574 2324 3063 

TZEEI 58 × TZEEI 95 3889 2767 2491 3399 

TZEEI 63 × TZEEI 79 4225 3608 1789 3445 

TZEEI 63 × TZEEI 95 3860 2306 2705 2888 

TZEEI 79 × TZEEI 95 3495 2719 2819 3237 

Check 1 3247 2837 1278 2859 

Check 2 3882 3202 2224 3233 

Check 3 3445 2556 1904 3052 

Check 4 3164 2507 2032 2629 

Mean 4013 2729 2429 3183 
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Table 3. Grain yield and other agronomic traits of hybrids (the best 15 and the worst 10) based on the multiple stress base index with four hybrid checks evaluated 

under stress (ST), rainfed (NS) and across (ACR) environments in Nigeria, 2013–2014. 

Hybrid Yield (kg ha−1) EPP ASI (days) EASP STGR SDR1 SDR2 ESP1 ESP2 MI 
 ST NS ACR ST NS ST NS ST NS ST  

TZdEEI 7 × TZEEI 79 4112 4928 4438 1.00 0.94 1.75 1.14 4.5 2.7 3.3 2.7 3.8 26.7 28.6 13.76 

TZdEEI 9 × TZEEI 79 3445 5163 4132 0.90 0.89 1.48 0.39 4.4 2.7 3.5 2.8 3.9 31.0 34.8 10.64 

TZdEEI 7 × TZdEEI 12 3497 4757 4001 1.02 0.88 0.99 0.46 4.7 3.1 4.0 2.6 3.9 38.3 40.3 10.21 

TZdEEI 1 × TZdEEI 7 3844 4991 4303 1.09 1.05 1.79 0.86 4.5 3.0 6.0 2.9 3.8 45.3 48.8 9.76 

TZdEEI 7 × TZdEEI 9 3518 5047 4130 0.96 0.89 0.73 0.71 4.7 3.1 3.5 3.3 4.5 46.2 53.2 9.68 

TZdEEI 9 × TZdEEI 12 3544 4328 3857 1.00 1.12 0.71 1.07 4.7 3.0 4.0 4.0 4.9 26.2 33.3 9.26 

TZdEEI 11 × TZEEI 79 3281 5274 4078 0.89 0.97 1.85 1.37 4.2 2.6 3.8 3.3 3.9 24.8 30.4 9.18 

TZdEEI 1 × TZEEI 79 3134 5078 3912 0.90 0.74 1.82 1.38 4.5 2.7 2.7 4.3 4.5 28.5 38.0 8.66 

TZdEEI 12 × TZEEI 95 3390 5602 4275 0.95 0.75 1.37 0.91 4.5 2.9 3.6 3.8 4.8 30.0 38.6 8.57 

TZdEEI 12 × TZEEI 79 3327 5038 4011 0.91 0.94 1.62 0.96 4.8 3.1 3.7 3.6 4.1 42.8 42.3 8.24 

TZdEEI 58 × TZEEI 79 3158 4360 3638 0.85 0.88 1.80 1.65 4.9 3.1 3.4 2.5 4.2 36.1 42.9 8.19 

TZdEEI 1 × TZdEEI 12 3285 4633 3824 1.01 0.95 1.58 0.51 4.8 3.0 3.2 4.2 4.3 26.5 32.5 7.98 

TZdEEI 5 × TZEEI 79 2818 5402 3852 0.84 0.89 0.62 1.21 4.8 2.3 3.4 4.8 5.3 29.7 37.1 6.49 

TZdEEI 7 × TZEEI 63 3571 5142 4199 0.88 0.92 1.84 0.92 4.7 2.6 3.5 3.9 4.6 52.2 58.0 6.44 

TZdEEI 7 × TZEEI 95 3413 4330 3780 0.97 0.99 1.90 1.21 5.5 3.2 4.1 3.4 4.8 31.4 36.0 5.93 

Check 2 † 2876 4391 3482 0.89 0.92 1.91 1.79 4.6 2.7 4.5 4.0 4.8 21.1 22.6 5.30 

Check 1 2316 4819 3318 0.85 0.84 2.64 1.99 5.5 2.9 4.5 3.6 4.8 27.6 34.1 0.65 

Check 3 2339 3513 2808 0.84 0.94 2.74 1.42 5.5 3.3 5.6 4.6 5.7 3.8 6.3 −2.40 

Check 4 2349 4114 3055 0.80 1.07 2.20 1.21 5.6 3.2 4.8 5.0 5.9 38.2 36.6 −3.00 

TZdEEI 5 × TZdEEI 13 2006 4161 2868 0.77 0.93 3.42 1.88 5.7 3.2 3.0 5.6 6.2 44.6 51.8 −7.26 

TZdEEI 1 × TZdEEI 13 1827 4668 2964 0.79 0.90 2.73 1.17 5.7 3.0 4.7 6.2 6.2 44.8 49.1 −7.39 

TZdEEI 4 × TZdEEI 11 1801 2456 2063 0.75 0.90 2.07 0.60 5.7 3.6 3.2 5.8 6.5 48.1 52.3 −8.98 

TZdEEI 13 × TZEEI 58 1732 4589 2875 0.55 0.95 1.47 1.64 6.1 2.9 3.2 6.4 7.2 47.5 53.8 −9.58 

TZdEEI 4 × TZEEI 58 1837 4604 2944 0.61 1.00 3.81 1.36 6.0 3.2 5.3 5.7 6.5 28.5 31.5 −10.53 

TZdEEI 4 × TZEEI 63 1562 4055 2559 0.68 0.93 3.10 2.12 6.2 3.0 4.8 5.9 6.7 33.3 37.4 −11.37 

TZdEEI 11 × TZdEEI 13 1608 3857 2508 0.68 0.89 3.27 1.81 6.1 2.9 3.3 6.9 7.4 45.2 49.8 −11.84 

TZdEEI 9 × TZdEEI 13 1097 4694 2536 0.60 1.02 3.86 0.62 6.6 3.1 3.6 6.7 7.1 76.6 84.9 −16.38 

TZdEEI 4 × TZdEEI 13 808 4186 2159 0.61 1.04 3.58 0.84 6.8 3.1 4.1 6.9 7.8 27.7 35.4 −17.80 

TZdEEI 58 × TZEEI 63 1247 3557 2171 0.52 0.88 4.46 2.58 6.3 3.3 5.3 5.7 6.7 53.3 59.4 −17.98 

Mean 2629 4546 3396 0.85 0.98 2.21 1.20 5.3 3.0 4.0 4.6 5.4 40.6 45.5  

LSD 758 1216 663 0.15 0.75 1.39 1.13 0.74 0.49 1.64 1.21 0.97 26.91 28.79  

† Check 1 = TZEEI 79 × TZEEI 82; Check 2 = TZEEI 79 × TZEEI 76; Check 3 = (TZEEI 82 × TZEEI 79) × TZEEI 58; Check 4 = (TZEEI 95 × TZEEI 58) × (TZEEI 82 × TZEEI 79); 

YIELD = grain yield; EPP = ears per plant; ASI = anthesis-silking interval; EASP = ear aspect; STGR = stay-green characteristic; SDR1 and SDR2 = Striga damage rating at 8 

and 10 WAP; ESP1 and ESP2 =emerged Striga plants at 8 and 10 WAP; MI = multiple trait base index.
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Table 4. General combining ability (GCA) effects of extra-early yellow maize inbred parents for grain yield and other 

agronomic traits across 5 environments (two Striga-infested, one drought and two rainfed environments) in Nigeria, 2013–

2014. 

S/N Parent YIELD ‡ (kg ha−1) SDR1 SDR2 ESP1 ESP2 STGR 

  Optimal Striga Drought Across      

1 TZdEEI 1 21 102 −1 −46 0.09 −0.13 0.57 0.42 0.08 

2 TZdEEI 4 −585 ** −1119 ** −689 ** −860 ** 0.69 ** 1.02 ** −10.15 ** −10.83 * 0.32 

3 TZdEEI 5 4 279 ** −521 ** −11 0.01 −0.13 7.30 7.72 −0.03 

4 TZdEEI 7 425 ** 767 ** 271 571 ** −0.79 ** −0.73 ** 13.45 ** 12.69 ** 0.07 

5 TZdEEI 9 363 * 103 −83 63 −0.31 −0.16 4.77 4.42 −0.43 * 

6 TZdEEI 11 101 −164 390 ** −166 0.44 ** 0.12 −3.33 −3.21 −0.12 

7 TZdEEI 12 150 602 ** 338 * 334 * −0.59 ** −0.61 ** −5.23 −6.01 0.57 ** 

8 TZdEEI 13 −256 −1026 ** −43 −424 ** 1.39 ** 1.24 ** 2.05 2.69 −0.38 * 

9 TZEEI 58 −29 −40 −114 38 0.09 0.04 8.32 * 8.09 0.07 

10 TZEEI 63 123 −173 133 −37 0.16 0.34 ** 5.70 6.87 0.07 

11 TZEEI 79 −210 572 ** 82 313 * −1.06 ** −0.93 ** −11.93 ** −11.58 ** −0.08 

12 TZEEI 95 −106 97 ** 237 226 −0.11 −0.06 −11.50 ** −11.26 ** −0.18 
‡ YIELD = grain yield; SDR1 and SDR2 = Striga damage rating at 8 and 10 WAP; ESP1 and ESP2 = emerged Striga plants at 

8 and 10 WAP; STGR = stay-green characteristic. **, * = significant F-test at 0.01 and 0.05 levels of probability, respectively

3.6. Performance of Hybrids Based on GGE Biplot Analyses Across Environments 

The highly significant genotype and GEI for grain yield across test environments 

justified the need for the use of the GGE biplot to decompose the GEI and to examine the 

yield performance and stability of the hybrids across test environments. The “mean 

performance and stability” view of the GGE biplot analysis of selected 29 extra-early 

maturing maize hybrids (15 best and 10 worst hybrids plus four hybrid checks) evaluated 

across five environments in Nigeria in 2013 and 2014 are presented in Figure 3. The thick 

single-arrow black line that passes through the biplot origin (intercept of the vertical and 

horizontal axis) and the average tester (center of the inner-most concentric circle with an 

arrow) is referred to as the average-tester coordinate axis (ATC). The double-headed 

arrow line (ATC ordinate) separates entries with below-average means (to the left side of 

the line) from those with above-average means. A set of lines, parallel to the double-

headed arrow line, spans the entire range of the entries, grouping them based on their 

mean performance. The average performance of a genotype is approximated by the 

projection of its marker on the ATC. The stability of the genotypes is determined by their 

projections onto the average-tester coordinate y-axis single-arrow line (ATC abscissa). The 

greater the absolute length of the projection of a genotype, the less stable it is. Based on 

these criteria, TZdEEI 9 × TZEEI 79 was the most stable hybrid with competitive yield 

across environments. Other outstanding hybrids identified as high yielding but unstable 

included TZdEEI 7 × TZEEI 79, TZdEEI 1 × TZdEEI 7 and TZdEEI 12 × TZEEI 95. 
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Entry Pedigree 

1 TZdEEI 7 × TZEEI 79 

2 TZdEEI 1 × TZdEEI 7 

3 TZdEEI 12 × TZEEI 95 

4 TZdEEI 7 × TZEEI 63 

5 TZdEEI 9 × TZEEI 79 

6 TZdEEI 7 × TZdEEI 9 

7 TZdEEI 7 × TZEEI 58 

8 TZdEEI 11 × TZdEEI 79 

9 TZdEEI 12 × TZEEI 79 

10 TZdEEI 7 × TZdEEI 12 

11 TZdEEI 1 × TZEEI 58 

12 TZdEEI 11 × TZdEEI 58 

13 TZdEEI 5 × TZdEEI 9 

14 TZdEEI 7 × TZdEEI 11 

15 TZdEEI 1 × TZEEI 79 

16 TZdEEI 4 × TZEEI 79 

17 TZdEEI 4 × TZEEI 63 

18 TZdEEI 9 × TZdEEI 13 

19 TZdEEI 11 × TZdEEI 13 

20 TZdEEI 4 × TZdEEI 9 

21 TZdEEI 1 × TZdEEI 4 

22 TZdEEI 58 × TZEEI 63 

23 TZdEEI 4 × TZdEEI 13 

24 TZdEEI 4 × TZdEEI 11 

25 TZdEEI 1 × TZdEEI 11 

26 Check 1: TZEEI 79 × TZEEI 82 

27 Check 2: TZEEI 79 × TZEEI 76 

28 Check 3: (TZEEI 82 × TZEEI 79) × TZEEI 58 

29 

Check 4: (TZEEI 95 × TZEEI 58) × (TZEEI 82 × 

TZEEI 79) 



Agronomy 2021, 11, 177 18 of 24 
 

 

Figure 3. Genotype × environment interaction (GGE) biplot analysis of grain yield of selected 15 best and 10 worst extra-early maize hybrids plus four extra-early hybrid 

checks evaluated under Striga infestation at Mokwa (MKST13) and Abuja (ABST13) and rainfed conditions at Ikenne (IKOP13) and Bagauda (BGOP13) during the 2013 

growing season and under drought at Ikenne (IKDS13/14) during the 2013/2014 dry season. 
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4. Discussion 

The highly significant environment and genotype mean squares detected for grain 

yield and most other agronomic traits across environments indicated that there was 

significant genetic variability among the extra-early yellow maize hybrids. The significant 

variability will allow good progress from selection for improvements of the measured 

traits. These results agreed with the findings of Badu-Apraku et al. [29,41,44,45] and Badu-

Apraku and Oyekunle [46]. This shows that crop wild relatives can be used to introgress 

genetic variation into elite maize cultivars. It has been reported that the genetic base of 

maize cultivars has narrowed down. The narrow genetic base has made it more vulnerable 

to new epidemics and decreased yield due to more difficult and less predictable maize 

growing environments [17]. Thus, crop wild relatives can be used to improve the genetic 

base of maize because useful genetic variation exists in the crop wild relatives of maize. 

The lack of significant E means squares for Striga damage (8 and 10 WAP) indicated that 

the Striga-infested environments were similar in the expression of the Striga damages. 

Additionally, the lack of significant G × E mean squares for plant and ear heights, ears per 

plant and number of emerged Striga plants (8 and 10 WAP) implied that the expressions 

of these traits were consistent from one environment to the other. The significant GCA 

and SCA mean squares for most measured traits indicated that both additive and non-

additive gene actions were important in the inheritance of grain yield and other traits. The 

existence of additive gene action in the present study implied that progress had been 

made in developing Striga and drought-tolerant maize hybrids with genes from Z. 

diploperennis. Amegbor et al. [20] also reported progress in developing drought-tolerant 

maize hybrids with genes from Z. diploperennis based on the additive gene action 

observed. The hybrid TZdEEI 7 × TZEEI 79 has the potential of producing a higher yield 

under Striga infestation. This hybrid was derived from Z. diploperennis and tropical 

germplasm. Gethi and Smith [47] reported that F1 crosses involving three Z. mays × Z. 

diploperennis backcross-derived lines, although un-adapted to the environmental 

conditions in Kenya, East Africa, had significantly fewer Striga plants compared with 

susceptible checks. Under drought conditions, the hybrid TZdEEI 12 × TZEEI 63 displayed 

the potential for producing a high yield. This hybrid was also derived from a cross 

between Z. diploperennis and tropical germplasm, which agreed with the results of the 

study of Gethi and Smith [47] and further indicated that favorable alleles were 

introgressed from Z. diploperennis. 

The yield observed under stress environments represented 58% of the average yield 

obtained under nonstress environments, indicating a yield reduction of 42% due to the 

stresses, which was more than that observed by Bolanos and Edmeades [48]. Empirical 

estimates of maize yield reduction under artificial Striga infestation in WCA have been 

variable: 80% [49], 53·7% [50], 68% [51], 42% [52], and 39% [53]. Additionally, a yield 

reduction of 49% under drought has been reported [20]. Possible factors responsible for 

these differences include the levels of Striga infestation, soil fertility, and level of 

resistance/tolerance to Striga of the maize genotypes studied as well as the differences in 

the environmental conditions. Across research environments, hybrids such as TZdEEI 7 × 

TZEEI 79, TZdEEI 12 × TZEEI 63, and TZdEEI 1 × TZdEEI 7 had good performances. These 

hybrids should be extensively evaluated in on-farm trials to confirm the consistency of 

their performance under Striga-infested and drought environments for commercialization 

in SSA. Furthermore, the hybrid TZdEEI 7 x TZEEI 79 was the most outstanding based on 

the multiple trait base index. The outstanding grain yields of the top fifteen hybrids 

selected based on the multiple trait index were associated with increased ears per plant, 

reduced ASI, improved ear aspect and stay-green characteristic. It was also associated 

with reduced Striga damage under stress environments. These results confirmed that the 

multiple trait index was effective in the selection of promising hybrids with superior grain 

yield and other desirable agronomic traits. 
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The higher proportion of GCA effects of inbreds for grain yield and other measured 

traits than those of the SCA effects across test environments indicated that additive gene 

action played a dominant role in the expression of the measured traits. In addition, there 

is a chance to identify potentially discriminating testers across environments. These 

findings are consistent with the results of Badu-Apraku et al. [29] and Badu-Apraku and 

Oyekunle [46], who reported the preponderance of additive gene action compared to the 

non-additive portion in extra-early maturing maize inbreds evaluated under contrasting 

environments. However, the results of this study disagree with the findings of Gethi and 

Smith [47], Yallou et al. [19] and Badu-Apraku et al. [44,54], who demonstrated that non-

additive gene action was more important than additive gene action in the control of the 

inheritance of host–plant damage. Similarly, under drought conditions, additive gene 

action largely controlled the inheritance of the traits, which was contrary to the reports of 

Njeri et al. [55] and Umar et al. [56]. The differences in the results of this study and those 

of earlier workers may be attributed to the fact that the inbred lines used in the present 

study were derived from composites of a wide range of germplasm, including Z. 

diploperennis. Furthermore, the differences in the intensity of stress factors in the 

environments under which the studies were conducted could also lead to the differences 

observed. A high GCA estimate indicated higher heritability and fewer environmental 

effects, as also evident from the heritability values of the traits studied. It may also result 

in fewer gene interactions and higher achievement in selection. Thus, one parent of the 

worst combination could make the best combination if the other parent is selected 

properly. This also indicated that GCA was the main component accounting for the 

differences among the single-cross hybrids and that early generation testing will be 

effective. In addition, the selection of promising hybrids will be successful based solely on 

the prediction from GCA effects. This makes hybrid variety improvement more effective 

and less costly because testing based on a single representative tester should be enough 

for initial hybrid selections. The additive mode of inheritance will enhance the 

development of maize hybrids that are resistant to Striga without the need for special 

breeding techniques. 

As reported by Makumbi et al. [57], inbred lines with favorable GCA effects could be 

used as parents to form a synthetic population for tolerance to stressful environments. 

The inbreds, TZdEEI 7, TZdEEI 12 and TZEEI 79 with significant positive GCA across the 

test environments could contribute favorable alleles for the improvement of grain yield in 

the development of productive hybrids. The inbred lines, TZdEEI 7, TZdEEI 12 and TZEEI 

79, which displayed significant negative GCA effects for Striga damage (8 and 10 WAP), 

could serve as sources of favorable alleles for Striga tolerance. Furthermore, TZdEEI 4, 

TZEEI 79 and TZEEI 95 with significant and negative GCA effects for emerged Striga 

plants (8 and 10 WAP) are likely to serve as invaluable sources for Striga resistance. The 

inbred lines such as TZdEEI 9 and TZdEEI 13 with negative GCA effects for stay green 

characteristic could contribute to drought tolerance in maize improvement programs. 

It is desirable to group inbreds based on several traits, particularly in a situation 

where lines and hybrids are being developed for resistance or tolerance to multiple 

stresses. The HGCAMT method recommended for efficient grouping of inbred lines 

under Striga infestation [58] and drought stress was also effective in the present study. 

The method classified the extra-early inbreds into three contrasting heterotic groups. The 

inbreds of each heterotic group may be recombined to form heterotic populations, which 

could be improved through the recurrent selection to increase the frequency of Striga and 

drought tolerance alleles. In GCA determination, SCA usually acts as a masking effect. By 

using genetically broad testers from different heterotic groups or increasing the number 

of testers, the SCA impact can be decreased because parental choice only based on the 

SCA effect has limited value in breeding programs. The inbreds, TZEEI 79 and TZdEEI 7 

identified as testers, could be used to classify other extra-early yellow inbreds into 

heterotic groups and thus enhance the development of high-yielding hybrids for 

commercialization. 
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The GGE biplot analysis identified TZdEEI 9 × TZEEI 79 as the most stable single-

cross hybrid with competitive grain yield across test environments. However, the hybrids 

TZdEEI 7 × TZEEI 79, TZdEEI 1 × TZdEEI 7 and TZdEEI 12 × TZEEI 95 were high yielding 

but less stable across environments. These outstanding hybrids should be tested 

extensively in those environments where they showed outstanding performances to 

confirm the consistency of their performance and promoted for commercialization to 

improve food security in SSA. Results of the present study have confirmed that the 

introgression of Striga resistance from the wild relative of maize, Zea diploperennis, into the 

background of cultivated maize is a resourceful approach for the improvement of maize. 

5. Conclusions 

Additive gene action was more important than the non-additive in the inheritance of 

yield, Striga and drought resistance. GCA was the main component accounting for the 

differences among the maize hybrids, and the selection of promising hybrids for Striga 

and drought resistance is possible based solely on the prediction from GCA effects. The 

single cross hybrids that have high SCA effects for grain yield and other traits under the 

stress conditions can be recommended for extensive evaluation to confirm the consistency 

of performance of the hybrids in contrasting environments. They can also be used as 

parents for the development of three-way hybrids in breeding programs. In addition, the 

inbred lines that exhibited high GCA effects for grain yield under the stresses can be used 

as resource materials in hybridization programs. Inbreds TZEEI 79 and TZdEEI 7 were 

identified as testers, while TZdEEI 7 × TZEEI 12 was identified as a single-cross hybrid 

tester across environments. The single-cross hybrid TZdEEI 7 × TZEEI 79 was identified 

by the multiple trait index and TZdEEI 9 × TZEEI 79 by the GGE biplot as the most 

promising across environments. These hybrids should be further tested for consistency of 

performance in on-farm trials and commercialized to improve food security and 

contribute to the alleviation of poverty in SSA. The outstanding performance of hybrids 

derived from Zea diploperennis inbred lines has confirmed the importance of harnessing 

beneficial alleles from crop wild relatives for improvement of resistance to Striga and 

tolerance to drought. 
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