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1 Introduction

The present thesis examines models for strategic network planning in biomass-based supply chains. These models
are used to increase the profitability of products, produced in biomass-based supply chains to make them more
competitive. Within the subsequent section, the main motivation of this thesis is described. Additionally, the
considered strategic planning level in this industry and the reason for planning in general are explained. Section
1.2 formulates the research objectives of the thesis and explains, which methods are used to reach these objectives.
Finally, Section 1.3 describes the detailed outline of the thesis.

1.1 Motivation

Technological progress and the associated development of prosperity in industrialized countries is often accom-
panied by the exploitation of natural resources or increasing environmental pollution. To overcome negative ac-
companying symptoms of the industrial progress, a transformation of the traditional economic system towards a
“bioeconomy” has become an important approach. The concept of bioeconomy is a composite of biology and econ-
omy. (Kaltschmitt, 2009) It describes the knowledge-based production and usage of renewable resources (biomass)
for products, processes and services in all industrial sectors and thus a pre-requisite to form a sustainable economy.
In this case, problems like the feeding of a growing global population, sustainable energy production or reduced
usage of scarce resources like crude oil can be solved by using biomass as a resource. (Pyka, 2017; Lewandowski
et al., 2018) As already mentioned, the basis of such a bioeconomy are renewable feedstocks in form of biomass.
All living materials with organic origin are types of biomass. That means that plants and animals as well as their
residues are part of biomass. Furthermore, dead phytomass, as for example straw, is biomass, too, if it is not yet
fossil. Moreover, everything which can be put into a biowaste container could be used as biomass feedstock. The
process of rotting constitutes the differentiating characteristic between biomass and fossil resources. For example,
peat is already rotten and thus not regarded as biomass anymore. (Kaltschmitt, 2009)

The utilization pathway with the final product energy generated in biogas plants using biomass can be mentioned
as one example within bioeconomy. The energy production in biogas plants using a conventional plant design is
depicted in Figure 1.1. In this conventional case, biomass as a substrate is used to produce biogas through a
combustion process in a digester. Afterward, the produced biogas is directly burned in a combined heat and power
(CHP) plant to produce electricity and the by-product heat. The biogas production within the digester is continuous.
If the biogas production rate is greater than the available biogas capacity in the storage plus the amount burned in
the CHP, the excess gas can be burned using a torch.

This conventional biogas plant design can be adjusted to increase the flexibility within the production processes.
Several characteristics, which can be adjusted, are the type and capacity of biogas usage, the gas storage capac-
ity on-site, the type of conversion process, and the substrate feeding management. The similarity of all those
adjustments is that investments are needed to realize them. (Fichtner and Meyr, 2019)

Crucial for the success of a transition from a traditional economy towards a bioeconomy is the economic prof-
itability. In times of low commodity prices, e.g. for crude oil, producing energy and other products like plastics
from biomass is significantly more expensive than exploiting fossil resources. Hence, to establish a successful
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digester CHPbiogas
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electricity

heat

biomass

time
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production

time

electricity
production

Figure 1.1: Conventional biogas plant configuration (see Fichtner and Meyr (2019))

bioeconomy, the costs for biomass-based products have to be decreased. One approach to reduce the costs from an
organizational point of view is the application of advanced supply chain planning.

Planning in general is very important for every organization. For instance, if a manufacturer needs production
materials from suppliers that are far away, the materials have to be ordered early enough considering the trans-
portation time and potential interruptions during the logistical processes. Particularly, planning is used to prepare
upcoming decision problems as good as possible. This means that several alternatives have to be identified, evalu-
ated and then an ideally optimal one should be chosen. (Fleischmann and Koberstein, 2015)

Typically, an organization is not considered as an individual entity. Instead, it is regarded as part of a supply
chain, where a supply chain is, according to Christopher (2005, p. 17), defined as a ”...network of organizations
that are involved, through upstream and downstream linkages, in the different processes and activities that produce
value in the form of products and services in the hands of the ultimate consumer”. This definition can be extended
into intra-organizational in a narrow and inter-organizational supply chains in a broader sense according to Stadtler
(2015).

The so-called supply chain planning represents the decision support concerning all planning problems along the
entire supply chain. Within Figure 1.2 a general overview of typical planning tasks, arising in a supply chain,
is provided. As depicted, the planning tasks of a supply chain are structured by the main supply chain processes
procurement, production, distribution and sales and classified by the length of the planning horizon into long-, mid-
and short-term planning. Typically, a long-term planning horizon covers several years. Between half a year and
two years is considered in mid-term planning and the short-term planning is characterized by a horizon of a few
days up to three months. During long-term planning tasks, decisions with an impact on the long-term structure of
the supply chain are made. These decisions are called strategic decisions. The mid-term planning is often named
as tactical planning. Within this tactical planning, a rough plan of material flows is defined within the boundaries
of strategic planning. In contrast, short-term operational planning is used for detailed production, transportation
and scheduling tasks. (Fleischmann et al., 2015)

As shown in Figure 1.2, the introduced planning levels are linked hierarchically and horizontally by occurring
information flows. In order to support the supply chain planning through all planning levels and tasks, software,
named Advanced Planning Systems, can be used. Using these software packages an optimal or at least a very
good plan for combined planning tasks can be found. The theoretical basis of these systems are often methods of
operations research. (Fleischmann et al., 2015)

Operations research describes a field of research that deals with the analysis of practical, complex problems
within the framework of a planning process to prepare the best possible decisions by applying mathematical meth-
ods. The main tasks in operations research are the representation of a real decision problem by an optimization
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or simulation model and the application or development of an algorithm to solve the problem, often supported by
software applications. (Domschke et al., 2015)

As previously explained, typical for biomass-based supply chains is the cost issue compared to the traditional
fossil-based industry. Since this is a fundamental issue, according to several entire supply chains, it has to be
tackled on a strategic planning level to take the whole supply chain into account. Decisions on the strategic level
typically involve substantial investments and show long-lasting effects over several years or even decades because
they cannot easily be revised again. Because of their high importance, these decisions should be made carefully.
To support them, the mentioned operations research models can be used.

Figure 1.2: Supply chain planning matrix (see Rohde et al. (2000); Fleischmann et al. (2015))

1.2 Research objectives and methodology

As already addressed in Section 1.1 the research field of bioeconomy is in its infancy. Nevertheless, it is a very
diverse field of research. Dealing with the great diversity within the field leads to the first research objective.

Research objective 1:

Structured analysis of the landscape of strategic long-term supply chain planning problems within

bioeconomy.

Sub-objective 1.1:

Clustering of sub-problems in branches and identification of specific characteristics.

Sub-objective 1.2:

Identification of research gaps regarding strategic planning in biomass-based supply chains.

In order to reach research objective 1, a structured review of recent literature on the long-term, strategic planning
of biomass-based supply chains is conducted. During this process, the entire research field of bioeconomy and not
only a single, specific branch like the fuel area is embraced. However, the focus is on publications applying
quantitative simulation and optimization models, as commonly done in operations research. All in all several
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dozen publications are considered. For these publications, important characteristics are identified and classified
using a classification scheme, which allows easy comparison of the different modeling approaches. This helps to
reveal current trends and gaps as well as opportunities for future research. One of the identified research gaps is to
make biomass-based supply chains profitable on their own, i.e., without governmental subsidies. Therefore, new
optimization models are necessary, which should be as close to reality as possible, by for example considering
risks, arising through prices, demand and supply uncertainties, and actual surrounding constraints concerning the
legal framework. This leads to research objective 2.

Research objective 2:

Strategic optimization of biogas plants considering increased flexibility.

Sub-objective 2.1:

Structured analysis of technical and legal circumstances.

Sub-objective 2.2:

Analysis and forecasting of energy spot market prices.

Sub-objective 2.3:

Development of a robust optimization approach.

In a second part of the thesis one specific strategic supply chain planning problem, in one biomass-based supply
chain is tackled. Particularly, biogas plants as part of the energy supply chain are investigated. In the first step,
to reach the first sub-objective of research objective 2, the legal circumstances are determined using literature re-
search. These legal circumstances in Germany are mainly included in the renewable energy resources act (EEG).
Additionally, the technical framework of biogas plants is analyzed. In a second step, the characteristics of energy
spot market prices are evaluated. Therefore, methods of descriptive statistics are used to emphasize characteris-
tic elements like existing seasonalities and trends. Based on the results of the descriptive statistics a forecasting
function is generated, which is used to generate future scenarios. In a third step, a novel multi-stage deterministic
optimization approach is developed. Therefore, at first, a basic model to optimize the operational plant schedule
called OBPP (operational biogas plant problem) is introduced. Secondly, this model is extended to support in-
vestment decisions regarding the flexibility potential of the biogas plant (SBPP - strategic biogas plant problem).
In general, to increase the flexibility of existing biogas plants, investments in an adjusted plant configuration are
necessary. To evaluate several investment alternatives, the strategic optimization model is used. Besides, as the
spot market prices are varying dynamically over time because of the uncertain behavior of energy demand and sup-
ply, this variation is analyzed and considered using several scenarios. Therefore, significant sources of uncertainty
are analyzed and determined. In order to reach a robust solution for the strategic investment planning problem,
methods of decision theory are applied. Since such a robust optimization approach considering and modeling the
technical characteristics of biogas plants and legal requirements of the EEG, challenged in sub-objective 2.3, does
not yet exist, its development represents the innovative part and thus the main contribution of the entire thesis.

Research objective 3:

Economic optimization of biogas plants considering variable substrate feeding.

Sub-objective 3.1:

Linear approximation of non-linear biogas production rates.

Sub-objective 3.2:

Extension of the developed optimization approach regarding variable substrate feeding.
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As shown in the literature (see, e.g., Barchmann et al. (2016), Grim et al. (2015), Mauky et al. (2016)) the
consideration of variable substrate feeding and thus a demand-oriented biogas production can influence the optimal
operational biogas plant schedule and thus the optimal flexible plant design. Particularly, the necessary biogas
storage capacity can be reduced. In order to consider the economic influence of variable substrate feeding on
the decisions in the previously developed optimization approach, the variable biogas production rates have to
be included in the optimization models. To evaluate the behavior of biogas production rates, based on variable
substrate feeding, the related literature is analyzed in a first step. On this basis, it is determined that resulting biogas
production rates follow a non-linear pattern. Thus, in a second step, two approaches are introduced to approximate
the non-linear patterns using piecewise linearization and using Rieman sums. Based on these approximations,
the process of variable substrate feeding is included in the operational and strategic optimization models. The
modeling of this extension represents the major objective of the third part of the thesis. Additionally, the economic
effects of variable substrate feeding on the operational biogas plant schedule are investigated using numerical
experiments. These experiments are focused on the general effects of variable feeding compared to fixed feeding,
the mixture of several variably fed substrates and the substrate prices. As it is not possible to solve the extended
strategic optimization model optimally using standard solvers, approaches for simplifications or heuristic solutions
are sketched.

1.3 Outline of the thesis

The detailed agenda of the present thesis is organized as follows. Chapter 2 provides a structured literature review,
which has already been published as a chapter in the collected volume by Dabbert et al. (2017). (Fichtner and Meyr,
2017) After an introduction, the overall research field bioeconomy by means of the various utilization pathways of
biomass is structured in Section 2.2. Supply chain management is – despite its name – rather demand- than supply-
oriented. The customer and her/his requested final items are in the center of the thoughts. However, Section 2.2
takes a different view. Here, the scarce resource biomass, i.e., the ultimate supply, is the starting point. If the best
possible utilization of this scarce resource has to be identified, all different utilization pathways originating from
and competing for the same biomass need to be analyzed. This may comprise hundreds and thousands of different
final items and customers. Thus, Section 2.2 lays the ground for bringing together the demand-oriented view of
supply chain management models and the supply-oriented view of bioeconomy. Section 2.3 provides the literature
review of operations research models and methods for strategic supply chain planning in biomass-based industries.
Section 2.4 draws conclusions by analyzing trends and research gaps. Finally, Section 2.5 summarizes the results
and identifies opportunities for future research.

Chapter 3 comprises a paper titled “Biogas plant optimization by increasing its flexibility considering uncertain
revenues”, which represents the main part of the entire thesis. This paper has been written by Stephan Fichtner
and Herbert Meyr. The paper has been published as one of the Hohenheim Discussion Papers in Business, Eco-
nomics and Social Sciences. (Fichtner and Meyr, 2019) A short introduction describes current opportunities and
challenges in the German energy market. Additionally, the beneficial role of biomass as a feedstock of biogas
plants for electricity and heat production is characterized. In Section 3.2 an overview of the problem setting is
given. Therefore, the market conditions in terms of spot market prices, direct marketing and the electricity demand
are introduced. Furthermore, the functionality of biogas plants is explained. Subsequently in Section 3.3 relevant
literature is analyzed. The literature review is focused on operations research-based literature, dealing with un-
certainty in biogas plants or related energy sources. Subsequently, a research gap is identified. Within Section
3.4 a deterministic optimization approach to fill this research gap is described. Here, a multi-stage optimization
approach consisting out of operational and strategic optimization models, an approach to generate scenarios for
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stochastic input data and a decision theory-based approach to generate a robust solution is introduced. The devel-
oped approach is subsequently tested using a fictional but close to reality case example in Section 3.5. Finally,
Section 3.6 summarizes the results and identifies opportunities for extensions or general future research.

Chapter 4 comprises a working paper titled “Operational and strategic optimization of biogas plants based on
variable substrate feeding”, which proposes an extension of the developed optimization models of the previous
chapter regarding variable substrate feeding. This paper has been written by Stephan Fichtner. Section 4.1 pro-
vides an introduction explaining the extended parts and new objectives regarding the modeling of the economic
influence of variable substrate feeding. In Section 4.2, a technical overview of biogas production using variable
substrate feeding is given. The overview is focused on the technical influences of variable substrate feeding on
the operation of a biogas plant and its appropriate plant design before challenges and opportunities of variable
substrate feeding are discussed. Subsequently in Section 4.3 relevant literature is analyzed. Here, the approach
of Fichtner and Meyr (2019) is combined with related literature concerning technical aspects of variable substrate
feeding. Within Section 4.4 the optimization approach of Fichtner and Meyr (2019) is extended in terms of ap-
plying variable substrate feeding. Therefore, the non-linear biogas production rates are approximated using two
approaches in Section 4.4.1 in a first step. Subsequently, the two optimization models OBPP and SBPP are ex-
tended in Section 4.4.2. The extended models are then tested using numerical experiments in Section 4.5. Several
effects are sequentially analyzed in this subsection. First, the general economic effect of variable substrate feeding
compared to fixed feeding is investigated. Second, the effects of different variably fed substrates are investigated.
Third, the effect of feedstock prices is measured. Afterward, a strategic optimization considering variable substrate
feeding is sketched. Finally, Section 4.6 summarizes the results and identifies opportunities for further extensions
or general future research.

Chapter 5 is divided into two subsections. The first one summarizes the content of the thesis and the second one
provides an outlook on further research topics.
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2 Strategic Supply Chain Planning in
Biomass-Based Industries — A Literature
Review of Qantitative Models

Abstract1 Fossil resources are limited and will run short. Moreover, the extensive usage of fossil resources is
discussed as a key driver for climate change which means that a changeover in basic economic and ecological
thinking is necessary. Especially for the energy production, there has to be a movement away from the usage of
fossil resources and towards renewable resources like wind, water, sun or biomass. In this chapter we present a
structured review of recent literature on the long-term, strategic planning of biomass-based supply chains. Firstly,
we structure the overall research field “bioeconomy” by means of the various utilization pathways of biomass and
bring together the demand-oriented view of supply chain management models and the supply-oriented view of
bioeconomy. Secondly, we provide a literature review of operations research models and methods for strategic
supply chain planning in biomass-based industries. Thirdly, we analyze trends and draw conclusions about re-
search gaps.

Keywords Bioeconomy, Strategic Supply Chain Planning, Review

2.1 Introduction

In recent years global economy has continuously improved (World Bank, 2015). The leading industrial nations
have achieved an enormous wealth. Furthermore, there is also an increasing wealth in threshold countries. How-
ever, this global wealth is largely based on the usage of finite fossil resources like crude oil, coal and natural gas.
Fossil resources are limited and will run short. In addition, the extensive usage of fossil resources is recognized
as a key driver for climate change. As a consequence, a changeover in basic economic and ecological thinking is
necessary. Especially for energy production, there has to be a movement away from the usage of fossil resources
towards renewable resources like wind, water, sun or biomass. For the remainder of this chapter, we define all not
yet fossil materials with organic origin as types of biomass. That means that plants and animals as well as their
residues are biomass, but also dead phytomass, as for example straw, can be biomass, as long as it is not yet fossil.2

Note that using biomass for various production processes is not a new idea. Decades ago, before the industrial
revolution, the global economy was significantly more biomass-based than today. Nevertheless, in the future a
more efficient use of biomass will be required not only to tackle the above challenges, but also to mitigate the
increasing world food problem. The industrial use of biomass can provide a building block of a more sustainable
economy, which in the following will be called “bioeconomy”. A crucial barrier for leveraging bioeconomy are
costs. In current times of extremely low crude oil prices, producing energy and other products like textiles from

1This paper has been written by Stephan Fichtner and Herbert Meyr (Department of Supply Chain Management, University of Hohenheim,
Stuttgart). The paper has already been published as a chapter in the collected volume by Dabbert et al. (2017). (see Fichtner and Meyr
(2017))

2A more detailed definition will follow in Section 2.2.
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biomass is significantly more expensive than exploiting fossil resources. Hence, the costs of the bioeconomy have
to be decreased. This could be achieved by technological innovation as well as by optimized organization. Since
many parties are involved in converting biomass in more valuable final items like energy and (or) in transporting
it to the final consumers (for usage as food), a large part of the total costs of biomass usage is caused by logistical
processes. Thus, a clever management of biomass-based supply chains (SCs) is necessary.

In this chapter we present a structured review of recent literature on the long-term, strategic planning of biomass-
based SCs. We try to embrace the whole research field of bioeconomy and not only a single, specific branch like
the fuel area. However, we focus on publications applying quantitative simulation and optimization models, as
commonly done in operations research (OR). All in all we consider several dozen publications. Thus it is not
possible to discuss each model in detail. Instead, we identify the – in our opinion – most important characteristics
of these models to introduce a classification scheme which allows an easy comparison of the different modeling
approaches. This helps to reveal current trends and gaps as well as opportunities for future research. To the best of
our knowledge, there is no prior review with a focus on all of these aspects.

The remainder of this chapter is organized as follows. In Section 2.2 we structure the overall research field
“bioeconomy” by means of the various utilization pathways of biomass. Note that supply chain management
(SCM) is – despite of its name – rather demand- than supply-oriented. The customer and her/his requested final
items are in the center of the thoughts. All parties cooperating to fulfill the final customer’s demand should try
to integrate as good as possible in order to offer highest customer service for lowest costs. Thus, the members
of a single SC should act as partners in a team; but different SCs have to compete with each others for this final
customer’s demand. Section 2.2 additionally takes a different view. Here, the scarce resource biomass, i.e., the
ultimate supply, is the starting point. If one likes to judge about the best possible usage of this scarce resource,
all different utilization pathways originating from and competing for the same biomass need to be identified. This
may comprise hundreds and thousands of different final items and customers. Thus, Section 2.2 lays the ground for
bringing together the demand-oriented view of SCM models and the supply-oriented view of bioeconomy. Section
2.3 provides the literature review of OR models and methods for strategic SC planning in biomass-based industries.
Section 2.4 draws conclusions by analyzing trends and research gaps. Finally, Section 2.5 summarizes the results
and identifies opportunities for future research.

2.2 Biomass-based supply chains

In Section 2.2.1 biomass is used as the starting material to identify different utilization pathways and their resulting
final products. These final products are then the starting point to determine the corresponding types and members
of supply chains in Section 2.2.2 and to structure the literature review of Section 2.3.

2.2.1 Utilization pathways of bioeconomy

A biomass-based utilization pathway is a specific sequence of process steps or processes (e.g., harvesting/collection,
pre-processing, conversion) to generate a biomass-based final product. These pathways are investigated in the
research area “bioeconomy”, which is a composite out of biology and economy (Kaltschmitt, 2009). It is the
knowledge-based production and utilization of renewable resources for products, processes and services in all in-
dustrial sectors and thus a pre-requisite to form a sustainable economy (BMBF and BMEL, 2014). As already
mentioned, the basis of such a bioeconomy are renewable feedstocks in form of biomass. All living materials
with organic origin are types of biomass. That means that plants and animals as well as their residues are part of
biomass. Furthermore, dead phytomass, as for example straw, is biomass, too, if it is not yet fossil. Moreover,
everything which can be put into a biowaste container could be used as biomass feedstock. The process of rotting
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constitutes the differentiating characteristic between biomass and fossil resources. For example, peat is already
rotten and thus not regarded as biomass anymore (Kaltschmitt, 2009).

Figure 2.1 offers a simplified overview of utilization pathways that are investigated in bioeconomy. Tradi-
tional illustrations, e.g. by Kaltschmitt (2009, Fig. 1.2) for energetic usage of biomass, are more detailed and
show a stronger focus on the conversion technologies that are currently technologically feasible. However, for our
purposes a more simplistic view will be sufficient. Thus, four different types of biomass are identified: plants,
wood, residuals and living beings. These four groups contain all the materials which have in the above defini-
tion been characterized as biomass. Those different types of biomass have to be converted after their cultiva-
tion, harvesting and collection. Mainly three different conversion technology groups need to be distinguished,
which are the thermo-chemical, the bio-chemical and the phyiscal-chemical conversion. Intermediate products
are created through those technologies and finally transformed into a large variety of final products. The German
“Bioökonomierat” groups the final products into the five different types food, feed, fibre, fuel and “flowers and
fun” (Bioökonomierat, 2015). Because feed is usually indirectly used to produce food, we pool both in a more
comprehensive group “food production”.

biomass
wood residuals living beingsplants

conversion

physical-chemicalthermo-chemical bio-chemical

final products

heat, 
electricity

liquid & 
gaseous fuel flowers

& fun
fuel (energy uses) fibre (material uses) food production

feed food
textiles chemicals pharmaceuticals

wood-based products tenside

Figure 2.1: Simplified utilization pathways of bioeconomy

Many different ways are possible through this network. With respect to the identified groups of final products,
Sections 2.2.1.1–2.2.1.4 give some further information on these possibilities. Furthermore, Section 2.2.1.5 uses
the example of municipal waste to illustrate how the different utilization pathways of a specific type of biomass
can look like.

2.2.1.1 Fuel

A large variety of utilization pathways ends up in the final product “fuel”. All four groups of biomass can be
the starting material. For example, many different types of plants can be used to produce fuel in general. Possible
plants are lignocellulosic plants like miscanthus, reed or millet, oleiferous plants like rape, sunflower or soy, starchy
plants like potatoes, maize or grain and sugar-containing plants like sugar beet and cane. Additionally, wood out
of short-rotation coppice, the traditional forest wood and residuals could be used. The residuals can further be
classified into waste timber, agricultural residuals like straw or liquid manure and municipal waste. It is also
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possible to generate fuel from micro- or macro-algae which would be categorized as “living beings”. These types
of algae cannot yet be produced and exploited on an industrial scale. However, they could be an opportunity for
the future (Kaltschmitt, 2009).

Biomass utilization pathways are always feedstock-oriented. As a consequence, for every type of biomass like
for example rape or municipal waste, a specific utilization pathway has to be distinguished. Exemplary utilization
pathways for municipal waste will be shown in Section 2.2.1.5 below. Nevertheless, the steps of such a path can
roughly be divided into the biomass collection, a specific chemical conversion technology and the production of
the final product out of intermediate products of the conversion. Thermo-chemical conversion technologies used
for fuel production are, for instance, combustion, gasification and pyrolysis, whereas fermentation and aerobic
decomposition are examples for bio-chemical conversion technologies. Additionally, also physical-chemical con-
version technologies can be used to produce fuel, e.g., by extracting biodiesel from rape. All in all, a large variety
of biomass can be processed using these three different types of conversion technologies, which again can be
subdivided into various specific treatments (Kaltschmitt, 2009).

Thus, many different utilization pathways for the final product “fuel” do exist. However, as Figure 2.1 shows,
“fuel” is again just used as a generic term for a whole class of final products transforming biomass into energy.
Such final products are, for instance, liquid & gaseous fuels like bioethanol, biodiesel and hydrogen. Apart from
that there are also heat and electricity generation subsumed under this type. Heat and electricity are often generated
simultaneously by using so called “combined heat and power plants” (e.g., burning of biogas). However, it is also
possible to produce heat apart from electricity, e.g., by combustion.

2.2.1.2 Fibre

A similarly large variety of biomass types as for fuels can be used to produce final products of the fibre type.
Fibre denotes tangible products that are neither used for energetic purposes nor for food production. As Figure 2.1
shows, these “material uses” of biomass are manifold and can further be classified into textiles (and textile fibres,
respectively), wood-based products (like wood fibres, paper, cartoon, but also furniture, floorboards or timbers),
chemicals, pharmaceuticals and tensides.

The already described conversion technologies can also be applied to gain fibres. However, because of the many
and very different final products subsumed here, with pulping, cutting and chemical synthesis some additional
conversion technologies of the physical-chemical type can be used. Thus, a greater number and a greater hetero-
geneity of utilization pathways can be found. To give an example: it is obvious that the production process of
timber (mainly sawing, drying and moulding, maybe jointing) is very different to the production of bioplastics,
which is rather a sort of chemical product. Thus the different pathways can span from traditional and comparably
simple conversion technologies like cutting and extraction to more advanced ones like fermentation. All in all, this
great diversity of pathways and final products is characteristic for the group “fibre” (Türk, 2014).

2.2.1.3 Food production

The area “food production” concerns both the intermediate product “feed” for the breeding of farm animals as
well as the various types of food for human beings. Thus, all types of groceries (ranging from fruit, vegetables
and cereals, via fish, meat or other products of animal origin like eggs and cheese, to combinations thereof as, for
example, convenience foods), but also feed for animals and even fertilizers are included. (Bioökonomierat, 2015)

In contrast to the utilization pathways so far presented, the ones ending up in feed or food do not use all types
of biomass. For example, woody biomass does not matter in food production.

The relevant biomass is not only processed by means of the earlier described conversion technologies, but also
directly used. This “unconverted utilization” is the main distinguishing feature between the pathways described so
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far and the ones considered here. Although the variety of potential feed and food conversion technologies is still
high, it appears lower than for fuel and fibre because both source materials and final products are less heteroge-
neous. For instance, thermo-chemical conversion techniques are mainly used for cooking or baking convenience
food. Here, source materials and final products are homogeneous enough to allow a cost-efficient conversion on
an industrial scale. Although there are some exceptions, in general the structure of the biomass feedstock is less
modified than in the prior pathways.

2.2.1.4 Flowers & fun

The final products’ group “flowers” comprises uneatable horticultural products like ornamental plants and turf
rolls. The importance of this industry heavily depends on regional aspects. For instance, the flower industry in
Belgium or the Netherlands is much more important than the one in Germany. “Fun” focuses on the usage of
biomass for extraordinary leisure activities. Examples are turf-rolls for football stadiums or golf courses that are
built on former farm land. Obviously, even less and more specific types of biomass are relevant for this area.
Utilization pathways are also fewer and simpler because conversion is of minor importance or no importance at
all. Instead, efficiency and speed of transportation might become more crucial. All in all, as compared to the
other groups of final products discussed before, this area only plays an insignificant role. It will thus not further be
discussed in the remainder of this chapter.

2.2.1.5 Example: municipal biowaste as starting material

To illustrate how different utilization pathways can origin from the source material “biomass”, municipal waste is
taken as an example. Municipal biowaste consists of biodegradable garden waste and compostable food waste like
fruit and vegetable peelings, i.e., it belongs to the “residuals” class of biomass presented in Figure 2.1.

Exemplary utilization pathways of municipal waste are shown in Figure 2.2. Municipal waste can either be
processed using the thermo-chemical conversion technology “combustion” (solid arrow) or using the bio-chemical
conversion technologies “fermentation” (dashed arrow) or “aerobic decomposition” (dotted arrow).The classical
way of converting municipal waste into cascading products is combustion. In this case, it is possible to produce
heat apart from electricity. Note that physical-chemical conversion is not applied to municipal waste (Thrän et al.,
2009).

residuals
municipal biowaste

conversion bio-chemical

final products

heat, 
electricity

liquid & 
gaseous fuel

fuel (energy uses) fibre (material uses) food production

feed foodchemicals pharmaceuticalstenside

thermo-chemical

combustion fermentation
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decomposition

Figure 2.2: Utilization pathways of municipal waste
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Besides electricity and heat also liquid and gaseous fuels could be produced from municipal waste. Material uses
do at most occur for tensides, chemicals and pharmaceuticals, but not for textiles and wood-based products. Since
fertilizer results as a by-product of bio-chemical conversion (e.g., in biogas refineries), municipal waste might
indirectly contribute to feed and food production when cultivating the farm land (Diepenbrock, 2014). However,
such utilization pathways do not play an important role.

2.2.2 Supply chains

In Section 2.2.1, the various utilization pathways have been considered that start from the source material “biomass”.
However, the aim of this chapter is to review the literature about the strategic planning of biomass-based supply

chains. Thus, it is first necessary to define the terms “supply chain”, “supply chain planning” and “strategic plan-
ning”. Secondly, differences and similarities between supply chains and the utilization pathways considered so far
have to be discussed.

2.2.2.1 Supply Chain Planning

Christopher (2005, p. 17) defines a supply chain as a “...network of organizations that are involved, through up-
stream and downstream linkages, in the different processes and activities that produce value in the form of products
and services in the hands of the ultimate consumer.” Stadtler (2015, p. 3f.) further differentiates between SCs in a
broad and in a narrow sense. In a broad sense, such an SC consists of two ore more legally separated organizations,
which are linked by flows of material, information and funds (so-called “inter-organizational” SCs). In a narrow
sense, an SC can also be a single, large company which consists of several departments and/or sites that might be
spread over different countries and even continents (“intra-organizational”). Managing the same flows might here
be easier since all of the different parties belong to the same company. Nevertheless, because of the size of such
companies, this is usually still very complex. Thus, decision making needs to be supported.

SC planning offers this decision support for the various planning tasks arising in supply chains by building
simplified models of the real SCs, deriving solutions for these models, and interpreting these solutions in order to
solve the original, real-world problem. Such models might be forecasting models, which try to predict the future,
optimization models, which try to find the best solution out of a huge number of alternative, feasible solutions,
or simulation models, which cost-efficiently try to mimic the behavior of complex multi-stage SCs in sufficiently
detailed computer models (Fleischmann and Meyr, 2003; Fleischmann et al., 2015).

Strategic SC planning aims at offering this decision support for all planning problems that concern the design
and long-term structure of supply chains. Such decisions typically involve substantial investments (e.g., for es-
tablishing a cooperation, building a new factory or introducing new products in unexploited markets) and show
long-lasting effects over several years or even decades because they cannot easily be revised again. Because of
their high importance, these decisions are usually made by the top management(s) of the company (or the compa-
nies) involved. Nevertheless, they can be pre-selected and evaluated in terms of their advantages and disadvantages
by computer systems and the staff departments of the companies. These decisions should be comprehensive and
thus consider all relevant material and financial flows (e.g., fixed costs for investments, variable sales revenues and
operational costs) of the SC as a whole — from raw material supply, through the various conversion processes in
the different production sites up to the sales to the ultimate consumers. This includes the necessary transportation
and storage processes to bridge space- and time-related discrepancies.
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2.2.2.2 Differences between supply chains and utilization pathways

When looking at these definitions some differences between supply chains and the utilization pathways discussed
so far become obvious.

As already mentioned, utilization pathways are feedstock-oriented, starting with (in the future probably scarce)
biomass as the source material. In contrast supply chains are customer- and product-focused. The final customer
and her/his desired product should be in the center of all thoughts.

Furthermore, utilization pathways are mainly focusing on the material flow, i.e., the materials involved and the
technologies to convert these materials. Often life-cycle-analyses (LCAs) are executed to evaluate and compare the
ecological impacts of different pathways. If economic effects are considered at all, they are usually estimated for
whole (sectors of) economies. In contrast, supply chains are only interested in the economic benefits of their own
members. This does usually either comprise a single company (intra-organizational SC) or only a few collaborating
companies (inter-organizational SC). However, this economic benefit is of very high importance because it justifies
the existence and ensures the survival of the SC. Thus it is necessary to stress monetary aspects that are not
at all considered in utilization pathways. Such aspects are, for example, the allocation of profits to the various
participants of the SC or the sharing of costs for joint appliances or services.

Besides these monetary effects, other benefits (e.g., increased visibility) and risks (e.g., loss of autonomy, cheat-
ing) may depend on cooperation and coordination aspects of SC planning.

Figure 2.3 gives an example of the different parties that may be involved in biomass-based SCs. By using Figure
2.1 as a basis, we link the customer-oriented view of SCs with the biomass-based view of utilization pathways. As
can be seen, many different parties have to work together if a supply chain wants to become and stay successful.
For sake of clarity, we did not even include service providers of support processes like transportation, storage,
cutting / compacting and drying. Remember that SCs producing similar – or, to be more precise, in the customers’
perception substitutable – final products compete with each other. Thus innovative biomass-based products are
in competition with traditional fossil-based products. For example, energy from biogas refineries competes with
energy from power stations burning natural gas. Although governmental subsidies can support the development
and market entry of ecologically preferable, biomass-based products, they are usually only granted for a limited
time span. Afterward, the corresponding biomass-based supply chains have to be profitable on their own and,
furthermore, stand the competition with other biomass-based and the traditional fossil-based SCs. Thus, a mere
concentration on utilization pathways would be too short-sighted. SC planning aspects, as briefly addressed here
and reviewed in Section 2.3, should be taken into consideration from the very first beginning.

Figures 2.1 and 2.3 can give some clues on the competition between SCs offering substitutable products. For
example, in the case of electricity, biomass-based electricity has to compete with other renewable energies like
solar power or wind, with nuclear power and with fossil-based energies stemming from coal, mineral oil and
natural gas. The grid operators and energy companies transport and sell the electricity to the customers. Thus,
they have to ensure that a customer can buy the specific mix of energy (s)he wants to get. As another example,
liquid automotive fuels are mainly sold by mineral oil companies via their network of petrol stations. There is a
competition within a single petrol station between products containing different shares of biomass-based ethanol,
but also between the fuels of different mineral oil companies. When considering the SCs providing these final
products we can see that innovative biomass-based SCs for fuel and fibre mainly compete with traditional SCs of
the energy, mineral oil, chemical, pharmaceutical and textile industries. SCs offering wood-based fibres and food,
however, have always relied on biomass as their primary source material. A lot of scientific research has already
been done for these latter types of SCs. Our review in Section 2.3 will thus rather concentrate on the former
“innovative” types biomass-based SCs and just refer to already existing review papers for the latter types.
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Figure 2.3: Potential members of biomass-based supply chains

2.2.2.3 Similarities

Despite of these differences, utilization pathways and SCs both illustrate the flow of materials from the supply of
the raw materials, through a network of transforming facilities to the final products. Thus utilization pathways help
to identify and model biomass-based SCs.

Note that the material flows presented in Figures 2.1–2.3 had been simplified to allow and emphasize the cluster-
ing of the various biomass sources, conversion technologies, final products and potential SC members into catchy
classes. For the review of Section 2.3, the structure presented in Figure 2.4 will be more appropriate.

biomass
collection

biomass
transport

& storage

pre-
processing conversion sales

biomass
transport

& storage

final product
transport

& storage

SC stage 1 SC stage 2 SC stage 3

Figure 2.4: Supply chain stages

Up to three stages of a SC will be distinguished. Stage 1 includes the different biomass collection processes,
like harvesting or the collection of residuals, and the transport to and storage at certain collection points. Seasonal
storage of biomass feedstock is necessary because of the seasonal availability of biomass and the great uncertainty
concerning quantity and quality. Additionally, but not necessarily, pre-processing activities and their respective
transport and storage processes are also included in stage 1. Pre-processing is often necessary because the original
biomass shows a high content of water and a low energy density. By processes like cutting, compacting and drying,
both energy density and transportation efficiency are increased.

Stage 2 comprises the whole (in itself maybe again multi-stage) production network of the SC, i.e., all conver-
sion, transportation and storage processes that are necessary to transform (pre-processed) biomass into the final
product. This may regard only a single, but also several alternative conversion technologies if a single SC si-
multaneously comprises several utilization pathways. The specific conversion technologies are depending on the
type of the final products. Chemical products are mainly produced in biorefineries, which are similar to classical
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petroleum refineries.
Stage 3 finally includes the transport and storage of the final products and the corresponding sales activities.

Note that supply and demand usually do not occur at the same point in time. Supply is, for example, bound to
the harvesting times of biomass, which may be seasonal. Demand is determined by the customers’ wishes and
expectations. Thus storage processes are necessary to bridge the time lag. In general, these storage processes may
occur at any stage of the SC. However, it has to be taken into account that biomass and its resulting intermediate
products often are perishable and either can only be stored for a limited amount of time or have to be made more
durable somehow, e.g., by drying. Nevertheless, as a rule of thumb, it is preferable that storage processes occur
early in the material flow, i.e., upstream in the SC. At early stages of the SC the value of the respective intermediate
products is still low so that storage costs are not yet crucial.

2.3 Literature review

In the following we survey the recent research on quantitative models for the long-term, strategic planning of
biomass-based SCs. 70 journal publications, regarding biomass-based fuel and fibre SCs, have been analyzed.
They have been published since the year 1997. However, their majority stems from the year 2011. Altogether 33
different journals are concerned. Thereby the journal “Biomass and Bioenergy” shows the greatest share with 12
references. 48 references regard biofuel SCs, 21 electricity and 12 heat SCs. Further 12 references relate to fibre
SCs. Thus some journal publications refer to several types of biomass-based SCs.

The references have been analyzed using a common scheme that is expressed by the columns of Table 2.2. First
of all, we are interested in the type of quantitative model that has been used (column “O./S.”). Here optimization
(“O”) and simulation (“S”) models are distinguished. The optimization models are further classified into determin-
istic (“det”) and stochastic (“sto”) models. Deterministic means that all input parameters of the model are assumed
to be deterministically known, whereas stochastic models assume that at least one uncertain random variable ex-
ists. Furthermore, we are interested in the optimization models’ objective functions (column “obj”). The models
pursue monetary (“mon”), ecological (“eco”) or social (“soc”) objectives, either separately or simultaneously as
part of a multi-objective optimization (indicated by a “/”). The column “SC stages” shows which of the three stages
introduced in Figure 2.4 is/are actually considered by the model. The column “biomass type” finally denotes the
type of biomass concerned. All four types of biomass introduced in Section 2.2.1 and Figure 2.1 are possible, i.e.,
plants, wood, residuals (“resi.”) and living beings (“beings”).

Sections 2.3.1 and 2.3.2 discuss strategic models of the fuel and the fibre areas in sufficient detail. Readers who
would additionally be interested in quantitative models on the tactical and operational planning of biomass-based
SCs are referred to the reviews of An et al. (2011b), Awudu and Zhang (2012) and Ba et al. (2015). As mentioned
before, the area “food production” will not be discussed in detail. Recent reviews concerning quantitative models
to plan feed and food SCs can be found in Table 2.1.

2.3.1 Fuel

Due to the substantial research effort in biofuel SCs, in the following we further distinguish between biofuel
(Section 2.3.1.1) and electricity and heat (2.3.1.2) supply chains.

2.3.1.1 Biofuel

Ahn et al. (2015) consider a three-stage SC producing biodiesel from microalgae, i.e., living beings are the biomass
feedstock. A multiperiod, deterministic optimization model takes decisions about transportation quantities and
biorefinery locations. The objective is to minimize the total costs. Akgul et al. (2012b) assess multi-objective
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Table 2.1: Literature food/feed

author title

Ahumada and Villalobos (2009) Application of planning models in the agri-food supply chain: A review
Amorim et al. (2013) Managing perishability in production-distribution planning: A discussion

and review
Akkerman et al. (2010) Quality, safety and sustainability in food distribution: A review of quantitative

operations management approaches and challenges
Dabbene et al. (2014) Traceability issues in food supply chain management: A review

Soysal et al. (2012) A review on quantitative models for sustainable food logistics management
Tsolakis et al. (2014) Agrifood supply chain management: A comprehensive hierarchical decision-

making framework and a critical taxonomy
Zhang and Wilhelm (2011) OR/MS decision support models for the specialty crops industry: A literature

review

performance aspects in hybrid first and second generation bioethanol SCs. They decide about local biomass and
import quantities, conversion quantities, biorefinery locations and capacities. A deterministic, multi-objective
optimization model is used. The two objectives are to minimize the total costs as well as the carbon emissions of
the SC. Again, the model covers the “whole” three-stage SC. With plants, wood and residuals, three different types
of biomass can serve as input. Akgul et al. (2012a) take a hybrid first and second generation biofuel SC of UK’s
biofuel industry into account. In contrast to the model before, only a single objective is pursued. This deterministic
model also covers the whole SC with plants, wood and residuals as biomass feedstock. In another work of Akgul
et al. (2011), several models to optimally design a three-stage bioethanol SC are presented. The deterministic,
single-objective models try to optimize the locations and capacities of bioethanol production facilities as well as
the biomass and bioethanol transport flows by minimizing the total SC costs. Only plants are the possible biomass
feedstock. Within these three models a development is noticeable from single- to multiple-feedstock and from
single- to multi-objective modelling.

Aksoy et al. (2011) present a model configuring an SC with four different conversion technologies. All these
technologies use woody biomass and mill wastes as feedstocks. The objective of the deterministic optimization
model is to minimize the total costs. The model considers only the second stage of the SC, where decisions about
the conversion technology are made. An et al. (2011a) also present a model to design a lignocellulosic biofuel SC.
The deterministic optimization model is multi-period and multi-commodity. This means that, in contrast to other
analyzed models, several kinds of biofuels are considered. The objective is to maximize the discounted profit of
the SC. The whole SC from the biomass feedstock supplier up to the biofuel customer is taken into consideration.
Again, plants, wood and residuals are the possible feedstocks.

Andersen et al. (2012) design and plan a three-stage biodiesel SC. The characteristic feature of their model is to
consider land competition. The multi-period, deterministic optimization model maximizes the net present value.
Only plants are possible feedstocks. Bai et al. (2011) propose a deterministic optimization model for biorefinery
location planning by minimizing the total system costs. Special about their three-stage SC is that traffic congestion
can be taken into account. Only plants are considered as possible feedstocks. Bernardi et al. (2013) propose a
multi-objective model to design and plan a three-stage bioethanol SC, which includes first and second generation
biorefineries. The deterministic, multi-period optimization model maximizes the net present value, minimizes
carbon emissions and minimizes water consumption. Possible feedstocks are plants and residuals.

Bowling et al. (2011) place a biorefinery into an SC consisting of only the first two stages. Specific final products
are not distinguished, but, for example, biofuel could be produced. Their deterministic model maximizes total
profits with respect to nonlinear economies of scale. Information about possible feedstocks is missing. Cambero
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et al. (2015) deterministically optimize the mix of bioenergy and biofuel production within a three-stage SC using
forest residuals as input. The objective is to maximize the net present value of investments in the conversion
technologies. One of the few stochastic optimization models stems from Chen and Fan (2012). Bioethanol is
produced out of waste while supply and demand of the three-stage SC are assumed to be uncertain. The two-stage
stochastic model minimizes the expected total system costs of investments, production and transport.

Cobuloglu et al. (2014) focus on the farmers’ point of view of switchgrass production. They consider both eco-
nomic and environmental aspects. The deterministic, multi-objective optimization model maximizes the revenues
of harvested switchgrass and positive ecological impacts. Their model covers just the first stage of a SC with plants
as the only biomass feedstock. Correll et al. (2014) present a combined simulation and optimization approach to
design the first stage of a SC for bioenergy and biobased products. Therefore, the model can be considered as a
subproblem of a biofuel production network. The model compares diversified feedstocks with monocultures. The
optimization part of the model is deterministic with the objective of minimizing capital investment and purchasing
costs. The necessary input data are generated by simulation. Only plants are possible feedstocks. Corsano et al.
(2011) design a three-stage sugar-to-ethanol SC where plants are the biomass input. The deterministic model is
able to consider recycling processes while maximizing net profits, which are defined as the difference of the to-
tal revenues and the costs for sugar cane supply, production and transportation and for investments in conversion
facilities and warehouses, respectively.

Dal-Mas et al. (2011) regard the design and planning of capacity investments for an ethanol SC. Uncertainties
concerning both biomass production costs and the final products’ selling prices are considered. Hence, the opti-
mization model is stochastic. The objectives are to maximize the expected net present value and to minimize the
financial risks. The model covers the whole SC. Only plants are possible feedstocks. The early work of De Mol
et al. (1997) compares a simulation and an optimization approach concerning biomass collection for biofuel pro-
duction. The former one assumes the network structure for the biomass collection as given. Whereas the latter one
optimizes this structure by deterministically minimizing the total collection costs. Both models do only consider
the first stage of the SC. Wood is the biomass feedstock.

Dunnett et al. (2008) simultaneously optimize production and logistics of three-stage, lignocellulosic bioethanol
SCs by deterministically minimizing the respective costs. They decide whether the processing structure is rather
decentral or central, i.e., whether the biomass is either pre-processed in decentral hubs and afterward converted
in a centralized plant or whether it is completely processed in central facilities. Plants, wood and residuals are
used as biomass feedstocks. Ekşioğlu et al. (2010) investigate the impact of intermodal facilities on the design of
three-stage corn-to-bioethanol SCs. Their deterministic optimization model minimizes the total delivery costs of
bioethanol. In earlier work, Ekşioğlu et al. (2009) had already analyzed and designed biomass-to-biorefinery SCs.
The links between the biomass harvesting sites and the conversion plants were modeled as part of a deterministic
network design problem. The objective was to minimize the total SC costs. However, only the first two stages
of the SC were covered by this model. With plants, wood and residuals several biomass types were possible
feedstocks.

Frombo et al. (2009a) plan the logistics of energy production from woody biomass. They compare several
conversion technologies to produce different final products. Their deterministic optimization model minimizes the
total costs. Wood and woody residuals are inputs to a three-stage SC. Giarola et al. (2013) design bioethanol SCs
under risk management aspects. First and second generation production technologies are considered in a multi-
period, stochastic optimization model with multiple objectives, maximizing the net present value and minimizing
greenhouse gas emissions. The model covers only the first two stages of the SC. Plants and residuals can be biomass
feedstocks. This work builds on earlier deterministic models published by Giarola et al. (2012) and Giarola et al.
(2011), who considered a three-stage SC, however. Apart from that, the models share the same characteristics.
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Huang et al. (2010) optimize three-stage, waste-based bioethanol SCs. Their deterministic model assesses eco-
nomic potentials and infrastructure requirements by minimizing the total SC costs. Only residuals are considered
as possible feedstocks. Ivanov and Stoyanov (2016) design integrated biodiesel and fossil-based fuel SCs. The
deterministic optimization model considers all three stages of the SC using only plants as possible feedstocks.
In addition to minimizing the total SC costs, the total life cycle greenhouse gas emissions are also minimized.
Kanzian (2009) plans the logistics of wood to produce solid fuel. Using a deterministic optimization model, min-
imizing the total transportation costs, different demand scenarios for this fuel are evaluated and different network
structures, with and without terminals, are compared. Only the first stage of the SC and only wood and woody
residuals are taken into consideration.

Kim et al. (2011a) and Kim et al. (2011b) tackle similar problems. In both models, the whole three-stage
biomass processing network to produce biofuel is designed. The first one is a deterministic optimization model. Its
objective is to maximize the overall profits. It is assumed that the network can process plants, wood and residuals.
The second, stochastic model considers uncertainty concerning supply quantities, market demand and price, as
well as technology. All other modeling characteristics remain unchanged. Leão et al. (2011) optimize the logistic
structure of two-stage biodiesel SCs by deterministically minimizing their costs. Small farmers providing plants
are the only feedstock suppliers.

Leduc et al. (2010) plan the location of methanol production facilities converting lignocellulosic plants, wood
and residuals. A deterministic optimization model minimizes the costs of the three-stage network. An earlier
work of Leduc et al. (2008) tackled a similar problem. However, there only the gasification of wood and wood
residuals was considered. Lin et al. (2014) integrate the strategic and tactical planning of large-scale bioethanol
SCs. Apart from typical strategic decisions about the number, capacities and locations of facilities also operat-
ing schedules and inventory planning are considered. The authors deterministically minimize the annual costs of
biomass-to-bioethanol conversion. All three stages, from the farmers (providing plants as the only biomass type)
to the distribution of the bioethanol, are represented. The multi-objective, two-stage stochastic model of Maru-
fuzzaman et al. (2014) concerns the production of biodiesel through wastewater treatment. It respects the impacts
of different carbon regulation policies. Objectives are to minimize the annual costs of three-stage SCs and the
resulting emissions.

Marvin et al. (2013) plan the locations of biomass conversion facilities and the selection of the appropriate con-
version technology. Their deterministic optimization model maximizes the net present value of a three-stage SC
using plants, wood and residuals as feedstocks. Marvin et al. (2012) tackle bioethanol production from lignocellu-
losic biomass. There, a bio-chemical conversion technology is applied. Five different types of agricultural residues
are considered as lignocellulosic feedstocks. A single-objective, deterministic optimization model maximizes the
net present value of the SC. Only the first two stages of the SC are planned. Biomass feedstock types are plants,
wood and residuals. Mele et al. (2011) try to increase the sustainability of three-stage sugarcane-to-bioethanol
SCs. The combined production of sugar and ethanol is considered by a multi-objective deterministic optimization
model. The objectives are to maximize the net present value and to minimize the environmental damage, which is
calculated using LCA. Plants are the only possible feedstocks.

Mohseni and Pishvaee (2016) and Mohseni et al. (2016) tackle similar problems. In both models, the whole
three-stage SC network to produce microalgae-based biofuel is designed. Both approaches are using robust op-
timization with sensitivity analysis to minimize the total costs of the SC. As microalgae is used, living beings
are the biomass feedstock. Osmani and Zhang (2013) consider the production of bioethanol from lignocellulosic
plants, wood and residuals. Their stochastic model takes uncertain biomass prices, uncertain bioethanol demand
and uncertain sales prices for bioethanol into account while maximizing the expected profit of a three-stage SC.

Santibañez-Aguilar et al. (2011) compare different, alternative utilization pathways. Their deterministic, multi-
objective model maximizes their corresponding profits and minimizes their environmental impacts in order to grasp
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economic and environmental aspects, simultaneously. Only the upstream part of the SC (i.e., the first two stages) is
modeled. Plants, wood and residuals are considered as possible feedstocks. Schwaderer (2012) integrates location,
capacity and technology planning for SCs that use residuals as biomass. His deterministic optimization model
minimizes the costs of the first two stages of such SCs. It can deal with final products of both the fuel and fibre
type. The model of Tittmann et al. (2010) tackles the techno-economic planning of biofuel production. Their
deterministic optimization model decides about locations and technologies of conversion facilities. Total profits
are maximized – also for electricity, which comes up as a by-product of biofuel generation. Again only the first
two SC stages are considered with plants, wood and residuals being the feedstocks.

Walther et al. (2012) design regional SCs for the production of second generation synthetic biodiesel. Their de-
terministic, multi-period optimization model maximizes the net present value of the three-stage network. Possible
feedstocks are plants and their residuals. The – to our knowledge – first and only model, which also covers social
objectives, has been published by You et al. (2012). The model tries to establish a sustainable, three-stage SC for
producing biofuel from cellulosic biomass. Their multi-objective, deterministic model minimizes the annual total
costs and greenhouse gas emissions, respectively, and maximizes the number of new jobs generated. Plants, wood
and residuals can serve as cellulosic feedstocks. You and Wang (2011) plan three-stage biomass-to-liquid SCs with
respect to economic and environmental aspects. They also apply a multi-objective deterministic model. However,
theirs only minimizes the annual costs and the life cycle greenhouse gas emissions. Plants, wood and residuals
are possible feedstocks. Zamboni et al. (2009) design three-stage bioethanol production SCs. As in the previous
model, economic and environmental aspects are considered by deterministically minimizing both total costs as
well as greenhouse gas emissions. Here, only plants are the feedstock. Finally, Zhang and Hu (2013) combine the
strategic and operational planning of second generation drop-in-fuel production. Apart from the usual long-term
aspects, further decisions on production patterns and inventories are made. Their deterministic optimization model
minimizes the total annual costs. Only plants and residuals are possible feedstocks of a three-stage SC.

All references described above and their characteristics are summarized in Table 2.2. As can be seen, all au-
thors formulate optimization models. Sometimes an additional simulation model is proposed. Only six out of 45
references use a stochastic approach in order to take uncertainty into account. Approximately a quarter of the ref-
erences pursue an ecological objective additionally to the monetary one. Only a single paper furthermore considers
a social objective. Most models cover the whole three-stage SC. Otherwise, at least the biomass supply or biomass
conversion is represented. Many models allow several types of biomass. However, then often these types share a
common characteristic, for example, all of them are lignocellulosic. This is convenient from a technological point
of view because they show similar conversion properties. However, it might be less convenient from a logistical
point of view because, for example, logistical processes to collect wood residuals in and from saw mills are very
different from harvesting in agricultural fields or forests.

2.3.1.2 Electricity and heat

In the following we concentrate on biomass-based SCs producing electricity or heat as final products. Table
2.3 contains an overview of the respective literature. Since biofuel can be used as both a final product and an
intermediate product for generating electricity, some references do appear in Table 2.2 and in Table 2.3 as well. Of
course, those will not be discussed in detail a second time.

The production of heat is always a joint product in power generation. The ambition of so-called combined
heat and power (CHP) plants is to produce electricity. Heat automatically emerges during this process. Since a few
years, this waste product “heat” is more and more systematically used, e.g., to heat private houses or to dry (or cool)
materials of nearby industrial parks. Because of these various possible uses, various stakeholders are increasingly
interested in the final product heat. Table 2.3 illustrates this intended usage. Since none of its references uses
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Table 2.2: Literature concerning biofuel production

O./S. det./sto. obj. SC stages biomass type
1 2 3 plants wood resi. beings

Ahn et al. (2015) O det mon x x x x
Akgul et al. (2012a) O det mon x x x x x x
Akgul et al. (2012b) O det mon/eco x x x x x x

Akgul et al. (2011) O det mon x x x x
Aksoy et al. (2011) O det mon x x x

An et al. (2011a) O det mon x x x x x x
Andersen et al. (2012) O det mon x x x x

Bai et al. (2011) O det mon x x x x
Bernardi et al. (2013) O det mon/eco x x x x x
Bowling et al. (2011) O det mon x x
Cambero et al. (2015) O det mon x x x x
Chen and Fan (2012) O sto mon x x x x

Cobuloglu et al. (2014) O det mon/eco x x
Correll et al. (2014) O/S det mon x x

Corsano et al. (2011) O det mon x x x x
Dal-Mas et al. (2011) O sto mon/mon x x x x
De Mol et al. (1997) O/S det mon x x
Dunnett et al. (2008) O det mon x x x x x x

Ekşioğlu et al. (2009) O det mon x x x x x
Ekşioğlu et al. (2010) O det mon x x x x
Frombo et al. (2009a) O det mon x x x x x

Giarola et al. (2011) O det mon/eco x x x x x
Giarola et al. (2012) O det mon/eco x x x x x
Giarola et al. (2013) O sto mon/eco x x x x
Huang et al. (2010) O det mon x x x x

Ivanov and Stoyanov (2016) O det mon/eco x x x x
Kanzian (2009) O det mon x x x

Kim et al. (2011a) O sto mon x x x x x x
Kim et al. (2011b) O det mon x x x x x x
Leão et al. (2011) O det mon x x x

Leduc et al. (2008) O det mon x x x x x
Leduc et al. (2010) O det mon x x x x x x

Lin et al. (2014) O det mon x x x x
Marufuzzaman et al. (2014) O sto mon/eco x x x x

Marvin et al. (2012) O det mon x x x x x
Marvin et al. (2013) O det mon x x x x x x

Mele et al. (2011) O det mon/eco x x x x
Mohseni and Pishvaee (2016) O det mon x x x x

Mohseni et al. (2016) O det mon x x x x
Osmani and Zhang (2013) O sto mon x x x x x x

Santibañez-Aguilar et al. (2011) O det mon/eco x x x x x
Schwaderer (2012) O det mon x x x

Tittmann et al. (2010) O det mon x x x x x
Walther et al. (2012) O det mon x x x x x

You et al. (2012) O det mon/eco/soc x x x x x x
You and Wang (2011) O det mon/eco x x x x x x
Zamboni et al. (2009) O det mon/eco x x x x
Zhang and Hu (2013) O det mon x x x x x

living beings as biomass, we have replaced the column “beings” with a new column “final products”. This column
contains the entry “e” if electricity is the intended final product and “h” if heat is an intended final product. To ease
readability, references allowing to also produce biofuel are marked with an additional “b”. An “f” indicates whether
– besides electricity or heat – also fibre can be produced. However, the production of fibre will be discussed in
more detail in Section 2.3.2.

Akgul et al. (2014) represent the co-firing of biomass with fossil fuels and a capturing and storage of CO2 in
a multi-objective, deterministic optimization model. The objectives are to minimize the total annual costs and
the total annual emissions. All three stages of the the SC are covered with plants and residuals being possible
feedstocks. Ayoub et al. (2007) offer decision support for a general, three-stage bioenergy SC. A geographical
information system (GIS) and a simulation model help to estimate the potential biomass supply of wood and
wood residuals and to identify promising locations of conversion facilities. Another simulation model is proposed
by Caputo et al. (2005), which considers biomass-based energy generation through combustion and gasification
facilities. The authors want to evaluate the effects of different logistical alternatives on the costs of conversion. The
model does only comprise the first two stages of the SC. Information about possible biomass feedstocks is missing.
Feng et al. (2010) investigate bio-refinery design within a three-stage forest product SC producing (woody) fibre,
electricity and heat. A deterministic, multi-period optimization model maximizes the net present value of the SC,
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which is fed by wood and wood residuals.

Table 2.3: Literature concerning electricity and heat production

O./S. det./sto. obj. SC stages biomass type final
1 2 3 plants wood resi. prod.

Akgul et al. (2014) O det mon/eco x x x x x –/e/–/–
Aksoy et al. (2011) O det mon x x x b/e/h/–
Ayoub et al. (2007) S x x x x x –/e/–/–

Cambero et al. (2015) O det mon x x x x b/e/h/–
Caputo et al. (2005) S x x –/e/–/–

Feng et al. (2010) O det mon x x x x x –/e/h/f
Frombo et al. (2009a) O det mon x x x x x b/e/h/–
Frombo et al. (2009b) O det mon x x x x x x –/e/h/–

Judd et al. (2012) O det mon x –/e/–/–
Lam et al. (2013) O det mon x x –/e/–/–

Meyer et al. (2015) O det mon/eco x x x x –/e/h/–
Meyer et al. (2016) O det mon/eco x x x x –/e/h/–
Paulo et al. (2015) O det mon x x x x –/e/–/–

Rauch and Gronalt (2011) O det mon x x –/e/h/–
Reche López et al. (2008) O det mon x x x x –/e/–/–

Rentizelas et al. (2009) O det mon x x x x –/e/h/–
Rentizelas and Tatsiopoulos (2010) O det mon x x x x –/e/h/–

Roni et al. (2014) O det mon x x x x x –/e/–/–
Santibañez-Aguilar et al. (2011) O det mon/eco x x x x x b/e/h/f

Tittmann et al. (2010) O det mon x x x x x b/e/–/–
Wang et al. (2012) O det mon x x x –/e/h/–

Frombo et al. (2009b) use a deterministic optimization model to produce energy and heat from woody biomass
(plants, wood and residuals) in a three-stage SC. Its objective is to minimize the difference of the total costs
(purchasing, transportation and plant costs) and the benefits deriving from energy sales. Judd et al. (2012) design
a logistics system for bioenergy production, using satellite storage locations (SSLs). These SSLs are temporary
and uncovered feedstock depots which are decentrally located around a biomass conversion facility. The autors’
deterministic optimization model minimizes storage costs of the SSLs and transportation costs for only the first
stage of a SC. Biomass is used as feedstock, but the type of biomass is not further specified. Lam et al. (2013)
design the first stage of a green bioenergy SC basing on waste as feedstock. They propose a deterministic, two-
stage optimization model, which maximizes the profit on a micro decision level and minimizes the costs on a
macro decision level. First, the conversion processes of each conversion facility are optimized by choosing the
best feedstock-to-product allocation (micro level). Then the whole SC is optimized by balancing supply and
demand at minimal costs (macro level).

Meyer et al. (2015) and Meyer et al. (2016) combine the strategic and tactical planning of bioenergy and heat
production in a two-stage SC. They introduce a basic, multi-objective, deterministic optimization model called OP-
TIMASS. Its objectives are to maximize the profits and energy outputs as well as to minimize the global warming
potential. The model of the previous work from 2015 considers plants and wood as possible biomass feedstocks.
The latter one considers plants and residuals. Paulo et al. (2015) use a deterministic optimization model to design a
bioelectricity SC based on forestry residuals. Within the model the production capacities and locations are defined.
They cover all three stages of the SC and consider several uncertainties by using sensitivity analysis. Minimizing
the total SC costs is the single objective.

Rauch and Gronalt (2011) examine the relation between increasing energy costs and the transport mode choice
in a forest fuel SC network, i.e., only woody biomass is considered as possible feedstock. Different modes of
transport are analyzed to ensure the supply for combined heat and power plants. Therefore, only the first SC stage
is covered. The objective of the presented deterministic optimization model is to minimize the total costs. Reche
López et al. (2008) present a deterministic optimization model to determine locations and sizes of power facilities
within a two-stage SC. They only focus on the supply side of the conversion facilities, which use wood and wood
residuals as input. They apply particle swarm optimization to maximize a profitability index taking costs and
benefits into consideration.
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Rentizelas et al. (2009) support strategic decision making for residual-to-bioenergy conversion, more specifi-
cally for so-called “tri-generation applications” comprising electricity, heating and cooling. Their deterministic
optimization model maximizes the net present value of a three-stage SC by choosing the optimal location for the
biomass conversion facility, its size and the optimal mix of specific biomass residuals. Rentizelas and Tatsiopoulos
(2010) optimize the locations of biomass-to-bioenergy conversion facilities producing electricity and heat for dis-
trict energy applications. Their deterministic optimization model maximizes the net present value of a three-stage
SC that is only fed by residuals. Roni et al. (2014) consider co-firing of biomass (plants, wood and residuals) in
coal-fired power facilities. They propose a deterministic optimization model to design the first two stages of a SC
as a hub-and-spoke structure. The model minimizes the costs of transport and investments in locations for a given
energy demand. Finally, Wang et al. (2012) determine the supply of energy crops as well as the locations and
capacities of conversion facilities generating heat and power. They propose a deterministic optimization model
maximizing the profits of the two-stage SC.

As Table 2.3 shows, again optimization models are preferred to simulation models. Only a single “pure” simu-
lation model has been proposed. Similarly to the last section, there are only a few multi-objective models. Three
references do only consider a single-stage SC, two of them concentrating on the biomass supply, one of them on the
biomass conversion. Most references comprise either the first two or all three stages of the SC. Not surprisingly,
the variety of biomass used is similar to biofuel production. As mentioned before, heat could be produced without
generating electricity. However, none of the references found intends to do this.

2.3.2 Fibre

Table 2.4 summarizes literature on the quantitative, strategic planning of biomass-based SCs that aims at producing
final products of (at least) the fibre group. Again we will only discuss references in detail, which have not yet been
introduced in the preceding sections.

Table 2.4: Literature concerning fibre production

SC stages biomass type final
O./S. det./sto. obj. 1 2 3 plants wood resi. prod.

Bowling et al. (2011) O det mon x x b/–/–/f
Chen and Fan (2012) O sto mon x x x x b/–/–/f

Correll et al. (2014) O/S det mon x x b/–/–/f
Ekşioğlu et al. (2009) O det mon x x x x x b/–/–/f

Feng et al. (2010) O det mon x x x x x –/e/h/f
Gunn (2009) O det mon x x –/–/–/f

Gunnarsson et al. (2005) O det mon x –/–/–/f
Kelley et al. (2013) O det mon x –/–/–/f

Philpott and Everett (2001) O det mon x x x x –/–/–/f
Santibañez-Aguilar et al. (2011) O det mon/eco x x x x x b/e/h/f

Schwaderer (2012) O det mon x x x b/–/–/f
Troncoso and Garrido (2005) O det mon x x x –/–/–/f

Gunn (2009) describes an optimization model to produce forest products. Just the first SC stage is considered
with wood being the only feedstock. As only the first stage of the SC is considered, no information about specific
forest products is given. The developed optimization model is deterministic with the objective to maximize the
profits. Gunnarsson et al. (2005) integrate the search for terminal locations of various pulp products and for their
outbound shipping routes in a deterministic optimization model minimizing total distribution costs. Thus only the
third SC stage, downstream of some pulp mills in Scandinavia, is considered. Specific information on biomass
feedstocks is missing, but pulp mills are usually fed by forest wood.

Kelley et al. (2013) design a transportation network in a mainly roadless region of Amazonian Ecuador in order
to transport indigenous goods to the markets. A deterministic optimization model minimizes the total costs of
storage and of the various transportation vehicles. Only the first stage of the SC is considered. The types of biomass
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feedstocks are not mentioned. Philpott and Everett (2001) optimize an SC of the paper industry. They propose a
deterministic optimization model to allocate suppliers to paper mills and customers and their requested products to
paper machines, respectively. The objective is to maximize the overall profits of the three-stage, wood-based SC.
Troncoso and Garrido (2005) deterministically minimize the costs of the production and logistics processes of a
forest SC by choosing the optimal location and size of conversion facilities. Additionally, they consider production
quantities and freight flows. Wood is the only feedstock. Specific information on the final items is missing because
the authors do only consider the first two stages of such SCs.

Note that there is a whole stream of literature on quantitative (and also strategic) SC planning in the pulp and
paper industry. The respective references discussed above are only a few typical examples. As mentioned in
Section 2.2.2.2, including all relevant work would have led to a loss of focus on more innovative types of biomass-
based SCs.

According to Table 2.4 again optimization models are dominating. Moreover, only a single stochastic and a
single multi-objective model can be found. The fibre research rather concentrates on the upstream instead of
downstream part of the SC. Despite of that, information on the type of biomass used is more often missing.
No research has been identified, which intends to exclusively produce non-wood based fibres like chemicals,
pharmaceuticals or tensides.

2.4 Conclusions

All in all, when comparing Tables 2.2, 2.3 and 2.4, we recognize that most research has been done on biofuel
production, whereas electricity, heat and fibre production have less frequently been considered. However, the
research effort in biofuel SCs seems to be decreasing. The peak in the number of published articles was in 2011.
In contrast, the effort in biomass-based electricity and heat SCs as well as in fibre SCs is relatively stable since
2009, yet on a much lower level. Thus, the overall research effort on the strategic planning of biomass-based SCs
appears rather decreasing. Overall, deterministic optimization models, deciding about the structure and facilities
of a two- to three-stage supply chain starting from the biomass supply, are dominating. Usually they pursue only
a single monetary objective, which is to either minimize costs or maximize profits. In multi-period models, which
do not only determine the type of investment, but also the timing of investments, net present values are taken into
account. Except for living beings (which rather play a role in food SCs), all types of biomass are considered –
often even simultaneously as substitutable or supplementary feedstocks. However, it seems that research during
the years 2011 and 2012 focused stronger on plants-based fuel and fibre SCs, whereas earlier on and later on wood-
and residual-feedstocks appealed higher interest.

Figures 2.3 and 2.4 of Section 2.2 have revealed that many different participants may be involved in three-
stage, biomass-based supply chains. However, none of the models of Section 2.3 takes an inter-organizational
perspective, caring about problems concerning the cooperation between legally separate companies (e.g., trust
building, aligning incentives or sharing of information, risks, joint profits or joint costs). The vast majority of the
models is characterized by a centralized point of view, meaning that the decision maker is a centralized SC planner
in an intra-organizational SC, having all necessary information about the SC (i.e., deterministic model) and being
able to decide for the supply chain as a whole. Sometimes this planner is characterized by a rather macroeconomic
point of view, considering influences on the economy as a whole like environmental or social aspects (for instance,
see the multi-objective models and simulation models). Apart from those, there are some models with a conversion
facility owner’s point of view or with a farmer’s or third-party logistics service provider’s point of view. The SC
stages depicted in Tables 2.2–2.4 give a hint on the specific decision maker: If all three stages are considered,
this indicates the planning of the whole SC from a central SC planner’s point of view. Exceptions are models on
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the planning of a single biorefinery with both upstream and downstream stages. A partial consideration indicates
either again the biorefinery operator’s point of view (if only the second stage is considered) or the farmer’s and
third-party logistics service provider’s point of view, respectively.

Comparing biomass-based SCs with their traditional fossil-based counterparts helps to stress further specific
characteristics of the models of Section 2.3.

Fossil-based fuel is produced in a few, large refineries of mineral oil companies (Roitsch and Meyr, 2015). The
only input material “crude oil” may show a different chemical composition if it stems from different oil fields
in different regions of the world. Nevertheless, as compared to biomass, it is a very homogeneous material. By
using pipelines or tankers, this raw material can cost-efficiently be transported to the refineries. The refineries
are of industrial size, what also allows cost-efficient conversion processes. If used as automotive fuel, merely the
distribution from the refineries to the multitude of petrol stations requires small-sized transports by trucks. Storage
is possible at any stage of the supply chain. It is necessary to save costs (e.g., varying market prices for crude oil,
lotsizing) in and hedge against risks (e.g., varying lead times) of transportation and production.

As opposite, biomass feedstocks are typically more heterogeneous. They are decentrally located within a specific
region and have there to be collected or harvested. The biomass shows a high content of water and a low energy
density. If it should also be brought to a few, centrally located conversion facilities, either high transportation costs
would result or a further, decentral (pre-) processing step would be necessary, which increases the energy density
and thus decreases transportation costs. However, this pre-processing may also incur fix costs for investments and
variable costs for transformation. Some types of biomass are perishable (e.g., plants). That means, either decentral
pre-processing additionally conserves the biomass so that it can be stored. Or it has – more or less immediately
– to be transported to the central conversion facilities. For other types of biomass (e.g., wood), decentral storage
may even save a costly pre-processing step (like drying). Anyway, decisions concerning the number, locations and
capacities of (pre-)processing facilities for biofuel have to be made by managing the tradeoff between, at least,
investment costs for these facilities and transportation costs of unprocessed biomass. Potential solutions, provided
in the analyzed literature, are to use only one central conversion facility, several centralized conversion facilities,
or central conversion facilities and several upstream, decentral pre-processing facilities. The decision about these
potential network structures is crucially dependent on the scalability of the conversion facilities, which are also
denoted as “biorefineries”. From a transformation point of view, biorefineries for biofuel production play a similar
role as petroleum refineries. However, the characteristics of the used supply are totally different.

Examples for many decentral conversion facilities can also be found, but rather for the production of electricity
and heat. Whereas typical fossil-based power plants either also profit from cost-efficient transportation means
(pipelines) for their supplying material (natural gas) or are located in a region of highly concentrated supply (coal),
biogas refineries usually are decentrally located and small-sized. To save transportation costs, they can only cost-
efficiently be fed by biomass from their immediate vicinity. Their small-sized conversion technology is currently
only profitable if subsidies are guaranteed by law. The main advantage of this type of biomass-based supply chain
is that its primary final product “electricity” can easily and cheaply be brought to the final consumer by feeding
it into the already existing power network. Unfortunately, its co-product “heat” cannot as easily be transported.
Thus, a clever usage has to be found, for example, through cooperations with neighboring industrial parks, close-
by housing areas etc. Intra-organizational decisions about locations of (pre-)processing facilities are less important
here. At most, investments in alternative conversion technologies and facility designs could be optimized. Overall,
however, it is rather necessary to establish successful regional, inter-organizational cooperations between suppliers
of biomass, operators of the biogas refinery and adjacent consumers of heat. As Section 2.3.1.2 has shown, SCM
research does not yet offer much support for this.

Supply chains producing fibres like chemicals, tensides and pharmaceuticals from biomass compete with tradi-
tional fossil-based (natural gas, coal, crude oil) SCs of the chemical and pharmaceutical industries. Fossil-based
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(organic) chemicals usually are produced on an industrial scale in integrated production sites consisting of several
production facilities which are interconnected by a pipeline system. They are supplied by the mineral oil industry
with large quantities of intermediate materials like Naphtha that results as a by-product of typical refinery pro-
cesses (see above). These fossil intermediate materials are split into basic chemicals, which are re-composed into
intermediate chemicals so that both can finally react to final chemicals (Kirschstein, 2015, Chap. 2). In order to
save transportation costs, chemical production sites are often located in close vicinity to oil refineries. Thus they
also profit from economies of scale in transportation and production. In contrast, biomass-based fibre SCs struggle
with the same problems as biomass-based fuel SCs. Bioethanol could play a similar role for biomass-based fibre
SCs as Naphtha does for fossil-based SCs. It can already be produced on an industrial scale. For example, the
PlantBottle™, a beverage bottle developed and used by the Coca-Cola Company, is partly made out of bioethanol,
which is produced on large scale from sugarcane of Brazil (Coca-Cola, 2016). However, for the reasons mentioned
above, this is currently more costly than using fossils as an input. Small-scaled biorefineries, which could – simi-
larly to biogas refineries – process the biomass decentrally into bioethanol or even into final products of the fibre
type are still too expensive for an operational usage. Since it is not yet clear what technological research will bring,
research on the strategic planning of such types of SCs appears premature.

As already mentioned, SCs for pulp and paper and other wood-based fibres traditionally already base on biomass
as source material. The same is, of course, true for food production. Therefore, much research has already been
done to find out how to place conversion facilities into these types of SCs. Examples are given by Carlsson et al.
(2009), Cambero and Sowlati (2014) or Ahumada and Villalobos (2009). It can be learned that especially the
upstream processes in biomass-based SCs are characterized by manifold uncertainties. For instance, the quality
and quantity of biomass supply is depending on the weather and thus uncertain. Moreover, the harvesting or
collection time may be seasonal and uncertain, too. Hence, the upstream processes, meaning the supply side of the
SC, are characteristic and crucial for many of the downstream processes. Due to the seasonal and uncertain supply,
storage would be desired. However, if the biomass is perishable, this may hardly be possible (e.g., for fresh food)
or (pre-)processing steps are necessary to enlarge durability. As Section 2.3 has shown, some of the models for
the more innovative fuel and fibre SCs tackle the same problems. They deal with uncertainty by using stochastic
modeling techniques. Here, typically the biomass supply is modeled as being uncertain. Additionally, the demand
is uncertain, too, in some of the models. Perishability is less in the focus than it is in food SCs (see, e.g., Amorim
et al. (2013)). It is rather indirectly considered by potentially introducing pre-processing facilities.

2.5 Summary and outlook

This chapter provided an overview of the latest literature on the long-term, strategic planning of biomass-based sup-
ply chains using quantitative models of operations research. We structured the overall research field “bioeconomy”
by means of various utilization pathways of biomass. In such utilization pathways, the scarce resource “biomass”,
i.e., the ultimate supply, is the starting point. In contrast, supply chains are rather demand- than supply-oriented.
All participants in an SC cooperate to fulfill the final customer’s demand. Section 2.2 bridged the gap between
the demand-oriented view of SC management models and the supply-oriented view of bioeconomy. Subsequently,
several dozen publications have been analyzed with respect to the modeling characteristics used, the sections of
the SC covered and the types of biomass considered.

As results of and conclusions from the analysis, some characteristics of biomass-based SCs, some trends of
current research on the strategic planning of biomass-based SCs and some research gaps have been identified. On
the one hand, it is noticeable that the research effort on the strategic planning of SCs producing fuels and rather
“innovative” fibres from biomass seems to be decreasing. This is caused by a decrease of research on biofuel
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production. Overall, peak efforts were recorded in the years 2011 and 2012, research thereby mainly focusing on
plants-based biomass. On the other hand, the following characteristics of biomass-based SCs have been identi-
fied: Biomass-based SCs are inter-organizational and characterized by a great heterogeneity of parties involved.
This heterogeneity should be tackled by means of inter-organizational cooperation and intra-organizational coor-
dination. However, most of the analyzed models assume an intra-organizational view with a central, omniscient
and omnipotent planner. High uncertainty concerning the biomass supply is another important characteristic of
biomass-based SCs, which is considered by some models. High transportation costs of unprocessed biomass,
caused by its high water content and low energy density, are a further characteristic. Because of them, decisions
on locations for pre-processing and conversion facilities are crucial and thus considered by most of the analyzed
models.

Further research should also take inter-organizational aspects of SC management into account. Biomass-based
SCs have to become profitable on their own, i.e., without governmental subsidies, and have to compete with their
fossil-based counterparts. Clever cooperation between the partners of biomass-based SCs would help to save costs
and to become more competitive. Nevertheless, the current intra-organizational models with a central view are
not useless. They can serve as a benchmark of what could be achieved if an SC would be truly integrated. Thus
these models need to be brought as close to reality as possible, for example, by increasingly incorporating the risks
arising through supply and demand uncertainties. And they permanently need to be adapted to new surrounding
constraints, which, for instance, emerge from new laws or changed governmental support programs.
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3 Biogas plant optimization by increasing its
flexibility considering uncertain revenues

Abstract3 Increasing shares of volatile energy resources like wind and solar energy will require flexibly schedu-
lable energy resources to compensate for their volatility. Biogas plants can produce their energy flexibly and on
demand, if their design is adjusted adequately. In order to achieve a flexibly schedulable biogas plant, the design of
this plant has to be adapted to decouple the biogas and electricity production. Therefore, biogas storage possibili-
ties and additional electrical capacity are necessary. The investment decision about the size of the biogas storage
and the additional electrical capacity depends on the fluctuation of energy market prices and the availability of
governmental subsidies. This work presents an approach supporting investment decisions to increase the flexibility
of a biogas plant by installing gas storages and additional electrical capacities under consideration of revenues out
of direct marketing at the day-ahead market. In order to support the strategic, long-term investment decisions, an
operative plant schedule for the future, considering different plant designs given as investment strategies, using a
mixed-integer linear programming (MILP) model in an uncertain environment is optimized. The different designs
can be evaluated by calculating the net present value (NPV). Moreover, an analysis concerning current dynamics
and uncertainties within spot market prices is executed. Furthermore, the influences concerning the variation of
spot market prices compared to the influence of governmental subsidies, in particular, the flexibility premium, are
revealed by computational results. In addition, the robustness of the determined solution is analyzed with respect
to uncertainties.

Keywords Demand-oriented Biogas Plants, Gas Storage, Capacity Extension, Mixed-integer Linear Programming,
Uncertain Electricity Market, Net Present Value

3.1 Introduction

Fossil resources are limited and will eventually run short. Therefore, a changeover in basic economic and ecolog-
ical thinking is necessary. The renewable energy resources act, or EEG, is the central governmental element in
Germany to accomplish this basic changeover in the energy sector. One objective of the German government is
to increase the share of energy produced from renewable resources up to 45 % by 2025. To reach this objective,
the shares of wind and solar sources will have to be increased. However, the energy generation provided by wind
and solar energy is highly volatile. The energy demand is volatile as well. Thus, the issue within an energy system
is to balance energy demand and supply. This has to be because of technical reasons. If the energy supply and
demand within a grid is not balanced, the grid breaks down. Therefore, other flexibly schedulable energy sources
are needed to compensate for the volatility. In relation to the EEG, these resources should not be fossil or nuclear
but renewable. Biogas plants, operated flexibly, are a renewable resource that can be used to compensate this
volatility with carbon-neutral generation and without using nuclear resources. The advantage of biogas plants is

3This paper has been written by Stephan Fichtner and Herbert Meyr (Department of Supply Chain Management, University of Hohenheim,
Stuttgart). The paper has been published as one of the Hohenheim Discussion Papers in Business, Economics and Social Sciences. (Fichtner
and Meyr, 2019)
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that either the biomass can be stored to produce the biogas more demand oriented, or the produced biogas can be
stored to produce the final product electricity demand oriented. The storage of biomass can be used to compensate
for long-term volatility, and the storage of biogas is useful to compensate for short-term fluctuations. In contrast,
it is more difficult to store electricity.

If the existing biogas plants are operated flexibly, there will be advantages not only for the energy grid operators,
which are responsible for the energy distribution and the maintenance of the grid, the government or the private
and commercial energy consumers, but also for the biogas plant operators. As mentioned, the flexible and demand
oriented energy production in biogas plants can help to stabilize the power supply in the grid. Furthermore, power
plants using fossil resources, which are currently used to compensate the volatility, can be substituted. The great
advantage for the biogas plant operators is that they get the opportunity to generate additional revenues in high
energy spot market price periods. Moreover, they will be independent of the EEG feed-in tariff, which is part of a
governmental strategy to subsidize renewable energy resources. The feed-in tariff guarantees a fixed compensation
for all of the produced energy within the first 20 years of plant operation.

As explained previously, biogas plants should be flexibly schedulable in the future to get a demand oriented
power generation. Several possible adjustments concerning the biogas plants exist to reach this objective. Within
this paper, a novel approach is developed to modify the technical biogas plant design in order to decouple the
biogas and electricity production to increase flexibility. The generated power should afterward be sold through
direct marketing at the power exchange EPEX Spot SE. The specific character of this modification is explained
in Section 3.2.2. In brief, it is necessary to build a biogas storage capacity to decouple the biogas and electricity
production. Thus, the storage is filled with biogas in times of low electricity prices and used to produce electricity
in high price periods. To do so, in addition to the possibility to store biogas, it is necessary to have enough capacity
to produce electricity out of the biogas. Hence, as another prerequisite, additional electrical capacity has to be
installed. The size of the optimal biogas storage and additional electrical capacity depends on fluctuations in the
energy market and thus on the potential to generate as many earnings as possible. A beneficial behavior for biogas
plant operators is to produce and sell electricity in high price periods and store it in low price periods. In addition,
governmental subsidies offer further incentives to invest in a flexibly schedulable plant. The decision about a
specific adjustment of the biogas plant design is a long-term investment decision done by the biogas plant operator.
In order to support this strategic, long-term investment decision to generate a robust solution for a risk-averse
decision maker, decision support using optimization of an operational plant schedule for the future is given to
evaluate the performance of the different plant designs. They can be evaluated by calculating the net present value
(NPV) as a key figure using the arising cash flows and the initial investment.

In this work, a novel deterministic optimization approach is described. Therefore, at first, a basic model to
optimize the operational plant schedule called OBPP (operational biogas plant problem) is developed. Secondly,
this model is extended to support the investment decisions as mentioned (SBPP - strategic biogas plant problem).
However, as the spot market prices are varying dynamically over time because of an uncertain behavior of energy
demand and supply this variation is analyzed and considered using several scenarios. Therefore, significant sources
of uncertainty are analyzed and determined. The examined investment planning problem is based on a real planning
problem of a biogas plant operator in southern Germany. Nevertheless, the numerical experiments represent a
fictional case, which is similar to the real biogas plant.

The remainder of this paper is organized as follows: In Section 3.2 an overview of the problem setting is given.
Subsequently in Section 3.3 relevant literature is analyzed. Within Section 3.4 the deterministic optimization
approach is described. Aforementioned, this model is tested using a fictional but close to reality case example
in Section 3.5. Finally, Section 3.6 summarizes the results and identifies opportunities for extensions or general
future research.

38



3.2 Problem setting

3.2 Problem setting

In Section 3.2 an overview of the problem setting is given. In particular, an overview of the energy demand
in Germany in general, the functionality of biogas plants, the relevant market conditions and especially of the
characteristics of direct marketing.

3.2.1 Energy demand in Germany
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Figure 3.1: Electricity demand in Germany (Agora Energiewende, 2018)

As previously mentioned, the electricity production, as well as the electricity demand, are volatile. The behavior
of the intraweek electricity demand in Germany, or in other words the load curve, is depicted in Figure 3.1.
The figure is based on data for a typical week from Monday to Sunday in 2018. As demonstrated, the demand
is characterized by an intraday and intraweek seasonal pattern. A demand peak during lunchtime on each day
characterizes the first one. Additionally, there is a smaller peak or plateau during the afternoon. The intraweek
pattern shows that the demand on weekdays from Monday to Friday is rather similar. Nevertheless, the patterns
of Saturday and Sunday are very different. In addition to those two patterns, in general, another seasonal pattern
can be observed regarding the electricity demand. Typically, the electricity demand in Germany is higher during
the winter months than during the summer months. (BDEW Bundesverband der Energie- und Wasserwirtschaft
e.V., 2018) To sum up, the electricity load curve in Germany is highly volatile and characterized by three seasonal
patterns - intrayear, intraweek and intraday.

As declared, electricity production is volatile as well. The volatility is mostly based on the volatility of the
renewable energy sources wind and solar. The production of those two energy sources is only partly controllable.
Typical for solar energy is a production peak during lunchtime. Typical for wind power is that the production
during the winter months is higher than during the summer months. However, both energy sources are highly
volatile in a short-term planning horizon. (Fraunhofer ISE, 2018b)

The major issue within a national electricity power grid is that the electricity demand or consumption has in any
time to be equal to the electricity production. Only if production and consumption are (nearly) equal, the power
line frequency and the whole grid are stable. In Germany, the power line frequency has to be 50 Hz. There are
mainly two technical possibilities to balance electricity production and consumption. Flexibly schedulable power
plants are the first possibility. They can be conventional, like natural gas or coal power plants, or renewable,
like pumped-storage power plants or biogas plants. The second possibility is import/export from/to neighboring
countries. (Fraunhofer ISE, 2018a)
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The organizational instrument to balance the electricity production and consumption is the energy exchange
EPEX Spot SE. The energy demand and supply is traded in several markets at this energy exchange. Specific
characteristics of the markets and the prices are described in Section 3.2.3. Nevertheless, in brief, the prices at the
energy exchange are a result of specific energy demand and supply in a specific period. Depending on the ratio of
demand and supply, the prices are high or low and thus volatile. This induces two main consequences. At first, it is
necessary to balance electricity demand and supply to stabilize the power grid as explained. Further, the volatility
of the prices offers the power plant operators the possibility to generate more earnings by producing and selling
electricity in high price periods or in other words in periods, in which the electricity demand is high compared to
the uncontrollable part of the electricity supply.

3.2.2 Biogas plant functionality
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Figure 3.2: Conventional biogas plant configuration

Due to uncertain subsidies and changing governmental regulations, optimization strategies for biogas plants
concerning flexible power generation and direct marketing become more and more important. Biogas plants pro-
vide the opportunity to generate carbon-neutral electricity out of biomass, or in other words renewable resources.
There are several types of biogas plants running in the market. The majority of the plants uses the conventional
way to produce energy. This conventional biogas plant design is depicted in Figure 3.2. Here, a digester is used to
produce biogas out of substrate through combustion. As substrate, several types of biomass are possible. Common
inputs are biowaste, wheat, rye silage, grass silage and maize silage. (Balussou et al., 2014),(BiomassV, 2016)
Those types of biomass cannot only be used as inputs in biogas plants but also in other utilization pathways of the
bioeconomy. Thus, there is a competitive situation on the market of biomass supply. (Fichtner and Meyr, 2017)
As depicted in Figure 3.2 in the chart below the digester, the biogas is produced continuously within the digester.
In other words, the biogas production rate over time is fixed. Afterward, the gas is directly burned in a combined
heat and power (CHP) plant to produce electricity. During the combustion process, the by-product heat occurs.
Within the CHP plants, several types of engines like gas-Otto engines or dual-fuel engines can be applied. The
electricity production is continuous as well within this conventional configuration (represented by the electricity
production chart below the CHP). The digester, as well as the CHP plant, are characterized by a specific capacity.
As declared, the biogas is produced continuously within the digester. If there occurs a disturbance within the CHP
plant(s) or if there is more biogas produced than can be combusted for other reasons, there is the possibility to burn
biogas within a torch. Here, no electricity or other products are produced. Accordingly, no revenues are generated.
This is just an opportunity to get rid of excess biogas. The main disadvantage of this biogas plant configuration
is the inflexibility of the production rates of biogas and electricity. In order to produce the electricity demand
oriented, the biogas plant design has to be adjusted. These adjustments cause investments. The resulting biogas
plant configurations are explained in the upcoming paragraph. (Lehnert et al., 2011)
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Figure 3.3: Further biogas plant configurations

Three types of flexible biogas plant configurations are distinguished. These configurations are shown in Figure
3.3. In the first configuration (type I) the produced biogas is transformed through an upgrade process in biomethane
and afterward injected into the natural gas grid. The natural gas grid builds the infrastructure consisting out of
pipelines and storages to supply natural gas to the consumers all over the country. If the biogas is upgraded and
injected into the natural gas grid, the gas can be obtained from the grid and burned using CHP plants, but not
necessarily at the biogas plant location, or can be used as biofuel. The biomethane can be purchased flexibly
out of the natural gas grid. Thus, the electricity production (depicted in Figure 3.3 by the varying electricity
production in the chart) is flexible as well and the biomethane can be burned demand oriented. The natural gas
grid itself is used as a gas storage, which is not owned by the biogas plant operator. However, the infrastructure
to transform the biogas into biomethane and a connection to the natural gas grid are necessary at the plant. The
disadvantage of this approach is that the upgrading of the biogas is complex and expensive. (FNR, Fachagentur
Nachwachsende Rohstoffe e. V., 2013) The second configuration (type II) does not use an upgrading process. Here,
a gas storage is included between the digester and the CHP plants. Hence, the gas- and electricity productions are
decoupled. This means that the biogas production is still continuous but the electricity production is now flexible
and thus decoupled. Besides, additional CHP capacity is necessary to increase the flexibility. This flexibility of
the electricity production can be used to produce the electricity demand oriented. By doing so higher earnings can
be achieved, if the production and sale of the electricity are made in high price periods. In times of low prices,
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no electricity is produced and the produced biogas is stored in the biogas storage. The flexibility potential of the
plant depends on the size of the biogas storage and the CHP plant capacity. Biogas storages, as well as CHP
plants, are available in different sizes and technologies. Important is that the size of the storage and the capacity
of the CHP plant fit together. Because if, for instance, a lot of CHP plant capacity is installed but only a small
biogas storage, there would not be enough available biogas to utilize the capacity of the CHP plants in most of the
periods. The difference between type II and type III is that in the third configuration the biogas production within
the digester is flexible as well. Therefore, for instance, the substrate has to be transferred into a liquid to influence
the digestion process by variable substrate feeding. The advantage of all these three configurations in contrast to
the basic configuration is that the electricity production is flexible and can for this reason be demand-oriented.
This characteristic is necessary for beneficial direct marketing of electricity by generating additional earnings in
the energy market. (Hahn et al., 2015),(Hahn et al., 2014b),(Hahn et al., 2014a),(Lehnert et al., 2011)

For all three configurations investments are necessary. In the following, only type II configurations will be
examined. The reason is that the effort to reach the other two design configurations is much higher than to build
a gas storage and include another CHP plant. For type I, a connection to the natural gas grid is necessary and
the upgrading processes are very complex. For type III, the digestion processes in the digester and the biomass
structure have to be adjusted. Additionally, another transformation process of solid biomass into liquid biomass
can be necessary. Thus, the type II configuration is easiest to reach, as it is only necessary to build a gas storage and
extend the CHP plant capacity. Nevertheless, investments are necessary to build the gas storage, install another
CHP plant and adjust other infrastructure components. Additionally, the size of the storage and the maximum
capacity of the new CHP plant have to be determined. As explained previously, the benefit of this biogas plant
configuration is the possibility to generate more earnings by producing and selling electricity demand-oriented in
high price periods. Hence, several investment strategies, consisting out of specific biogas storages and aligned
CHP plant capacities, have to be assessed based on potential earnings in the energy market.

3.2.3 Market conditions in the German energy market

The market conditions in the German energy market determine the framework for the biogas plant operator’s
activities. In general, there are several possibilities for biogas plant operators in Germany to participate in the
energy market. The possibilities are regulated in the EEG, which has changed a lot during the last years. The idea
of the EEG in the year 2000 was to achieve a sustainable energy supply, decrease carbon emissions and develop
energy technologies. (EEG, 2000) The first incentives for a demand oriented energy production were included with
the amendment in 2012. Here, the two subsidies market premium and flexibility premium were introduced, which
are incentives for a demand oriented energy production using direct marketing. (EEG, 2012) The functionality
of those subsidies is explained in detail in Subsection 3.2.4.1. During the amendments in 2014 and 2017, the
structure has changed again. Since 2017, the biogas plant operators have the opportunity to participate within a
bidding model to sell their produced energy. (EEG, 2017) As the biogas plant operators have to act according to
the EEG version of the time when the plant was put into operation, the following market participation possibilities,
demonstrated as well in Figure 3.4, exist for operators of existing plants.

The first possibility is to take the EEG remuneration, or feed-in tariff, which is fixed for the first 20 years
of plant operation and guarantees a fixed compensation per kWh of produced electricity, independent from the
realized energy demand. The amount of the feed-in tariff is biogas plant specific because it depends on the used
type of biomass, the maximum capacity of the plant and the used CHP technologies. The calculation is regulated
in the EEG. (Bundestag, 2011) Here, the biogas plant would be run using the maximum capacity on each day - on
full load operation.

Other market participation possibilities require a flexible operation of the biogas plant and are characterized as
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Figure 3.4: Market participation options of biogas plants

direct marketing options. If the biogas plant is operated flexibly, the first option would be to participate in one of the
three reserve markets. Here, the primary, secondary and tertiary control reserve markets can be distinguished ac-
cording to their planning horizon. As mentioned in Section 3.2.1, it is necessary to equalize electricity demand and
supply to stabilize the power grid. The reserve markets are used to balance energy production and consumption. In
all of the three markets, positive and negative reserve can be offered. Positive reserve means that in case of an un-
expected high energy demand this demand is compensated by an increase in energy production. Negative reserve
means that in case of an unexpected excess of energy supply the energy production of a plant is decreased. Both
strategies are necessary to stabilize the electricity grid by balancing energy demand and supply. In the primary con-
trol reserve, the de- or increase of production has to be realized within seconds, within the secondary control reserve
within five minutes and in the tertiary control reserve within 15 minutes. (Bundesnetzagentur. Beschlusskammer
6, 2011a),(Bundesnetzagentur. Beschlusskammer 6, 2011b),(Bundesnetzagentur. Beschlusskammer 6, 2011c)

The second option to participate in the market, if the biogas plant is operated flexibly, is to trade the energy
production at the energy exchange EPEX Spot SE. Here, as well several markets exist. The first market is the
option market. In this market, long-term options are traded with lead times up to six years. Additionally, this
market is called an energy-only market, which means that only the amount of produced energy is compensated
and not the reserved capacities as in the previously explained reserve market. The second market at the energy
exchange is the day-ahead market. Here, the required energy of the subsequent day is traded in blocks of one hour.
On this market, all tradings have to be finished until 12:00 CET of the previous day. This means that an electricity
producer, e.g. a biogas plant operator, gives a bid for a specific amount of electricity in a specific hour on the
next day for a specific market price on the power exchange. If this bid is accepted by the power exchange, the
electricity producer is committed to fulfill his bid on the next day. If the bid is fulfilled, the electricity producer is
compensated with the previously determined market price by the power exchange. If not, the electricity producer
gets a financial punishment. The third market at the energy exchange is the intraday market. Here, energy in blocks
of 15 minutes up to one hour is traded on a short term level. Apart from the shorter lead times, the functionality is
similar to that of the day-ahead market. This market is used to minimize energy shortages and surpluses. The lead
times can be decreased to five minutes. (Bundestag, 2011),(EEG, 2017) In the first 20 years of plant operation,
the market premium and flexibility premium encourage the biogas plant operators to use direct marketing, reduce
the maximum full load operation and thus produce their energy market-oriented and demand-driven. The market
premium is a governmental subsidy, which warrants a payment for the plant operators with the amount of the
difference between the biogas plant individual feed-in tariff an operator would get and the monthly average market
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price within the chosen market. Accordingly, there is the certainty for the biogas plant operator that on average
at least the EEG feed-in tariff is achieved by choosing direct marketing. (EEG, 2017) The flexibility premium is
an incentive for those biogas plant operators which run their plant demand oriented with a flexible schedule and is
paid once in a year for the additionally reserved capacity for flexible energy production. Those plants can be used
to reduce fluctuations in the power supply and thus to stabilize the voltage of the power grid. (EEG, 2014),(EEG,
2017) The functionality of the market and flexibility premiums is explained in detail in Subsection 3.2.4.1.

Operators of new plants or plants, which are older than 20 years, have to participate within another bidding
model and have the opportunity to get a flexibility surcharge, which is similar to the flexibility premium. (EEG,
2017)

In the remainder, the optimization of biogas plants is based on the circumstances of direct marketing in the spot
market, in particular, the day-ahead market. Here, the short-term flexibility potential of a flexibilized biogas plant
can be used to generate more revenues than in the other markets. Moreover, most biogas plants are too small to
participate in the reserve and option market.

On the spot market, the biogas plant operators have to interact with other market participants. Those participants
are governmental institutions, other energy producers, transmission grid operators, the energy exchange as an
institution, consumers and service providers. These service providers can help the biogas plant operators to place
their produced energy on the market to generate as many revenues as possible. In many cases, several biogas plants
are combined to so called virtual power plants (VPPs) by such a service provider. After the combination of the
plants, the VPP is treated as a single plant and the total energy is sold together at the spot market.

3.2.4 Characteristics of direct marketing

Corresponding to the previous explanations, the following optimization approach is based on the market option
direct marketing. Thus, the according requirements and subsidies are outlined in Section 3.2.4.1. The variability
in the revenues and in particular the spot market prices is explained in Section 3.2.4.2.

3.2.4.1 Requirements and subsidies

As declared in the previous Section 3.2.3 the basic requirement for a biogas plant operator to participate in direct
marketing is to run the biogas plant in a flexible design. Thus, the conventional biogas plant design, depicted in
Figure 3.2, is not appropriate. Instead, one of the further mentioned and in Figure 3.3 shown designs is necessary.

Aforementioned, infrastructure investments are necessary to reach one of these flexible biogas plant configu-
rations. Hence, there have to be incentives for the biogas plant operators to invest in their plant and produce the
electricity demand oriented. One of these incentives is the possibility of generating more revenues in the spot mar-
ket than taking the feed-in tariff. The revenues, an operator of a flexibly run biogas plant can generate, consist out
of the spot market prices and governmental subsidies. Here, the two pertinent subsidies are the market premium
and the flexibility premium as already mentioned in Section 3.2.3. As the prices in the spot market are a result
of energy demand and supply, the prices are highly volatile. Accordingly, a beneficial behavior for biogas plant
operators is to produce and sell electricity in high price periods.

In order to be entitled to receive the two subsidies, the biogas plant operators have to fulfill several requirements,
which are regulated in the current version of the EEG. (EEG, 2017) Here, it is stated that the support through the
governmental subsidies starts with the day the biogas plant is put into operation. The requirements for the market
premium are as follows: The market premium is only paid for electricity, which is sold through direct marketing.
If this is the case, the market premium is paid for a 20-year horizon. The biogas plant has to be flexible and
remotely controlled. Thus, a perhaps charged direct marketing service provider is able to regulate the electricity
production and feeding into the grid. Hence, the demand oriented electricity production is ensured. Additionally,
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the flexibility premium is characterized by the following requirements: The flexibility premium is a compensation
for the availability of additional capacities within a plant to produce electricity demand oriented. As well as for
the market premium, the biogas plant operator has an interest on the flexibility premium if the produced electricity
is sold through direct marketing, or in other words, the biogas plant operator does not get the EEG feed-in tariff.
Another requirement is that the already installed capacity has to be at least 20 % of the total installed capacity
after a capacity extension. The biogas plant has to be run demand oriented according to the technical conditions.
A surveyor has to certify that the biogas plant is able to produce electricity demand oriented. The certification in
terms of the flexibility premium depends on individual decisions, because there could be more biogas plant specific
requirements to fulfill. For this reason, there is still a remaining risk for the biogas plant operator to get approval
or not. (EEG, 2017),(Bundestag, 2011)

The idea of the market premium is that it should be ensured that the biogas plant operator achieves at least
on average the same payment per kWh through direct marketing as he would achieve through the biogas plant
individual feed-in tariff. (EEG, 2017) Thus, the market premium is calculated as given in an example in Table 3.1.

Table 3.1: Example market premium

General calculation:
Market premium =
biogas plant specific feed-in tariff - average market price per month within the chosen market

Example:
Feed-in tariff: 11 ct/kWh
average market price per specific month: 5 ct/kWh
⇒ market premium in this specific month: 6 ct/kWh

The biogas plant specific market premium is the difference between the biogas plant specific feed-in tariff and
the average market price within the chosen market. The average market price within the chosen market is calculated
retroactively. Hence, the whole market premium is paid monthly retroactively. (EEG, 2017)

The market premium offers an incentive for the biogas plant operators to choose the way of direct marketing
in general. Additionally, the flexibility premium offers another incentive to install additional electrical capacities
within the plants to increase the potential of flexible production. Thus, the additionally installed flexible capacity
is compensated with 130 EUR per kWh once in a year (130 EUR/kWhy).

The calculation of the flexibility premium is as follows: First, the flexible excess capacity per average hour in
a year has to be calculated. Hence, the difference between the installed capacity in total and the already installed
capacity, rated with a correction factor of 1.1 for biogas plants, which is defined by the German law, is calculated.
The resulting flexible excess capacity for an average hour is compensated with 130 EUR/kWhy. The calculation
and payment of the flexibility premium are made retrospectively. (EEG, 2017) For a fictional biogas plant example,
the flexibility premium can be calculated as depicted in Table 3.2.

It is not allowed to use the additionally installed capacity continuously. The realized output of the current year
has to be lower or equal than the previously realized output per year. If the requirements are met, the flexibility
premium can be requested. If the flexibility premium is granted once, there is an entitlement in the premium
within the upcoming nine years. Whether the requirements are met or not is verified after each year within this
horizon. This important characteristic is expressed by two randomly chosen possible operational schedules within
the previously given example and Figure 3.5. Within the example, the currently installed capacity was assumed as
500 kWh. Therefore, after an increase in electrical capacity, it is prohibited to produce on average more than 500
kW per hour on an average day. Both possible schedules demonstrate that on average exactly 500 kWh electricity
is produced but the operational schedule can be very different. These two schedules are just examples of many
possible ones. For instance, it is possible as well to produce less electricity than 500 kWh. (EEG, 2017)
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Table 3.2: Example flexibility premium

currently installed CHP plant capacity
(maximum amount of electricity per hour): Cap = 500 kWh
additionally installed CHP plant capacity
(maximum amount of electricity per hour): Capadd = 250 kWh
totally installed CHP plant capacity
(maximum amount of electricity per hour): Capnew = 750 kWh

granted flexible excess capacity per hour: Flexmin = 250 kWh

maximum amount of electricity on average per hour in a year:
Prodmax = Capnew - Flexmin = 750 - 250 = 500

granted (minimum) flexibility premium per year:
(Capnew−Prodmax ·1.1) ·130 =
(750−500 ·1.1) ·130 = 26,000 EUR

one possible operational plant schedule (solid in Figure 3.5):
12 hours maximum amount of electricity per hour 750 kWh
12 hours maximum amount of electricity per hour 250 kWh

second possible operational plant schedule (dashed in Figure 3.5):
8 hours maximum amount of electricity per hour 0 kWh
16 hours maximum amount of electricity per hour 750 kWh

3.2.4.2 Fluctuation of revenues

As described, the participation within direct marketing is characterized by volatilities of prices and revenues. In
order to assess the profitability of an energy marketing strategy, it is necessary to analyze the fluctuation within
the possible revenues. As the prices at the spot market are a result of specific energy demand and supply, the
prices are fluctuating significantly. This fluctuation could even mean that the spot market prices, in contrast to the
energy demand, are negative, which means that the power plant operator has to pay for his power supply. One
reason for the fluctuation is the energy supply from the renewable sources wind and solar. For example, during the
middle of the day, when the energy supply from solar systems is typically high, the spot market prices are lower
than in the hours before and after. The fluctuation of the spot market prices is depicted in the boxplot in Figure
3.6. Here, boxplots for every single month of a year and a boxplot for all data of the spot market prices from the
day-ahead market in 2011 to 2015 are depicted. It is possible to interpret these boxplots to get an idea of the price
data characteristics like measures of location, the dispersion, the interquartile range or the existence of outliers. As
demonstrated, the prices are distributed between -22.1 and 21 Cent/kWh. Additionally, it is displayed that many
price realizations are outside of the blue boxes, which represent the prices between the first and third quantile. This
characteristic presents the variance within the price data. However, the boxplots also show that this variance differs
between the individual months. The objective of a flexible plant schedule combined with direct marketing is to
produce and sell energy when the spot market price is as high as possible and to store the biogas in times of low
prices. In the following, several sources of uncertainties are discussed. Thus, strategic, long-term developments
and repetitive, or in other words seasonal, dynamics are distinguished.

Strategic development - Market price development:

The first analyzed source is the strategic, long-term development of the spot market prices at the day-ahead
market from 2011 to 2015. The development is demonstrated in Table 3.3. As depicted in the table, the yearly
mean of the spot market prices is decreasing through the years. This trend is remarkable because the development
of customer electricity prices is totally reverse. The customer prices were rising steadily through these years.
(Statistisches Bundesamt, 2017) It is not obvious to give reasons for this decreasing process. One reason might be
the decreasing price for crude oil during these years, but there are certainly other influencing factors. For reasons
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Figure 3.5: Two possible operational schedules concerning the flexibility premium

of abstraction, these influencing factors are not analyzed in detail. Most important is to forecast whether this
decreasing process will go on in the future or not. Within a study from Schlesinger et al. (Schlesinger et al., 2014)
the various influencing factors are analyzed. One of the conclusions of this study is that the decreasing of the spot
market prices will go on until 2020. From this year on the prices will start increasing. However, it is still uncertain
whether this forecast will be correct or not. Hence, this uncertainty should be covered within strategic planning
tasks in biogas plants.

Table 3.3: Long-term development of day-ahead spot market prices from 2011-2015 (EPEX Spot, 2018)

mean
year [Cent/KWh]

2011 5.11
2012 4.26
2013 3.78
2014 3.28
2015 3.16

average 2011-2015 3.92

Strategic development - Governmental subsidies:
As described in Section 3.2.3 and 3.2.4.1, the achievable revenues for a biogas plant operator using direct

marketing consist of the spot market prices and governmental subsidies. Since the revenues at the spot market have
been rather low in comparison to, for example, the market premium, it is necessary to evaluate the uncertainty of
these revenues as well. The amount of the two subsidies market premium and flexibility premium is declared in the
EEG. In the past 17 years since the first version of the EEG, six amendments of the law have been published. This
means that on average one EEG version is updated after not even three years. The planning horizon of strategic
planning problems is usually several years. Accordingly, the time between two EEG amendments is probably
shorter than the considered planning horizon. Nevertheless, the impact of new regulations on existing plants is
rather low because existing plants are regulated using the EEG version, which was the current version at the point
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Figure 3.6: Boxplot of day-ahead spot market prices from 2011-2015 (EPEX Spot, 2018)

in time when the plant was built resp. went on stream.

As declared by law, similar to the feed-in tariff, the market premium is fixed for the first 20 years of plant
operation. After these years, the operator of a biogas plant has no entitlement on this subsidy. (EEG, 2017) The
flexibility premium is fixed, as well. However, only for ten years after application and the first flexible power
generation. As a result, the governmental subsidies are rather certain, if they are granted once. (EEG, 2017)
Nevertheless, the circumstances for (flexible) biogas plants can change in the future because of changes in the
appropriate laws. For this reason, the decision maker has to decide if it is better to make the investment now or
later because in the future the subsidies could be higher or lower if the investment is made then. Additionally, there
is the risk for the biogas plant operator that the requirements are not fulfilled and especially the flexibility premium
is not granted by the surveyor.

Dynamics and seasonalities:

As explained previously, uncertainties and repetitive dynamics should be strictly distinguished. As given in
Figure 3.6, there is a seasonal intrayear price fluctuation or dynamic. The average of the prices is noticeably lower
in summer than in autumn or winter. Furthermore, the variance differs between specific months. For example in
December, the variance is very high compared to for example in July or other months. Moreover, in December an
untypically high occurrence of negative outliers exist. One reason for these outliers is that in December there are
a lot of holidays and those days have an unusual price pattern which leads to a higher variance within the whole
month. In February, the data is characterized by a great number of positive outliers. These characteristics mean
that the measures of location and the dispersion but also the skewness differs between the specific months.

The seasonality during the months of a year is demonstrated in Figure 3.7 as well. Within the figure, the average
of the spot market prices of the day-ahead market from 2011 to 2015 for each month and each time during the day
is shown. Low spot market prices are represented by red colors and high prices are represented by green colors.
As depicted, the prices during fall, winter and early spring (Sept. - Feb.) are on average, especially by day, higher
than during the summer months. Additionally, another seasonality is depicted - an intraday seasonality. Here, the
prices are lower during the night, characterized by an increase in the morning, a decrease during lunchtime and
another increase during the early evening again. However, the amount of volatility is different within the specific
seasons of a year.
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The mentioned short-term seasonal price pattern during one day is revealed in Figure 3.8 as well. The figure
shows the mean of the above described price data, specific for each day and each hour of the day. As given, the
fluctuation from Monday to Friday is rather similar compared to the fluctuation on Saturday and Sunday, which is
more different. From Monday to Friday, there are typically two price peaks, one during the morning and one in the
early evening. These peaks can be used to generate high earnings, if a lot of electricity is produced and sold during
that time. The two price peaks are caused by the energy demand and the feed-in of electricity produced out of solar
power. The energy demand is typically higher during the day than during the night. Thus, the prices during the
day should be higher than during the night. However, as the feed-in of solar-based electricity has its peak typically
during lunchtime, the energy prices decrease during this part of the day because the energy supply is very high.
On the weekend, these peaks are not only lower but also later during the day. On Sunday, the afternoon peak is
significantly higher than the peak at lunchtime.
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Figure 3.7: Heatmap of spot market prices per month and hour (EPEX Spot, 2018)

Finally, it can be summarized that the prices at the day-ahead market are characterized by three different seasonal
patterns or dynamics. An intrayear, intraweek and intraday pattern. This characteristic should be covered within
strategic planning problems in biogas plants to get an appropriate approximation of possible future earnings.

3.3 Literature

The objective of this work is to solve the planning problem of a real biogas plant in southern Germany as described
previously. Biogas plants operated flexibly should be used to compensate differences of energy demand and sup-
ply within the power grid to stabilize it. By doing so, the biogas plant operator has the possibility to generate
more earnings by producing and selling electricity in times of high price periods. In order to achieve a flexibly
schedulable biogas plant, the plant design has to be adjusted to decouple the biogas and electricity production. The
starting situation within the real biogas plant is the design of a conventional biogas plant. The design is adjusted
to reach a type II configuration. Therefore, a biogas storage and additional electrical capacities are necessary. The
investment decision concerning the size of the biogas storage and the additional electrical capacity depends on the
fluctuation of the energy market prices and thus the opportunity to generate as high earnings as possible. To asses
several investment strategies, consisting out of several possibilities for biogas storages and additional CHP plants,
an operational plant schedule based on uncertain energy market prices is optimized. The optimization of the oper-
ational schedule with an extraordinary high granularity - on an hourly basis - is necessary, because of the identified
sources of uncertainty. An optimization and not only a simulation of the operational schedule is needed, because
the scheduling includes revenue-effective decisions, which are crucial for the strategic investment decision. Hence,
in the following literature about design and operational plant schedule optimization in biogas plants and related
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Figure 3.8: Mean of spot market prices per day and hour (EPEX Spot, 2018)

energy sources based on direct marketing and spot market prices is reviewed to ascertain whether appropriate
approaches already exist to solve the real case problem as mentioned. The related literature is clustered into six
groups. Literature concerning the optimization of biogas plants (BGP), combined heat and power plants (CHP),
virtual power plants (VPP) and hydro power plants (Hydro). Additionally, literature about price forecasting (Price)
and other literature concerning investment decisions under uncertainty in the general electricity market (Invest.) is
distinguished.

In order to define the important field of research in more detail, the Supply Chain Planning Matrix (SCP-Matrix)
is used to classify the different planning problems of a biogas plant operator. The adjusted SCP-Matrix for a biogas
plant operator is depicted in Figure 3.9. Here, the different planning problems are covered using typical planning
modules of Advanced Planning Systems. (Meyr et al., 2015) From a biogas plant operator’s point of view, several
planning tasks of the original SCP-Matrix can be neglected. Those planning tasks are colored in grey. Typically,
distribution tasks, as well as demand fulfillment tasks, do not play any role for biogas plant operators because
they feed in the produced electricity directly to the grid and have typically only one customer. Additionally,
as substrate, several types of biomass are possible, which are assumed as available at the plant. Accordingly,
purchasing and Material Requirements Planning tasks play a minor role for biogas plant operators. Moreover, the
strategic planning problem of adjusting the biogas plant design is solved by optimizing an operational schedule.
Hence, mid-term Master Planning tasks are not part of the problem. The planning problems of the current work can
be categorized into the long-term Strategic Network Planning (SNP), the mid-/short-term Demand Planning (DP)
and the short-term Production Planning and Scheduling (PPS). The biogas plant design as a long-term decision
(SNP) is optimized on basis of an idea of uncertain revenues based on uncertain spot market prices (DP) using
an optimization of an operational biogas plant schedule (PPS). Distinctive for the current DP-problem is that the
specific energy demand determines the market price in combination with the energy supply. Nevertheless, as the
total demand in an economy is much greater than the production capacity of one single biogas plant, the energy
demand for one plant can be assumed as infinite. Therefore, the prediction of the uncertain spot market prices is
the crucial problem.
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Figure 3.9: SCP-Matrix for a biogas plant operator using planning modules (see Meyr et al. (2015))

3.3.1 Related publications

As a first group of literature, existing literature about biogas plant optimization using direct marketing is reviewed.
Gohsen and Allelein (2015) have published an approach to optimize the electricity production out of biogas based
on a volatile demand. Within their approach, they consider storage capacities but the biogas plant design is given
and not changed. They compare different cases of marketing. The first case is taking the feed-in tariff, the second
one considers direct marketing and in the third one direct marketing and the flexibility premium are considered. No
information about the specific optimization model is included in the publication. Heffels et al. (2012) introduced
several business models for direct marketing of electricity from biogas plants using operations research models.
They distinguish between biogas and biomethane plants, whereas their definition of biomethane plants is as fol-
lows: The produced biogas out of the digester is upgraded and injected into the natural gas grid. Afterward, the gas
is used in CHP plants to produce electricity. Moreover, they distinguish between a fixed or demand driven produc-
tion of electricity. The spot market prices within their model are given as deterministic parameters and since only
the operational plant schedule is optimized, no investment decision is made. Besides, as the publication is from
2012, the demonstrated approaches are based on outdated governmental regulations. Additionally, Hochloff and
Braun (2014) published a model to optimize the operational biogas plant schedule regarding excess power units
and storage capacities. They use the principle of rolling planning to improve their results and distinguish between
several energy markets but take the spot market prices as deterministic parameters. Additionally, the results of the
generated schedules are compared for a few plant designs. However, the biogas plant design itself is not optimized.

Only one investigated publication deals with the operational optimization of CHP plants. This work is pub-
lished by Beraldi et al. (2008) and shows an approach for the integrated optimization of production and trading of
thermoelectric units or in other words CHP plants. Within this approach, the uncertainty on the day-ahead mar-
ket is considered in a price taker model. In order to handle the stochasticity in the model, several scenarios are
distinguished.

As a third group, publications concerning direct marketing of hydro-power plants are analyzed. Within this
review, four representative publications are considered. Additionally, more general information about hydro-power
plant optimization can be found in Singh and Singal (2017). The first publication about short term hydro-power
scheduling is from Belsnes et al. (2016). Within this work, a stochastic and a deterministic approach are compared
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on the basis of uncertain electricity prices. The stochastic approach is modeled as a successive linear program.
The optimization approach is based on the Norwegian market and thus the legal framework there. Price scenarios,
generated using a simulation of stochastic processes to show combinations of fundamental influencing factors,
are used as inputs with the same probability. In another publication by Chazarra et al. (2016) the optimal hourly
schedule within a weekly scheduling process is examined. They use price scenarios for each hour of a week based
on the Spanish market in a price taker model to optimize the operational plant schedule. Fleten and Kristoffersen
(2008) deal with the commitments between energy producers and other market participants based on the chosen
market regarding an optimization of the short-term planning of a hydro-power plant. They use a stochastic model
formulation and scenarios based on time series models to derive a solution for the Norwegian day-ahead market.
Another model about short-term hydro-power scheduling is published by García-González et al. (2007). They
use a stochastic optimization model with price scenarios. Within this approach, the market prices are exogenous
variables and modeled via scenarios. Furthermore, they consider the risk aversion of a decision maker in their
approach using the Conditional Value at Risk (CVaR).

In a fourth group of literature, publications concerning investment decisions under uncertainty in the general
electricity market are reviewed. Blyth et al. (2007) developed an approach to make investment decisions under risk.
Within this approach, regulatory uncertainties concerning for example subsidies are modeled. Even though, no
details about the specific modeling are given within the publication. The authors explain a dynamic programming
approach to include the risk management of plant operators of coal and gas fired plants or carbon capture and
storage (CCS) technology plants. Dynamic programming is used as well by Kumbaroğlu et al. (2008) to evaluate
year-by-year investment decisions for energy producers. Here, the price uncertainty is considered using stochastic
processes. Additionally, it is assumed that the demand is price sensitive. The optimization approach is based on
the legal framework of the Turkish energy market. A real options approach (ROA) is used by Yang et al. (2008)
to assess investment alternatives in the energy sector. Governmental regulations are assumed as uncertain within
this approach. The objective of the work is to quantify the costs of uncertainty. The ROA is part of a dynamic
programming approach to derive a solution for the investment decision. As energy sources gas, coal and nuclear
power plants are considered. As the publication is from 2008, the approach is based on outdated legal regulations.

In a further group of literature, publications with a focus on uncertain electricity prices are analyzed. Similar to
the group hydro-power planning, only a few representative and typical approaches are explained here. Additionally,
more general information about dealing with uncertain electricity prices can be found in Haghi and Tafreshi (2007)
and Möst and Keles (2010). Keles et al. (2012) compare and evaluate several models to forecast electricity spot
market prices. Within these models, it is possible to include the stochastic behavior of the prices as well as negative
prices and price jumps. The forecasted prices are not used as inputs for further calculations or optimizations. In
another publication of Keles et al. (2016) the forecasted electricity prices of the day-ahead market are used as
inputs for the energy trading. The authors explain that the influencing factors on the prices can be clustered, but
as the clustering of these factors has a fundamental influence on the quality of the forecasts, it is still difficult to
derive a robust forecast. In order to derive a forecast, artificial neural networks are used. Weron (2006) is dealing
with the modeling and forecasting of electricity loads and prices. He describes the legal frameworks in several
energy markets, analyzes the characteristics of the time series of loads and prices and compares several forecasting
methods. No application of the forecasts is considered. Ziel and Steinert (2016) published a new approach to
forecast electricity prices. Within their approach, not the price itself is forecasted but its source - the relationship
of the sales and purchase curves. By using the sales and purchase curves the non-linear behavior of the prices, as
well as other characteristics of the time series and bidding structures can be modeled. The approach is based on the
EPEX market. In an earlier publication Ziel et al. (2015) revealed an econometric model to forecast hourly prices
on the EPEX market. In order to derive this forecast, they combine several established methods. Furthermore,
changes in the market due to a change in the energy mix are considered. The derived forecasts are not used for
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further applications.

In a last group of literature, publications considering direct marketing and flexible scheduling in VPPs are ana-
lyzed. Similar to the group hydro-power planning, only a few representative and typical approaches are described
here. Additionally, more general information about the operational optimization of VPPs can be found in Nos-
ratabadi et al. (2017). A stochastic mixed integer linear programming model for the operational scheduling of
VPPs in the Chinese market was published by Ju et al. (2016). The authors consider the robustness of the solution
in their published stochastic model and assume a VPP consisting of solar, gas turbine and energy storage systems.
To generate a short-term plan, based on the day-ahead market, the uncertain revenues are simulated. The publica-
tion of Nojavan and Zare (2013) deals with the optimal bidding strategy of an operator of a VPP in a price taker
model. The bidding strategy of the day-ahead market is analyzed. Hence, a short-term planning horizon is re-
garded. Within the approach, the uncertainty in the prices is considered and risk-averse resp. risk-neutral decision
makers are compared. Furthermore, the robustness is considered using a robustness function. Pandžić et al. (2013)
are using a stochastic optimization model to build an optimal operational schedule of a VPP consisting of intermit-
tent sources like wind or solar and flexible resources like storages. The approach is based on the EPEX day-ahead
and balancing market. Peik-Herfeh et al. (2013) distinguish in their work between several bidding strategies in
the day-ahead market by considering uncertain spot market prices. The assumed VPP consists of dispatchable and
stochastic units. Within this approach, no market specific subsidies are considered. A two-stage stochastic model
is used by Tajeddini et al. (2014) to optimize the short-term operational schedule of a VPP. Within this approach,
an expected value model with scenarios is used to derive a solution for a risk averse decision maker. The CVaR
is used as a risk measure. The assumed VPP, which produces electricity for the day-ahead market, consists out
of a diesel generator, a micro turbine and a battery bank. As a last related publication, the work of Zamani et al.
(2016) is reviewed. Within this work, the operational schedule of a large scale VPP is optimized using a stochas-
tic modeling approach. In order to derive a scenario-based decision, scenarios for various stochastic influences
are built. Uncertainty in the day-ahead prices, the electrical demand and the power generation are considered.
Within the VPP, consisting out of solar, CHP, wind turbine and storage systems, electrical and thermal resources
are distinguished.

3.3.2 Classification scheme and discussion

Table 3.4 further classifies and summarizes the models described previously. The following attributes and acronyms
are used to analyze the related literature in greater detail.

Cluster: The related literature is firstly grouped into the previously explained clusters. Here, publications
dealing with biogas plants (BGP), CHP plants (CHP), hydro-power plants (Hydro), investment decisions under
uncertainty in the electricity market in general (Invest.), uncertain electricity prices (Price) and virtual power plants
(VPP) are distinguished.

Model: Furthermore, the publications are analyzed concerning modeling characteristics. Here, static optimiza-
tion models (SO.), simulation models (S.), dynamic programming models (DyP) and forecast models (fc.) are
distinguished.

Supply Chain Planning (SCP): Additionally, the literature is analyzed in relation to the previously introduced
planning tasks of the SCP-Matrix. Thus, the publications are assessed regarding the previously declared three
important planning tasks represented by the naming of typical planning modules - Strategic Network Planning
(SNP), Demand Planning (DP) and Production Planning and Scheduling (PPS).

Uncertainty: As the uncertainty in spot market prices is a crucial part of problems in the energy market, the con-
sideration of uncertainty within the published models is analyzed as well. Here, deterministic model formulations
(det.) and stochastic models (sto.) are distinguished.
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Characteristic (charact.): Two more modeling characteristics are analyzed using a further step. Here, it is
analyzed if the authors deal with the robustness of their solution (rob.) and which type of risk attitude is considered.
Those publications, which consider a risk averse decision maker (risk av.) are marked.

Table 3.4: Related literature

model SCP uncertainty charact.
Cluster SO. S. DyP fc. SNP PPS DP det. sto. rob. risk av.

Gohsen and Allelein (2015) BGP x x x
Heffels et al. (2012) BGP x x x

Hochloff and Braun (2014) BGP x x x
Beraldi et al. (2008) CHP x x x x x x
Belsnes et al. (2016) Hydro x x x x x

Chazarra et al. (2016) Hydro x x x x
Fleten and Kristoffersen (2008) Hydro x x x x

García-González et al. (2007) Hydro x x x x
Blyth et al. (2007) Invest. x x x

Kumbaroğlu et al. (2008) Invest. x x x x x
Yang et al. (2008) Invest. x x x
Keles et al. (2012) Price x x x
Keles et al. (2016) Price x x

Weron (2006) Price x x
Ziel and Steinert (2016) Price x x x

Ziel et al. (2015) Price x x
Ju et al. (2016) VPP x x x x x

Nojavan and Zare (2013) VPP x x x x x x
Pandžić et al. (2013) VPP x x x x

Peik-Herfeh et al. (2013) VPP x x x x
Tajeddini et al. (2014) VPP x x x x x

Zamani et al. (2016) VPP x x x x

New optimization approach BGP x x x x x x x x

The analysis of the literature leads to the following conclusions:
BGP: Three models for the optimization of biogas plants can be identified. Not one of these models considers
an investment decision. Furthermore, the spot market prices are given as exogenous variables and deterministic
optimization approaches are used. To the best of our knowledge, there does not exist any publication taking
investment decisions and uncertainty into account. Moreover, some of the analyzed publications are based on
outdated versions of the EEG. Nevertheless, the authors are dealing with the optimization of an operational biogas
plant schedule. Thus, these deterministic models can be used as a part of an optimization approach with the
objective to optimize an operational schedule, which is dealing with uncertainty.

CHP: The presented model does not include an investment decision. Indeed, a stochastic model formulation
and the risk attitude of the decision maker is considered, but the plant characteristics of a general CHP plant cannot
be used for biogas plants without adjustments, although those two energy sources are rather similar. The reason
is that a CHP plant, in general, has a one-stage production process. Here combustible material, renewable or
conventional, is burned to produce electricity. As demonstrated in Section 3.2.2 a biogas plant is characterized by
a multi-stage production process, in which in a first stage biogas is produced out of substrate. In a second stage,
electricity is produced out of biogas using a CHP plant. Hence, the whole system of a biogas plant is much more
complex than that of a separate CHP plant. Nonetheless, the results and conclusions of this publication can be
helpful to optimize the electricity generation process within a biogas plant.

Hydro: As in the publications of the previously analyzed clusters, not one model for hydro-power plants con-
siders an investment decision. Partly, stochastic formulations are used but the models are based on energy markets
in other countries than Germany, hence, on other legal frameworks. Moreover, similar to the models considering
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CHP plants or VPPs, the plant characteristics are related, as the plants can be run flexibly using preproducts (water,
biogas) out of storage. However, the conditions and therefore the restrictions of storing water in a reservoir are dif-
ferent compared to a biogas storage. Apart from the differences in the specific plant characteristics and restrictions
regarding the storage, other parts of the published models can be helpful to model and optimize an operational
schedule in a biogas plant. The specific modeling of the prices can be used in a similar way for optimizing a biogas
plant schedule because in all of the models a plant schedule for hydro power plants, depending on volatile spot
market prices, is generated.

Invest.: The three identified models concerning investment decisions in the energy sector are different in con-
trast to all other considered models. They include an investment decision into the model. However, as they are
energy source independent, they do not include a short-term production planning. Moreover, they use dynamic
programming and in some of these publications no information about the specific model formulation is given.
Furthermore, some of the models are based on outdated legal frameworks. Nevertheless, in contrast to all other
considered models, an investment decision is made. For this reason, these ideas of modeling an investment de-
cision in general together with the conclusions for optimizing the operational schedule from other models can be
helpful to combine both decisions in one model for a biogas plant design optimization.

Price: The models considered in the cluster “Price” have the advantage that a real demand planning or in partic-
ular a price forecast is implemented. Nevertheless, as these forecasts are not used as inputs for further calculations,
the models represent only a small part of the optimization problem within a biogas plant. Nevertheless, the con-
clusions of these publications can be used within an integrated biogas plant optimization approach for instance to
produce price forecasts or price scenarios. The role of these forecasts within the later on developed optimization
approach is specified in Section 3.4.1.

VPP: The identified models concerning VPPs do not consider investment decisions. However, all analyzed
models use a stochastic model formulation and some of them consider the robustness of the generated solution and
the risk attitude of the decision maker as risk averse. Hence, parts of these approaches, especially the modeling of
the robustness of a solution and the risk attitude of the decision maker, can be used together with relevant parts from
the previously described publications as inputs for biogas plant optimization problems, if the plant characteristics
would be adjusted.

To sum up, what is missing in the literature is an approach for the optimization of the design of a biogas plant
considering direct marketing and thus uncertain revenues by optimizing an operational plant schedule. Additionally
missing is the consideration of the robustness of the generated solution and the assumption of a risk averse decision
maker. Risk aversion is a typical risk attitude of biogas plant operators, which are often small farmers. An
approach, which is able to do this, is developed in Section 3.4. Therefore, parts of the previously described
publications can be used to model separate subproblems.

3.4 Solution approach

Within Section 3.4 the solution approach to the identified strategic planning problem is introduced. Here, at
first an overview of the approach is given in Section 3.4.1. Afterward, the assumptions of the developed models
are explained in Section 3.4.2. Subsequently, optimization models for the operational (operational biogas plant
problem - OBPP, Section 3.4.3) and strategic planning (strategic biogas plant problem - SBPP, Section 3.4.4) are
presented.
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3.4.1 Overview of the solution approach

As mentioned in the previous section, missing in the literature is an approach for design optimization in a biogas
plant considering direct marketing and thus uncertain revenues by optimizing an operational plant schedule. In
order to support the investment decision of adjusting the design of a conventional biogas plant into a flexible type
II plant considering uncertain revenues, a multi-stage approach is developed. The specific parts of this approach,
which is embedded in the legal framework in Germany and considers uncertain influences of the energy market, are
illustrated in Figure 3.10. As depicted, the heart of the approach is a deterministic mixed-integer linear planning
(MILP) model for the investment decision called SBPP.

However, before the model is applied, price scenarios for different spot market price forecasts are generated.
Therefore, the influencing factors on the spot market prices are analyzed in a first step. Subsequently, the factors
with a significant influence are identified. Using these influencing factors and time series decomposition, an
expected price development for the future can be generated. However, this expected price is characterized by
a forecast error. In order to consider the uncertainty within the expected price, several scenarios are generated.
(Section 3.5.3.1) The idea is to model the risk of not reaching the expected price in a negative way or exceeding
this price, by building the best and worst case as extremes and the expected price as an average case. Besides,
further scenarios between these extremes are possible. Additionally, further scenarios are generated concerning
significant legal conditions, namely the EEG regulations. Here, similar to the price scenarios, extreme scenarios for
the development of the legal framework are built. (Section 3.5.3.2) One scenario, which is used in the determined
SBPP model consists of one combination of one price scenario and one EEG scenario. As each scenario for the spot
market price and the EEG conditions represents a realization of the appropriate random variables, these scenarios
can be used as deterministic input data within the optimization model.

In addition to these scenarios, deterministic input data concerning the plant characteristics is necessary. Here,
a finite number of investment alternatives ( j = 1, ...,J), representing additional biogas storage and CHP plant
capacities, is assumed. (Section 3.5.2)

As (Fleischmann et al., 2015) have shown, a strategic design planning problem like an investment decision
integrates two planning levels, which are the strategic structural decisions and the mid-term operational ones. In
order to optimize the design of a biogas plant, the structural decisions concerning investments are modeled in the
SBPP model, while the operational material and financial flows are modeled in the OBPP model. In general, the
decisions on the strategic level determine the framework for the operational planning. Additionally, the resulting
operational flows are used to assess the investment alternatives in this biogas plant optimization approach. Thus,
bilateral connections have to be considered between the two planning levels. (Fleischmann and Koberstein, 2015)
In order to derive the SBPP model, firstly the deterministic linear programming model OBPP, which supports the
optimization of an operational schedule of a biogas plant when the structural decision is assumed as having been
made is introduced. (Section 3.4.3) This model can be solved for one specific plant design and one specific scenario
to derive the optimal plant schedule for these input data. The OBPP model is the basis of the SBPP model in which
operational plant schedules are optimized for several plant designs and several price scenarios. (Section 3.4.4)
Thus, the scenario optimal plant design can be determined. For every scenario i the scenario-optimal investment
alternative j(i), which is called a “strategy”, and its optimal net present value NPV ∗ji are determined. For all
strategies, i.e. for all scenario-optimal investment alternatives j(i), the net present value NPVjk of investment
alternative j(i) and all other scenarios k 6= i is determined. (By solving the SBPP model with fixed investments
j(i) for the input data of scenario k.)

All of the solutions are compared in a solution matrix. (Section 3.5.4, Table 3.12) This solution matrix is
characterized by one optimal solution per scenario – i.e. NPV ∗ji. Note that different scenarios may point to the
same optimal strategy (e.g. scenarios 1 and k of Figure 3.10 to the same optimal strategy j(1) = j(k)), thus
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resulting in J′ ≤ I scenario-optimal strategies. In addition, the net present values for non-optimal scenario-strategy
combinations are included – i.e. NPVjk. A robust solution concerning all scenarios should be determined, because
some scenario-optimal decisions, for example concerning a high investment, can ruin the biogas plant operator in
the event of a worst case scenario. This risk should be avoided. The robust solution is extracted by using the rules
of decision theory. As high solution robustness for a risk-averse decision maker should be reached, the decision
rules of Hurwicz with a small lambda and the Maximin rule are used. (Section 3.5.4), (Scholl, 2001; Hurwicz,
1951) Both decision rules are characterized by a great solution robustness. Thus, the determined decisions can be
considered as robust. (Scholl, 2001)

3.4.2 Assumptions concerning OBPP and SBPP

As an Operations Research model is only an abstraction of a real world decision, several assumptions concerning
the modeling framework have to be made. The objective of the SBPP model is to determine the optimal investment
strategy concerning biogas storages and CHP plant extensions. As declared in Section 3.2.2, this seems the easiest
way to make the plant more flexible. A planning horizon of T periods which is subdivided into t = 1...,T non-
overlapping sub-periods is assumed. Only one specific biogas plant, located in Germany, is investigated.

The problem setting is as follows: a conventional biogas plant, which has a steady gas generation in the digester
is assumed. As there are no gas storage capacities available within the plant, the power generation is also steady
and totally inflexible. The generated power is sold by taking the EEG feed-in tariff. Moreover, as it is required by
the German law, the waste heat is used for other processes.

Furthermore, there are several assumptions concerning the chosen marketing channel. As mentioned, there are
several possibilities for biogas plant operators in Germany to participate in the energy market. It is assumed that
the investigated biogas plant is an already existing plant in Germany, which is less than 20 years in operation.
Only direct marketing at the day-ahead market is considered in the optimization approach. Hence, as explained
in Section 3.2.3, it is possible to sell generated power in blocks of one hour the next day. As only one specific
biogas plant is considered, an unlimited demand, or in other words a price-taker model, is assumed. The reason
is that the energy supply of one biogas plant is very small compared to the total energy demand. Moreover, for
the same reason, the amount of produced energy in the considered biogas plant has no impact on the spot market
prices. Additionally, the market premium and the flexibility premium are, as offered by the German government
in the current EEG and already mentioned in Sections 3.2.3 and 3.2.4, considered. For discounting an interest rate
of i per period is assumed with 0 < i < 1.

Concerning the biogas plant, there are several other assumptions. Firstly, it is assumed that the digester produces
a steady amount of gas during the hours of a year. After the investment, this gas could be burned directly in the
CHP plants, could be stored in a newly installed gas storage or be burned in a torch without generating revenues.
As declared in Section 3.2.2, these are the characteristics of biogas plants with a type II configuration. Secondly,
at the beginning of the planning horizon no storage capacities are available, thus the gas storage level is zero.
Restrictions concerning the amount and point in time of starts of the CHP plants are not considered.

Within the OBPP model, an already flexibilized type II biogas plant with storage capacities is assumed. Thus,
three types of gas flows are resulting, which can exist simultaneously and are depicted in Figure 3.11. One gas
flow from the digester into the gas storage (XDS

s ≥ 0), one from the digester to the torch (XDT
s ≥ 0) and one from

the storage to the CHP plant(s) (XSC
s ≥ 0). Additionally, the filling level of the gas storage is included (XS

s ≥ 0).

Finally, there are some assumptions concerning the characteristic of the investment, which are only considered
in the SBPP model. For increasing the flexibility of the biogas plant several possible investment alternatives
are distinguished. To increase the flexibility it is necessary to increase the electrical capacity by installing (an)
additional CHP plant(s). Here, a finite number of discrete CHP plant capacities is considered. Furthermore, it is
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Figure 3.10: Graphical illustration of the solution approach
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Figure 3.11: Structural and operational variables

necessary to create a possibility to store biogas, which is produced in the digester but not directly burned within
the CHP plants or in the torch. For this reason, the gas and power production can be decoupled. Similar to
the CHP plant capacity, a finite number of discrete storage capacities is considered. It is assumed that with an
increase in the storage size economies of scale concerning the supply costs can be achieved. To install and operate
the new technologies it is further necessary to invest in other infrastructure components like the foundation for
the storage, gas lines, or a transformer with larger capacity. It is assumed that these infrastructure investments
are fixed for all combinations of investment alternatives, but are only made if a storage or an additional CHP
plant is installed. Therefore, the compatible combination of a gas storage, a CHP plant extension and further
infrastructure components is represented by a (combined overall) investment alternative j with j = 1, ...,J. The
choice of investment alternatives is then represented by the binary decision variable B j. For all investments, an
expected operation time of DeT periods is assumed. If the planning horizon is shorter than this operation time
(DeT > T ), the terminal value of the total investment is calculated by reducing balance depreciation. The resulting
plant design, the operational flow variables, which are the same as in the OBPP model, and the structural investment
decision variables are shown in Figure 3.11.

3.4.3 Operational biogas plant optimization problem – OBPP

Within the explanations to Figure 3.10 was specified that an optimized operational biogas plant schedule is used
to asses the investment strategy. The OBPP model, which is used to optimize this operational plant schedule, is
developed in the upcoming Section. As a basic design for the optimization of an operational schedule, a flexibly
schedulable plant is assumed. This means that in the plant additional flexible CHP plant capacity and a biogas
storage are implemented. Only if the biogas plant is flexibly schedulable, a direct marketing of the produced
energy at the power exchange can be beneficial. Within the optimization process, two characteristic tradeoffs have
to be considered during the profit maximization. The first tradeoff is to produce electricity in a current period out
of the available biogas or to store the biogas for later periods. This decision depends on the current spot market
price and thus the current possible payments, the available capacity in the biogas storage and the expectation
regarding future spot market prices and thus the forecasted possible payments. The second tradeoff is to produce
electricity in a current period or not to produce, to save up flexible excess capacity. As the flexibility premium
compensates the flexible excess capacity, which is the unutilized share of the total capacity, the biogas plant
operators have an incentive not to maximize the utilization of the CHP plants. The functionality of the flexibility
premium is explained in Sections 3.2.3 and 3.2.4. However again in brief, the flexibility premium rewards the
flexibility potential of a biogas plant. Hence, if in a biogas plant no electricity is produced in several periods, the
remaining capacity on average and thus its flexibility potential increases. Hence, the payments of the flexibility
premium increase as well. This decision depends not only on the current spot market price but also on the flexibility
premium, which is a governmental subsidy. Managing those two tradeoffs simultaneously is not straightforward.
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3 Biogas plant optimization by increasing its flexibility considering uncertain revenues

The optimization of the future operational schedule of the plant gives an idea of possible future cash flows. This
information can also be used to assess an investment. The problem setting of the biogas plant is as given in Figure
3.11, but the decision about the binary variables is assumed as having been made. This means that one investment
strategy is already chosen. Accordingly, the biogas plant design is given as flexible type II. As it is shown in Table
3.5, two different time grids are necessary to model the operational planning problem. Microperiods s = s, ...,S,
which are given in hours, and macroperiods t = t, ...,T , which represent years, are distinguished. This is necessary,
because the sales and payments at the spot market occur hourly, but the payments of the flexibility premium
depend on the yearly production and are paid once at the end of a year. All microperiods are given by the set Φ.
Additionally, the set Φt ⊂Φ is used to determine, which microperiod is in which macroperiod and the set Φ∗t ∈Φ

denotes the last microperiod of each macroperiod t in the planning horizon.
In order to determine the optimal plant schedule, several data is used. The efficiency a of the installed CHP

plant(s) is given as the produced amount of electricity (measured in kWh) per Nm3 biogas. To fulfill the require-
ments of the flexibility premium it is important as well to define the previously realized output of the biogas plant
Beminit in kWh per macroperiod (kWh/y). Additionally, two different types of variable costs are distinguished.
The electricity production costs cE (EUR/kWh) and the biogas production costs cG (EUR/Nm3). The biogas
production costs include typical variable costs for the substrate, the fermentation process and personnel. The elec-
tricity production costs consist of costs for the combustion process. As the planning problem is capacitated, it
is necessary to distinguish capacities for the gas storage CapS (Nm3), and the CHP plants. Here, the formerly
installed CHP plant capacity CapC (kWh) and the additionally installed CHP plant capacity CapCadd (kWh) are
differentiated. The distinction between CapC and CapCadd is not necessary within the OBPP model. However, as
this model should be extended later on and this differentiation is necessary then, it is distinguished at this point as
well. The steady biogas production rate of the digester is defined as d p (Nm3/h). For the sold electricity market
premiums ms (EUR/kWh) and spot market prices ps (EUR/kWh) can be achieved.

The objective of the OBPP model is to maximize the resulting profit. Therefore, the following decision variables
have to be optimized. Besides the market premium and the spot market prices, the flexibility premium constitutes
an important part of the possible revenues. The granted flexibility premium payments per period s within the
planning horizon are represented by prs ≥ 0. The biogas plant operator can decide if the flexibility premium is
requested or not, because the possible revenues are linked with the requirements described in Section 3.2.4.1.
The decision is represented by the binary decision variable Yt ∈ {0,1}, which is 1 if the flexibility premium in
macroperiod t is requested and 0 otherwise. Hence, the planning horizon for the operational scheduling model has
to be several years and cannot be shorter. This is a special property of the developed approach, because it considers
an operational schedule on a more mid-term than the common short-term level.

In order to optimize the operational plant schedule it is necessary to optimize several operational variables. Here,
the gas flow from the digester to the torch XDT

s ≥ 0, the gas flow from the digester to the gas storage XDS
s ≥ 0, the

gas flow from the gas storage to the CHP plants XSC
s ≥ 0 and the gas storage level XS

s ≥ 0 are distinguished.

60



3.4 Solution approach

Table 3.5: Notation OBPP

Indices
s = 1, ...,S microperiods, hours (h) in the planning horizon
t = 1, ...,T macroperiods, years (y) in the planning horizon
Sets
Φ set of all microperiods
Φt ⊂Φ set of all microperiods in macroperiod t
Φ∗t ∈Φ last microperiod in macroperiod t
Parameters
a efficiency of the installed CHP plants / produced amount of electricity per Nm3

biogas in kWh/Nm3

Beminit previously realized output per macroperiod kWh/y
cE electricity production costs of a specific biogas plant (variable costs) EUR/kWh
cG biogas production costs of a specific biogas plant (variable costs) EUR/Nm3

CapS installed capacity of a gas storage in Nm3

CapC formerly installed CHP plant capacity
(maximum amount of electricity produced in one hour) in kWh

CapCadd additionally installed CHP plant capacity
(maximum amount of electricity produced in one hour) in kWh

d p steady gas production rate of the digester in Nm3/h
MaxP sufficiently large number
ms market premium in microperiod s in EUR/kWh
ps spot market price forecast at the power exchange in the

day-ahead market in microperiod s in EUR/kWh
Variables
prs ≥ 0 granted flexibility premium in microperiod s in EUR paid once in a year (EUR/y)
XDT

s ≥ 0 gas flow from digester to the torch in microperiod s in Nm3

XDS
s ≥ 0 gas flow from digester to the gas storage in microperiod s in Nm3

XSC
s ≥ 0 gas flow from the gas storage to the CHP plants in microperiod s in Nm3

XS
s ≥ 0 gas storage level at the end of microperiod s in Nm3

Yt ∈ {0,1} decision variable, 1 if the flexibility premium in macroperiod t is requested,
0 otherwise

3.4.3.1 Objective function

The objective of the model is to maximize the total profit consisting out of several payments and payouts. There-
fore, the objective function consists out of four parts, which are explained in detail later on. In the first part, the
spot market payments (SMPs) are considered. Within the second part, the variable electricity generation payouts
(V EGPs) are modeled. The third part represents the realized subsidy payments (RSPs) based on the flexibility
premium. As a last part, the torch payouts (T Ps) are modeled. As all of the four parts represent the payments and
payouts per microperiod, they have to be summed up for all microperiods s.

Max ∑
s
(ps +ms) ·a ·XSC

s︸ ︷︷ ︸
SMPs

−(cE ·a+ cG) ·XSC
s︸ ︷︷ ︸

V EGPs

+ prs︸︷︷︸
RSPs

−cG ·XDT
s︸ ︷︷ ︸

T Ps

(3.1)

The first part of the objective function is represented by the spot market payments (SMPs). Here, the sum of the
spot market price ps in a specific microperiod s and the market premium ms is in any microperiod s multiplied with
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3 Biogas plant optimization by increasing its flexibility considering uncertain revenues

the amount of produced electricity. The amount of produced electricity is given by the gas flow in microperiod s

from the biogas storage to the CHP plants XSC
s multiplied with the CHP plant’s efficiency. The functionality of the

market premium, which is a governmental subsidy, is stated in Subsection 3.2.4.1.
The second part of the objective function is represented by the variable electricity generation payouts (V EGPs).

Here, similar to the spot market payments, the variable electricity production costs per kWh of the specific biogas
plant are multiplied with the amount of produced electricity in each microperiod s. The variable electricity pro-
duction costs per kWh consist of the costs for the used biogas cG multiplied with the production efficiency of the
CHP plants and the costs for the combustion process of biogas into electricity cE .

The third part of the objective function represents the realized subsidy payments (RSPs) regarding the flexibility
premium. This payment is executed only in the last microperiod s of a specific macroperiod or year t if the biogas
operator requests it. The calculation of the granted flexibility premium payment in a microperiod s is explained in
detail in Constraints (3.7a) to (3.7d).

The fourth part of the objective function represents the costs for using the torch. If it is not beneficial to produce
electricity and the biogas storage is completely filled, there is the possibility to burn biogas using the torch. No
payments are generated when the biogas is burned through the torch. However, the generation of the biogas causes
production costs (cG). Hence, these costs have to be considered as payouts within the objective function.

3.4.3.2 Constraints

Plant characteristic

d p = XDS
s +XDT

s ∀s (3.2)

One of the assumptions of the OBPP model is that the digester produces a steady amount of gas during the
microperiods because a type II biogas plant is considered. Thus, the biogas production rate cannot be influenced
or stopped. This assumption is an abstraction of the real world to avoid the complex modeling of non-linear biogas
production rates before and after a stop of the digestion processes. This assumption is modeled in Constraint (3.2).
At this point, the gas flow from the digester into the gas storage (XDS

s ) plus the gas flow from the digester to the
torch (XDT

s ) have to equal the gas production (d p) in each microperiod. As all of the produced biogas is either
burned in the torch or filled in the storage and further combusted in the CHP plant(s), Constraint (3.2) together
with V EGPs and T Ps show that for every Nm3 of produced biogas at least the biogas production costs cG have
to be paid. Hence, the biogas production costs are not relevant for the decision of the operational biogas plant
schedule, because the digestion processes cannot be stopped due to the assumptions. However, this model should
be extended later on for the biogas plant design investment decision; for this reason, these costs are considered in
the OBPP model as well. In the extended model, those costs are necessary to decide whether the net present value,
which will be the objective value in this model, is positive or negative. Nevertheless, they will not influence the
operational schedule in the subsequent model.

Capacity restrictions

XSC
s ·a≤CapC +CapCadd ∀s (3.3)

Constraint (3.3) ensures that the amount of produced electricity per hour does not exceed the already available
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capacity plus the additional electrical capacity. The amount of produced electricity is calculated by multiplying
the amount of gas flow from the storage to the CHP plants (XSC

s ) with the efficiency coefficient (a) of the installed
CHP plants.

XS
s ≤CapS ∀s (3.4)

Constraint (3.4) ensures that the gas storage level (XS
s ) at the end of each microperiod does not exceed the gas

storage capacity.

∑
s∈Φt

a ·XSC
s ≤ Beminit +(1−Yt) ·MaxP ∀t (3.5)

As it is required by the current version of the EEG and already mentioned during the explanations regarding
the flexibility premium, it is prohibited that the realized output of the biogas plant in each macroperiod t after
an increase in electrical capacity is higher than the previously realized output, if a biogas plant operator requests
the flexibility premium. That means, if the flexibility premium is requested, the produced amount of electricity
in total in a macroperiod has to be lower than or equal to the realized output in the period before the investment
was made. However, the increase in electrical capacity gives the biogas plant operators the opportunity to produce
more electricity in beneficial periods. This restriction, modeled in Constraint (3.5), is used to ensure that the plant
operators reserve flexible capacity of their additionally installed electrical capacity. Constraint (3.5) serves not as
a restriction, if the flexibility premium is not requested (Yt = 0). However, the amount of produced electricity is
then restricted by the capacity Constraint (3.3).

∑
s∈Φt

a ·XSC
s

|Φt |
≥ 1

5
· (CapC +CapCadd) ·Yt ∀t (3.6)

In addition to the upper bound of the realized output of the biogas plant, there is a lower bound given by the EEG.
In any year the biogas plant operator wants to request the flexibility premium, the realized output on average per
microperiod s of the biogas plant has to be at least 1

5 of the installed electrical capacity. Thus, the realized output
per year t ( ∑

s∈Φt

a ·XSC
s ) is divided by the assumed number of microperiods in a macroperiod (|Φt |) to calculate the

realized output on average per microperiod s in a macroperiod t. If the realized output was smaller, the flexibility
premium would not be granted for the expired year.

prs ≤



(
CapC +CapCadd− ∑

s∈Φt

a ·XSC
s

|Φt |
·1.1

)
·130 ∀s ∈Φ∗t (3.7a)

(CapC +CapCadd) ·0.5 ·130 ∀s ∈Φ∗t (3.7b)

MaxP ·Yt ∀s ∈Φ∗t (3.7c)

0 ∀s /∈Φ∗t (3.7d)

The calculation of the granted flexibility premium payment in a microperiod s is explained in Constraints (3.7a)
to (3.7d). The decision about requesting the flexibility premium or not is modeled using the binary variable Yt .
If the biogas plant operator decides not to request the flexibility premium, the binary variable is set to zero. Ac-
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3 Biogas plant optimization by increasing its flexibility considering uncertain revenues

cordingly, Constraint (3.7c) would restrict the premium payment prs to zero as well. If the biogas plant operator
requests the flexibility premium, the premium payment is, according to Constraint (3.7c), not restricted. Hence,
Constraint (3.7a) would restrict the premium payment and the flexibility premium payment would be calculated
as it is required by the current version of the EEG (EEG, 2017) and modeled in Constraint (3.7a). The last mi-
croperiod in a macroperiod t is given by set Φ∗t . First, the flexible excess capacity per average microperiod s in a
macroperiod t has to be calculated as in Constraint (3.6). Afterward, this realized output on average is rated with a
correction factor of 1.1 for biogas plants, which is defined by the German legislation, and subtracted from the sum
of the installed capacity (CapC +CapCadd). The resulting flexible excess capacity for an average microperiod is
compensated with 130 EUR/kWhy. Aforementioned, the flexibility premium payment is only executed in the last
microperiod of a macroperiod t. Thus, the calculations according to Constraints (3.7a) to (3.7c) are only made for
those microperiods s, which are the last microperiod in a macroperiod. In all other periods, the flexibility premium
payments are set to zero. (see (3.7d)) The flexible excess capacity is restricted to a maximum of the half of the
installed electrical capacity by the EEG. This restriction is modeled in Constraint (3.7b). To understand the func-
tion of the flexibility premium it is important to know that it is not allowed to use the additional installed capacity
continuously. The realized output of the current year has to be lower or equal than the previously realized output
per year as mentioned in Constraint (3.5). If the requirements are met, the flexibility premium is granted for a ten
years horizon. The functionality is explained in detail in Subsection 3.2.4.1.

Mass balance

XS
s = XS

s−1 +XDS
s −XSC

s ∀s (3.8)

The storage process of produced but not yet burned biogas is modeled in Constraint (3.8). Here, as usual, the
gas storage level (XS

s ) at the end of a microperiod s has to equal the gas storage level of the previous microperiod,
plus the gas flow into the gas storage from the digester (XDS

s ), minus the gas flow from the gas storage to the CHP
plants (XSC

s ) in the current microperiod s.

Within the model, material flows and storage levels can only take non-negative real values. Binary variables
represent the decisions whether the flexibility premium is requested or not.

3.4.4 Strategic biogas plant optimization problem – SBPP

As declared, the main objective is to support the investment decision of adjusting the design of a conventional bio-
gas plant into a flexible type II plant considering uncertain revenues. In order to model this decision the previously
developed OBPP model for the optimization of an operational plant schedule, described in Section 3.4.3, has to be
extended. Within the SBPP model, the plant design is no longer assumed as having been fixed. Instead, the design
should be optimized. As the model to optimize the operational schedule of a biogas plant has been explained in
detail in the previous section, only the new and adjusted parts of the model are described in the current one.

In order to model the extensions of the investment decision, further indices, parameters and variables are nec-
essary. The additional and adjusted notation is provided in Table 3.6. The index j is used to distinguish between
several possible investment alternatives. Those alternatives consist of a biogas storage with a specific size and a
specific CHP plant extension capacity. The known parameters CapS and CapCadd are adjusted to CapS

j and CapCadd
j

because in the SBPP model they depend on the chosen investment alternative. The aim is to decide which plant
design is beneficial. Therefore, the specific total investments are rated with I j, which are quantity-independent
fixed costs that are payed once. Further, if reducing balance depreciation is used to calculate the terminal value
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of the total investment at the end of the planning horizon, the depreciation rate per year drs with s ∈ Φ∗t has to be
defined. Moreover, as payments and payouts at different points in time have to be compared and thus discounted, it
is necessary to define the discounting interest rate as i. To distinguish between the several investment alternatives
the binary variable B j ∈ {0,1} is used. The variable is 1 if investment alternative and thus strategy j is chosen and
0 otherwise. The known variable Yt is adjusted to Yj,t ∈ {0,1}. Accordingly, the binary decision variable is 1 if
the investment strategy j is chosen and the flexibility premium is requested in year t and 0 otherwise. Yj,t models
whether the flexibility premium is requested under the condition of an already chosen investment strategy which is
represented by B j. Within the following Subsections 3.4.4.1 and 3.4.4.2 the extended model is described.

Table 3.6: Additional and adjusted notation SBPP

Indices
j = 1, ...,J discrete investment alternatives
Parameters
CapS

j installed capacity of a biogas storage in investment alternative j in Nm3

CapCadd
j additionally installed CHP plant capacity in investment alternative j in kWh

drs decreasing depreciation rate per year t in microperiod s ∈Φ∗t
i discounting interest rate per microperiod
I j total investment for investment alternative j in EUR
Variables
B j ∈ {0,1} decision variable, 1 if investment alternative (strategy) j is chosen, 0 otherwise
NPV ≥ 0 objective value
Yj,t ∈ {0,1} decision variable, 1 if the flexibility premium in macroperiod t is requested

and investment alternative (strategy) j is chosen, 0 otherwise

3.4.4.1 Objective function

In contrast to the previously explained OBPP model, the objective value of the SBPP model is defined as a result
of discounted payments and payouts. Thus, the objective value represents the NPV. The understanding of the NPV
is similar to common definitions, which are among others given by Hübner (2007). The payments and payouts
appear at different points in time. In order to make the investment strategies comparable, the resulting payments
and payouts are discounted. Hence, the objective function of the current SBPP model consists out of five parts.
The spot market payments (SMPs), the variable electricity generation payouts (V EGPs), realized subsidy payments
(RSPs) and torch payouts (T Ps) are modeled similar to the OBPP model. For this reason, they are not explained
in detail again. The detailed explanations are given in Section 3.4.3. The only difference is that they have to be
discounted using the interest rate i. Additionally, the total loss of value (LOV) is considered in the last part of the
objective function.

Max NPV =

∑
j
∑
s

(ps +ms) ·a ·XSC
s − (cE ·a+ cG) ·XSC

s + prs− cG ·XDT
s

(1+ i)s − drs

(1+ i)S ·B j · I j︸ ︷︷ ︸
LOV

(3.9)

The only new part is representing the total LOV of the chosen investment. This loss can be calculated as the dis-
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counted sum of all yearly depreciations during the planning horizon. The payout of the initial investment depends
on the chosen plant design, which is determined by the structural decision variable B j. The yearly depreciation is
calculated by reducing balance depreciation for the length of the planning horizon as it is given in Equation (3.9).
Here, the yearly depreciation rates are multiplied with the initial investment, depending on the chosen investment
strategy, and then discounted. These yearly discounted depreciations are summed up for all years of the plan-
ning horizon (t = t, ...,T with T < DeT ). In order to achieve this, the depreciations, which are defined for each
microperiod, are summed up only for the last microperiods in a macroperiod. (s ∈Φ∗t )

3.4.4.2 Constraints

Constraints (3.2) and (3.8) remain the same as in the OBPP model. All other constraints are adjusted or added in
contrast to the OBPP model and thus are explained in detail.

Design configuration

∑
j

B j = 1 (3.10)

Yj,t ≤ B j ∀ j, t (3.11)

In Constraints (3.10) and (3.11) the plant design decision is restricted. It is only permitted to choose one invest-
ment strategy or in other words one combination of an additional CHP plant version and one storage version each.
Additionally, the two binary variables B j and and Yj,t have to be connected, because it is only possible to request
the flexibility premium subject to an investment strategy j, if the strategy is already chosen.

Capacity restrictions

XSC
s ·a≤CapC +∑

j
B j ·CapCadd

j ∀s (3.12)

Constraint (3.12) ensures that the amount of produced electricity per hour does not exceed the already available
capacity plus the additional electrical capacity. The additional electrical capacity depends on the chosen investment
strategy.

XS
s ≤∑

j
B j ·CapS

j ∀s (3.13)

Constraint (3.13) ensures that the gas storage level (XS
s ) in each microperiod does not exceed the chosen gas

storage capacity. The gas storage capacity depends on the chosen investment strategy.

∑
s∈Φt

a ·XSC
s ≤ Beminit +(1−∑

j
Yj,t) ·MaxP ∀t (3.14)
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Constraint (3.14) is similar to Constraint (3.5) of the previously explained OBPP model and restricts the realized
output to an upper bound. As the decision variable Yj,t now represents the decisions regarding requesting the
flexibility premium and the choice of investment strategies, the variables have to be summed up over all investment
alternatives j. The remaining parts of the constraint are equal to (3.5).

∑
s∈Φt

a ·XSC
s

|Φt |
≥ 1

5
·∑

j

(
CapC +CapCadd

j

)
·Yj,t ∀t (3.15)

As mentioned during the explanation of the OBPP model, the realized output of the biogas plant has to be at
least 1

5 of the installed electrical capacity in any year, the biogas plant operator wants to request the flexibility
premium. Otherwise, the flexibility premium is not granted for the expired year. The totally installed electrical
capacity depends on the chosen investment strategy and is, as well as the decision about requesting the flexibility
premium, represented by the binary decision variable Yj,t .

prs ≤



(
CapC +∑

j
B j ·CapCadd

j − ∑
s∈Φt

a ·XSC
s

|Φt |
·1.1

)
·130 ∀s ∈Φ∗t (3.16a)(

CapC +∑
j

B j ·CapCadd
j

)
·0.5 ·130 ∀s ∈Φ∗t (3.16b)

∑
j

MaxP ·Yj,t ∀s ∈Φ∗t (3.16c)

0 ∀s /∈Φ∗t (3.16d)

The calculation of the yearly flexibility premium payment is similar to Constraints (3.7a) to (3.7d) of the pre-
viously explained OBPP model. The difference is that in the SBPP model the flexible excess capacity depends
on the chosen investment strategy. Hence, the binary decision variable B j is used to determine which additional
electrical capacity is chosen and thereby determines the total excess capacity. Additionally, the definition of the
variable prs ≥ 0 has to be adjusted as it depends on the electrical excess capacity. As the possible investment alter-
natives are all considered implicitly within the calculation of prs, no index j is necessary. In Constraint (3.16c) the
binary decision variables Yj,t have to be summed up for all investment alternatives j, because the choices regarding
requesting the flexibility premium and investment strategies are considered in Yj,t .

Within the model, material flows and storage levels can only take non-negative real values. Binary variables
represent the decisions whether an investment strategy j is chosen or not and whether the flexibility premium is
requested or not.

3.5 Application of the deterministic SBPP model in an uncertain
environment

In Section 3.5 the deterministic SBPP model is applied in an uncertain environment as it has been explained in
Figure 3.10. Therefore, the relevant uncertainties are modeled in a first step in Section 3.5.1. Afterward, the
experimental design is defined in Section 3.5.2. The effects of uncertainties are analyzed in Section 3.5.3 before a
robust investment decision is made in Section 3.5.4.
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3.5.1 Modeling uncertainty

As mentioned in Section 3.2.4, the total revenues a biogas plant operator can generate using direct marketing
consist out of several parts. As a first part revenues are generated at the chosen spot market, depending on the spot
market prices. It is possible to sell the produced energy on several spot markets simultaneously. Thus, the total
spot market revenues consist out of the spot market prices of the chosen markets. The second part are revenues out
of subsidies. As explained in Section 3.2.4.1, it is possible to request two subsidies, if the produced energy is sold
through direct marketing – the market premium and the flexibility premium.

For all of those parts of the total revenues, it has to be separately forecasted whether there is relevant uncertainty
in the revenues or not, in order to reveal the effect of the uncertainty in a second stage. The characterization of the
uncertainties is explained in the upcoming subsections.

3.5.1.1 Spot market price forecast

The fluctuations and seasonalities within the spot market prices are mentioned in Section 3.2.4.2. As explained,
the spot market prices can be characterized using three different seasonalities, intrayear, intraweek and intraday,
and a currently decreasing trend. Using the knowledge of those characteristics, it is assumed that the time series of
spot market prices at the day-ahead market for the upcoming five years can be approximated using the following
model:

ps = a+b · s+ cY
s + cW

s + cD
s +us (3.17)

Within this model, ps is defined as the spot market price in a microperiod s. The model is built using time
series decomposition. Hence, a is defined as a level component, b as a trend component and the three remaining
parameters cY

s ,c
W
s ,cD

s characterize the intrayear, intraweek and intraday seasonalities. us is defined as the white
noise which cannot be forecasted. As one can see, all of the above mentioned characteristics of the spot market
prices are covered within (3.17).

As usual in time series analysis, the component parameters of the forecasting model have to be forecasted.
(Makridakis et al., 2010) Hence, the forecast can be wrong because of unexpected future changes in the environ-
ment of the energy market. The quality of the forecast, or in other words the forecast error, is represented by the
the difference between the real value ps of a microperiod s and its forecast p̂s where p̂s := â+ b̂ · s+ ĉY

s + ĉW
s + ĉD

s

and where â, b̂, ĉY
s , ĉ

W
s and ĉD

s denote the forecasts of the component parameters. In general, it is unrealistic to
assume that a forecast without a forecast error can be reached. For this reason, it is important to analyze the effect
of a potential forecast error on the decision and the resulting outcome.

As can be seen, all of the component parameter values are uncertain themselves, because every characteristic
of the spot market prices can be subject to change separately. For example, it could be possible that the trend
component is changing. Although, the current trend is decreasing, it is not completely unlikely that the prices will
increase in the future. Keles et al. (2011) distinguish several scenarios for the future energy price development.
What all the mentioned scenarios have in common is that the energy prices will increase, thus this could be a future
development. As the intrayear and intraweek seasonalities are mainly based on the characteristic of the energy
demand, it can be assumed that they will remain similar in the future. This assumption is based on the conclusions
that for instance the intrayear seasonality is based on the climatic environment in Germany. The climate will
probably not change significantly within the planning horizon of the current model. However, for single years
there could be a significant change within the intrayear price seasonality. For example because of extreme weather
situations like unusual hot and dry periods in a year. Moreover, the intraweek seasonality is mainly based on the
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difference in demand between weekdays and weekends because of the reduced industrial production during the
weekend. It is unlikely that this behavior will change in the nearer future as well. Moreover, the average level of
the spot market prices (a) can be subject to changes as well. For instance, it is possible that the level will be lower
in the future because of the ongoing decreasing trend.

3.5.1.2 Flexibility premium

Apart from the spot market revenues, important parts of the generated total revenues using direct marketing are
subsidies. Aforementioned in Section 3.2.4.1, it is possible to request the market and flexibility premium.

The market premium is not characterized by significant uncertainty. As explained previously, biogas plants
are regulated using the EEG version, which was the current version when a biogas plant was put into operation.
Hence, the legal framework cannot be changed for existing plants and the operators have the guarantee of a 20-year
entitlement on this subsidy. Nevertheless, in a new amendment of the EEG the market premium could be canceled,
which affect operators who want to build a new biogas plant. Because of the assumption of only analyzing already
built and running plants in this optimization approach, there is no considerable uncertainty regarding the market
premium.

Similar to the market premium, the flexibility premium is certain if it is granted once, but only for a 10 years
horizon. However, as mentioned in Subsection 3.2.4.1, there are plenty of requirements to be met to successfully
request the flexibility premium. If at least one requirement is not fulfilled, the flexibility premium would not be
granted. Hence, the payments of the flexibility premium are subject to uncertainty.

3.5.2 Experimental design

In order to verify the performance of the developed SBPP model in an uncertain environment a numerical experi-
ment for a fictional but close to reality biogas plant is generated. This biogas plant is less than 20 years in operation.
The specific biogas plant characteristics are depicted in Table 3.7. A rather medium biogas plant with a steady gas
production rate of 700 Nm3/h and a currently installed CHP plant capacity of 1500 kWh is assumed. Furthermore,
a rated output of 75 % of the currently installed capacity is presumed. One Nm3 biogas can be used to produce
1.52858 kWh of electricity. Moreover, the biogas and electricity production costs of the analyzed biogas plant are
ascertained with cG = 0.08 EUR/kWh and cE = 0.02 EUR/kWh. For discounting an interest rate of 2.76 % is
assumed. (Deutsche Bundesbank, 2017) In order to calculate the terminal value at the end of the planning horizon,
reducing balance depreciation with a yearly depreciation rate drs with s ∈ Φ∗t is used. As given in Table 3.7 the
yearly depreciation rates start with 30 % in the first year and end up with 7 % in the fifth. This is justified by the
reason that machines like CHP plants have a higher loss of value in the first years of operation.

Table 3.7: Biogas plant specific input data

a 1.52858 kWh/Nm3

Beminit 75 % of CapC

cE 0.02 EUR/kWh
cG 0.12 EUR/Nm3

(=0.08 EUR/kWh)
CapC 1500 kWh
d p 700 Nm3/h
i 2.76 % p.a.

drs 0.30 0.21 0.15 0.10 0.07
s 1 2 3 4 5

It is explained in Section 3.4 that several discrete investment alternatives are distinguished within the developed
optimization model. For the current calculations, 12 different storage versions and 12 different CHP plant versions
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are assumed. The specific capacities and the related amount of investments are shown in Table 3.8. The amount
of investments for additional CHP plants is based on the published information by the FNR. (FNR, Fachagentur
Nachwachsende Rohstoffe e. V., 2017) The amount of investments for the biogas storages is based on prices from
manufacturers. For both investment decisions is assumed that there is an alternative 1, which means that the plant
design will not be changed. Furthermore, economies of scale are considered regarding the amount of the invest-
ments. In addition to the described investments, a fixed infrastructure investment of 220,000 EUR is considered
within the model, if one of the storages and/or CHP plants is installed. As explained, an investment alternative is
characterized by a combination of one CHP plant capacity extension and one biogas storage. Accordingly, using
12 different versions each, 144 investment alternatives would be possible. However, since there is additionally
assumed that the size of the biogas storage has to be large enough compared to the CHP plant capacity to keep the
plant at least two hours running, only 128 possible investment alternatives are remaining. The planning horizon
(T ) is 5 years. The investments depreciation time (DeT ) is 10 years.

Table 3.8: Investment alternatives

j CapS
j CCadd

j I j j CapS
j CCadd

j I j j CapS
j CCadd

j I j

1 0 0 0 44 40 1.5 1507.8 87 40 3.5 2247.7
2 5 0 295 45 45 1.5 1517.8 88 45 3.5 2257.7
3 10 0 359 46 5 2 1530.6 89 10 4 2284.4
4 12 0 370 47 10 2 1594.6 90 12 4 2295.4
5 15 0 390 48 12 2 1605.6 91 15 4 2315.4
6 18 0 410 49 15 2 1625.6 92 18 4 2335.4
7 20 0 420 50 18 2 1645.6 93 20 4 2345.4
8 25 0 440 51 20 2 1655.6 94 25 4 2365.4
9 30 0 455 52 25 2 1675.6 95 30 4 2380.4

10 35 0 470 53 30 2 1690.6 96 35 4 2395.4
11 40 0 480 54 35 2 1705.6 97 40 4 2405.4
12 45 0 490 55 40 2 1715.6 98 45 4 2415.4
13 5 0.5 803.8 56 45 2 1725.6 99 10 4.5 2435.2
14 10 0.5 867.8 57 5 2.5 1720.3 100 12 4.5 2446.2
15 12 0.5 878.8 58 10 2.5 1784.3 101 15 4.5 2466.2
16 15 0.5 898.8 59 12 2.5 1795.3 102 18 4.5 2486.2
17 18 0.5 918.8 60 15 2.5 1815.3 103 20 4.5 2496.2
18 20 0.5 928.8 61 18 2.5 1835.3 104 25 4.5 2516.2
19 25 0.5 948.8 62 20 2.5 1845.3 105 30 4.5 2531.2
20 30 0.5 963.8 63 25 2.5 1865.3 106 35 4.5 2546.2
21 35 0.5 978.8 64 30 2.5 1880.3 107 40 4.5 2556.2
22 40 0.5 988.8 65 35 2.5 1895.3 108 45 4.5 2566.2
23 45 0.5 998.8 66 40 2.5 1905.3 109 10 5 2580
24 5 1 1087.9 67 45 2.5 1915.3 110 12 5 2591
25 10 1 1151.9 68 5 3 1896.7 111 15 5 2611
26 12 1 1162.9 69 10 3 1960.7 112 18 5 2631
27 15 1 1182.9 70 12 3 1971.7 113 20 5 2641
28 18 1 1202.9 71 15 3 1991.7 114 25 5 2661
29 20 1 1212.9 72 18 3 2011.7 115 30 5 2676
30 25 1 1232.9 73 20 3 2021.7 116 35 5 2691
31 30 1 1247.9 74 25 3 2041.7 117 40 5 2701
32 35 1 1262.9 75 30 3 2056.7 118 45 5 2711
33 40 1 1272.9 76 35 3 2071.7 119 10 5.5 2719.7
34 45 1 1282.9 77 40 3 2081.7 120 12 5.5 2730.7
35 5 1.5 1322.8 78 45 3 2091.7 121 15 5.5 2750.7
36 10 1.5 1386.8 79 10 3.5 2126.7 122 18 5.5 2770.7
37 12 1.5 1397.8 80 12 3.5 2137.7 123 20 5.5 2780.7
38 15 1.5 1417.8 81 15 3.5 2157.7 124 25 5.5 2800.7
39 18 1.5 1437.8 82 18 3.5 2177.7 125 30 5.5 2815.7
40 20 1.5 1447.8 83 20 3.5 2187.7 126 35 5.5 2830.7
41 25 1.5 1467.8 84 25 3.5 2207.7 127 40 5.5 2840.7
42 30 1.5 1482.8 85 30 3.5 2222.7 128 45 5.5 2850.7
43 35 1.5 1497.8 86 35 3.5 2237.7

CapS
j in 1000 Nm3; CapCadd

j in 1000 kWh; I j in 1000 EUR
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3.5 Application of the deterministic SBPP model in an uncertain environment

The parameters of the previously developed forecasting model (Section 3.5.1.1) are forecasted from historical
data of the day-ahead market prices during the years 2011 to 2014. The character of those prices is explained in
Section 3.2.4. In that section, the prices from 2011 to 2015 are analyzed. In order to forecast and test the necessary
parameters using time series decomposition, the available data of five years has to be divided into a learning and a
test set. Thus, the years 2011 to 2014 are used as a learning set to find estimators for the parameters. Afterward,
the performance of the estimators in the forecasting function is tested using data from 2015 by calculating the
mean squared error (MSE). (Hüttner, 1986) It is possible to model all previously explained characteristics of the
spot market prices this way. Nevertheless, a forecasting error appears. The distribution of the resulting forecasting
errors is characterized by a normal distribution with an expected value µ = 0 and standard deviation σ = 10.409.
As the expected value of the resulting forecast error is zero, the standard definition of the coefficient of variation
σ

µ
cannot be applied to express the forecast quality. Thus, we set the forecast error of the previously mentioned

price forecast in relation to the mean spot market price instead and denite this key performance indicator as cov. It
serves as a percentage measure of forecast quality and of price uncertainty. By doing so, a cov = 0.3291 results.
This low value of cov shows a low variation of the forecast errors and emphasizes the good quality of the forecast.

By varying cov, new time series forecasts - for example with a worse forecasting quality expressed by a higher
cov - can be simulated. The time series, based on the previously explained optimized estimators, serves, in the
remainder, as the base scenario to compare several scenario depending outcomes. That means that this time series
shows the most probable development of the spot market prices (“probable case” in Figure 3.10), if there are no
market influencing changes in the future. The influence of these changes is included using further scenarios (e.g.,
best and worst cases in Figure 3.10) and analyzed in the next section.

3.5.3 Effects of uncertainties

In order to analyze the effects of the examined uncertainties, several further scenarios are generated. In Section
3.5.3.1 a varying quality of the spot market price forecasts and varying characteristics of the forecast model’s
different parameters are simulated. Throughout this section, the "probable case EEG" (see Figure 3.10) is assumed
to hold. At first, the uncertainty regarding the forecast error is modeled using scenarios. Hence, three scenarios are
compared to measure the influence of the forecast error. As a first scenario, the original prices of the day-ahead
market from 2011 to 2015 are used as input data. This scenario represents the case that a perfect forecast had been
made. (cov = 0; "best case" scenario with respect to the forecast quality of spot market prices, see Figure 3.10) The
second scenario represents the base scenario as constructed and explained in Section 3.5.2. (cov = 0.3291; most
probable forecast quality of prices) As a third scenario, the estimators in the forecasting function, which is used to
generate the base scenario, are adjusted in a way to increase the forecast error by 90 %. Thus, a very poor forecast
is generated. (cov = 0.6251; worst case forecast quality of prices)

Next in Section 3.5.3.1, the already mentioned uncertainties regarding the specific component parameter values
are investigated in some more detail. Therefore, at first, the level component parameter a is varied. Again, the
idea is to simulate extreme scenarios like the best and worst case. Hence, the forecast â of the price level is in-
and decreased by 90 % in order to derive a best and worst scenario. Similar scenarios are derived for the trend
component b. Here, a 90 % in- and decrease of the forecast b̂ of the trend component is distinguished. As the trend
parameter represents a decreasing process, an increase of the trend component represents faster decreasing prices
in the planning horizon. Additionally, a switched trend is considered. Therefore, the trend component is decreased
through the first years of the planning horizon and afterward reversed into an increasing trend. Moreover, the
uncertainty in each of the seasonality components is distinguished by a 90 % in- and decrease of the coefficients
of variation of the seasonal parameters. The variation of the intraday seasonal parameter is exemplarily depicted
in Figure 3.12. Here, the price curve within an exemplary week (from Monday to Sunday) is simulated for the
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3 Biogas plant optimization by increasing its flexibility considering uncertain revenues

original forecast and for the reduced resp. increased intraday seasonality. This way of generating scenarios is
similar to the idea of Wichmann et al. (2018).

In Section 3.5.3.2, the influence of the uncertainty regarding the flexibility premium is analyzed. Here, only
two scenarios are compared. Firstly, the best case (=base) scenario with granted flexibility premium is considered.
Secondly, the same price data is used, but it is assumed that the flexibility premium is not granted. (worst case)
Using all these developed scenarios, the effects of the explained uncertainties can be analyzed.

In both subsections, furthermore, the influence of deriving a wrong decision is analyzed. Therefore, at first,
the optimal decisions for each scenario have to be determined. (see Section 3.4.1 and Figure 3.10) Afterward,
the influence of choosing a wrong investment strategy can be measured. Therefore, the scenario optimal plant
configurations are fixed and, combined with the other scenarios, the resulting objective values are calculated.
The difference between the scenario optimal solution and the results of the non-optimal scenario plant design
combinations demonstrates the influence of a wrong decision.
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Figure 3.12: Price scenarios with different intraday seasonalities

3.5.3.1 Spot market price forecast

A numerical study is implemented in Python (2.7) to evaluate the optimization approach. The library Pandas is
applied for data analysis. The solver Gurobi (7.5.1) is used together with the Pyomo (5.2) modeling tool interface.
Experiments are run on a personal computer operated by Microsoft Windows 10 Professional, using an Intel CPU
with 2.49 GHz and 8GB RAM.

First, the effect of the quality of the spot market price forecast is analyzed. As presented in Table 3.9 the base
scenario builds a very accurate forecast because the objective value of the best case scenario with original spot
market prices is almost similar to the base scenario. There is only a difference of 0.59 % between the NPV in
the base scenario and the scenario with the original prices. If the forecasting error is increased by 90 % there is
a difference in the objective values of almost 15 %. Accordingly, it is important to generate an accurate forecast.
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3.5 Application of the deterministic SBPP model in an uncertain environment

Therefore, the component parts of the forecasting model should be separately analyzed.

The effects of the uncertainty within the specific components are depicted in Table 3.9 as well. It can be
observed that a variation of the level component’s forecast has no influence on the objective value. This is not
surprising, because if the level of the spot market prices is higher or lower, the market premium, defined as the
difference between the monthly average of the spot market prices and the EEG feed-in tariff, will be adversely
lower or higher. Thus, the generated revenues at the spot market consisting out of spot market price and market
premium will remain the same. The variation of the trend component b̂ shows a rather small percentage effect on
the objective value. However, an increase of 0.57 % (switched trend, see Section 3.5.3) of the NPV corresponds to
additional 13,000 EUR for the biogas plant operator, which are often small farmers. Hence, even a small change
can be relevant to them. The two scenarios regarding the intraday seasonality variation are leading to reverse
effects. If the intraday seasonality is decreased, the objective value is decreased by more than 5 %. In contrast,
if the intraday seasonality is increased, the objective value is increased by almost 8 %. Nevertheless, a variation
of the intraday seasonality leads to a significant effect on the NPV of the investigated investment decision. The
variation of the intraweek seasonality leads to a smaller effect than the intraday seasonality variation. However,
the influence is still measurable, but a change within the intraweek seasonality is rather unrealistic as mentioned
in Section 3.5.1. This is valid as well for the probability of a change in the intrayear seasonality. Even though, a
reduction of the intrayear seasonality leads to a significant loss of NPV. An increase does not lead to a significant
change because the potential biogas storages are too small to influence the long-term electricity production.

Table 3.9: Effect of forecast error, level, trend and seasonal components on the objective value

forecast error level trend
red. incr. red. incr. red. incr. switch

-0.59 % -14.66 % 0.00 % 0.00 % 0.23 % -0.06 % 0.57 %

intraday intraweek intrayear
red. incr. red. incr. red. incr.

-5.56 % 7.83 % -1.02 % 2.00 % -5.56 % 0.02 %

variation in % compared to base scenario with NPV = 2,362,156 EUR

The effects of deriving a wrong decision are depicted in Table 3.10, based on a variation of the forecast error.
Here, the scenario-optimal investment strategies j are calculated for each scenario. (see Section 3.4.1 and Figure
3.10) Thus, three scenario-optimal investment strategies are derived (2, 120, 128). For all of the three scenarios and
all of the three investment strategies, the objective value is calculated and the percentage difference to the optimal
solution NPV* is measured. It can be concluded that taking the wrong decision, based on an inaccurate price
forecast, can lead to a significant loss of NPV. Especially, if the scenario-optimal decision and the made decision
are extremely different like investment alternatives 2 and 120. To conclude, it is important to model all significant
sources of uncertainty in the spot market prices within scenarios to find a robust solution, because an inaccurate
forecast can lead to a significant loss of revenues for the biogas plant operator. The significant influences are the
trend, the three seasonalities and the quality of the forecast in general.

Table 3.10: Effects of wrong decisions - forecast error

forecast error
j base scenario red. inc.

120 - -2.29 % -7.11 %
128 -1.56 % - -7.17 %

2 -5.69 % -1.59 % -

variation in % compared to the scen. opt. alt.

73



3 Biogas plant optimization by increasing its flexibility considering uncertain revenues

3.5.3.2 Flexibility premium

Apart from the uncertain influences based on the spot market prices, the effect of the flexibility premium on the
objective value is investigated. Therefore, the resulting NPV is compared using the best and worst case scenarios -
granted and not granted flexibility premium. Compared to the optimal NPV* of the optimal investment strategy j =
120 of the base scenario, assuming to get the flexibility premium, a denial of this grant would lead to a tremendous
loss of 88.72 %. Hence, the uncertainty within the flexibility premium determines the major influence on the
investment decision compared to the other uncertainty sources.

Similar to the last subsection, effects of deriving a wrong decision are depicted in Table 3.11, based on granting
or not granting of the flexibility premium. Therefore, the optimal decisions are derived for all of the previously
mentioned price scenarios concerning the forecast error, level, trend, intraday, intraweek and intrayear seasonality
combined with the best and worst case of the flexibility premium. Using these I = 26 scenarios, the following J’ =
6 (see Figure 3.10) scenario optimal investment strategies can be derived: 2, 119, 120, 121, 126, 128. The values
in Table 3.11 are generated using the base scenario for the spot market prices and the two scenarios of a granted
or not granted flexibility premium. They show the variation in % of the objective value of a given investment
strategy within the base scenario and an EEG-scenario, to the optimal objective value in this price-EEG-scenario
combination. The base scenario optimal strategy with a granted flexibility premium is j = 120, resp. j = 2 if the
flexibility premium is not granted. The results disclose that the investment decision depends strongly on the (un-)
approval of the flexibility premium. If the flexibility premium is granted, typically an investment strategy with
a large CHP plant extension and a large biogas storage is chosen. If not, only a small biogas storage should be
built and no additionally CHP plant capacity should be installed. (investment strategy 2) Significant losses can
be observed if the flexibility premium is granted and a non-optimal decision is derived. If the flexibility premium
is not granted, the losses resulting out of non-optimal decisions are tremendous. For this reason, this analysis
shows as well that the uncertainty within the flexibility premium determines the major influence on the investment
decision.

Table 3.11: Effects of wrong decisions - flexibility premium

deviation of NPV
granted flex. prem. not granted flex. prem

j

2 -5.69 % -
119 -0.24 % -85.34 %
120 - -85.02 %
121 -0.01 % -85.04 %
126 -0.99 % -86.34 %
128 -1.56 % -87.09 %

NPV*(base scen.; no grant) = NPV*(j = 2) = 1,778,597 EUR
NPV*(base scen.; grant) = NPV*(j = 120) = 2,362,156 EUR

3.5.4 Robust investment decision under uncertainty

After analyzing the sources of uncertainty and their effect on the optimal investment decision, the significant
ones are used to derive a robust decision under uncertainty. As explained previously, the accuracy of the forecast
as a whole, the trend and seasonal components and the uncertainty of the flexibility premium are identified as
significant.

In order to reach the goal of giving decision support for the mentioned investment problem, the developed
multi-stage approach, as depicted in Figure 3.10, is used to derive solutions. The first step, finding and building of
sufficient price scenarios, is already finished. Thus, scenario optimal solutions can be generated using the identified
significant scenarios and the developed SBPP model. Aforementioned, the significant sources of uncertainties
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lead to 11 scenarios, because the forecast accuracy is considered implicitly by varying the component parameters
concerning trend and seasonality. Using those scenarios, the same six scenario optimal investment strategies as
in the last subsection can be derived. For instance, the investment alternative 120 means that a gas storage with
capacity 12,000 Nm3 and additional electrical excess capacity with 5,500 kWh is installed. As the aim is to derive a
robust solution concerning all scenarios, the solutions of all scenarios have to be compared. Hence, the determined
solutions for the scenario-optimal investment strategies are fixed and the model is solved again for all scenarios
and all six gathered plant designs. The results of these calculations are depicted in a solution matrix in Table 3.12.

Table 3.12: Scenario optimal results and evaluation using decision theory

base scenario
gran. not gran. trend intraday intraweek intrayear

flex. pr. flex. pr. red. inc. switch red. inc. red. inc. red. inc.

j

2 30.11 3.88 30.34 29.93 30.89 27.11 30.11 29.35 31.44 30.10 30.13
119 37.63 -84.78 37.98 37.57 38.42 30.05 37.63 36.59 39.87 37.63 37.65
120 37.96 -84.44 38.28 37.87 38.75 30.29 37.96 36.56 40.72 37.96 37.98
121 37.94 -84.46 38.23 37.83 38.73 30.18 37.94 36.00 41.44 37.95 37.97
126 36.60 -85.81 36.74 36.35 37.39 28.61 36.60 32.74 43.08 36.62 36.62
128 35.81 -86.59 35.93 35.56 36.61 27.80 35.81 31.81 42.63 35.83 35.83

flex. premium not granted flex. premium granted

Maximin Hurwicz Maximin Hurwicz
λ = 0.2 λ = 0.4 λ = 0.2 λ = 0.4

j

2 3.88 9.39 17.66 27.11 27.97 29.28
119 -84.78 -59.85 -22.45 30.05 32.02 34.96
120 -84.44 -59.41 -21.86 30.29 32.37 35.51
121 -84.46 -59.28 -21.51 30.18 32.44 35.81
126 -85.81 -60.03 -21.36 28.61 31.50 35.84
128 -86.59 -60.75 -21.98 27.80 30.77 35.22

deviation in % to EEG feed-in tariff within the planning horizon (1,712,173 EUR)

Within Table 3.12 the percentage deviation of the objective values, depending on the optimized operational
biogas plant schedule, the chosen investment strategy and the covered scenario, to the guaranteed EEG feed-in
tariff within the planning horizon is depicted. The EEG feed-in tariff represents the unadapted state of the biogas
plant, previous to a potential investment decision and thus the conventional plant design without an investment
and without direct marketing. Hence, this case is used as a reference strategy in order to normalize the objective
values in the solution matrix. The objective value of this reference strategy is 1,712,173 EUR, thus this strategy is
profitable. The given values in Table 3.12 demonstrate the deviations of the objective values considering a specific
investment strategy and scenario to the reference strategy in percent. For instance, the value of 30.11 for the
investment strategy 2 considering the scenario with a granted flexibility premium and the base scenario forecast
means that the resulting objective value is 30.11% higher as the reference strategy. Hence, additional revenues
would be generated. A negative value means that in the specific case fewer revenues are generated than with the
reference strategy. Accordingly, an investment and using of direct marketing would not be beneficial compared to
the base scenario. However, the objective values of all investigated strategy-scenario combinations are positive, as
there are no resulting changes smaller than −100%, which would lead to a negative NPV. For this reason, each of
the investment strategies itself is evaluated as beneficial because of the positive NPV. However, if the investment
strategies are compared to the reference strategy, the investment alternatives 119, 120, 121, 126 and 128 should
not be chosen if the flexibility premium is not granted, because the NPV of the investment strategy is lower as
in the reference scenario. Apart from the optimal choices of investment strategies, the results of the numerical
experiment show that in every scenario in which the flexibility premium is possible the premium is requested.
The influence of the flexibility premium on the results is demonstrated as well in Table 3.12. As given in the
table, the objective values are always higher if the premium is granted than otherwise. Additionally, each of the
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six investigated investment strategies is beneficial compared to the reference strategy if the flexibility premium is
granted. If not, high investments (119, 120, 121, 126, 128) are generally not beneficial compared to the reference
scenario.

In the last step of the developed multi-stage approach, a robust solution for a risk averse decision maker is
derived. Thus, the rules of decision theory are applied to the results in the solution matrix. Since the generated
scenarios are not rated with probabilities, a decision under uncertainty is necessary. Therefore, several decision
rules can be applied. However, as Scholl (2001) has revealed in an overview regarding decision theory, only the
Maximin rule and the Hurwicz’s decision rule lead to great solution robustness. (Scholl (2001), Chap. 4) With the
Maximin rule, only the worst scenario for every action (i.e., strategy) is considered. After that, the action is chosen
which is best among the worst. Hence, this decision rule represents a strong risk aversion of a very pessimistic
decision maker, always expecting the worst, but trying to make the best decision given this assumption. (Scholl,
2001) As depicted in Table 3.12 the decision tremendously depends on the granting of the flexibility premium. If
the flexibility premium is not granted, the investment strategy 2 is chosen. (no CHP plant extension, 5000 Nm3

biogas storage) If the flexibility premium is granted, the investment alternative 120 should be chosen. (5.500 kWh

CHP plant extension, 12000 Nm3 biogas storage)

As well as the application of the Maximin rule, the adaption of the decision rule of Hurwicz leads to high solution
robustness for a risk-averse decision maker. Therefore, a small risk parameter 0 ≤ λ ≤ 1 has to be assumed. λ

can be interpreted as follows: λ = 0 shows a strong risk aversion (same result as Maximin rule) whereas λ = 1
means that the decision maker has no aversion against risk. (Scholl, 2001),(Hurwicz, 1951) As the aim is to model
a risk-averse decision maker, values of λ = 0.2 and λ = 0.4 are assumed. Using the decision rule of Hurwicz, a
linear combination of the risk parameter λ and the worst, as well as the best scenario solution, is maximized. This
leads to the following calculation of the Hurwicz-criterion:

Φ( j) = (1−λ ) ·min
{

NPVji|i = 1, ..., I
}
+λ ·max

{
NPVji|i = 1, ..., I

}
(3.18)

Here j represents the different possible actions of the decision maker (investment strategies), i represents the
considered scenarios and NPVji is defined as the objective value in scenario i with strategy j. (Hurwicz, 1951)
The application of the Hurwicz criterion leads to the same results as the Maximin rule, if the flexibility premium
is not granted. If the flexibility premium is granted, the optimal decisions using the Maximin rule and the Hurwicz
criterion with λ = 0.2 and λ = 0.4 are slightly different. However, all of the chosen optimal decisions have in
common that the same CHP plant extension of 5.500 kWh is installed. Only the size of the biogas storage is slightly
different. As mentioned, an increasing parameter λ represents a decreasing aversion against risk. Accordingly,
with decreasing risk aversion a slightly larger biogas storage should be built.

Summarizing the previous results, it should be noted that the decision of the risk averse decision maker depends
heavily on the (un-) certainty of the flexibility premium. If the flexibility premium is truly uncertain, the optimal
decision would be a minor adjustment of the biogas plant design. If there are realistic chances that the flexibility
premium is granted, a high investment using alternatives 120, 121 or 126 would be optimal. Thus, the influence
of this subsidy on the decision is tremendous and the decision maker should try to get better information on the
chances that his request for the flexibility premium would receive a positive answer. The developed approach can
help to show such influences and gives an idea of the resulting consequences.
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3.6 Summary and outlook

In this paper, it was examined how biogas plants operated flexibly can help to balance volatility carbon-neutrally
and without using nuclear resources within the power grid, if the shares of renewable resources are increased. In
order to operate biogas plants flexibly, adjustments of the biogas plant configurations are necessary, which cause
investments. Thus, it is investigated how the technical biogas plant design can be modified to increase the flexibility
and reach a demand oriented power generation. The generated power should afterward be sold through direct
marketing at the power exchange EPEX Spot SE. Hence, the potential revenues at the spot market are characterized
by uncertainty. In order to support this strategic, long-term investment decision and generate a robust solution
for a risk-averse decision maker, a novel multi-stage approach considering uncertain revenues is presented. The
heart of the approach is a novel deterministic MILP model to support the investment decision (SBPP), consisting
out of investment decisions concerning biogas storages and additional CHP plant capacities, named investment
strategies. However, as the spot market prices are varying dynamically over time these variations, or stochasticity,
are considered by simulating several spot market price forecasts using times series decomposition and thus using a
deterministic optimization model in an uncertain environment. Therefore, the significant sources of uncertainties
were identified and analyzed. The spot market price forecasts are then used to optimize an operational plant
schedule. The resulting payments and payouts within the operational plant schedule are used to evaluate the
investment strategies.

The numerical experiments reveal that the investment decision depends not only on the development of the
spot market prices but also on the governmental subsidies, namely the flexibility and market premium. In terms
of the forecast of spot market prices, it is identified that the forecast accuracy is crucial for the success of an
investment strategy. In order to model relevant market developments in the future, it was discovered that it is
necessary to model trend and seasonal characteristics of the spot market prices. The uncertainty of the flexibility
premium determines the choice of doing an investment or not as well. If the flexibility premium is granted, a
high investment is chosen in any case of spot market price developments. If not, a small investment is chosen.
To conclude, the developed approach gives decision support to a risk-averse biogas plant operator who decides
about choosing direct marketing, producing electricity demand-driven and therefore an adjustment of the biogas
plant design. All governmental requirements and regulations of the German energy market are modeled and the
possible sources of revenues are distinguished. As well, the resulting payouts are considered. Hence, the long-term
investment decision can be supported by optimizing an operational schedule.

Nevertheless, there is potential for further research. As explained in Section 3.5, the probabilities of the dis-
tinguished scenarios should be considered to derive a more detailed solution. In the future, these probabilities
could be covered more precisely within the optimization model by applying stochastic variables using probability
distributions for market prices and subsidies. Accordingly, all scenarios and all investment alternatives could be
considered simultaneously to derive an optimal solution directly. However, this would lead to a stochastic opti-
mization model. In general, more effort in terms of computation time is necessary to derive an optimal solution for
a stochastic model than for a deterministic one.

The decision framework in this paper is characterized by several assumptions. One of these assumptions is the
steady gas production rate within the digester. Hence, the resulting biogas plant after the investment is a type II
plant. The analysis of the impact of a flexible biogas production rate on the investment decision and thus a type III
biogas plant can help to make the developed approach more applicable in practice. With a slightly flexible biogas
production, it could be possible to compensate for monthly intrayear fluctuations of the prices. Additionally, it is
assumed that only pre-defined combinations of single biogas storages and single CHP plant capacity extensions
can be chosen. A future model could consider the possibility to combine different CHP plants or biogas storages
more flexibly .
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Apart from the mentioned extensions, other extensions could cover the risk attitude of the decision maker using
the Conditional Value at Risk, the robustness of the solution using a robustness function, several energy markets
apart from the day-ahead market and the marketing of the produced heat as a second product. Moreover, in this
paper, the biogas plant is examined independently from other power plants, power storages or power consumers. It
could be beneficial to examine the biogas plant design within a network of other market participants in the future.
One possible concept to model a biogas plant within the network is to assume the biogas plant as part of a virtual
power plant. Here, other flexibility options, for instance, pumped-storage power plants, are considered besides the
biogas plant, which can lead to other design decisions.
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4 Operational and strategic optimization of biogas
plants based on variable substrate feeding

Abstract4 The share of electricity produced from renewable energy is constantly increasing in Germany and world-
wide to reach ambitious climate policy targets. In addition to the use of wind and solar energy, the energetic use of
biomass is a promising carbon-neutral alternative for the future. Furthermore, energy from biomass can be used as
a balancing power to compensate power supply from fluctuating sources, such as solar or wind, if the biogas plant
design is adjusted adequately. In order to achieve a flexibly schedulable biogas plant, the design of this plant has to
be adjusted to decouple the biogas and electricity production. Therefore, biogas storage possibilities and additional
electrical capacity are necessary. Additionally, the biogas production rate may be influenced operationally by vari-
able substrate feeding. This research addresses the strategic and operational decisions to increase the flexibility
of a biogas plant by installing biogas storages and additional electrical capacities under consideration of revenues
out of direct marketing on the energy spot market. In order to support these decisions, an operative plant schedule
for the future, considering (non-) linear technical characteristics and the legal framework is optimized. There-
fore, mixed-integer linear programming (MILP) models with integrated approximation approaches of non-linear
parts are constructed. Furthermore, the influences of fluctuating spot market prices, governmental subsidies, and
biomass feedstock prices on the decisions are analyzed for a fictional case example, which is based on a biogas
plant in southern Germany. These numerical experiments show that variable substrate feeding can play a decisive
role during the optimization of a biogas plant schedule as part of a long-term design optimization. However, the
size of the strategic optimization problem makes the use of a heuristic solution algorithm necessary.

Keywords Variable substrate feeding, Piecewise linear approximation, Rieman sums

4.1 Introduction

At the United Nations Climate Change Conference 2015 in Paris, ambitious climate policy targets have once again
been defined. In order to reach these targets, a mixture of actions has to be identified to push the utilization of
renewable energy resources and reduce carbon emissions. In addition to the use of wind and solar energy, the
energetic use of biomass is a promising carbon-neutral alternative for the future. In contrast to wind and solar
energy, which are characterized by a highly volatile and only partly controllable production, biomass can be used
to produce energy flexibly and demand-oriented. Hence, energy, produced demand-oriented using biogas plants,
can be used to balance the volatile energy production out of wind and solar energy. In Germany, for instance, the
shares of wind and solar within the energy mix are very high. Thus, the great potential of other flexible resources
is necessary to balance these shares.

As mentioned, energy production based on biomass in biogas plants can be one of several alternatives to stabilize
energy production. If energy is produced out of biomass, the competition with other biomass utilization pathways
has to be considered, because biomass is a scarce resource. (Fichtner and Meyr, 2017) Nevertheless, the potential

4This paper has been written by Stephan Fichtner (Department of Supply Chain Management, University of Hohenheim, Stuttgart).
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of biomass, for example in the form of residues, to reach a renewable energy production is significant. (Scarlat
et al., 2018)

In order to use this potential, it is necessary to run the existing biogas plants demand-oriented and flexibly. As
Fichtner and Meyr (2019) have shown, it is required in many cases to modify the biogas plant configuration first,
before a flexible energy production is possible. As depicted in Figure 4.1 the most predominant configuration of
biogas plants, located in Germany, is completely inflexible, as biomass is transformed into biogas using digestion
processes and this biogas is further burned in combined heat and power (CHP) plants to produce electricity and
heat with stable production rates. Hence, an adjustment of the configuration has to be made, as shown in Figure 4.2.
Fichtner and Meyr (2019) distinguish three possible flexible plant configurations, which can be reached. Within the
first configuration the biogas is upgraded and injected into the natural gas grid to decouple biogas and electricity
production. In the second configuration the two production processes are decoupled by a biogas storage. The third
configuration is an extension of the second one, in which the biogas production is flexibilized as well. What all
those configurations have in common is that investments are needed to adjust the conventional biogas plants. These
investments should then be amortized via revenues on the energy market. The major issue in this investment-
planning problem is that future revenues on the energy market are depending on market development and are
consequently uncertain. To deal with this uncertainty is a major part of the study by Fichtner and Meyr (2019).
During their work, they developed an optimization approach, which is used to optimize the plant configuration
based on future market earnings. The uncertainty of these earnings is considered using scenarios. The objective of
Fichtner and Meyr (2019) is to reach a type II biogas plant, as depicted in Figure 4.2.
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Figure 4.1: Conventional biogas plant configuration (see Fichtner and Meyr (2019))

Within this paper, the approach of Fichtner and Meyr (2019) is extended. The mentioned approach is charac-
terized by a multi-stage optimization procedure. In a first step, the operational biogas schedule is optimized to
calculate potential future earnings. These potential earnings have to be used later on to evaluate several biogas
plant configurations with respective investments. Thus, the optimization of the operational biogas plant schedule
is a crucial element of the strategic planning problem. The major part of this study is to include the process of
variable substrate feeding and the resulting volatile biogas production rate into the mentioned operational schedule.
Thus, a type III instead of a type II plant is considered. Variable substrate feeding means that the flow of biomass
into the digester is flexibilized. Thus, the inflow and as a consequence the biogas production processes are muta-
ble. The focus of this work is on the implementation of variable biogas production rates in the OBPP (operational
biogas plant problem) model of Fichtner and Meyr (2019) and the evaluation of resulting economic effects. In a
second step, the conclusions regarding the consideration of variable substrate feeding in the optimized operational
schedule can be used for the strategic optimization. On the basis of the mainly bio-chemically or technically ori-
ented existing literature regarding variable substrate feeding, the extension is considered to be beneficial, because
the realization of such a flexible biogas production can reduce the necessary biogas storage capacities and thus the
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related investments.

The remainder of this paper is organized as follows: In Section 4.2, a technical overview of biogas production
using variable substrate feeding is given. Subsequently in Section 4.3 relevant literature is analyzed. Within Section
4.4 the OBPP and SBPP (strategic biogas plant problem) models by Fichtner and Meyr (2019) are extended and
approximation approaches regarding non-linear biogas production rates are introduced. The extended models are
then tested using numerical experiments in Section 4.5. Finally, Section 4.6 summarizes the results and identifies
opportunities for further extensions or general future research.
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Figure 4.2: Further biogas plant configurations (see Fichtner and Meyr (2019))

4.2 Variable substrate feeding in biogas plants

In Section 4.2 an overview of variable substrate feeding in biogas plants, in particular an overview of the biogas
plant functionality and the challenges and opportunities in the German energy market, is given.

4.2.1 Biogas plant functionality

Aforementioned in Section 4.1, several biogas plant configurations can be distinguished. These configurations
are depicted in Figures 4.1 and 4.2. As mentioned, the conventional biogas plant design is characterized by great
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inflexibility. In this conventional case, biomass as a substrate is used to produce biogas through a combustion
process in a digester. Afterward, the produced biogas is directly burned in a CHP plant to produce electricity and
the by-product heat. The biogas production within the digester is continuous. If the biogas production rate is
greater than the available biogas capacity in the storage plus the amount burned in the CHP, the excess gas has to
be burned using a torch.

The ability for demand-oriented electricity production is according to Mauky et al. (2015) dependent on several
factors. Several characteristics, which can be adjusted, are the type and capacity of biogas usage, the gas storage
capacity on-site, the type of conversion process, and the substrate feeding management. The applications of these
possible adjustments end up in the flexible biogas plant configurations, which are shown in Figure 4.2. It is either
possible to upgrade the produced biogas to biomethane, inject it into the natural gas grid and use the grid as a gas
storage (type I), decouple biogas and electricity production by installing biogas storage and additional electrical
capacity (type II) or to decouple biogas and electricity production and additionally flexibilize the biogas production
itself (type III). (Fichtner and Meyr, 2019) As explained in Section 4.1, the objective of this paper is to investigate
the adjustment of a conventional biogas plant into a type III plant.

The important difference between a type II and a type III biogas plant is the flexibility of the biogas production
process. Here, greater flexibility of the digester can be achieved by an adequate variable substrate feeding man-
agement related to the degradation kinetics of the used substrates. (Ahmed and Kazda, 2017) Traditionally, biogas
plants are operated with a continuous feed and constant feedstock mixture. Thus, the biogas is produced with a
constant rate and high efficiency. (Ertem et al., 2016) If the biogas production process should be influenced, this
can be achieved by a variation of the substrate-feeding interval, the substrate type, and the feeding quantity. Hence,
the biogas production can follow a demand pattern. The digestion times of different substrates vary from several
hours up to several days. In order to increase the biogas production rate, easily degradable substrates can be used.
A pre-conversion of the used substrate through a biomass transformation from solid into liquid biomass can help
to speed up the digestion processes but is not necessary. (Hahn et al., 2014) Studies published by Mauky et al.
(2017) and others show that the biogas production rate increases after a feeding event until a production peak is
reached, afterward the biogas production rate decreases rapidly before it turns into a stable decrease. (see Figure
4.3) The time until the peak is reached and the amplitude of the effect depend on the specific biomass feedstock.
If a biogas plant operator pursues the goal of increasing the biogas production rate for a permanent period of time,
the frequency of the feeding events should be increased. Nevertheless, the maximum production of the digester is
limited because if the digester is permanently fed with new substrate, which means that the time between substrate
feedings is nearly zero, the maximum production is reached. Several biomass feedstocks can be used simulta-
neously in co-digestion. The biogas production rate in total is not influenced by the mixture of the co-digested
substrates. In contrast, the specific biogas production rates per feedstock can be linearly summed up. (Ertem et al.,
2016)

Aforementioned, the effect of variable substrate feeding is realized during the digestion process in the digester.
This digester is typically characterized by its size, and the used technology, for instance, in terms of the used
agitator, mixing or feeding systems. The digestion process is depicted in Figure 4.4 as an input-output-process.
Used inputs are one or several biomass feedstock types, measured in kg and m3, the usage of the digester as a
production factor in time units (TU) and microorganisms in pieces (pc), which control the digestion processes.
This biomass is feed into the digester, which is due to its size characterized by a capacity, which is typically
measured in m3. The feeding process is hard-constrained by the capacity, because with every feeding event the
amount of fed substrate is automatically obtained using a spillover. Thus, the filling level within the digester is
constant in a steady-state system. Outputs of the process are biogas, measured in Nm3 and digestion residuals in
liquid and solid state, measured in l or kg. Typically, these residuals are used as fertilizers in agriculture.

Concerning the inputs, it is important to investigate the proportion of input quantities (measured in kg) compared
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Figure 4.3: Characteristic variable biogas production rates (Mauky et al., 2017)

to the digester size. Therefore, density or volumetric weight is used. This measure defines the weight in kg per
required space in m3. Typical densities are for example 700 kg/m3 for maize silage or 500 kg/m3 for grass silage.
(Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V., 2018) These densities have to be compared to
the digester size given in m3. Even small biogas plants, like the one which is investigated in Section 4.5, can be
characterized by digestion volumes of around 900 m3. Hence, a tremendous amount of feeding is possible and the
substrate is only disposed by the spillover after the digestion process is finished. This is realized by a biomass feed
in at the bottom of the digester. Through further feedings, the previously contained biomass is transported to the
top and is finally discharged through the spillover after completion of the digestion process. The agitator ensures
that new fed substrate is digested first and not directly extracted using the spillover. In terms of outputs, the above
explained characteristics apply. This means that the total gas yield and the time, which is needed to produce this
gas, depends on the fed substrate.

Because the capacity is hard-constraint, a maximum feeding quantity had to be assumed. (Mauky et al., 2016)
However, this maximum quantity is never binding because there is a more restrictive constraint concerning mi-
croorganisms. The biology in the digester is characterized by several microorganisms. Too much substrate input
can destroy them. Hence, a maximum feeding quantity per time unit has be assumed to ensure, that the biology is
not overloaded and the maximum production of the digester is considered.

4.2.2 Challenges and opportunities

The market conditions in the German energy market determine the framework for market participation oppor-
tunities of a biogas plant operator. Generally, there are several possibilities to participate in this market. The
regulations of the energy market are defined in the renewable energy resources act (EEG). Firstly, a biogas plant
operator can take the EEG feed-in tariff, which is a fixed compensation per kWh of produced electricity in the first
20 years of plant operation. As the majority of the existing plants are running with a conventional and inflexible
configuration, these plants mostly use this way of participation. All other market participation possibilities require
a flexibly schedulable operation of the biogas plant. These market participation possibilities can be subsumed as
direct marketing. Here, it is either possible to participate in one of the three reserve markets, or in one of the
markets at the energy exchange. At the energy exchange, the long-term option market, the day-ahead market, and
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the intraday market can be distinguished. (Fichtner and Meyr, 2019)

A biogas plant operator of an existing plant, which is less than 20 years in operation, has several incentives
to participate in direct marketing. The German government offers the first incentives. Here, the biogas plant
operator can request two subsidies, market premium and flexibility premium. The market premium is a quantity-
based subsidy while the flexibility premium is a capacity-based subsidy. Apart from these subsidies, the biogas
plant operator has the opportunity to generate more earnings because of fluctuating energy spot market prices. As
extensively explained by Fichtner and Meyr (2019) the prices at the energy spot market are characterized by three
seasonalities (intrayear, intraweek, intraday). These fluctuations can be used to produce and sell electricity in high
price periods, in order to generate as many earnings as possible. (Fichtner and Meyr, 2019)

Aforementioned, it can be beneficial for a biogas plant operator to participate in direct marketing. However,
therefore a flexible biogas plant configuration, as given in Figure 3.3, is necessary. Fichtner and Meyr (2019) have
shown how a conventional biogas plant can be adjusted to a type II plant, to participate in the day-ahead market.
Nevertheless, further potentials exist by reaching a type III instead of a type II plant. If the biogas production
process is flexibilized, less biogas storage capacities are required, because the biogas production is more similar
to the biogas usage as input of the demand-oriented electricity production in the CHP plants. The reduction of the
necessary storage capacity decreases the total investment for the plant adjustment as well. (Grim et al., 2015)

In order to support the investment decision of adjusting a conventional biogas plant to a type III plant, several
challenges have to be mastered. In contrast to the study of Fichtner and Meyr (2019), the biogas production
process has to be explicitly modeled. As explained, previous studies have shown that substrate management can
influence the biogas production rate. However, the reactions of the production rate can be retarded or non-linear.
(Grim et al., 2015; Mauky et al., 2015) These characteristics have to be included in the mixed-integer linear
optimization models. Additionally, the costs of variable substrate management have to be included. Here, variable
costs for the substrate, fixed costs for each feeding event, and variable costs of the biogas production have to be
distinguished, while the latter ones depend on the efficiency of the digester, which can be defined as the ratio
of biomass input and biogas output. However, the efficiency of the digester is not fixed, if a variable substrate
feeding is applied. Thus, the efficiency has to be modeled based on the current substrate mixture in the digester.
To conclude, several extensions of the OBPP and SBPP models in terms of the biogas production process are
necessary. These extensions are explained in Section 4.4.
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4.3 Literature review

The objective of this work is to optimize the operational schedule of a biogas plant economically, while variable
substrate feeding is applied. Thus, a type III biogas plant configuration is considered. The scheduling of the feeding
events depends on the fluctuation of the energy spot market prices and thus the opportunity to generate as high
earnings as possible. As in the approach of Fichtner and Meyr (2019), such an optimized operational schedule is
necessary to strategically optimize the biogas plant design regarding the biogas storage and the additional electrical
capacity.

Fichtner and Meyr (2019) have already extensively dealt with the economic and technical modeling of the biogas
plant characteristics, the legal circumstances, and the strategic investment decision using an optimized operational
schedule and the related literature. Their approach occupies a unique position, because – compared to related
literature – uncertain spot market prices are considered in the operational and strategic planning problems using a
scenario approach. In order to economically optimize the operational biogas plant schedule considering variable
substrate feeding, the approach by Fichtner and Meyr (2019) is used as a basis. To include a variable biogas
production in this approach, further – rather technically focused – literature with the focus on the variable substrate
feeding process is analyzed.

This further literature is evaluated concerning the following categories, given in Table 4.1: Firstly, the research
scope of the investigated publications is analyzed. An analysis of variable biogas production in the digester (dp), an
adjusted plant design (pd) based on the variable biogas production, the monetary implications of variable substrate
feeding for the biogas plant operators (mon) and an operations research-based optimization (opt) of the operational
schedule or the biogas plant design are distinguished. Secondly, the type of considered biomass feedstock is ex-
amined. The following nine biomass feedstocks are distinguished: Briquetted meadow grass (bmg), cattle manure
(cm), cattle slurry (cs), effluent (effl), grass silage (gs), ground wheat grain (gwg), maize silage (ms), sugar beet
(sb) and sugar beet silage (sbs). Additionally, the technical digestion method is analyzed. Therefore, a conventional
continuously stirred tank reactor (CSTR) and adjusted digesters (adj.) are distinguished. Continuously stirred tank
reactors are used as a common model for chemical reactions in the field of chemical engineering. Such a reactor is
equipped with a mixing device to ensure efficient mixing of the substrate and often used as an idealized model of
a tank reactor. (Schmidt, 1998) Adjusted digesters mean that the current digester setup (CSTR) has to be changed,
for instance concerning the used filters or leach beds. (Linke et al., 2015; Lemmer and Krümpel, 2017) Besides, it
is checked whether the respective study is executed within a full-scale or lab-scale system. Furthermore, the reac-
tion time of the biomass production rate after a feeding event is measured. Finally, the literature is classified into
long- (intrayear, year), mid- (intraweek, week), and short-term (intraday, day) variations of the biomass production
rate.

Within the first publication by Grim et al. (2015) the influence of variable substrate feeding in the context
of demand-oriented electricity production in biogas plants on the necessary biogas storage capacity is analyzed.
Using several scenarios of the Swedish market, the conclusion was that the required storage capacity could be
reduced using variable substrate feeding. An optimization of the operational biogas plant schedule or the plant
design is not executed. Linke et al. (2015) investigated the technical potential of an innovative reactor for demand-
oriented electricity production within a biogas plant. In this study, several feeding patterns are compared. As a
conclusion, the authors are able to generate a robust and reliable biogas production rate. No economic effects or
implications on the biogas plant design are considered. Within the study of Mauky et al. (2015) the objective was
to identify feeding strategies for demand-driven energy supply in biogas plants. The lab-scale experiment shows
that the necessary biogas storage capacity can be theoretically reduced by flexible biomass feeding. Nevertheless,
this theoretical change is not economically analyzed or further optimized. Barchmann et al. (2016) analyzed the
additional increase of flexibility in a biogas plant using flexible substrate management. Here, the economic effects
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are analyzed on the basis of the German market using a cost-benefit-analysis for predefined production scenarios
consisting out of feeding and electricity production schedules. The conclusion of Barchmann et al. (2016) is that
the profits out of direct marketing can be increased using variable substrate feeding. However, no optimization on
the basis of uncertain spot-market prices is achieved. The published study by Mauky et al. (2016) is a full-scale
application and thus an extension of the previously explained study from 2015. In this case, the main objective
of the model is to identify the optimal sequence of feedings into the digester. Without evaluating the economic
effects or optimizing the adjustment, the authors show technically that the necessary biogas storage capacity can
be reduced using variable substrate feeding. Ahmed and Kazda (2017) analyze the demand-oriented electricity
generation based on just-in-time biogas production. Therefore, easily degradable substrates like sugar beet silage
are bio-chemically investigated. The result of the study shows that there is no time lag between the maximum
biogas and methane production rates. Economic effects are not considered. Lemmer and Krümpel (2017) analyze
possibilities to adjust the digestion techniques in order to realize an efficient variable biogas production without an
analysis of economic consequences. The study of Mauky et al. (2017) is as well closely related to the two ones
from 2015 and 2016. Within the study of 2017, a high level of intraday flexibility is demonstrated on full-scale.
As a result of the study can be concluded that the process stability is not influenced by a flexibilized substrate
feeding and thus a demand-oriented biogas production can be used to realize significant savings, for instance, in
terms of reduced biogas storage capacity. However, the size and economic value of these savings are not further
analyzed. Terboven et al. (2017) show in their technical study the development of a new biogas reactor for demand-
driven electricity generation. The results of the study show that this new reactor is well suited for flexible biogas
production. Economic effects are not considered. Feng et al. (2018) analyze the quality of the produced biogas
based on variable substrate feeding on a technical level in a lab-scale experiment. Their results show that different
biomass feedstocks lead to different reactions to the biogas production rate. However, it is possible to elevate the
biogas production rate in a short-term planning horizon. Economic effects on the biogas plant schedule or the plant
configuration are not included.

Variable substrate feeding is a rather new and innovative research area within the field of biomass use for energy
purposes. As given in Table 4.1 ten related publications from 2015 to 2018 are dealing with this issue. Only two
of these publications (Linke et al. (2015), Terboven et al. (2017)) consider only one biomass feedstock type. In all
of the other publications, at least two feedstock types are considered. Moreover, the majority of the publications
are based on conventional CSTR. Only in three studies (Linke et al. (2015), Lemmer and Krümpel (2017) and
Terboven et al. (2017)) the digester is technically adjusted. The shares of full-scale and lab-scale studies are
almost balanced. As given in the table, the reaction time of the biomass production rate on a feeding event is
always lower than 24 hours, if specified. Based on these short reaction times, in all of the mentioned publications
(except Terboven et al. (2017)) a mid- to short-term planning is possible. The existing literature is characterized by
a technical, bio-chemical, engineering focus. Thus, only in two publications economic effects of variable substrate
feeding are measured. In none of the publications an economic optimization is carried out.

To conclude, the literature concerning variable substrate feeding is still in its infancy. On the one hand, the
technically oriented research on variable substrate feeding is very limited. On the other hand – to the best of
our knowledge – no economically oriented literature exists, which considers variable substrate feeding in the
biogas plant optimization, independent whether operational or strategic. However, the literature shows that very
short reaction times of the biomass production rate are possible. These reactions seem to be independent of the
considered mix of biomass feedstocks and can be realized using conventional CSTR’s. These findings concerning
the reaction time cause a new insight into the potential of variable substrate feeding. The concept of variable
substrate feeding can be used to compensate for short- and mid-term intraday and intraweek fluctuations. Thus, it
can significantly influence the operational schedule of a biogas plant.

Since, as mentioned, the economic aspects of variable substrate feeding have not been sufficiently analyzed in
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Table 4.1: Related literature

digester scale reac. sched.
author research scope biom. feedst. CSTR adj. full lab time horizon

Grim et al. (2015) dp/-/mon/- cm, sb x x ≤ 6h week
Linke et al. (2015) dp/-/-/- ms x x - week

Mauky et al. (2015) dp/pd/-/- cs, ms, sbs x x ≤ 24h week
Barchmann et al. (2016) dp/-/mon/- cm, ms x x - week

Mauky et al. (2016) dp/pd/-/- cs, ms, sb, gs, gwg x x ≤ 1h week
Ahmed and Kazda (2017) dp/-/-/- gs, sbs x x ≤ 3h week

Lemmer and Krümpel (2017) dp/-/-/- effl, ms, gs x x ≤ 1h day
Mauky et al. (2017) dp/pd/-/- cs, ms, sb, gs, gwg x x ≤ 1h week

Terboven et al. (2017) dp/-/-/- sbs x x ≤ 1h -
Feng et al. (2018) dp/-/-/- ms, bmg x x ≤ 24h week

existing research, this will be done in the present study. Therefore, the approach by Fichtner and Meyr (2019) is
used as a basis for the operational and strategic biogas plant optimization. Additionally, the findings and conclu-
sions of the rather technically oriented studies out of Table 4.1 are used to combine the technical and economic
points of view. Especially, the assumptions and conclusions by Mauky et al. (2017) will be used to include the pro-
cess of variable substrate feeding into the operational (OBPP) and strategic (SBPP) optimization problems within a
biogas plant. The reasons are that Mauky et al. (2017) show that several biomass feedstocks can be used to realize
a reaction of the biogas production rate within a reaction time under one hour, which offers the possibility of a
short-term biogas production scheduling. The results are not restricted to a few feedstocks and as a consequence
general applicable for a lot of biogas plant operators, because the availability of feedstock types can be individually
different. Additionally, the study is executed within a full-scale plant with a conventional CSTR. If the digester
is technically adjusted, further investments are necessary. As the literature show, this adjustment is not necessary.
Hence, this investment decision will be neglected.

4.4 Optimization considering variable substrate feeding

In Section 4.4 variable substrate feeding is considered in the optimization approach of Fichtner and Meyr (2019).
Therefore, the variable biogas production rates are approximated in the first step in Section 4.4.1. In a second step,
this approximation is included into the optimization models OBPP and SBPP.

4.4.1 Approximation of variable biogas production rates

As explained in Section 4.2.1, the resulting biogas production rates based on variable substrate feeding follow a
non-linear pattern. In order to consider them in a linear optimization model, a linear approximation is necessary.
One popular approach to achieve such an approximation is the application of piecewise linearization. According
to the literature, various applications for piecewise linearization exist. For example, the following applications
may be mentioned: transportation costs, inventory costs, or production costs in supply chains. However, not only
non-linear cost functions can be approximated using piecewise linearization. Other applications can be found in
operation or production planning. (Lin et al., 2013) Several applications require several solution approaches. Thus,
the field of piecewise linearization combines several specific approaches for approximation. According to Birge
and Louveaux (1997), Bradley et al. (1992) and Domschke et al. (2015),these approaches can be divided into the
basic idea and possible variations. Generally, the idea is to approximate a non-linear function, given in Figure
4.5 as f (x), using a piecewise linear function L( f (x)). This piecewise linear function is characterized by several
segments or intervals (k = 0,1, ...,m− 1), which are limited by so-called break points (ak). These break points
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define the upper (ak+1) and lower boundary (ak) of the segment. Within a segment, the slope of the original non-
linear function is approximated by a linear one. Therefore, the slope (sk) within the segment is calculated using
the upper and lower break points as follows:

sk =
f (ak+1)− f (ak)

ak+1−ak
∀k (4.1)

f(x)

xa0 a1 a2 am…

s0

s1

sk
L(f(x))

Figure 4.5: Piecewise linearization (Lin et al., 2013)

Combining this information for all segments, the entire non-linear function f (x) can be approximated. Al-
though, several variations of this basic approach exist. In the example, depicted in Figure 4.5, the segments are
equidistant. This is not necessary. Sometimes it can be beneficial to chose the length of the segments according to
the characteristics of the non-linear curve. Regarding the example in Figure 4.5, for instance, the third and the fifth
break point could be neglected. Thus, the break points would be chosen according to the maximum and minimum
turning points of the curves, which results in different lengths of segments. An approach with non-equidistant
segments is discussed by Helber et al. (2013). Furthermore, the number of segments can be varied. In general,
more segments lead to a better approximation. However, they can increase the solution time of the problem, the
approximation is implemented in. The reason is that binary variables may be necessary to build the segments in
which the non-linear function is approximated by a piecewise linear one. These binary variables make the problem
much more difficult to solve. Therefore the best possible compromise must be found between the solvability of the
problem represented by the number of binary variables on the one hand, and the quality of the approximation on the
other hand. (Lin et al., 2013) Moreover, a distinction between an inner and outer linearization is possible. Within
Figure 4.5 an inner linearization approach is applied. In contrast, an outer linearization would use tangents outside
of the non-linear function to approximate the curve. (Bradley et al., 1992) Additionally, the approximation does
not necessarily have to be two-dimensional. Kressner (2017) used in his PhD thesis a three-dimensional approach.
In this case, a non-linear surface is approximated by linear planes. Another approach to increase the quality of the
approximation is the choice of the approximated non-linear function. In this work, non-linear biogas production
rates have to be approximated. Instead of approximating the biogas production rates directly, it could be beneficial
to approximate the absolute biogas production within a segment to decrease the approximation error. Thus, not the
slope of f (x) is approximated, but the integral of f (x) from ak to ak+1.

In order to evaluate the approximation error, the differences, or in other words residuals, between f (x) and
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L( f (x)) have to be investigated. As these differences can be positive or negative, a summation of absolute residuals
leads to a biased result. Thus, measures like the mean-squared-error (MSE) or root-mean-squared-error (RMSE),
normally used to evaluate forecasting errors, can be used to evaluate the quality of the approximation. In both
cases, the residuals are squared in a first step, thus, the resulting squared residuals are always non-negative.

In this work, it is necessary to approximate the non-linear variable biogas production rates, resulting by variable
substrate feeding. As depicted in Figure 4.3, these production rates are varying over time. Additionally, they are
different for each biomass feedstock and feeding quantity. In order to approximate each influence individually, an
approximation for each feedstock and each feeding quantity with respect to the time is necessary. Thus, a two-
dimensional approach (biogas production rate over time) is used. Additionally, an equidistant approach is chosen
with a segment length of one hour. This choice relates to the characteristics of the optimization models, explained
later on in Section 4.4. In these models, the granularity is hourly and fixed. In the remainder, two two-dimensional
approaches are compared. The first one is a direct approximation of the biogas production rate using a piecewise
inner linearization. The idea of the approach is depicted in Figure 4.6 chart a). The second approach does not
approximate the slope of the biogas production rate, but the produced biogas in total. Therefore, the area below
the curve is approximated. (see Figure 4.6 chart b))
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Figure 4.6: Approximation of variable biogas production rates (Mauky et al., 2017)

In Figure 4.6 chart a) the retrospectively observed biogas production rate (DP f (t)) with regard to the time t ≥ 0
after feeding is depicted. The new index f = 1, ...,F is used to differentiate between several biomass feedstocks.
The discretized microperiods after feeding are defined as γ = 0,1,2, ...,Γ. As shown, the biogas production rate
follows a non-linear pattern. In order to model this characteristic, the idea of piecewise linearization can be
used. That means that the development of the biogas production rate after a feeding event is split into discrete
time intervals. These time intervals are used to define equidistant segments to approximate the non-linear biogas
production rate. The total time after a feeding event Γ is defined as the influencing time of the fed substrate. Within
the first periods after a feeding event the biogas production rate is characterized by a fast in- and rapidly decrease.
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Afterward, an approximately constant decrease appears in the upcoming periods. In each segment after a feeding
event, the slope of the curve of the biogas production rate can be approximated with s f ,γ . The calculation is equal
to Equation (4.1) with a segment length of one. The slopes in the segments within the influencing time build up
the approximation of the non-linear biogas production rate, defined as L(DP f ). To conclude, the first approach
combines the idea of equidistant segments within an inner linearization.

In contrast to the explained first approach, the second one does not directly approximate the biogas production
rate. Instead, the produced biogas per segment is approximated. The produced biogas in total within the interval
[a,b], or in other words the area below the graph, shown in Figure 4.6 chart b), is defined as DP tot

f . The according
calculation is defined in Equation (4.2). Again, the function DP f (t) is defined as the digester production rate of
feedstock f after t time units after feeding.

DP tot
f (b) =

b∫
a

DP f (t) dt ∀ f (4.2)

In order to approximate the integral, representing the produced biogas in total, the idea of Riemann sums is
applied. (Riemann, 1867) Therefore, the time after a feeding event is again divided into equidistant segments
called γ . In each segment, rectangles can be used to approximate the area below the graph. The problem is, that
the height of the area within a segment is not constant. Thus, several possibilities exist to choose the height of
the rectangles: For example, either the highest or lowest point in each segment could be chosen. In case, the
highest point is chosen, the so-called upper Riemann sum (US) is applied. If the lowest point is selected, it is the
lower Riemann sum (LS). As one can see in Figure 4.6 chart b), the upper sum overestimates the produced amount
of biogas within a segment and the lower sum underestimates it. However, the real biogas production within a
segment has to be between US and LS. Thus, the approximation error is limited to the difference between US and
LS. In order to choose a specific approximation value within each segment, the average of US and LS is calculated.
This average represents the area in the middle between US and LS. Thus, the approximation of DP tot

f is defined as
A(DP tot

f ) in Equation (4.3). It is implicitly assumed, that the length of the segments is normalized to one.

A(DP tot
f (b)) =

b

∑
γ=a+1

US(DP f (γ))+LS(DP f (γ))

2
∀ f (4.3)

In order to evaluate the approximation approaches, the approximation error is measured, which is the difference
between the approximated values (for instance, L(DP f ) in approach a)) and the real values of the non-linear
function. To evaluate the performance of the approximation approaches based on several behaviors of biogas
production rates, three curves of fictional non-linear biogas production rates are assumed. For all three cases and
the two approximation approaches the MSE and RMSE of the approximation error is analyzed. The two forecast
quality measures are chosen to deal with both positive and negative deviations.

The three non-linear functions are used to model several possible behaviors of the biogas production rate with
an impact on the approximation quality. All of the used datasets are characterized by the mentioned rapid in- and
decreases of the biogas production rate, which are explained in Figures 4.3 and 4.6. The approximation of the
resulting peak after a feeding is intended. Therefore, an exemplary horizon of 100 periods is assumed, which are
divided into ten equidistant segments. The main difference between the three cases is the location of the production
peak. The differentiation is intended to represent different characteristics of substrates that do not necessarily
correspond to the idealized representation in Figure 4.6, where the production peak occurs exactly at a segment
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Table 4.2: Evaluation of approximation approaches

PL RS
MSE RMSE MSE RMSE

Peak 5 114.68 10.71 10.08 3.18
Peak 10 21.40 4.63 2.69 1.64
Peak 15 79.93 8.94 4.12 2.15

boundary. Thus, the influence of non-idealized cases can be measured. In the first case (Peak 10), the production
peak is reached after ten periods, which is equal to the break-point between the first and second segments. This
is an idealized assumption, which results in a very accurate approximation using piecewise linearization. In order
to model non-idealized cases as well, cases with a production peak after five periods (Peak 5) and after 15 periods
(Peak 15) are considered as well.

The results of the evaluation of the approximation approaches are depicted in Table 4.2. Here, PL represents
the approach using piecewise linearization, and RS stands for approximation using Riemann sums. As shown,
for all case-approach-combinations the MSE and RMSE are calculated. It is not surprisingly noticeable that both
approaches lead to the best results in the idealized case with a production peak after an entire segment. The
relative increase of the approximation error of the idealized case compared to the other cases is similar for both
approaches but slightly bigger if piecewise linearization is applied. Nevertheless, the approximation approach
using the Riemann sums performs better in every case.

In all of the three cases, biogas production rates between 0 and 150 Nm3/TU are assumed, which leads to
a biogas production in total of more than 400 Nm3 in the considered time horizon in each case. The approach
using Riemann sums performs better than the piecewise linearization. In order to measure the influence of the
approximation approach concerning the biogas production rates on the optimization, both approaches are applied
in the upcoming optimization models.

4.4.2 Extended optimization models

As identified in the related literature, the variability of the biogas production rate can influence the operational
scheduling and hence the investment decision to increase the flexibility of the whole biogas plant. In order to
investigate the economic influence of variable substrate feeding on a biogas plant optimization, the multistep
optimization approach of Fichtner and Meyr (2019) is extended. In particular, the SBPP and OBPP models are
adapted. Instead of modeling a type II biogas plant, characterized by a steady and inflexible biogas production
rate, in the remainder, a variable biogas production rate and thus a type III biogas plant is considered. As depicted
in Figure 4.2, the only difference between a type II and type III plant is the variability of the biogas production
rate.

The general procedure of the multistage optimization approach by Fichtner and Meyr (2019) will not be changed.
The changes relate only to the deterministic optimization part, which consists of the OBPP model to optimize the
operational biogas plant schedule and a strategic SBPP concerning the investment decision. The optimized opera-
tional plant schedules are used to evaluate several investment strategies in the strategic part. Within the following
extended models, the notation of the models by Fichtner and Meyr (2019) is adopted and adapted regarding the
mentioned extension concerning the biogas production rate. In the remainder, the extended models will be called
SBPP-VAR resp. OBPP-VAR, as they are a reformulation of the deterministic SBPP resp. OBPP models with vari-
able substrate feeding. The general idea within the optimization approach of Fichtner and Meyr (2019) remains
unchanged. That means that an untypical detailed modeling of the operational schedule is necessary to evaluate
the strategic investment decisions. The reasons for that characteristic are that, on the one hand, the design of gov-
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ernmental subsidies and on the other hand, the modeling of the development of the biogas production rate make
it necessary to simulate an operational schedule on a very detailed level. Thus, common aggregations in strategic
optimization models are not possible in this case.

t

biogas production rate 
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Figure 4.7: Quantity-depending scaling up and down

In the last Section 4.4.1 is discussed how the non-linear development of the biogas production rate after a
feeding of a specific feedstock quantity can be approximated. It is explained that the biogas production rate
changes during the time after feeding. In addition to this time-depending effect, a quantity depending effect has to
be considered. This effect is depicted in Figure 4.7. Here, the index n = 1, ...,N is used to define size categories
for feeding quantities f qn. These feeding quantities of a biomass feedstock can be interpreted similarly to lotsizes
in a production planning problem. In the given example in Figure 4.7, n = 2 numbers as a basic feeding quantity
f qn. Compared to this feeding quantity, the quantities in size category n = 1 are higher ( f̌ qn) resp. lower in case
of category n = 3 ( f̂ qn). The characteristic influence of the feeding quantity on the biogas production rate is as
follows. If more feedstock is fed into the digester, the characteristic increase of the biogas production rate and thus
the production peak is disproportionately high. Thus, the resulting biogas production rate after a feeding event
depends not only on the time after feeding, but also on the size category of the feeding quantity. Accordingly, the
approximation values for the biogas production rate can be adapted to consider the feeding quantity effect. Hence,
the adapted definitions are L(DP f ,n)

scale and A(DP tot
f ,n)

scale, where scale means that the quantity depending effect
of a feeding of category n is considered.

Aforementioned, the biogas production rate can be influenced by a feeding event for a limited time interval,
which is called influencing time in the remainder. The modeling idea of the influencing time is shown in Figure 4.8.
Within the figure, a timeline for the planning horizon is given. This planning horizon is divided into equidistant,
non-overlapping time periods s = 1, ...,S. Each time, a feeding event takes place, an influencing process on the
biogas production rate with a defined influencing time is started. Thus, the feeding event characterizes the starting
signal for the beginning of the influencing time. Additionally, a feeding event, characterized by a feeding quantity
of a feedstock type, is rated with costs, which cause payouts. The counter index γ = 0, ...,Γ is applied to define the
periods after a feeding event within the influencing time interval Γ. Only during this influencing time, the biogas
production rate is stimulated by the related feeding event. The influence on the biogas production rate within the
influencing time can be measured and approximated as discussed in Section 4.4.1. The produced amount of biogas
can subsequently be used to produce electricity demand-oriented. The selling of the electricity is then rated with
payments. Hence, the produced biogas can be rated with a future payment potential. Outside of the influencing
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time, no influence on the biogas production rate has to be measured. In order to calculate the accumulated influence
of several feedings on the biogas production rate in total within a specific microperiod s = η , it is necessary to
check whether this microperiod is part of one or several influencing times of previous feeding events. If this is
the case, the time after feeding has to be measured using γ . Applying this information on the approximation
approaches, explained in Section 4.4.1, leads to the specific influencing quantity on the biogas production rate. In
other words, the approximation approaches are necessary to obtain an idea of the development of the influencing
quantity on the biogas production rate. The modeling of the influencing time using the counter index γ as the
mentioned variable time grid is necessary to define the point in time within the approximated development.

s = 1 s = S

γ = 0 γ = Γ γ = 0 γ = Γ

γ = 0 γ = Γ

feeding feedingfeeding

s = η

Figure 4.8: Modeling of influencing time

Approaches to similar problems can be found in the literature. For instance Popp (1983) measures the effect
of sales signals as part of a strategic sales and investment planning. In this approach, the sales signal defines the
starting impulse of volatile demand effects within a limited time after the signal. Thus, the sales signals are similar
to the feeding events in the current work and the demand effects relate to the influenced biogas production rate.
Additionally, related problems can be found in literature concerning lotsizing considering ramp-up phases. In this
case, the feeding quantity can be interpreted as a specific production lotsize and the feeding event as the production
start of this lot. The ramp-up phase, typically characterized by an increased efficiency based on learning effects,
can then be interpreted as a limited time interval after production starts, similar to the influencing time. (Almgren,
1999; Fjällström et al., 2009; Glock et al., 2012; Matta et al., 2007) The major difference between the production
quantities during a ramp-up phase after starting a lotsize and the biogas production rate during the influencing
time is that production quantities in ramp-up phases are characterized by an increase until a steady-state system is
reached. After this point, the production quantities remain stable at this level. In contrast, the biogas production
rates within the influencing time are characterized by rapid in- and decreases, until the effect expires. Additionally,
in contrast to ramp-up phases, influencing times of feeding events can overlap as depicted in Figure 4.8. The
major similarity of both problems is the decomposition of the planning horizon into limited time intervals (ramp-
up phase, influencing time) and the remaining time and the measurement of effects only within these first time
intervals.

As explained during the previous sections, the consideration of variable substrate feeding leads to several exten-
sions and adjustments concerning the modeling. Therefore, further data is necessary. At first, a new time interval,
in contrast to the approach developed in Chapter 3, is needed to model the microperiods at one day. Therefore
the new index d = 1, ...,D for days and the new subset Φd ⊂ Φ, which defines the specific hours of each day, are

99



4 Operational and strategic optimization of biogas plants based on variable substrate feeding

included. The biogas production rate is no longer assumed as being constant. In order to model a variable biogas
production rate, it is necessary to define the flow of biomass feedstock into the digester. Therefore, it is necessary to
distinguish between different biomass feedstocks as substrate. As mentioned, the new index f = 1, ...,F is used to
differentiate between several biomass feedstocks. As previously explained, the counter index γ = 0, ...,Γ is applied
to define the periods after a feeding event within the influencing time interval Γ. Several biomass types can be used
as substrate in the digester. The costs for these types cF

f (in EUR/kg) have to be distinguished because they can be
different. For instance, the costs for biowaste are lower than for maize silage. The quantity-dependent costs of the
feeding into the digester, for example using a wheeled loader, are included in cF

f as well. In addition to the costs
for biomass feedstocks, operating costs for the digester cG in (EUR/h) and variable electricity production costs
within the CHP plant cE (in EUR/kWh) have to be distinguished. The feeding quantity of the substrate into the
digester is assumed as a variable. Aforementioned in Section 4.2.1, the digester capacity has not to be specifically
modeled. Nevertheless, in order to ensure biological process stability in the digester, the daily feeding quantity is
limited to XFDmax.

In addition to the previously considered indices and cost parameters, further parameters are necessary to model
the variable biogas production process within the digester using the two considered approximation approaches
PL and RS. In case PL is applied, the parameter α f ,n,γ is considered. This parameter represents the slope of the
approximated non-linear biogas production curve, defined as s f ,γ in Section 4.4.1, divided by the feeding quantity
of a feedstock type f out of size category n, and only defined for the periods during the influencing time. Thus,
the dimension of α f ,n,γ is Nm3/kg · h. As previously explained, several feeding quantities f qn of size categories
n in kg are distinguished. In case RS is applied, the parameter β f ,n,γ is considered. This parameter represents the
produced biogas quantity using a feeding quantity out of size category n of feedstock f within a period/segment
after feeding γ in Nm3/h.

Within the extended OBPP-VAR and SBPP-VAR models, compared to the OBPP and SBPP models, another
decision stage concerning the decision about variable substrate feeding is included. In order to model this decision,
the new variable XFD

f ,s ≥ 0 is used to model the flow of a specific biomass feedstock into the digester in kg in a
microperiod. Within the extended models, the biomass transformation process from solid biomass into liquid
biomass, shown in Figure 4.2, is not considered. It is assumed that several types of biomass are available, which
are characterized by different conversion rates. The choice concerning a biomass feeding of type f and size
category n in a microperiod s is represented by the binary variable FC f ,n,s ∈ {0,1}. In addition to the biomass
feedstock flow into the digester, the relationship between biomass feeding and biogas production has to be defined
to model the variable biogas production rate. This production rate out of a biomass feedstock f within a specific
microperiod s (DPf ,s ≥ 0) depends on the amount and point in time of previous feeding events. Thus, this biogas
production rate is mutable. The relationship between the new substrate feeding variables, biogas production, and
the existing decision variables is depicted in Figure 4.9
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Figure 4.9: Structural / operational variables and cost structure of OBPP-VAR/SBPP-VAR
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The whole notation of the OBPP-VAR and SBPP-VAR models is given the appendix. Within Table 4.3, only
the additional notation compared to the OBPP resp. SBPP is shown. The parts of the notation, which were not
mentioned in detail, remain the same as in the models in Chapter 3. In the following, only the adjusted and extended
parts of the models compared to the OBPP and SBPP by Fichtner and Meyr (2019) are explained in detail. The
entire models are provided in the appendix as well.

Table 4.3: Additional notation OBPP-VAR and SBPP-VAR

Indices
d = 1, ...,D meso periods, days (d) in the planning horizon
f = 1, ...,F available biomass feedstock types as substrate
n = 1, ...,N size categories of feeding quantities of feedstocks
γ = 0, ...,Γ counter index, last microperiods after a feeding event within the influencing

time interval Γ

Sets
Φ set of all microperiods
Φd ⊂Φ set of all microperiods in meso period d
Parameters
α f ,n,γ time depending biogas change of the biogas production rate per kg using a feeding

quantity of category n and feedstock f in period γ after a feeding event in Nm3/kg ·h
β f ,n,γ produced biogas quantity using feedstock f with feeding quantity of category n

in period γ after a feeding event in Nm3/h
cE electricity production costs of a specific biogas plant (variable costs) EUR/kWh
cF

f costs for used biomass feedstock f incl. feeding in EUR/kg
cG operating costs for digester in EUR/h
f qn discrete feeding quantity input into digester in size category n of a feedstock in kg
XFDmax maximum feeding quantity per day in kg
Decision Variables
DPs ≥ 0 biogas production rate in the digester per microperiod s in Nm3/h
FC f ,n,s ∈ {0,1} decision variable, 1 if feeding quantity of category n of feedstock f

in microperiod s is chosen, 0 otherwise
NPV ≥ 0 objective value SBPP-VAR
XFD

f ,s ≥ 0 flow of biomass feedstock f into the digester in kg in microperiod s

Objective function OBPP-VAR:

Max ∑
s
(ps +ms) ·a ·XSC

s︸ ︷︷ ︸
SMPs

−V EGPs + prs︸︷︷︸
ESPs

(4.4)

V EGPs = ∑
f

XFD
f ,s · cF

f + cG + XSC
s ·a · cE (4.5)
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Objective function SBPP-VAR:

Max NPV =

∑
j
∑
s

(ps +ms) ·a ·XSC
s − V EGPs + prs

(1+ i)s − drs

(1+ i)S ·B j · I j︸ ︷︷ ︸
LOV

(4.6)

Similar to the OBPP model by Fichtner and Meyr (2019), the objective function (4.4) of the OBPP-VAR model
is used to maximize the sum of the spot market payments (SMPs) and expected subsidy payments (ESPs) reduced
by the variable electricity generation payouts (V EGPs) within the entire planning horizon. In contrast to the OBPP
model by Fichtner and Meyr (2019), the calculation of V EGPs is adjusted, because the biogas production rate is no
longer assumed as being stable. Thus, biogas production costs can no longer be represented as a fixed parameter.
This adjusted understanding of the biogas production costs leads to an adaption of V EGPs. As the produced biogas
is either used for electricity production or burned in the torch and the torch payouts are determined by the variable
biogas production costs, these costs are implicitly considered in V EGPs and have not to be included as a separate
term.

The V EGPs per microperiod in the OBPP-VAR model are defined as the sum out of the biomass feedstock
costs, the operating costs of the digester, and the electricity generation costs in the CHP plant (see Equation (4.5)).
Although the operating costs for the digester are quantity independent and are thus not relevant for the decision
of the operational biogas plant schedule, these costs are considered, because they are subsequently necessary to
decide whether the net present value (objective value of the SBPP-VAR) is positive or negative. These costs are
mainly determined by the heating of the digester, which has to be ensured at every filling level.

Within the developed optimization approach by Fichtner and Meyr (2019) the optimization of the operational
plant schedule is a crucial part of the strategic optimization, to be able to calculate potential future payments
and payouts and thus to evaluate different investment strategies. Hence, the objective value of the SBPP-VAR
model, which should be maximized, represents the NPV (see Equation (4.6)). The payments and payouts appear
at different points in time. In order to make them comparable, they are discounted. As in the basic SBPP model,
the discounted SMPs, the discounted V EGPs (including torch payouts) and discounted ESPs are modeled. Instead
of the OBPP model, the modeling of the previously explained OBPP-VAR model is applied. Additionally, the total
loss of value (LOV) is considered in the last part of the objective function.

Constraints:

Mass balance

DPs = XDS
s +XDT

s ∀s (4.7)

DPs = DPs−1 +∑
f

∑
n

∑
γ

f qn ·FC f ,n,s−γ ·α f ,n,γ ∀s5 (4.8)

5If PL is applied.
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DPs = ∑
f

∑
n

∑
γ

FC f ,n,s−γ ·β f ,n,γ ∀s6 (4.9)

XFD
f ,s = ∑

n
f qn ·FC f ,n,s ∀ f ,s (4.10)

∑
f

∑
s∈Φd

XFD
f ,s ≤ XFDmax ∀s (4.11)

∑
f

∑
n

FC f ,n,s ≤ 1 ∀s (4.12)

Parts of the basic OBPP and SBPP models can be used without adaptions in the OBPP-VAR resp. SBPP-VAR
models. These unadapted parts are not presented in detail again. The focus within the present section is on the
adapted and extended constraints regarding the variable biogas production based on variable substrate feeding. All
of the mentioned and in the following in detail explained constraints are applied in the OBPP-VAR as well as in
the SBPP-VAR.

The amount of the biogas production rate at the end of microperiod s is modeled in Constraint (4.7). It is ensured,
that this amount is equal to the amount of produced biogas within microperiod s. Furthermore, this is equal to the
amount filled into the biogas storage or burned in the torch.

The biogas production rate at the end of microperiod s is based on specific biomass feedings per microperiod
and considered in Constraints (4.8) and (4.9). Using variable substrate feeding and thus changing feedings into the
digester, the biogas production rate can be influenced. The biogas production rate within a specific microperiod is
thereby determined by the biogas production rate at the end of the previous period and the change of the biogas
production rate within microperiod s.

The effect per kg of a specific feeding quantity (XFD
f ,s , Constraint (4.10)) in a specific microperiod after the

feeding event is defined as α f ,n,γ , in case PL is applied. It is theoretically assumed, that the biogas production rates
out of several substrates can be linearly summed up on average. In practice, deviations may occur because of a
lack of calibrated measures of biomass feedstocks. The overall effect of a feeding event has to be divided into two
sub-effects which are time- and quantity-depending. Both effects are represented by α f ,n,γ when PL is applied. In
order to model the time-depending effect the index γ is used. Here, Γ is defined as the time after a feeding event,
in which the biogas production rate is influenced by this feeding. This means that a time-dependent effect occurs
when there was feeding event in a period s−γ . Furthermore, the quantity-depending effect can be considered using
the index n for the size categories of feeding quantities f qn. The decision concerning the chosen feeding quantity
of a specific feedstock in a microperiod is modeled using the binary variable FC f ,n,s (see (4.10)).

If the approximation approach RS is applied, DPs is calculated differently, depicted in Equation (4.9). In this
case, the quantity- and time-depending effects of a feedstock event are both considered in β f ,n,γ as input data.
Thus, β f ,n,γ is defined for every feedstock, feeding quantity, and period after feeding within the influencing time.
The consideration of β f ,n,γ as a feeding influence is triggered by the binary variable FC f ,n,s. Hence, the total

6If RS is applied.
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Table 4.4: Numerical example Constraint (4.8)

Assumptions Calculations

s DP1,s

F 1 N 1 0 50.00
Γ 22 XFD

1,1 750 1 49.00
DP1,0 50 2 94.88
γ 1 2 3 3 79.81
α1,1,γ 0.0625 -0.01875 -0.0125 4 69.44
γ 4 5 5 68.39
α1,1,γ -0.0014 -0.0014 6 67.34

biogas production rate in a specific period can be calculated as the sum of all biogas production quantities based
on previous feedings which occur in this specific period.

The maximum feeding quantity per day is modeled in Constraint (4.11). It is important, that the maximum
feeding quantity of all considered feedstocks is lower than the maximum feeding quantity. Aforementioned in
Section 4.2.1, this restriction is necessary to ensure the stability of the digestion processes based on the living
microorganisms in the digester. Additionally, in each microperiod, only one feeding event with one specific feeding
quantity of one specific feedstock type is allowed. (Constraint (4.12)) It is assumed, that the feeding quantity in
the first size category is zero. This restriction implicitly ensures that the volume capacity of the digester is not
exceeded because the largest feeding quantities are chosen in a way that this cannot happen with one feeding per
microperiod.

A numerical example concerning Constraint (4.8) is depicted in Table 4.4 and Figure 4.10. There, the de-
velopment of the biogas production rate is determined for an example with one feeding of one specific biomass
feedstock and the PL approximation approach. As depicted in the related table and figure, a feeding event takes
place in microperiod s = 1. Hence, the counter index γ starts in this period with γ = 0. The influencing time is
assumed as Γ = 22. However, only the first five periods of the total influencing time are considered. Applying the
given parameter values of α f ,n,γ the resulting biogas production rate can be calculated for every period after the
feeding event. The input data is based on the study by Mauky et al. (2017). Within α f ,n,γ both the quantity- and
time-depending effects of the feeding event are considered. The biogas production rate per microperiod can then
be calculated according to Constraint (4.8) with the information of the previous biogas production rate and peri-
odic change. In similar examples the modeled RS approximation approach in Constraint (4.9) could be applied. In
contrast, not the time depending biogas change of the biogas production rate α f ,n,γ is necessary, but the absolute
value of the produced biogas quantity in a period γ after feeding (β f ,n,γ ). The remaining calculation is similar to
the given example.

Within the extended models, material flows and storage levels can only take non-negative real values. Binary
variables represent whether a feeding event takes place or not.

4.5 Numerical experiments concerning variable substrate feeding

In Section 4.5 the developed deterministic optimization models OBPP-VAR and SBPP-VAR are applied in numer-
ical experiments. Therefore, the experimental design is characterized in the first step in Section 4.5.1. Afterward,
several effects are separately analyzed. At first, the general effect of variable substrate feeding on the operational
scheduling of biogas plants is investigated in Section 4.5.2. Afterward, the effects of different variably fed sub-
strates on the operational schedules are analyzed in Section 4.5.3. Furthermore, the effects of several feedstock
prizes are evaluated in Section 4.5.4 before a strategic planning based on variable substrate feeding is made in
Section 4.5.5.
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Figure 4.10: Graphical illustration of numerical example to Constraint (4.8)

4.5.1 Experimental design

In order to verify the performance of the developed optimization models, numerical experiments for a fictional but
close to reality biogas plant are generated. The numerical experiments are based on several assumptions. These
assumptions can be distinguished in assumptions concerning the variable biogas production and all further as-
sumptions. The further assumptions are oriented on those specified by Fichtner and Meyr (2019). The investigated
biogas plant is less than 20 years in operation. The specific biogas plant characteristics are depicted in Table 4.5.
A rather small biogas plant with a currently installed CHP plant capacity of 192 kWh is assumed. Furthermore,
a rated output of 75 % of the currently installed capacity is presumed. One Nm3 biogas can be used to produce
1.52858 kWh of electricity. Moreover, the biogas and electricity production costs of the analyzed biogas plant
are ascertained with cG = 0.02 EUR/kWh and cE = 0.04 EUR/kWh. It is assumed, that at the beginning of the
planning horizon the biogas storage is filled with 100 Nm3 biogas, and the initial biogas production rate of the
digester is 125 Nm3/h. The biogas storage capacity is assumed to be sufficiently big so that it does not restrict
the optimization. The idea is that the biogas plant operator changes the operational schedule from an inflexible to
a flexible biogas production with variable substrate feeding. Thus, at the beginning of the planning horizon, the
average biogas production for the unadjusted plant design is available. In order to model the decision of variable
substrate feeding, five different feedstock types are distinguished. The first two ones are based on the results of a
study by Mauky et al. (2017). These feedstocks are a mixture of maize silage and grass silage (ratio 1/3 maize 2/3
grass) ( f = 1) and ground wheat grain ( f = 2). Further, three additional fictional biomass feedstocks are consid-
ered. These feedstocks are used to simulate different characteristics like faster or slower in- and decreases of the
biogas production and different biogas yields. Here, the first fictional feedstock ( f = 3) is characterized by a rapid
increase of biogas production after a feeding event, followed by a rapid decrease. In contrast, the third fictional
feedstock ( f = 5) is characterized by a very low but longer lasting increase of the biogas production rate. Thus, the
biogas production rate is increased for a longer time interval. Another fictional feedstock ( f = 4) is characterized
by a behavior, which is a mixture of the first and the third. The costs for the first two real feedstocks are based
on data by the FNR, Fachagentur Nachwachsende Rohstoffe e. V. (2009). The costs for the other three feedstocks
are oriented on the average costs of feedstocks with similar characteristics. (FNR, Fachagentur Nachwachsende
Rohstoffe e. V., 2009) For discounting an interest rate of 2.76 % is assumed. (Deutsche Bundesbank, 2017) In
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4 Operational and strategic optimization of biogas plants based on variable substrate feeding

order to calculate the terminal value at the end of the planning horizon, reducing balance depreciation with a yearly
depreciation rate drs with s ∈ Φ∗t is used. As given in Table 4.5 the yearly depreciation rates start with 30 % in
the first year and end up with 7 % in the fifth. This is justified by the reason that machines like CHP plants have a
higher loss of value in the first years of operation.

Aforementioned, the effect of a feeding event on the biogas production rate depends on the feedstock type, the
feeding quantity, and the time interval after the feeding event. In order to model the feedstock as well as quantity-
and time-depending effects, α f ,n,γ resp. β f ,n,γ are used. (See Table 4.5). As the investigated biogas plant is rather
small, only 5 size categories of feeding quantities between 0 and 1000 kg are distinguished. It is assumed in
general, that if the feeding quantity is higher, the effect on the biogas production rate is greater. Based on a study
from Grim et al. (2015), it is assumed that the pertinence of the change in the methane concentration of the biogas
due to variable substrate feeding is very low. Thus, this change can be neglected.

Within Sections 4.5.2, 4.5.3 and 4.5.4 the developed OBPP-VAR is evaluated using numerical experiments.
Therefore, a planning horizon of one week is assumed. The calculations are based on real market data of the
day-ahead market in the first week of June 2016. In contrast, in Section 4.5.5 the SBPP-VAR is analyzed. Here,
a generated scenario of the study by Fichtner and Meyr (2019), specifically the base scenario, is adopted as input
data for the market prices. This scenario is generated using a manipulated forecasting function as explained in
Chapter 3. By doing so, several potential market influencing changes in the future can be simulated.

It is explained in Section 4.4 that several discrete investment alternatives are distinguished within the developed
SBPP-VAR model. For the calculations in Section 4.5.5, seven different storage versions and six different CHP
plant versions are assumed. The specific capacities and the related amount of investments are shown in Table
4.6. The amount of investment for additional CHP plants is based on the published information by the FNR.
(FNR, Fachagentur Nachwachsende Rohstoffe e. V., 2017). The amount of investment for the biogas storages is
based on prices from manufacturers. For both investment decisions is assumed that there is an alternative 1, which
means that the plant design will not be changed. Furthermore, economies of scale are considered regarding the
amount of investments. In addition to the described investments, a fixed infrastructure investment of 50,000 EUR
is considered within the model, if one of the storages and/or CHP plants is installed. As explained, an investment
alternative is characterized by a combination of one CHP plant capacity extension and one biogas storage. It is
additionally assumed that the size of the biogas storage has to be large enough compared to the CHP plant capacity
to keep the plant at least two hours running. Hence, 35 potential investment alternatives are possible. The planning
horizon (T ) is five years. The investment’s depreciation time (DeT ) is 10 years.

The numerical experiments are implemented in Python (2.7). The library Pandas is applied for data analysis.
The solver Gurobi (7.5.1) is used together with the Pyomo (5.2) modeling tool interface. Experiments are run on a
personal computer operated by Microsoft Windows 10 Professional, using an Intel CPU with 2.49 GHz and 8GB
RAM.

4.5.2 Economic effects of variable substrate feeding

As explained in Sections 4.2.1 and 4.4, the biogas production rate can be influenced by a variation of the substrate-
feeding interval, the substrate type, and the feeding quantity. This variation causes significant influences on the
whole operational schedule of a biogas plant. Thus, the effects of variably fed substrates on the operational sched-
ule are analyzed in the following.

In order to evaluate the OBPP-VAR model, weekly schedules are generated considering variable substrate feed-
ing and with an inflexible biogas production process. Schedules considering variable substrate feeding are opti-
mized using data of both discussed approximation approaches (PL and RS). The first real feedstock (maize/grass
silage), explained in Section 4.5.1, is used. Weekly schedules (S = 168) are generated based on real market data.
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Table 4.5: Biogas plant specific input data

a 1.52858 kWh/Nm3 DP0 125 Nm3/h
Beminit 75 % of CapC cE 0.04 EUR/kWh
cG 0.02 EUR/kWh CapC 192 kWh
i 2.76 % p.a. XS

0 100 Nm3

s 8765 17530 26295 35060 43825
drs 0.30 0.21 0.15 0.10 0.07

f 1 2 3 4 5
cF

f 28 27 14 27 20

γ 0 1 2 3 4 5 6 7 8
α1,1,γ 0 0 0 0 0 0 0 0 0
α2,1,γ 0 0 0 0 0 0 0 0 0
α3,1,γ 0 0 0 0 0 0 0 0 0
α4,1,γ 0 0 0 0 0 0 0 0 0
α5,1,γ 0 0 0 0 0 0 0 0 0
α1,2,γ 0 0.0078 -0.0003 -0.0008 -0.0048 -0.0019 0 0 0
α2,2,γ 0 0.0073 0.0049 -0.0018 -0.0034 -0.0011 -0.0048 -0.0011 0
α3,2,γ 0 0.0189 -0.0056 -0.0044 -0.0028 -0.0012 0.0048 0 0
α4,2,γ 0 0.0123 0.0043 0.0022 -0.0070 -0.0038 -0.0022 0 0
α5,2,γ 0 0.0075 0.0031 0.0020 0.0010 0.0005 -0.0045 -0.0036 -0.002
α1,3,γ 0 0.0082 -0.0003 -0.0008 -0.0025 -0.0025 -0.0021 0 0
α2,3,γ 0 0.0076 0.0051 -0.0019 -0.0036 -0.0012 -0.0025 -0.0025 -0.001
α3,3,γ 0 0.0199 -0.0059 -0.0046 -0.0029 -0.0012 -0.0025 -0.0025 -0.0003
α4,3,γ 0 0.0129 0.0045 0.0023 -0.0074 -0.0039 -0.0034 -0.0025 -0.0025
α5,3,γ 0 0.0079 0.0032 0.0021 0.0011 0.0005 -0.0057 -0.0047 -0.0044
α1,4,γ 0 0.0086 -0.0003 -0.0008 -0.0017 -0.0017 -0.0017 -0.0017 -0.0007
α2,4,γ 0 0.0079 0.0054 -0.0020 -0.0037 -0.0025 -0.0017 -0.0017 -0.0017
α3,4,γ 0 0.0207 -0.0062 -0.0049 -0.0031 -0.0013 -0.0017 -0.0017 -0.0017
α4,4,γ 0 0.0135 0.0047 0.0024 -0.0077 -0.0042 -0.0039 -0.0031 -0.0017
α5,4,γ 0 0.0083 0.0033 0.0022 0.0011 0.0005 -0.0060 -0.0049 -0.0045
α1,5,γ 0 0.0089 -0.0004 -0.0009 -0.0020 -0.0014 -0.0014 -0.0014 -0.0014
α2,5,γ 0 0.0083 0.0056 -0.0024 -0.0043 -0.0030 -0.0014 -0.0014 -0.0014
α3,5,γ 0 0.0216 -0.0064 -0.0050 -0.0039 -0.0021 -0.0014 -0.0014 -0.0014
α4,5,γ 0 0.0140 0.0048 0.0025 -0.0079 -0.0043 -0.0039 -0.0028 -0.0024
α5,5,γ 0 0.0086 0.0035 0.0023 0.0012 0.0010 -0.0065 -0.0055 -0.0036

n 1 2 3 4 5
β1,n,0 0 0 0 0 0
β1,n,1 0 1.936 4.069 6.374 8.811
β1,n,2 0 1.800 3.783 5.926 8.191
β1,n,3 0 1.599 3.363 5.267 7.280

cF
f in EUR/T ; α f ,n,γ in Nm3/kg; f qn in kg; β f ,n,γ in Nm3/h

Table 4.6: Investment alternatives

j CapS
j CCadd

j I j j CapS
j CCadd

j I j j CapS
j CCadd

j I j

1 0 0 0 13 10 0.075 316.5 25 10 0.25 514
2 0.5 0 60 14 0.5 0.15 330 26 2 0.5 585
3 2 0 85 15 2 0.15 355 27 4 0.5 616
4 4 0 116 16 4 0.15 386 28 6 0.5 643
5 6 0 143 17 6 0.15 413 29 8 0.5 666
6 8 0 166 18 8 0.15 436 30 10 0.5 689
7 10 0 189 19 10 0.15 459 31 2 0.75 760
8 0.5 0.075 187.5 20 0.5 0.25 385 32 4 0.75 791
9 2 0.075 212.5 21 2 0.25 410 33 6 0.75 818

10 4 0.075 243.5 22 4 0.25 441 34 8 0.75 841
11 6 0.075 270.5 23 6 0.25 468 35 10 0.75 864
12 8 0.075 293.5 24 8 0.25 491

CapS
j in 1000 Nm3; CapCadd

j in 1000 kWh; I j in 1000 EUR
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4 Operational and strategic optimization of biogas plants based on variable substrate feeding

The market prices of the day-ahead market in the first week of June 2016 are used. In order to model a case with a
fixed biogas production rate, similar to the approach of Fichtner and Meyr (2019) is assumed that the biogas pro-
duction rate represents a steady-state system without the variability of feeding patterns. Therefore, a fixed biogas
production rate of 125 Nm3/h is assumed. Additionally, it is assumed that deviations of this biogas production
rate are permitted in a fixed interval 125− ε ≤ DPs ≤ 125+ ε with ε = 5. This assumption is justified, as there
is also a small fluctuation of the biogas rate in reality. Nevertheless, these fluctuations are too small to enable a
demand-oriented biogas production, as they are representing the natural fluctuation of the biogas production. This
case with an inflexible biogas production rate is used as a benchmark to evaluate the economic benefits of variable
substrate feeding.

The results of the first numerical experiments regarding the economic effects of variable substrate feeding are
depicted in Figures 4.11 and 4.12. Exemplary operational schedules for the use of feedstock f = 1 are depicted in
these figures. It was possible to solve the models optimally in less than a minute.

The top graph shows in both figures the considered spot market price data. The second one ((a) Var. feeding PL)
represents the feeding schedules/biogas production rates resp. biogas storage filling level/electricity production,
if variable substrate feeding with the approximation approach PL is applied. The third one ((b) Var. feeding RS)
shows the appropriate results for the RS approach and the fourth part ((c) No var. feeding) consists of the results if
no variable feeding is applied.

It is evident that the price curve is characterized by the typical intraday and intraweek seasonalities with a
decreasing price at the weekend. In order to be able to produce as much electricity as possible in high price periods
(typically during the mid of the day) applying cases a) and b), four blocks of feeding events are realized each from
Monday to Thursday in the early morning. After these feedings, no further feedings are necessary. Consequently,
the rather small biogas storage is only rarely completely filled. Nevertheless, it is possible to produce electricity
on full load in the high price periods with the available biogas.

Without the flexibility out of variable substrate feeding, bigger biogas storage capacities are necessary to reach a
demand-oriented electricity production. (Case c)) These bigger storage capacities cause higher investments. Thus,
variable substrate feeding is economically beneficial in terms of the necessary investments. Additionally, in Figure
4.12 is depicted, that the flexibility potential is higher if variable substrate feeding is applied. In cases a) and b)
more CHP plant starts and thus smaller production times a realized. Thus, the peaks in the spot-market prices are
more precisely followed by the production, which leads to a four times higher objective value for the cases with
variable substrate feeding than without. The reason is that without variable feeding only the highest price peaks
are used for electricity production. Within the remaining times the biogas storage is refilled. In contrast, variable
substrate feeding provides the possibility to produce and sell electricity in these times as well, in case there are
smaller price peaks. Hence, variable substrate feeding is not only economically beneficial in terms of the long-term
investment planning problems, but also in terms of the flexibility potential of the operational schedule.

The results show as well, that for the feeding quantities and the electricity production normally a so-called bang-
bang-strategy is used. (Steffen and Weber, 2016) Which means either feeding or electricity production with the
maximum quantity or nothing.

In terms of the influence of the two approximation approaches on the optimization can be observed, that the
results are quite similar. The operational schedule is, apart from small exceptions, equal, which leads to a relative
difference of the objective values of approximately 5 %. This means that the better approximation quality of the
RS approach does not lead to a significant change in the optimization results. Thus, in the remainder only the PL
approach is applied.

The results of the above experiments have shown that the model can be used directly for the operational schedul-
ing in biogas plants. As a consequence, the model can be beneficial for biogas plant operators who already have
a suitable biogas plant configuration and just want to optimize their operational schedule and for those who want
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Figure 4.11: Analysis of feeding schedules and biogas production rates

to optimize the plant configuration. Besides, the results of the numerical experiments show the potential economic
benefits of variable substrate feeding, independent of the chosen approximation approach.
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Figure 4.12: Analysis of storage filling levels and electricity production

4.5.3 Effects of different variably fed substrates

The economic potential of variable substrate feeding is discussed in the previous section. In the current section,
the economic influence of different variably fed substrates is investigated. Therefore, weekly schedules are gen-
erated using different biomass feedstocks and the approximation approach PL. As explained in Section 4.5.1 two
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real feedstocks (maize/grass silage and ground wheat grain) are used as well as three further fictional ones. The
same market data as in the previous experiments is used. In the first step, only one biomass feedstock is sepa-
rately considered in each calculation run. In further steps, combinations of two, three, and all five feedstocks are
implemented.

The resulting objective values of the mentioned numerical experiments are depicted in Table 4.7. Even with
all five feedstocks, the models could be optimally solved within a few minutes. It is evident that a combination
of several biomass feedstocks can lead to beneficial results. Therefore, the specific combination is crucial. For
instance, it is not beneficial to use a combination of feedstocks f = 1 and f = 2 instead of only using the first
one because the results show for the combined case that only the first feedstock is used which results in the same
objective value. In contrast, combinations of feedstocks f = 1, f = 2 and f = 3 (resp. f = 1,2,3) and f = 4
and f = 5 are beneficial, as the objective values of the combinations are higher than the cases of separate usage.
This behavior is as well explained in Figure 4.13 by showing the resulting feeding quantities within the first ten
microperiods for case a) each feedstock f = 1,2,3 separately, b) a combination of f = 1 and f = 2 and c) a
combination of f = 1,2,3. Decisive for the advantageousness are the characteristics of the combined feedstocks.
In part a) each feedstock is used separately, which would end up in three separate charts. In order to conserve
space, all three schedules are combined in one chart. The chart shows that if the feedstocks are used separately in
different calculation runs, feedings of 1000 kg are chosen for each feedstock in the periods two to six. The charts b)
and c) show resulting schedules for the combination of two ( f = 1,2) and three biomass feedstocks ( f = 1,2,3). As
depicted in Figure 4.13, the characteristics should be complementary to influence the biogas production process
at different points in time and generate a more demand-oriented or just in time production. For instance, with
regard to the characteristics of feedstocks f = 1 and f = 3, it is noticeable that the effect of the biogas production
rate on a feeding of f = 1 is characterized by a more balanced development than in case of f = 3. The latter
feedstock is characterized by a rapid increase followed by a rapid decrease. Hence, feedstock f = 1 is used in
times when a slower and more constant reaction of the biogas production rate is needed. In other words for a basic
biogas production. In contrast, feedstock f = 3 is used if rapid increases are necessary. This conclusion is based
on the feedstock characteristics on the one hand and on the input price characteristics on the other hand. Similar
correlations can also be found for feedstocks f = 4 and f = 5. Thus, in general, it can be beneficial to combine
feedstocks for a base load production with ones characterized by short reaction times.

Table 4.7: Objective value based on feedstock choice

objective value in EUR using feedstock f

each f separately f = 1 2 3 4 5
427.95 223.59 1074.33 456.34 479.10

comb. of two f 1 & 2 2 & 3 3 & 4 4 & 5
427.95 1074.33 1074.33 542.59

comb. of three f 1,2,3 3,4,5
1090.52 1074.33

comb. of five f 1,2,3,4,5
1090.52

4.5.4 Effects of feedstock prices

Within the previous two Subsections, the operational biogas plant schedules were calculated on the basis of realistic
biomass feedstock prices. The used prices are based on data by the FNR, Fachagentur Nachwachsende Rohstoffe
e. V. (2009). Nevertheless, prices for biomass are feedstock dependent and can change temporarily or permanently.
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Figure 4.13: Analysis of feeding schedules

Hence, within a strategic planning horizon of five years, the availability and price of biomass feedstocks are subject
to uncertainty.

In order to analyze the influence of the biomass feedstock price on the operational optimization and thus the
sensitivity of the optimization on the uncertainty, further calculations are generated with manipulated feedstock
prices in this Section. On the one hand, biomass feedstock prices could be lower for the biogas plant operators,
than considered in Section 4.5.3. This could be the case if only residues are used as substrate. If this is the
case, only handling costs for the free of charge available feedstock have to be taken into account. On the other
hand, Fichtner and Meyr (2017) have demonstrated, that biomass could be a scarce resource in the future, because
various utilization pathways exist. These pathways can lead to a competitive market for biomass, which could
end up in rising prices for biomass feedstocks. Additionally, prices for feedstocks can change temporarily due to
extreme weather events like storms or drought. Both cases of lower or higher feedstock prices are compared to the
realistic feedstock prices used in Sections 4.5.2 and 4.5.3. The results of the generated numerical experiments are
depicted in Table 4.8. The calculations are based on feedstock f = 1, approximation approach PL and are made
for a planning horizon of one week. A halving resp. doubling of the feedstock prices is assumed for the case of
low and high prices.

The calculated results show a significant effect of the biomass feedstock price on the optimization. In the case
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of lower feedstock prices, more feedstock is used to produce more electricity. This results in a significantly higher
objective value. In case the biomass feedstock prices are doubled, no effect on feeding and production quantities
can be observed. Nevertheless, the operation of the biogas plant would not be beneficial, because the objective
value would be negative and thus significantly lower than in the original case. The negative objective value is
due to the operating costs of the digester. These costs represent mainly heating costs to keep the temperature in
the digester constant. Thus, they are incurred permanently, even if there is no additional feeding. To conclude,
the biomass feedstock price is a crucial element of the economic efficiency of a biogas plant in case of variable
substrate feeding.

Table 4.8: Effect of feedstock price

feedstock price
low original high

objective value (EUR) 1,993.41 427.95 - 2,571.72

∑ f ,s XFD
f ,s (in 1000 kg) 21.25 20.00 20.00

∑s DPs (in 1000 Nm3) 21.500 20.621 20.621

∑s XSC
s (in 1000 Nm3) 21.588 20.721 20.721

4.5.5 Strategic planning with variable substrate feeding

As explained in Section 4.4, the optimization of the operational schedule of a biogas plant is just one part of the
strategic optimization. Within this strategic optimization, the biogas plant design is adjusted. In order to evaluate
different investment alternatives and thus different plant designs, the optimized operational schedule is used to
simulate future earnings. More precisely, an optimized operational schedule is generated for each investment
alternative, which makes this strategic optimization problem hard to solve. Although the major objective of the
present work is to optimize only the operational schedule, the conclusions of the previous numerical experiments
concerning the operational schedule are tried to be used in the following to reach an optimization of the biogas
plant design as well, to show the intended application of the operational schedules and identify potential occuring
problems.

Calculation runs with different feedstocks and different solver time limits are executed based on price data from
Fichtner and Meyr (2019) (base scenario), with a planning horizon of five years. The executed experiments are
simplified in terms of potential uncertainty. On the one hand, in contrast to the approach of Fichtner and Meyr
(2019), only one electricity market price scenario is considered. Thus, the spot market price uncertainty is not
considered in the following. On the other hand, the uncertainty regarding the biomass feedstock prices, which was
analyzed in the previous Section 4.5.4, is not considered in the following, because only currently realistic biomass
feedstock prices are assumed. These simplifications were made to focus on the effects of variable substrate feeding.

Within Table 4.9 the results of numerical experiments using the SBPP-VAR model are illustrated. It is recog-
nized that even a problem with only one feedstock type cannot be solved optimally within the chosen time limits
for the optimization (18,000 resp. 36,000 sec.). Additionally, the results show that a doubled time limit does not
lead to a significant change of the resulting gap of the optimization algorithm of the solver. Moreover, it can be
observed that for experiments with three or more feedstocks, no feasible solutions can be found. The results show
as well, that for the given experimental design, variable feeding would not be beneficial. (negative upper bound
for optimization with feedstock 1) However, this is not a contradiction to the results from Chapter 3, because two
different plants with different characteristics are considered. Also, as mentioned in Section 4.5.3 it is beneficial to
combine several feedstocks within one biomass digestion process. Thus, strategic optimization should be based
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on that assumption. Even though such a strategic optimization problem will not be solved regularly, running times
with more than 10 hours seem intolerable. Furthermore, these running times are necessary for the calculations
of just one price scenario. However, as Fichtner and Meyr (2019) have demonstrated, it is necessary to consider
several scenarios in order to model the governmental and market relating uncertainty. Hence, an optimization of
the biogas plant design, considering variable substrate feeding and uncertainty would take a tremendous amount
of running time. Thus, this approach is not practically applicable. The binary variables concerning the investment
decision and the flexibility premium (B j and Yj,t ) and the chosen feedstock feeding quantities (FC f ,n,s) are critical
for the optimization process. Especially the latter ones are hard to determine within a full-scale problem size of
F = 5, N = 5, and S = 43,825 because in this case, more than one million binary variables have to be determined.

Table 4.9: Solver output SBPP-VAR

feedstock lower bound* upper (best) bound* objective value* gap in % time limit in sec.

1 - 1,146.58 - 922.93 - 19.51 18,000
1 - 1,146.58 - 959.35 - 16.33 36,000

1,2,3 - 3,933.71 - - 18,000
1,2,3 - 3,933.71 - - 36,000

1,2,3,4,5 - 3,933.71 - - 18,000
1,2,3,4,5 - 3,933.71 - - 36,000

*in 1000 EUR

4.6 Summary and outlook

In this paper, it was examined how biogas plants can be adjusted to produce electricity flexibly and on-demand by
the consideration of variable substrate feeding. Therefore, the approach of Fichtner and Meyr (2019) is extended.
Instead of the objective of adjusting a conventional biogas plant into a type II plant, the aim is to reach a type
III plant. Consequently, the biogas production process is influenced by variable substrate feeding. In order to
include the resulting volatile biogas production rate into the linear optimization approach by Fichtner and Meyr
(2019), in particular in the OBPP and SBPP models, this non-linear production rate is estimated using two approx-
imation approaches. The resulting parameters are implemented in a new decision stage concerning the biomass
feeding process into the digester. Similar to the approach of Fichtner and Meyr (2019) the derived deterministic
optimization models (OBPP-VAR, SBPP-VAR) are tested using market data of the day-ahead market. Numerical
experiments were executed for a fictional but close to reality biogas plant with a rather small capacity, located in
southern Germany.

The numerical experiments using the OBPP-VAR model reveal that a variable substrate feeding is sufficient to
implement a demand-oriented biogas production in a flexibly operated biogas plant. As a result of this amendment,
necessary biogas storage capacities can be reduced. Furthermore, the operational flexibility potential of the biogas
plant can be increased by variable substrate feeding. Thus, a more demand-oriented electricity production is
possible. Additionally, it can be observed that a combined feeding of several biomass feedstocks in one digestion
process can be beneficial to the economic efficiency of the biogas plant. The prices of the chosen feedstocks
are as well crucial for the profitability of a biogas plant. Furthermore, it can be concluded that independent
of any investment planning problem, the OBPP-VAR model can be applied to optimize the operational biogas
plant schedule considering variable substrate feeding, which is a unique second application besides the investment
planning problem. Moreover, the optimization model to optimize the biogas plant design strategically is extended
to consider variable substrate feeding. Unfortunately, the numerical experiments using this SBPP-VAR model
reveal that it is not possible to solve a full-scale example in an acceptable amount of time using a standard solver
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like Gurobi. Here, the main problem during the optimization process is the determination of a tremendous amount
of binary variables concerning the investment, subsidy, and feeding decisions. A potential solution for this problem
could be an adjusted modeling of the problem, or developing a solution heuristic. The remaining model should
then be easier to solve for standard solvers. However, it has been demonstrated that variable substrate feeding can
play a decisive role during the economic optimization of biogas plants. Additionally, the consideration of variable
substrate feeding in operational and strategical optimization models with economic focus is achieved, which in
particular offers a novel contribution.

Nevertheless, there is potential for further research not only in terms of a heuristic-based solution approach.
The decision framework in this paper is characterized by several assumptions. One of these assumptions is that
the marketing of the second product heat is not considered in the optimization approach. However, it could be
beneficial for biogas plant operators to sell the nascent heat as well. If this is the case, the flexible electricity and
thus flexible heat production have to be considered. Therefore, it can be necessary to build heat storage capacities as
well because of a missing match of potential customer heat demand and market electricity demand. Additionally, it
could be beneficial to consider an adjustment of the digester as well. As mentioned in Section 4.3, several studies
exist where the digester design was adjusted before variable substrate feeding was applied. In this course, the
assumption that only one investment strategy can be chosen could be neglected to allow several combinations.

Apart from the mentioned extensions, other extensions could cover several energy markets apart from the day-
ahead market because a biogas plant operator is allowed to sell the produced electricity on several markets simul-
taneously. Moreover, in this paper, the biogas plant is examined independently from other market participants. It
could be beneficial to examine the biogas plant within a network of other market participants, in a so-called virtual
power plant. Instead of extending the already developed models, further research can be necessary for related
problems. As explained, the developed models can support the operational as well as the strategic planning in
biogas plants. Besides these two planning levels, it could be necessary in further optimization models to optimize
mid-term tactical decisions as well. A potential decision in such a model could be the choice of the biomass
feedstock type.

4.7 Appendix

Table 4.10: Complete notation OBPP-VAR and SBPP-VAR

Indices
d = 1, ...,D meso periods, days (d) in the planning horizon
f = 1, ...,F available biomass feedstock types as substrate
j = 1, ...,J discrete investment strategies
n = 1, ...,N size categories of feeding quantities of feedstocks
s = 1, ...,S microperiods, hours (h) in the planning horizon
t = 1, ...,T macroperiods, years (y) in the planning horizon
γ = 0, ...,Γ counter index, last microperiods after a feeding event within the influencing

time interval Γ

Sets
Φ set of all microperiods
Φd ⊂Φ set of all microperiods in an meso period d

Φt ⊂Φ set of all microperiods in macroperiod t

Φ∗t ∈Φ last microperiod in macroperiod t
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Parameters
a efficiency of CHP plants / produced amount of electricity per Nm3 biogas in kWh/Nm3

α f ,n,γ time depending biogas change of the biogas production rate per kg using a feeding
quantity of category n and feedstock f in period γ after a feeding event in Nm3/kg

Beminit previously realized output per macroperiod kWh/y

β f ,n,γ produced biogas quantity using feedstock f with feeding quantity of category n

in period γ after a feeding event in Nm3/h

cE electricity production costs of a specific biogas plant (variable costs) EUR/kWh

cF
f costs for used biomass feedstock f incl. feeding in EUR/kg

cG operating costs for digester in EUR/h

CapS
j * installed capacity of a gas storage in investment strategy j in Nm3

CapC formerly installed CHP plant capacity
(maximum amount of electricity produced in one hour) in kWh

CapCadd
j * additionally installed CHP plant capacity in investment strategy j in kWh

(maximum amount of electricity produced in one hour) in kWh

drs decreasing depreciation rate per year t in microperiod s ∈ Φ∗t
f qn discrete feeding quantity input into digester in size category n of a feedstock in kg

i discounting interest rate per microperiod
I j total investment for investment strategy j in EUR
MaxP sufficiently large number
ms market premium in microperiod s in EUR/kWh

ps spot market price forecast at the power exchange in the
day-ahead market in microperiod s in EUR/kWh

XFDmax maximum feeding quantity per day in kg

Decision Variables
B j ∈ {0,1} decision variable, 1 if investment strategy j is chosen, 0 otherwise
DPs ≥ 0 biogas production rate in the digester per microperiod s in Nm3/h

FC f ,n,s ∈ {0,1} decision variable, 1 if feeding quantity in category n of feedstock f

in microperiod s is chosen, 0 otherwise
NPV ≥ 0 objective value
prs ≥ 0 granted flexibility premium in microperiod s in EUR paid once in a year (EUR/y)
XDT

s ≥ 0 gas flow from digester to the torch in microperiod s in Nm3

XDS
s ≥ 0 gas flow from digester to the gas storage in microperiod s in Nm3

XFD
f ,s ≥ 0 flow of biomass feedstock f into the digester in kg in microperiod s

XSC
s ≥ 0 gas flow from the gas storage to the CHP plants in microperiod s in Nm3

XS
s ≥ 0 gas storage level at the end of microperiod s in Nm3

Yj,t ∈ {0,1}* decision variable, 1 if the flexibility premium in macroperiod t is requested
and if investment strategy j is chosen, 0 otherwise

* In case of the OBPP-VAR, independent of the index j.

116



4.7 Appendix

Objective function OBPP-VAR:

Max ∑
s
(ps +ms) ·a ·XSC

s︸ ︷︷ ︸
SMPs

−V EGPs + prs︸︷︷︸
ESPs

(4.13)

V EGPs = ∑
f

XFD
f ,s · cF

f + cG + XSC
s ·a · cE (4.14)

Constraints OBPP-VAR:

Capacity restrictions

XS
s ≤CapS ∀s (4.15)

XSC
s ·a≤CapC +CapCadd ∀s (4.16)

∑
s∈Φt

a ·XSC
s ≤ Beminit +(1−Yt) ·MaxP ∀t (4.17)

∑
s∈Φt

a ·XSC
s

|Φt |
≥ 1

5
·
(

CapC +CapCadd
j

)
·Yt ∀t (4.18)

prs ≤



(
CapC +CapCadd− ∑

s∈Φt

a ·XSC
s

|Φt |
·1.1

)
·130 ∀s ∈Φ∗t (4.19a)(

CapC +CapCadd
)
·0.5 ·130 ∀s ∈Φ∗t (4.19b)

MaxP ·Yt ∀s ∈Φ∗t (4.19c)

0 ∀s /∈Φ∗t (4.19d)

Mass balance

DPs = XDS
s +XDT

s ∀s (4.20)
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DPs = DPs−1 +∑
f

∑
n

∑
γ

f qn ·FC f ,n,s−γ ·α f ,n,γ ∀s7 (4.21)

DPs = ∑
f

∑
n

∑
γ

FC f ,n,s−γ ·β f ,n,γ ∀s8 (4.22)

XFD
f ,s = ∑

n
f qn ·FC f ,n,s ∀ f ,s (4.23)

∑
f

∑
s∈Φd

XFD
f ,s ≤ XFDmax ∀s (4.24)

∑
f

∑
n

FC f ,n,s ≤ 1 ∀s (4.25)

XS
s = XS

s−1 +XDS
s −XSC

s ∀s (4.26)

Objective function SBPP-VAR:

Max NPV =

∑
j
∑
s

(ps +ms) ·a ·XSC
s − V EGPs + prs

(1+ i)s − drs

(1+ i)S ·B j · I j

(4.27)

Additional resp. adjusted constraints SBPP-VAR:

Design configuration

∑
j

B j = 1 (4.28)

7If PL is applied.
8If RS is applied.
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Yj,t ≤ B j ∀ j, t (4.29)

Capacity restrictions

XS
s ≤∑

j
B j ·CapS

j ∀s (4.30)

XSC
s ·a≤CapC +∑

j
B j ·CapCadd

j ∀s (4.31)

∑
s∈Φt

a ·XSC
s ≤ Beminit +(1−∑

j
Yj,t) ·MaxP ∀t (4.32)

∑
s∈Φt

a ·XSC
s

|Φt |
≥ 1

5
·∑

j

(
CapC +CapCadd

j

)
·Yj,t ∀t (4.33)

prs ≤



(
CapC +∑

j
B j ·CapCadd

j − ∑
s∈Φt

a ·XSC
s

|Φt |
·1.1

)
·130 ∀s ∈Φ∗t (4.34a)(

CapC +∑
j

B j ·CapCadd
j

)
·0.5 ·130 ∀s ∈Φ∗t (4.34b)

∑
j

MaxP ·Yj,t ∀s ∈Φ∗t (4.34c)

0 ∀s /∈Φ∗t (4.34d)
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5 Summary and outlook

The present thesis focuses on strategic network planning in biomass-based supply chains. The intention was
to generate a significant contribution in the field of strategic optimization in biomass-based supply chains. The
focus was on problems arising in practical applications. Particularly, the thesis is structured into three main parts:
contribution of an extensive literature review regarding strategic supply chain planning in biomass-based industries,
development of an optimization approach for a specific strategic planning problem in biomass-based industries with
practical significance and the extension of this approach concerning further characteristics. In particular, within the
second part of the thesis, an innovative strategic optimization in biogas plants concerning their flexibility and thus
the main contribution of the entire thesis – the development of an innovative practically applicable optimization
approach considering technical and legal circumstances – is realized. The developed models are extended in the
third part regarding variable substrate feeding. The following Section describes the results in detail. Additionally,
further research topics are discussed in Section 5.2.

5.1 Summary

In order to ensure a structured processing of the results of this thesis, the research objectives, formulated in Section
1.2, are picked up again.

Research objective 1:

Structured analysis of the landscape of strategic long-term supply chain planning problems within

bioeconomy.

Sub-objective 1.1:

Clustering of sub-problems in branches and identification of specific characteristics.

Sub-objective 1.2:

Identification of research gaps regarding strategic planning in biomass-based supply chains.

In the literature review of strategic supply chain planning in biomass-based industries in Chapter 2, it can
be stated that biomass utilization pathways, which can be transferred into biomass-based supply chains, can be
grouped according to their final products. Four groups – fuel, fibre, food, flowers & fun – are identified. For
these groups, characteristic elements and the current state of research are examined. As results of and conclu-
sions from the analysis, some characteristics of biomass-based supply chains, some trends of current research on
the strategic planning of biomass-based supply chains and some research gaps have been identified. On the one
hand, it is noticeable that the research effort on the strategic planning of supply chains producing fuels and rather
“innovative” fibres from biomass seems to be decreasing. This is caused by a decrease in research on biofuel
production. Overall, peak efforts were recorded in the years 2011 and 2012, with research thereby mainly focusing
on plants-based biomass. On the other hand, the following characteristics of biomass-based supply chains have
been identified: Biomass-based supply chains are inter-organizational and characterized by a great heterogeneity
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of parties involved. This heterogeneity should be tackled by employing inter-organizational cooperation and intra-
organizational coordination. However, most of the analyzed models assume an intra-organizational view with a
central, omniscient and omnipotent planner. High uncertainty concerning the biomass supply is another important
characteristic of biomass-based supply chains, which is considered by some models. High transportation costs of
unprocessed biomass, caused by its high water content and low energy density, are a further characteristic. Be-
cause of them, decisions on locations for pre-processing and conversion facilities are crucial and thus considered
by most of the analyzed models. Research gaps are identified concerning optimization models, which take inter-
organizational aspects of biomass-based supply chains into account, in order to make them profitable on their own.
These models need to be brought as close to reality as possible. (Fichtner and Meyr, 2017)

Research objective 2:

Strategic optimization of biogas plants considering increased flexibility.

Sub-objective 2.1:

Structured analysis of technical and legal circumstances.

Sub-objective 2.2:

Analysis and forecasting of energy spot market prices.

Sub-objective 2.3:

Development of a robust optimization approach.

In Chapter 3 one specific planning problem out of the identified research gaps is tackled. The planning problem
is part of the utilization pathway “fuel” and dealing with the strategic optimization of biogas plants. The main
problem is to adjust the biogas plant design by installing biogas storage capacities, in order to be able to produce
electricity flexibly and on-demand. Therefore, several flexible biogas plant configurations are identified, which all
cause investments. In order to evaluate these investments, a multi-stage optimization approach is developed, which
takes price uncertainty at the energy spot market, using price scenarios, into account. To model relevant market
developments in the future using scenarios, it was discovered that it is necessary to model trends and seasonal
characteristics of the spot market prices. The uncertainty of the governmental subsidies determine the choice of
doing an investment or not as well. Thus, the investment decision depends not only on the development of the spot
market prices but also on the governmental subsidies, namely the flexibility and market premium. The main part
of the optimization approach is built up by the operational and strategic optimization models OBPP and SBPP. The
decision rules of Hurwizc and the Maximin rule are used to generate a robust solution for a risk-averse decision-
maker. Numerical experiments have revealed that the uncertainty of the flexibility premium determines the choice
of doing an investment or not. If the flexibility premium is granted, a high investment is chosen in any case of
spot market price developments. If not, a small investment is chosen. To conclude, the developed approach gives
decision support to a risk-averse biogas plant operator who decides about choosing direct marketing, producing
electricity demand-driven and therefore an adjustment of the biogas plant design. All governmental requirements
and regulations of the German energy market are modeled and the possible sources of revenues are distinguished.
As well, the resulting payouts are considered. Hence, the long-term investment decision can be supported by
optimizing an operational schedule. (Fichtner and Meyr, 2019)

Research objective 3:

Economic optimization of biogas plants considering variable substrate feeding.

Sub-objective 3.1:

Linear approximation of non-linear biogas production rates.
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Sub-objective 3.2:

Extension of the developed optimization approach regarding variable substrate feeding.

The previously developed optimization approach concerning the strategic optimization of biogas plants consid-
ering their flexibility is extended in Chapter 4. The main objective of this last part of the thesis is to consider a
demand-oriented biogas production in the digester by using variable substrate feeding. Therefore, the characteris-
tics of variable biogas production rates are analyzed. As the resulting biogas production rates follow a non-linear
demand pattern, these rates are approximated using two approximation approaches - piecewise linearization and
Rieman sums. Afterwards, the variable biogas production rate is included in the developed optimization models
OBPP-VAR and SBPP-VAR. For an operational biogas plant schedule, the results of a numerical example show
that variable substrate feeding can have a positive economic effect on demand-oriented plant operation. As a result
of this amendment, necessary biogas storage capacities can be reduced. Furthermore, the operational flexibility po-
tential of the biogas plant can be increased by variable substrate feeding. Thus, a more demand-oriented electricity
production is possible. Additionally, it can be observed that a combined feeding of several biomass feedstocks in
one digestion process can be beneficial to the economic efficiency of the biogas plant. The prices of the chosen
feedstocks are crucial as well for the profitability of a biogas plant. Furthermore, it can be concluded that inde-
pendent of any investment planning problem, the OBPP-VAR model can be applied to optimize the operational
biogas plant schedule considering variable substrate feeding, which is a unique second application besides the
modeled but not yet optimally solved investment planning problem. Moreover, the optimization model to optimize
the biogas plant design strategically is extended to consider variable substrate feeding. Nevertheless, the numerical
experiments using this SBPP-VAR model reveal that it is not possible to solve a full-scale example in an accept-
able amount of time using a standard solver like Gurobi. Here, the main problem during the optimization process
is the determination of a tremendous amount of binary variables concerning the investment, subsidy and feeding
decisions. However, it has been demonstrated that variable substrate feeding can play a decisive role during the
economic optimization of biogas plants in a short-term, operational planning horizon. Additionally, the consider-
ation of variable substrate feeding in operational and strategic operations research models is achieved, which in
particular offers a novel contribution.

What all optimization models of Chapters 3 and 4 have in common is the extraordinary high granularity - on an
hourly basis. This high granularity within the optimization of the operational biogas plant schedule is necessary,
because of the identified sources of uncertainty as well as the technical, legal and market-based circumstances.
An optimization and not only a simulation of the operational schedule is needed, because the scheduling includes
revenue-effective decisions, which are crucial for the strategic investment decision. This high level of detail within
the models, combined with the strategic, long-term planning horizon, makes the solvability of the models consid-
erably more difficult.

5.2 Outlook

Based on the results of our analysis and numerical studies, several opportunities for further research are identified.
Within the literature review in Chapter 2 it is concluded that future research should take inter-organizational as-
pects of supply chain management into account. Apart from the solved strategic planning problem in biogas plants
(Chapters 3 and 4), several other biomass-based supply chains should be optimized to become profitable on their
own, i.e., without governmental subsidies, to be able to compete with their fossil-based counterparts. Therefore,
the existing intra-organizational models with a central planner could be used as a basis and benchmark. Important
is that the legal circumstances in the bioeconomy are highly volatile. Hence, developed models need to be perma-
nently adapted to the new surrounding constraints. This probably makes future research on existing approaches
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necessary as well.

Moreover, there are further opportunities for future research, with regard to the tackled strategic planning prob-
lem in biogas plants. It is mentioned that a more detailed consideration of market- and subsidy-related uncertainties
by an application of stochastic optimization can be used to derive an optimal solution directly because then all sce-
narios can be considered simultaneously. However, more effort in terms of computation time is necessary to derive
an optimal solution for a stochastic model than for a deterministic one. Besides the use of stochastic variables, the
risk attitude of the decision-maker could be covered more precisely using the Conditional Value at Risk. Addition-
ally, the robustness of the solution could be ensured using a robustness function.

Furthermore, assumptions of the developed optimization approach could be changed to improve and adapt the
generated solution. One adaption regarding the variable biogas production rate is made in Chapter 4. A second
beneficial extension could be that pre-defined combinations of single biogas storages and single CHP plant capac-
ity extensions are substituted by the possibility to combine several CHP plants and biogas storages. This could
lead to further flexibility potentials. In addition, the part of the approach concerning optimizing the operational
schedule could be modeled more precisely by considering more detailed constraints. For instance, Butemann and
Schimmelpfeng (2019) consider wear and tear in the optimization of the operational schedule. It could be benefi-
cial to include this aspect into the strategic planning problem by a combination of the two operational optimization
models.

Besides the adaption of made assumptions, further markets could be included in the optimization approach.
Currently, the approach is based on direct marketing on the day-ahead market. As it is possible to sell the produced
electricity simultaneously on several spot markets, these markets could be considered as well. In order to include
the opportunity of selling on several markets, further price data is necessary to evaluate the profitability of different
markets. Hence, it would be necessary to repeat the descriptive spot market price analysis for all other markets.
Additionally, the optimization models have to be adapted regarding the requirements of the added markets. For
instance, electricity on the intraday market is sold in time intervals of 15 minutes. Thus, another time index, resp.
a changed definition of the used indices would be necessary. Besides these additional markets for the product
electricity, the marketing of the nascent product heat could be beneficial as well. This heat is generated during the
combustion process of the biogas in the CHP plant. If this is the case, the flexible electricity and thus flexible heat
production have to be considered. Therefore, it can be necessary to build heat storage capacities as well, because
of a missing match of potential customer heat demand and market electricity demand. Additionally, it could be
beneficial to consider an adjustment of the digester as well. As mentioned in Section 4.3, several studies exist,
where the digester design is adjusted before variable substrate feeding is applied.

As mentioned in the part of the numerical experiments in Chapter 4, the strategic optimization model considering
increased flexibility and variable substrate feeding cannot be solved in a reasonable amount of time. Thus, several
approaches to generate an optimal (or best possible) solution are discussed. As part of future research, it could
be beneficial to adjust the implementation and/or the modeling to decrease the number of binary variables or to
(partly) substitute the standard solver Gurobi by a heuristical algorithm. One of several possible approaches could
be an adaption of the fix-and-optimize heuristic, developed by Sahling (2010).

Instead of extending the already developed models, further research could be beneficial for related problems.
As explained, the developed models can support the operational as well as the strategic planning in biogas plants.
Besides these two planning levels, it could be necessary for further optimization models to optimize mid-term
tactical decisions as well. A potential decision in such a model could be the choice of the biomass feedstock type.
Moreover, in this thesis, the biogas plant is examined independently from other power plants, power storages or
power consumers. It could be beneficial to examine the biogas plant design within a network of other market
participants in the future – as part of a so-called virtual power plant (VPP). Here, other flexibility options, for
instance, pumped-storage power plants, are considered besides the biogas plant, which can lead to other design
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decisions. One of several possible approaches could be to include the developed multi-stage strategic biogas plant
optimization approach in the approach by Lauven (2019), to optimize the biogas plant as part of a VPP.
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