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Canards are interesting nonlinear phenomena that have generated intense research interest since
their discovery in the late 20th century. We are interested here in how canard-generating dynamics
are influenced by extremely weak periodic perturbations that cause the formation of saddle-node
bifurcations in the fundamental harmonic entrainment region. In a previous study, we discovered
that another entrainment region exists within the fundamental harmonic entrainment region
surrounded by the second saddle-node bifurcation curves. We found that two pairs of stable and
saddle canards coexist in this second entrainment region under such weak periodic perturbation.
Moreover, the stable and saddle canards are matched pairwise; i.e., each stable canard quite
closely resembles a corresponding saddle canard. Calculation of the correlation coefficients of
the four canards revealed two similar solutions on the order of 0.9999· · · between the two pairs
of similar canards. In contrast, the correlation coefficients of the dissimilar canards differ from
unity in proportion to the difference between the given bifurcation parameter value and the
parameter values at the saddle-node bifurcation points. Approximately, they take values from
0.998 to 0.975. These contrasts are noteworthy. Similar bifurcation phenomena were observed in
the 1/2-subharmonic entrainment region. We hypothesize that the two pairs of stable and saddle
canards are invariant with respect to a slight shift of time at the saddle-node bifurcation points,
and we numerically prove that such a property approximately holds at the bifurcation points.
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1. Introduction

Canard phenomena are one of the major discoveries in the field of nonlinear dynamics in the late
20th century and have been extensively studied during the past three decades [1–10]. Canards can
be generated in simple singularly perturbed second-order autonomous differential equations that
include a small parameter ε. Let us consider the van der Pol equation in the following form:

εẋ = y + x(1 − x2),
ẏ = −x + B0,

(1)
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where ε is assumed to be small. An intersection of the x-nullcline y = −x(1−x2) and the y-nullcline
x = B0 is an equilibrium; if |B0| < 1/

√
3, it is unstable, and if |B0| > 1/

√
3, it becomes stable. A

supercriticalAndronov–Hopf bifurcation (AHB) occurs at B0 = ±1/
√

3.A remarkable phenomenon
is observed when B0 is chosen to be slightly under 1/

√
3 (or slightly over −1/

√
3). The amplitude of

the oscillation is extremely sensitive to B0. Nonstandard analysis [5] has shown that the amplitude of
the oscillation is changed on the order of 1 if |B0| decreases on the order of exp(−1/ε).At ε = 0.1 and
0.01, the magnitude of exp(−1/ε) approximates 5 × 10−5 and 4 × 10−44, respectively. As the shape
of the oscillation in the phase plane resembles a duck (French canard), it was named a “canard" [5].

We now ask how canards in dynamical systems are influenced by extremely weak periodic perturba-
tions of amplitude on the order of exp(−1/ε). Sekikawa et al. proposed the following nonautonomous
dynamics derived from a forced van der Pol oscillator [10]:

εẋ = y + x(1 − x2)

ẏ = −x + B0 + B sin ωτ .
(2)

They discovered that a second entrainment region surrounded by saddle-node bifurcations and con-
taining two coexisting canards is generated inside the fundamental harmonic entrainment region.
Here, a canard is defined as a closed orbit following both attracting and repelling slow manifolds.
Such bifurcation structures are observed in several subharmonic and fractional harmonic entrainment
regions in the van der Pol equation under such weak periodic perturbation [10].

In this study, we investigate the characteristics of these coexisting canards. The saddle-node bifur-
cations generate a saddle solution as well as a stable solution. According to our numerical results,
we find that the saddle solutions generated by each saddle-node bifurcation are also canard-shaped
in the phase plane. The first pair of stable and saddle canards is born from a saddle-node bifurcation
that forms the fundamental harmonic entrainment region, while the second pair originates from the
second saddle-node bifurcation inside the fundamental harmonic entrainment region. Such nested
entrainment regions caused by sequential saddle-node bifurcations represent a newly discovered
bifurcation structure in nonautonomous oscillators that we have identified for the first time. In this
structure, noteworthy phenomena are observed slightly after the generation of the second saddle-node
bifurcation. We found that the stable canard arising from the first saddle-node bifurcation resem-
bles the saddle canard from the second saddle-node bifurcation quite closely, although they differ
significantly in phase. Similarly, the saddle canard born of the first saddle-node bifurcation closely
resembles the stable canard arising from the second saddle-node bifurcation.

We calculate the correlation coefficients of each y(τ + θ0), where θ0 is chosen such that y(θ0) = 0
and ẏ(θ0) > 0. When B is chosen on the order of exp(−1/ε), the correlation coefficient of the
stable canard of the first saddle-node bifurcation and the saddle canard of the second saddle-node
bifurcation is 0.9999 · · · if the bifurcation parameter is not close to the saddle-node bifurcation
points that generate the dissimilar stable and saddle canards. Similarly, the correlation coefficients
between the stable canard arising from the second saddle-node bifurcation and the saddle canard
from the first saddle-node bifurcation are consistently 0.9999 · · · . Because they resemble each other
quite well, it is practically impossible to differentiate these stable and saddle canards arising from
closed orbits projected onto the phase plane. In contrast, according to our numerical results, the
correlation coefficients of the dissimilar canards decrease monotonically from unity in proportion to
the difference between the given bifurcation parameter value and the parameter values of the saddle-
node bifurcation points. We hypothesized that similar stable and saddle canards are generated as
a result of a saddle-node bifurcation for which the Jacobian matrix has an eigenvector of 1.0 and
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attempted to verify this conjecture. Although the hypothesis approximately holds according to our
numerical results, we still could not distinguish the saddle-node bifurcations that generate similar
stable or dissimilar stable and saddle canards.

We also verified that a similar bifurcation structure can be observed in the 1/2-subharmonic
entrainment region.

2. Van der Pol oscillator under weak periodic perturbation and canards

Figure 1 shows a circuit diagram of a forced van der Pol oscillator. In the figure, C and L denote
capacitance and inductance, respectively, E1 is a DC power supply, and E2 sin(ω′t) is an AC power
supply. The term N.C. represents a nonlinear conductance. We assume that the v − i characteristic of
the nonlinear conductance in(v) can be represented by the following third-order polynomial function:

in(v) = −g1v + g3v3, g1 > 0, g3 > 0. (3)

From Kirchhoff’s law, the governing equation of the circuit is represented by the following second
order nonautonomous ordinary differential equations:

C
dv

dt
= i − in(v),

L
di

dt
= −v + E1 + E2 sin(ω′t).

(4)

We assume that C is small and E2 is extremely small. Rescaling then produces

ε = C

g2
1L

, B0 =
√

g3

g1
E1, B =

√
g3

g1
E2, t = g1Lτ , ω′ = g1Lω,

d

dτ
= ·, x =

√
g3

g1
v, y =

√
g3

g3
1

i,
(5)

and the normalized equation represented by Eq. (2). Throughout the discussion, we set ε = 0.1 and
B is on the order of exp(−1/ε).

Figure 2 shows stable solutions in the absence of perturbation (B = 0). The significant change of
the amplitude under slight variation of B0 is called a “canard explosion”.

In our previous works [9,10], we discovered that two canard-shaped attractors coexist in some
synchronization regions under such small periodic perturbations. These pairs are born as a conse-
quence of two successive saddle-node bifurcations and, because saddle-node bifurcations generate

Fig. 1. Circuit diagram of a forced van der Pol oscillator.
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(a) (b)

(c) (d)

Fig. 2. Attractors of Eq. (2) for ε = 0.1 and B = 0. (a) Large periodic orbit (B0 = 0.5), (b) canard
(B0 = 0.569 44), (c) small periodic orbit (B0 = 0.5695), (d) equilibrium point (B0 = 0.6).

a pair of stable and saddle solutions, the saddle solutions must exist. In this section, B and ω are
chosen inside the second saddle-node bifurcation curves [10] generated in the fundamental harmonic
entrainment region. According to our numerical results, the two saddle solutions in this entrainment
region are also canard-shaped in the phase plane. Hereafter, we call the stable and saddle canards
arising from the first saddle-node bifurcation stable canard 1 and saddle canard 1, respectively. Sim-
ilarly, we call the stable and saddle canard arising from the second saddle-node bifurcation stable
canard 2 and saddle canard 2, respectively. The two stable solutions and two saddle solutions are
illustrated in Fig. 3 as an example. Successive saddle-node bifurcations and their entrainment regions
are discussed in detail in the next section. Figure 4 presents the waveforms of the four canards. We
see that the waveform of stable canard 1 resembles that of saddle canard 2, although the phases of
these two canards are significantly different. Similarly, the waveform of stable canard 2 resembles
that of saddle canard 1. Actually, when we superpose Fig. 3(a) (resp. Fig. 3(c)) and Fig. 3(d) (resp.
Fig. 3(b)), the two solutions almost overlap. Figure 5 shows a superposed view of the four canards
presented in Figs. 3(a), (b), (c), and (d); we cannot distinguish the difference between stable canard
1 and saddle canard 2 (or between stable canard 2 and saddle canard 1) as long as we observe the
solutions in the phase plane.

3. Analysis of the significant resemblance between the two pairs of stable and saddle
canards in the fundamental harmonic entrainment region

To clarify the structural scenario in which each stable canard solution resembles each saddle canard
solution, we draw a bifurcation diagram and show how the two pairs of canards are born. First, we
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(a) (b)

(c) (d)

Fig. 3. Two coexisting pairs of stable and saddle canards obtained from Eq. (2) with ε = 0.1, ω = 1.19,
B = 5.0 × 10−5, and B0 = 0.569 44. This choice of parameters corresponds to A6 in Fig. 7. (a) Stable canard
1 with initial conditions (x, y) = (0.204 95,0.726 37) at τ = 0. (b) Saddle canard 1 with initial conditions
(x, y) = (1.169 81, 0.411 77) at τ = 0. (c) Stable canard 2 with initial conditions (x, y) = (0.581 27, −0.414 28)

at τ = 0. (d) Saddle canard 2 with initial conditions (x, y) = (0.403 19,−0.372 84) at τ = 0.

Fig. 4. Time series of the four canards in Fig. 3. Parameters are the same as those in Fig. 3.

define the stroboscopic Poincaré map as follows:

Tλ : R2 → R2

u0 �→ Tλ(u0) ≡ ϕ(2π/ω, u0, λ),
(6)

where ϕ(τ , u0, λ) is the solution, u0 ≡ (x0, y0)
� is an initial point at τ = 0, and λ is a bifurcation

parameter.
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Fig. 5. Superposed illustration of the four canards from Fig. 3. The parameter values are the same as those in
Fig. 3.

Let u0 be an m-periodic point of Tλ. Then, u0 satisfies

Tm
λ (u0) − u0 = 0. (7)

The characteristic equation is represented as follows:

∣∣∣∣ d

du0
Tm

λ (u0) − μI

∣∣∣∣ = 0. (8)

Let μ1 and μ2 (|μ1| ≥ |μ2|) be the solutions of μ. If 0 < |μ2| < |μ1| < 1, the m-periodic
point is said to be a stable node. If |μ1| > 1 > |μ2|, the m-periodic point is said to be a saddle.
If |μ1| > |μ2| > 1, the m-periodic point is said to be completely unstable. When |μ1| = 1,
a bifurcation occurs. We analyze the case of μ1 = 1, in which a saddle-node bifurcation set is
produced. To draw the bifurcation diagram, we adopt the shooting algorithm in Ref. [11]. Figure 6
shows a bifurcation diagram of the fundamental harmonic entrainment region surrounded by the two
saddle-node bifurcation curves G1(μ1 = 1). In this fundamental harmonic entrainment region, we
find another entrainment region surrounded by another set of saddle-node bifurcation curves, which
are denoted by G2 [10]. To the best of our knowledge, the nested entrainment regions caused by the
two saddle-node bifurcations G1 and G2 have not yet been observed in a forced oscillator. The four
canards discussed in Figs. 3, 4, and 5 in the previous sections are obtained at point A6 in Fig. 6.
A schematic diagram of this entrainment region is illustrated in the upper figure of Fig. 7. In the
following discussion, we fix B = 5 × 10−5 
 exp(−1/ε)|ε=0.1 on the line L1 and vary ω on L1 as
a bifurcation parameter. The lower figure of Fig. 7 shows a schematic illustration of the fixed-point
manifold. The saddle-node bifurcations occur at points Q1, Q2, Q3, and Q4 in Fig. 7. In the figure, iD
denotes a fixed point of unstable dimension; i.e., the solid curves denoted by 0D represent the stable
fixed-point manifold and the dashed curves marked with 1D are the saddle fixed-point manifold.
The numerically obtained fixed-point manifolds projected onto the ω–x and ω–y planes are shown
in Figs. 8(a) and (b), respectively.
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Fig. 6. Bifurcation diagram of the fundamental harmonic entrainment region for ε = 0.1 and B0 = 0.569 44.
G1 denotes the first saddle-node bifurcation set, while G2 denotes the second saddle-node bifurcation set. The
coordinates of A6 are given in Fig. 7.

Fig. 7. Schematic bifurcation diagram of the fundamental harmonic entrainment region (upper) and the struc-
ture of the corresponding fixed-point manifold along L1 (lower). The coordinates (ω,B) of the parameter points
A1–A10 are as follows: A1: (1.184 03, 5×10−5); A2: (1.184 23, 5×10−5); A3: (1.184 27, 5×10−5); A4: (1.1855,
5 × 10−5); A5: (1.187, 5 × 10−5); A6: (1.19, 5 × 10−5); A7: (1.193, 5 × 10−5); A8: (1.1945, 5 × 10−5); A9:
(1.194 96, 5 × 10−5); A10: (1.1955, 5 × 10−5). Q1–Q4 are the saddle-node bifurcation points and Q1 is at the
immediate left of Q2.
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(a) (b)

Fig. 8. Fixed-point manifold obtained numerically: (a) projected onto the ω–x plane and (b) projected onto
the ω–y plane.

To investigate how the two pairs of stable and saddle canards resemble each other, we vary ω to
observe the two pairs of stale and saddle canards projected onto the x–y phase plane.

We can analyze the nested bifurcation structures caused by the successive saddle-node bifurcations
by tracing the bifurcation diagram of the fundamental harmonic entrainment region shown in Fig. 7
from left to right. Figures 9(c)–(i) show the four-canard solutions, while Figs. 9(a), (b), and (j) show
the two-canard solutions. Figure 9(a) shows stable canard 1 and saddle canard 1 at A1 immediately
after the first saddle-node bifurcation point in Fig. 7. As A1 is close to the curve G1, these two canards
nearly overlap in the phase plane. Because A2 is significantly separated from G1 in Fig. 9(b), we can
detect the difference between stable canard 1 and saddle canard 1. Note that the fixed point of stable
canard 1 on the Poincaré section (•) moves to some extent, while that of saddle canard 1 (◦) moves
little as ω is separated from G1.

At the bifurcation point Q2 in Fig. 7, the second saddle-node bifurcation occurs and another pair
of stable canard 2 and saddle canard 2 is born, as illustrated in Fig. 9(c). The solid blue circle and
the light green open circle denote the fixed points of stable canard 2 and the saddle canard 2 on the
Poincaré section, respectively. In contrast to the former case, the light green open circle corresponding
to saddle canard 2 begins to move significantly, while the blue solid circle corresponding to stable
canard 2 moves only slightly as ω increases. This discrepancy is noteworthy.

Note that a qualitative change emerges slightly after the second saddle-node bifurcation. As shown
in Figs. 9(d)–(i), following generation of the second saddle-node bifurcation at Q2, a significant
resemblance is observed between stable canard 1 and saddle canard 2 and between stable canard 2
and saddle canard 1. The fixed points of stable canard 1 (red) and saddle canard 2 (light green) are
considerably separated, i.e., the phases of these two canard solutions are different, as shown in Fig. 4.

By increasing ω further, stable canard 1 and saddle canard 2 disappear through the saddle-node
bifurcation at Q3; similarly, stable canard 2 and saddle canard 1 disappear through the saddle-node
bifurcation at Q4.

To evaluate the similarities of the canard solutions, the correlation coefficients are defined as
follows:

C(y, y′) =
∑N

i=1(yi − ȳ)(y′
i − ȳ′)√∑N

i=1(yi − ȳ)2
√∑N

i=1(y
′
i − ȳ′)2

, (9)
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(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)

Fig. 9. Four canard solutions: stable canard 1 (red), stable canard 2 (blue), saddle canard 1 (purple), and saddle
canard 2 (light green) generated in the fundamental harmonic entrainment region for parameters A1–A10 in
Fig. 7. In (a) and (b), only stable canard 1 and saddle canard 1 are shown owing to the bifurcation structure
shown in Fig. 7 (lower). Similarly, in (j) only stable canard 2 and saddle canard 1 are shown. Poincaré mapped
points are shown on each curve using four kinds of indicators: • for stable canard 1; ◦ for saddle canard 1; •
for stable canard 2; and ◦ for saddle canard 2.

where y and y′ are the y-components of two of the four canard solutions in Eq. (2), y (y′) is the mean
value of y (y′), and yi = y( 2π i

220ω
). To calculate the coefficients of resemblance, phase θ is selected

such that

y(θ) = 0 and ẏ(θ) > 0 (10)

is satisfied. Figure 10(a) shows a graph of the correlation coefficients that are obtained along L1(B =
5×10−5) and Fig. 10(b) shows a magnified view of Fig. 10(a). In these figures, Q1, Q2, and Q3 are the
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(a) (b)

Fig. 10. (a) Graphical representation of the correlation coefficients obtained along L1 (B = 5 × 10−5) in the
fundamental harmonic entrainment region and (b) magnified view of (a).

Table 1. Correlation coefficients for ε = 0.1, ω = 1.1855, and B = 5.0 × 10−5. This choice of parameters
corresponds to A4 in Fig. 7.

stable canard 1 saddle canard 1 stable canard 2 saddle canard 2

stable canard 1 – 0.995 499 728 345 303 0.995 723 849 285 720 0.999 994 807 767 971
saddle canard 1 – – 0.999 996 929 396 777 0.995 793 721 722 061
stable canard 2 – – – 0.996 010 193 155 091
saddle canard 2 – – – –

saddle-node bifurcation points shown in Fig. 7. At these points, the correlation coefficients between
stable canard 1 and saddle canard 1, stable canard 2 and saddle canard 2, and saddle canard 1 and
stable canard 2 are 1, because each stable canard coincides with the corresponding saddle canard.
As seen in these figures, the correlation coefficients between stable canard 1 and saddle canard 2
and saddle canard 1 and stable canard 2 are close to 1; however, the given parameter value ω is very
close to Q1 and Q2, which are saddle-node bifurcation points that generate dissimilar canards. In
contrast, the correlation coefficients between stable canard 1 and saddle canard 1 and stable canard
2 and the saddle canard 2 decrease proportionally as the bifurcation parameter ω varies from the
saddle-node bifurcation points Q1 and Q2. Table 1 shows the calculated correlation coefficients for
A4 in Fig. 7, which is located at a slight distance of 0.001 from the saddle-node bifurcation points
Q1 and Q2. These results indicate that the close respective correlations of stable canards 1 and 2 and
saddle canards 2 and 1 are maintained over a wide range of parameters.

If we trace the fixed-point manifold from right to left in Fig. 7, an attractor and saddle solution with
a similar shape but with a nontrivial time shift are born at Q4, whereas a second similar saddle-node
bifurcation occurs at Q3, i.e., Q3 and Q4 are saddle-node bifurcation points that generate similar
canards.

4. Analysis of two pairs of stable and unstable canards in the 1/2-subharmonic
entrainment region

We next investigate the bifurcation structure of the 1/2-subharmonic entrainment region. Because
the period of the objective solution is twice that of the fundamental harmonic solution (4π/ω) in
this subharmonic entrainment region, there exist fixed points on T 2

λ (twice the composite of Tλ).
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Fig. 11. Bifurcation diagram of the 1/2-subharmonic entrainment region for ε = 0.1 and B0 = 0.569 44. G′
1

and G′
2 denote the first and second saddle-node bifurcation sets. The coordinates of B8 are given in Fig. 12.

Fig. 12. Schematic bifurcation diagram of the 1/2-subharmonic entrainment region (upper) and the structure
of the corresponding periodic-point manifold of Tλ along L1 (lower). The coordinates (ω,B) of the parameter
points B1–B10 are as follows: B1: (2.3682, 5 × 10−5); B2: (2.3684, 5 × 10−5); B3: (2.3685, 5 × 10−5); B4:
(2.3687, 5×10−5); B5: (2.3689, 5×10−5); B6: (2.37, 5×10−5); B7: (2.375, 5×10−5); B8: (2.3825, 5×10−5);
B9: (2.3857, 5 × 10−5); B10: (2.387, 5 × 10−5).
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(a) (b)

Fig. 13. Periodic-point manifold obtained numerically: (a) projected onto the ω–x plane and (b) projected
onto the ω–y plane.

Fig. 14. Time series of the four canard solutions for ε = 0.1, ω = 2.3825, B = 5 × 10−5, and B0 = 0.569 44.
This parameter set corresponds to B8 in Fig. 12.

Figure 11 shows a bifurcation diagram that is obtained by tracing the fixed point of T 2
λ with the

shooting algorithm developed in Ref. [11]. Figure 12 shows an associated schematic illustration of
the bifurcation diagram of the 1/2-subharmonic entrainment region. A bifurcation structure similar
to that of the fundamental harmonic entrainment region is observed in this entrainment region, i.e.,
two entrainment regions (one between the two G′

1 and the other between the two G′
2) exist, and two

pairs of stable and saddle canards are present inside the second entrainment region between the two
G′

2. Figure 13 shows periodic-point manifolds of Tλ obtained numerically.
In a similar manner, we call the stable and saddle canards arising from the first saddle-node

bifurcation denoted by Q′
1 stable canard 1′ and saddle canard 1′, respectively. Similarly, we call

the stable and saddle canards arising from the second saddle-node bifurcation denoted by Q′
2 stable

canard 2′ and saddle canard 2′. Figure 14 shows the time series of the four canards. The associated
closed orbits projected onto the x–y plane are shown in Figs. 15(a)–(j), where the red solid and
purple open circles denote the fixed points associated with stable canard 1′ and saddle canard 1′ on
the Poincaré map, respectively. Similarly, the blue solid and green open circles denote, respectively,
the fixed points associated with stable canard 2′ and saddle canard 2′ on the Poincaré map. Similar to
the case of the fundamental harmonic entrainment region, the red circle (stable canard 1′) moves as
ω increases, while the purple circle (saddle canard 1′) does not move significantly when ω increases.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(j)

(i)

Fig. 15. Four canard solutions: stable canard 1′ (red), stable canard 2′ (blue), saddle canard 1′ (purple), saddle
canard 2′ (light green) generated in the 1/2-subharmonic entrainment region for B1–B10 in Fig. 12. In (a) and
(b), only stable canard 1′ and saddle canard 1′ are shown owing to the bifurcation structure shown in Fig. 12
(lower). In addition, (j) shows only stable canard 2′ and saddle canard 1′. Poincaré mapped points are shown
on each curve as four types of points: •, for stable canard 1′; ◦, for saddle canard 1′; •, for stable canard 2′;
and ◦, for saddle canard 2′.

In contrast, the light green open circle (saddle canard 2′) moves and the blue solid circle remains in
place when ω increases.

The correlation coefficients are calculated in a manner similar to the previous case by replacing
yi = y( 4π i

220ω
) in Eq. (9), as these are the solutions for the period 4π/ω, and their graphs are shown

in Fig. 16
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(a) (b)

Fig. 16. (a) Graphical representation of the correlation coefficients obtained along L′
1 (B = 5 × 10−5) in the

1/2-subharmonic entrainment region and (b) magnified view of (a).

5. Discussion

Finally, we discuss the mechanism underlying the above-described formation of two pairs of similarly
shaped stable and saddle canards. We hypothesize that the saddle-node bifurcations denoted by Q3

and Q4 occur approximately with the following properties at the bifurcation points:(
ẋ
ẏ

)
≈ DTλ(xQ, yQ)

(
ẋ
ẏ

)
, (11)

where DTλ(xQ, yQ) is a Jacobian matrix of Tλ on (xQ, yQ)� at the saddle-node bifurcation point. If
Eq. (11) approximately holds, the stable and saddle canards arising from the saddle-node bifurcation
are nearly invariant for a slight local shift of time.

Table 2 shows data obtained at the four saddle-node bifurcation points. (xQ, yQ) indicates the
coordinates of the fixed point of Tλ at the saddle-node bifurcation points. (Vx, Vy) represents the
eigenvector of DTλ at (xQ, yQ), and p and q represent ẏ/ẋ and Vy/Vx, respectively. As expected, p
is close to q, and |p − q|/q assumes very small values at the saddle-node bifurcation points Q3 and
Q4. However, |p − q|/q is also small at the saddle-node bifurcation points Q1 and Q2. Thus, the
resemblance of the stable and saddle canards generated at the saddle-node bifurcation points Q3 and

Table 2. Four saddle-node bifurcation points of the fundamental harmonic entrainment region and the ratio
of |p−q|

q , where p = ẏ
ẋ and q = Vy

Vx (B0 = 0.569 44).

ω xQ p relative error
B yQ q |p − q|/q

Q1 1.184 021 390 1.195 685 799 757 652 3.301 883 711 085 376 0.000 124 824 875 950
4.999 834 920 781 219×10−5 0.494 777 460 199 819 3.301 471 605 301 792

Q2 1.184 262 950 0.545 121 211 177 124 −0.079 891 341 437 406 0.001 086 478 539 407
5.000 288 167 891 380×10−5 −0.413 541 347 956 114 −0.079 978 141 665 362

Q3 1.194 967 000 −0.022 760 396 644 403 −0.479 047 367 749 357 0.000 531 654 578 332
4.999 665 534 199 296×10−5 −0.100 871 820 029 808 −0.478 792 815 356 100

Q4 1.199 500 000 0.903 593 931 788 747 1.465 233 285 927 298 0.000 001 198 478 454
5.244 845 797 130 837×10−6 −0.188 631 267 550 821 1.465 235 041 979 927
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Q4 can be locally explained to some extent. However, we cannot not distinguish Q1 and Q2, which
generate dissimilar canards, from Q3 and Q4, which generate similar canards.

6. Conclusion

We investigated the resemblances of two pairs of stable and saddle canards in a van der Pol oscillator
with extremely weak periodic perturbation. We found that there are two pairs of stable and saddle
canards for parameter values in the region surrounded by the second saddle-node bifurcation curves.
More explicitly, we clarified that stable canard 1 resembles saddle canard 2 and stable canard 2
resembles saddle canard 1 quite well, although their phases are significantly different, whereas
stable canard 1 (stable canard 2) does not resemble saddle canard 1 (saddle canard 2) as closely.
In this case, stable canard 1 and saddle canard 1 originated from the first saddle-node bifurcation,
while stable canard 2 and saddle canard 2 originated from the second saddle-node bifurcation. We
confirmed this resemblance both for the fundamental harmonic entrainment region and the 1/2-
subharmonic entrainment region. We investigated the local bifurcation structure at the saddle-node
bifurcations, and demonstrated the mechanism causing the resemblance of the two pairs of canards.
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