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Abstract: Since high quality natural aggregates are becoming scarce, it is important that industrial
recycled products and by-products are used as aggregates for concrete. In Japan, the use of recycled
aggregate (RG) is encouraged. Since, strength and durability of recycled aggregate concrete is lower
than that of normal aggregate concrete, the use of recycled aggregate has not been significant. In order
to improve physical properties of concrete using recycled coarse aggregate, blast furnace slag sand
has been proposed. Recently, blast furnace slag sand is expected to improve durability, freezing,
and thawing damage of concrete in Japan. Properties of fresh and hardened concrete bleeding,
compressive strength, and resistance to freezing and thawing which are caused by the rapid freezing
and thawing test using liquid nitrogen is a high loader than the JIS A 1148 A method that were
investigated. As a result, concrete using treated low-class recycled coarse aggregate and 50% or
30% replacement of crushed sand with blast furnace slag sand showed the best results, in terms of
bleeding, resistance to freezing and thawing.

Keywords: recycled coarse aggregate; blast furnace slag sand; resistance to freezing and thawing;
bleeding capacity

1. Introduction

In Japan, disposal sites have been decreasing due to active industrial works. In addition, resources
of natural aggregate for producing concrete has been decreasing due to protection of the environment.
Therefore, there the need for concrete which can reduce environmental impact by using aggregate
from industrial by-products has been increasing. In particular, the use of recycled aggregate has been
desired over recent years in Japan. In Japan, Industrial Standards (JIS), has three types of recycled
aggregates which are classified as class H, class M, and class L. Legal improvement for practical use
of recycled aggregate has been progressing steadily. However, concrete using recycled aggregate is
rarely used on the market, because its standing in quality assurance and cost performance is hampered.
Strength and durability of concrete using low quality recycled aggregates as JIS class M and L are also
generally much lower than that of normal concrete due to high absorption and other factors [1–5].

Recent research in Japan, carried out by the Japan Society of Civil Engineers (JSCE) has been
focusing on the use of blast furnace slag sand to produce more durable concrete. JSCE suggested that
resistance to freezing and thawing is improved, drying shrinkage can be reduced, and resistance against
chloride ion diffusion is improved [6]. In addition, recent research has examined its performance
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throughout the world [7–14]. Some research papers [15–19] have been published on concrete using
recycled aggregate recently. However, there are few studies on the concrete using blast furnace slag
sand and recycled aggregate used to make high-performance recycled aggregate concrete. In this study,
in order to improve the strength and durability of concrete using low-class recycled coarse aggregate,
blast furnace slag sand was employed. Several mix proportions were used and the concrete test pieces
were examined for bleeding, compressive strength, and resistance to freezing and thawing.

2. Materials and Methods

2.1. Materials

The cement used was the JIS R 5210 standard Portland cement (OPC) and JIS R 5211 type B
blast-furnace slag cement (BB). BB was blended cement with cement replacement levels of 30%–60%
ground granulated blast furnace slag for mitigation of alkali–silica reaction. Blast furnace slag sand
(BFS5, BFS1.2) was used. These were from Okayama Prefecture (Fukuyama City and Kurashiki City),
Japan. These two slags have different particle sizes. Figure 1 shows BFS5 and BFS1.2. Recycled coarse
aggregate (RG) was obtained from a prestressed concrete pile which had been crushed in a jaw crusher.
Details of original concrete mix was unclear and further treatment was not carried out. After obtaining
the RG, it was separated into different particle sizes measuring 5–13 and 13–20 mm, respectively. Then,
it was blended at a ratio of 8:2 against RG volume. Figure 2 shows the RG. Crushed stone (G) was also
blended at the same ratio as RG. SP and AEA were also added to improve workability and resistance
to freezing and thawing. These materials and physical properties are presented in Table 1. Chemical
compositions of cement and blast furnace slag sand are presented in Tables 2 and 3. Additionally, the
particle distribution curve of blast furnace slag sand and recycled coarse aggregate are presented in
Figure 3.
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Table 1. Material’s properties.

Type Symbol Physical Property

Cement
OPC Ordinaly Portland cement (Density: 3.16 g/cm3, specific surface area:

3400 cm2/g)

BB Blast furnace slag cement type B (Density: 3.04 g/cm3, specific surface area:
3810 cm2/g)

Fine
aggregate

S Crushed sand (Density in saturated surface dry condition: 2.57 g/cm3,
absorption: 1.77%)

BFS5 Blast furnace slag sand made in Fukuyama (Density in saturated surface dry
condition: 2.73 g/cm3, absorption: 0.30%)

BFS1.2 Blast furnace slag sand made in Kurashiki (Density in saturated surface dry
condition: 2.73 g/cm3, absorption: 0.40%)

Coarse
aggregate

G Crushed stone (Density in saturated surface dry condition: 2.57 g/cm3,
absorption: 1.62%)

RG Recycled coarse aggregate (Density in saturated surface dry condition:
2.43 g/cm3, absorption: 6.20%)

Chemical
admixture

SP Polycarboxylate based superplasticizer

AEA Alkly based air entraining agent

Table 2. Chemical compositions of cement.

Cement

OPC BB

ig. loss

(%)

1.78 1.51
Insol. 0.17 0.21
SiO2 21.06 25.29

Al2O3 5.15 8.46
Fe2O3 2.80 1.92
CaO 64.17 55.81
MgO 1.46 3.02
SO3 2.02 2.04

Na2O 0.28 0.25
K2O 0.42 0.39
TiO2 0.26 0.43
P2O5 0.17 0.12
MnO 0.08 0.17

Cl 0.006 0.005

Table 3. Chemical compositions of blast furnace slag sand.

Blast Furnace Slag Sand
BFS5 BFS1.2

CaO

(%)

41.8 43.9
S 0.80 0.65

SO3 0.02 0.03
FeO 0.50 0.28
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Figure 3. Particle size distribution: (a) Fine aggregate; (b) coarse aggregate.

2.2. Concrete Mix Design

All specimens and mix proportions are shown in Table 4. These mix proportions have constant
unit weight of water and cement, and W/C was set as 47%, constantly. Replacement ratio of blast
furnace slag sand was 30%, 50%, and 100%, respectively. The concrete was mixed by a twin shaft mixer
for 3 min in a laboratory. During the mixing of BFS5-100R with OPC segregation was observed, and
the slump did not satisfy the required valued (12.0 ± 1.0 cm). For this reason, the mix was excluded
from tests described later. Target air content of fresh concrete was 6.0% ± 1.0%. The mixtures using RG
were described by the symbol with the suffix “R”.

Table 4. Mix proportions.

Symbol Cement W/C Unit Content (kg/m3) Slump Air

Type (%) W C S BFS5 BFS1.2 G RG (cm) (%)

N-N

OPC

47 165 350

802 -
-

905 -

13.0 4.9

BFS5-50 401 426 13.0 5.0

BFS5-100 - 852 11.0 5.0

BFS1.2-30 562
-

256 11.0 6.0

BFS1.2-50 401 426 13.0 7.0

N-R 802
-

- 855

11.5 5.0

BFS5-50R 401 426 11.0 7.0

BFS5-100R - 852 2.5 5.0

BFS1.2-30R 562
-

256 13.0 6.0

BFS1.2-50R 401 426 13.0 5.5

B-N

BB

791
-

899 -

13.0 6.4

BFS5-30 554 259 12.0 6.3

BFS5-50 396 431 12.0 6.6

BFS1.2-30 554
-

254 13.0 5.7

BFS1.2-50 396 424 13.0 6.1

B-R 791
-

- 868

11.0 5.2

BFS5-30R 554 259 11.0 6.6

BFS5-50R 396 431 13.0 6.7

BFS1.2-30R 554 - 254 11.5 6.1

BFS1.2-50R 396 424 12.0 6.6
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2.3. Tests

Concrete bleeding was tested according to JIS A 1123.
After 24 h from casting concrete, all specimens were demolded and cured in water at 20 ◦C ± 2 ◦C.

The curing period for each test varied as described below.
Their compressive strength was tested according to JIS A 1108. Cylindrical specimens measuring

100 mm in diameter and 200 mm on height were used. Compressive strength tests of specimens were
performed at 7 and 28 days, respectively.

A rapid freezing and thawing test using liquid nitrogen was performed using equipment shown in
Figure 4 [20–23]. This test was proposed by our research laboratory. The test can be performed in only
one day and is more rigorous than JIS A 1148 (A method). The durability factor after 10 freeze-thaw
cycles of the rapid freezing and thawing test tends to be lower than that after 300 cycles measured
according to JIS A 1148 (A method). The test procedure is presented below.
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A cylindrical specimen (100 mm diameter and 200 mm high) with an age of 28 days was placed in
the center of a cooler container with a lid. Next, it was blown with liquid nitrogen for 30 s and then
immersed in hot water with a temperature of 45 ◦C–50 ◦C for 5 min. After removing the specimen
from hot water, a sensor was placed at a position of 5 mm height from the bottom of the specimen and
ultrasonic pulse time was measured following ultrasonic testing as showed in Figure 5. The initial
ultrasonic pulse time with a zero cycle was measured and then dynamic modulus of elasticity by
ultrasonic pulse velocity was calculated. The situation of freezing and circular cracks that occurred on
the bottom of cylindrical specimen is presented in Figure 6. This process was defined as one cycle,
and until 60% or less, or until 10 cycles were reached. Equation (1) is used to calculate the dynamic
modulus of elasticity of concrete.

Pn =
(Vn)

2

(V0)
2 × 100 (1)

where, Pn: Relative dynamic modulus of elasticity (%), V0: Ultrasonic pulse velocity at 0 cycle (km/sec.),
Vn: Ultrasonic pulse velocity after n cycle (km/sec.).

Here, mixes containing blast furnace slag cement type B showed poor performance in the rapid
freezing and thawing test. Therefore, these mixes were tested according to JIS A 1148 (A method).
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Figure 6. Circular cracks occurred on the bottom of cylindrical specimen by rapid freezing and
thawing test.

3. Results and Discussion

3.1. Bleeding

The relationship between bleeding capacity and elapsed times after mixing is shown in Figure 7.
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The final bleeding capacity of concrete mixes with OPC is presented in Figure 8. In general,
concrete mixes made with BFS tend to bleed more [24]. In this study, the result of BFS5-100 showed
about 0.9 cm3/cm2 at 240 min. In particular, the bleeding capacity of BFS5-50 significantly exceeded the
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quality regulation of the bleeding capacity ≤0.3 cm3/cm2, which is limited by “Recommendation (draft)
for shrinkage crack of reinforced concrete buildings” established by the Architectural Institute of Japan.
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Figure 8. Final bleeding capacity.

The final bleeding capacity for BFS1.2-50 was similar compared with N-N, the particle size of
BSF1.2 was smaller than BFS5, and the viscosity of mortar became high. The bleeding capacities for
mixes with RG were less than 0.1 cm3/cm2, regardless of type and blending ratio of BFS. It is assumed
that bleeding water was retained by irregularities and fine particles coated on the surface of RG.

3.2. Compressive Strength

The compressive strength for mixes with OPC is presented in Figure 9. It was evident that
compressive strengths of specimens were reduced due to usage of RG and BFS. These reductions were
5–10 N/mm2 at seven days and 15–20 N/mm2 at 28 days.
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Figure 9. Compressive strength of concrete mixes with Ordinary Portland Cement (OPC).

When compared with N-R at seven days, strengths with RG and BFS were similar. At 28 days
they decreased to 5–10 N/mm2. The reason for low strength of BFS5-100 was considered to be due to
voids formation as a result of bleeding and decrease in interface adhesion between coarse aggregate
and the mortar.

Figure 10 shows a comparison of strength for the OPC and BB-cement mixes at 28 days. BFS
and G mixes with BB-cement had lower strengths compared with the OPC mixes. On the other hand,
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at 28 days, the strength of BFS and RG mixes with BB-cement were similar to mixes with OPC. This
is thought to be due to the assumption that the interface between aggregate and cement paste was
improved by latent hydraulicity between blast furnace slag and Ca(OH)2 remaining in the cement
paste or coated mortar of RG.Materials 2019, 12, x FOR PEER REVIEW 8 of 12 
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Figure 10. Compressive strength of concrete mixes with Ordinary Portland Cement (OPC) and Blast
furnace slag cement type B (BB) at 28 days.

3.3. Rapid Resistance to Freezing and Thawing

The relative dynamic modulus of elasticity obtained from the rapid freezing and thawing test for
OPC specimens are presented in Figure 11. Relative dynamic modulus of elasticity of specimens with
BFS showed a slight reduction without BFS5-100. Decreasing of entrained air in BFS5-100 was caused
by bleeding. Therefore, freezing and thawing resistance of the specimen with BFS showed good results
as the bleeding capacity was low.Materials 2019, 12, x FOR PEER REVIEW 9 of 12 
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Figure 11. Relative dynamic modulus of elasticity after rapid freezing and thawing test for OPC mixes.

Relative dynamic modulus of elasticity of RG and BFS mixes showed improvement, when
compared to the concrete with RG only. For this reason, it is noted that Ca(OH)2 does not deposit
around the aggregate [25] when BFS was used. This is shown in Figure 12. Solubility of Ca(OH)2 at
70 ◦C is about half of its value at 0 ◦C in Figure 11. The reason for this rather uncommon phenomenon is
that the dissolution of Ca(OH)2 in water is an exothermic process, and it also adheres to Le Chatelier’s
principle. A lowering of temperature thus favours the elimination of heat liberated through the process
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of dissolution and increases the equilibrium constant of dissolution of Ca(OH)2, and so increases its
solubility at low temperature. This counter-intuitive temperature dependence of solubility is referred
to as “retrograde” or “inverse” solubility. Ca(OH)2 deposits around the aggregate in ordinary concrete.
Ca(OH)2 dissolves more easily in water at low temperature due to water being accumulated in a gap
made by dissolved Ca(OH)2 [26]. When BFS was used, namely, Ca(OH)2 does not deposit around
the aggregate. Moreover, it was shown that this is effective even for recycled concrete using low
quality recycled coarse aggregates, which are not popular due to their assumed resistance to freezing
and thawing.
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Relative dynamic modulus of elasticity obtained from rapid freezing and thawing test for the
BB-cement mixes are presented in Figure 13. Relative dynamic modulus of elasticity of all mixes
with BB-cement and AEA decreased soon. The reason for this is not clear. The air void system was
calculated using the method given in ASTM C 457 for loss of micro-air in AEA bleeding by mixing BFS
that has a high density. Air void systems of a part mix with BB are shown in Table 5. The mixes had an
air void system as shown by concrete with AEA. Therefore, all the mixes were examined by the JIS A
1148 A method. The relative dynamic modulus of elasticity obtained from the JIS A 1148 A method for
the BB-cement mixes are presented in Figure 14. Freeze-thaw resistance for mixes with BFS tended to
improve. However, with 50% BFS1.2, it decreased significantly regardless of coarse aggregate. It was
assumed that freeze-thaw resistance improved due to latent hydraulicity of BFS with smaller particle
size [27,28], but in this study, the effect did not appear.Materials 2019, 12, x FOR PEER REVIEW 10 of 12 
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Table 5. Void spacing factor and average air diameter for BB mixes.

Symbol Void Spacing Factor (µm) Average Air Diameter (µm)

B-N 221.1 82.7
BFS5-30 320.6 119.2

B-R 193.8 73.1
BFS5-30R 159.5 74.6
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4. Conclusions

The following conclusions were obtained from this study:

• Bleeding capacities were observed to be 0.1 cm3/cm2 or less when the mix ratio of blast furnace
slag sand was 50% or less. It is thought that bleeding water was retained by irregularities and fine
particles coated at the surface of RG.

• Compressive strength due to usage of RG and BFS was lower than that of the normal aggregate
concrete. At 28 days the strength for the BFS and RG mixes with BB-cement were similar to mixes
with OPC.

• Resistance to freezing and thawing was improved by mixing the blast furnace slag sand, and the
relative dynamic modulus of elasticity of concrete using RG and BFS with OPC after the freezing
and thawing test was approximately 80%.

Hence, it was found that mixing 50% blast furnace slag sand was effective for bleeding and
resistance to freezing and thawing. In the future, we would like to further examine characteristics of
strength and drying shrinkage. In addition to putting this into practical use for recycled aggregate
concrete with blast furnace slag sand.
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