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Abstract

Purpose We investigated using ultrawide-field fun-

dus images with a deep convolutional neural network

(DCNN), which is a machine learning technology, to

detect treatment-naı̈ve proliferative diabetic retinopa-

thy (PDR).

Methods We conducted training with the DCNN

using 378 photographic images (132 PDR and 246

non-PDR) and constructed a deep learning model. The

area under the curve (AUC), sensitivity, and speci-

ficity were examined.

Result The constructed deep learning model demon-

strated a high sensitivity of 94.7% and a high

specificity of 97.2%, with an AUC of 0.969.

Conclusion Our findings suggested that PDR could

be diagnosed using wide-angle camera images and

deep learning.

Keywords Ultrawide-field fundus

ophthalmoscopy � Proliferative diabetic retinopathy �
Deep learning � Deep convolutional neural network

Introduction

According to a World Health Organization report, the

number of diabetic patients worldwide has increased

from 108 million in 1980 to 422 million in 2014, and

the prevalence of diabetes worldwide in adults

([ 18 years of age) has increased from 4.7% in 1980

to 8.5% in 2014 [1]. Voigt et al. reported that 25.8% of

diabetic patients have complications of retinopathy

(nonproliferative 20.2%; proliferative 4.7%; unclassi-

fied 0.7%; blindness 0.1%) [2]. Early treatment,

compared to deferral of photocoagulation, was asso-

ciated with a small reduction in the incidence of severe

visual loss [3]; however, undergoing fundus exami-

nation by an ophthalmologist is unrealistic and costly

for diabetic patients. Furthermore, there is a large cost

burden associated with diabetic retinopathy, and the

financial impact may be even more severe for many

patients with this complication who live in developing

countries [4].

Recently, image processing technology using a

deep learning application, which is a machine learning

algorithm, has attracted attention because of its

accuracy. Using this technology for medical imaging

is being actively studied [5–7]. In fact, image
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diagnosis has already been reported in ophthalmology

[8–11]. In addition, the advent of wide-angle fundus

cameras, such as the ultrawide-field scanning laser

ophthalmoscope (Optos 200Tx; Optos plc, Dun-

fermline, UK) known as Optos, has made it possible

to simply and noninvasively capture a wide range of

fundus photographs [12–14]. In the present study, we

assessed and determined the accuracy of ultrawide-

field fundus images with deep learning to detect the

presence of treatment-naı̈ve proliferative diabetic

retinopathy (PDR).

Methods

Dataset

The procedures in the present study conformed to the

tenets of the Declaration of Helsinki. Informed

consent was obtained from the subjects after they

understood the study’s nature and possible

consequences.

The study dataset was comprised of 132 images and

data from patients with treatment-naı̈ve PDR; those

without fundus diseases were extracted from April 1,

2011, to March 30, 2018, at the clinical database of the

ophthalmology departments of Saneikai Tsukazaki

Hospital and Tokushima University Hospital. These

images were reviewed by three retinal specialists to

assess the presence of PDR using mydriatic slit-lamp

binocular indirect ophthalmoscopy and were regis-

tered in an analytical database. All patients underwent

Optos and ultrawide-field fluorescein angiography

(FA) (Fig. 1). The levels of diabetic retinopathy were

defined from the retinal images using the Early

Treatment Diabetic Retinopathy Study (ETDRS)

severity scale [3]. Out of 378 fundus images, 132

images were from PDR patients, and 246 images were

from normal subjects without PDR.

In this study, we used K-fold cross-validation [15].

Briefly, the image data were divided into K groups;

K-1 groups were used as training data, and one group

was used as validation data. This process was repeated

until each group became a validation dataset. In the

present study, we divided the data into nine groups.

The images of the training dataset were augmented by

adjusting for brightness, gamma correction, histogram

equalization, noise addition, and inversion; augment-

ing the images increased the amount of learning data

18 times. The deep convolutional neural network

(DCNN) model, as detailed below, was created and

trained with preprocessed image data.

Deep learning model and training the model

We implemented a deep learning model that used a

VGG-16 DCNN (Fig. 2), which is a type of DCNN

that automatically learns the images’ local features

and generates a classification model [16–18]. The

aspect ratio of the original Optos images was

3900 9 3072 pixels; for analysis, we resized the

aspect ratio of all the input images to 256 9 192

pixels. The RGB image input had a range of 0–255;

therefore, we normalized it to the range of 0–1 by

dividing it by 255.

The VGG-16 comprised five blocks and three fully

connected layers. Each block comprised some convo-

lutional layers, followed by a max-pooling layer to

decrease position sensitivity and improve generic

recognition [19]. After flattening the output of block 5,

there were two fully connected layers; the first

removed the spatial information from the extracted

features, and the last was a classification layer that

used feature vectors of the target images acquired from

Fig. 1 A representative

fundus image obtained by

ultrawide-field scanning

laser ophthalmoscopy. The

presence of proliferative

diabetic retinopathy (PDR)

is seen on ultrawide-field

fundus color image (A) and
on fluorescein angiography

(B)
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the previous layers, together with the softmax function

for binary classification. To improve the generaliza-

tion performance, we conducted dropout processing;

therefore, masking was performed with a probability

of 25% for the first fully connected layer. Fine-tuning

was used to increase the learning speed and optimize

performance even with less data [20, 21]. We used

parameters from ImageNet: blocks 1–4 were fixed,

and block 5 and the fully connected layers were

trained. The weights of block 5 and the fully connected

layer that we were training were updated using the

optimization momentum SGD algorithm (learning

coefficient = 0.001, inertial term = 0.9), which is a

stochastic gradient descent method [22, 23]. Of the 40

deep learning models obtained from 40 learning

cycles, the one with the highest correct answer rate

for the test data was selected as the DLmodel. To build

and evaluate the model, Keras (https://keras.io/ja/)

was run on TensorFlow (https://www.tensorflow.org/

), which was written in Python.

Outcome

Receiver operating characteristic (ROC) curves were

created based on the deep learning models’ abilities to

discriminate between PDR and non-DR images. These

curves were evaluated using area under the curve

(AUC), sensitivity, and specificity.

Statistical analysis

Student’s t test was used to compare age, whereas

Fisher’s exact text was used to determine the ratios of

men to women and right to left eye images. The 95%

confidence intervals (CIs) of the AUCs were obtained,

as follows. Images that were judged to exceed a

threshold were defined as positive for PDR, and an

ROC curve was created. We created nine models and

nine ROC curves. For AUC, a 95%CI was obtained by

assuming a normal distribution, using the means and

standard deviations of the nine ROC curves. For

sensitivity and specificity, we used the optimal cutoff

values, which were the points at which both sensitivity

and specificity were 100% in each ROC curve [24].

Fig. 2 Overall architecture of the VGG-16 model. The deep convolutional neural network (DCNN) used ImageNet parameters: the

weights of blocks 1–4 are fixed. Block 5 and the fully connected layers were adjusted
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The ROC curve was calculated using scikit-learn, and

the CIs for sensitivity and specificity were determined

using SciPy. The other statistical analyses were

performed using SPSS version 22 software (IBM,

Armonk, New York, USA). A two-sided P value

of\ 0.05 was considered statistically significant.

Data availability

The Optos image datasets analyzed during the present

study are available from the corresponding author

upon request.

Heatmap creation

As illustrated in the heatmap, the DCNN focuses on

which coordinate axes on the image were classified

(Fig. 3). The heatmap was generated using gradient-

weighted class activation mapping (Grad-CAM) [25];

a gradient layer using the first convolution layer of

block 3 was designated. ReLU was specified as the

backprop modifier.

Results

In total, 132 PDR images from 94 patients (mean age

55.3 ± 12.5 years; 90 men and 42 women; 69 left

fundus images and 63 right fundus images) and 246

non-DR images from 199 patients (mean age

55.2 ± 13.9 years; 161 men and 85 women; 127 left

fundus images and 119 right fundus images) were

analyzed. No significant differences were detected

between these two groups in terms of age, sex, and

left–right eye image ratio (Table 1).

Performance of the DCNN

For PDR diagnosis, the deep learning model had a

sensitivity of 94.7% (95% CI 90.6–96.9%), specificity

of 97.2% (95% CI 92.4–99.2%), and area under the

curve (AUC) of 0.969 (95% CI 0.935–0.971) (Fig. 4).

Discussion

In this study, we investigated the deep learning

method’s efficacy in identifying referable treatment-

naı̈ve PDR based on 132 fundus photographs. The

deep learning algorithm showed high sensitivity of

94.7%, high specificity of 97.2%, and AUC of 0.969

for the detection of treatment-naı̈ve PDR. We focused

on treatment-naı̈ve PDR only, because it can need

immediate treatment. Even when the diagnosis was

based on color photographs only, the results were

comparable to those made based on color fundus

images and FA assessment by retinal specialists.

In the past, deep learning was examined at all stages

of diabetic retinopathy, with good results were

obtained [8, 26–29]; however, the fundus camera of

the rear pole was used. In this study, we used a wide-

angle ocular fundus camera, because diabetic

retinopathy is an important disease that can affect

both the posterior region and periphery of the retina.

The ETDRS 7 [30] defined lesions predominantly

around the standard field as predominantly peripheral

lesions (PPLs). The extent of these PPLs is associated

with retinopathy progression [31, 32]. Therefore, the

type of camera used is important.

The drawback of the present study was that we did

not examine diabetic maculopathy, which causes

vision disturbances and can also be diagnosed using

deep learning, as reported by Gulshan et al. [8]. The

algorithms’ ability to detect vision-threatening dia-

betic retinopathy is important to evaluate; the soft-

ware’s sensitivity is especially important to determine.

Originally, deep learning required tens of thousands of

data to investigate the presence or absence of a

diagnosis; however, the number of treatment-naı̈ve

PDR cases had been limited. Therefore, further studies

Fig. 3 Representative ROC curve of the deep learning model
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are needed to assess whether diabetic retinopathy can

be staged appropriately.

At present, making a final diagnosis based on

images alone might not be accurate and prudent. We

believe that image diagnosis should only be used to

confirm a doctor’s diagnosis. However, in developing

countries where the number of physicians may also be

limited, remote image diagnosis may be especially

useful. Kanjee et al. reported remote diagnosis was

cost-effective, noting further reduction in medical

expenses when automatic diagnosis was available

[33]. To address the most urgent medical problems in

the world in an efficient, timely, and cost-effective

manner, all available resources are needed. Therefore,

introducing artificial intelligence in the medical field is

timely, welcomed, and needed.

Although combining DCNN and Optos images can

provide better results, it is not particularly superior to

medical examination. Personal and actual examina-

tions by ophthalmologists remain indispensable for

definite diagnosis. Furthermore, both conventional

angiography and optical coherence tomography

angiography, performed by a retinal specialist, are

essential to confirm a qualitative diagnosis, assess

treatment effects, and provide follow-up observations.

Conclusion

PDR could be diagnosed using an approach that

involves wide-angle camera images and deep learning.
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Table 1 Patient demographics

PDR images Normal images p values

Number of images (patients) 132 (94) 246 (199)

Age 55.3 ± 12.5 55.2 ± 13.9 0.902 Student’s

Sex (female) 42 (31.8%) 85 (34.6%) 0.648 Fisher’s ex

Eye (left) 69 (52.3%) 127 (51.6%) 0.914 Fisher’s ex

Data are presented as numbers (%), unless otherwise indicated

No statistically significant differences were observed between the groups

Fig. 4 Heatmap

superimposed on the

photograph. The red color

represents the areas of deep

neural network

concentrations
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