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ABSTRACT 

 

Alopias is a group of lamniform sharks characterized by a highly elongate caudal fin with 

three known extant species: A. pelagicus (pelagic thresher shark), A. superciliosus (bigeye 

thresher shark), and A. vulpinus (common thresher shark). Alopias pelagicus and A. vulpinus are 

considered fast swimmers and use their caudal fin to hunt for small schooling fish by stunning 

them, but this feeding behavior has never been directly observed for A. superciliosus. Under the 

ecomorphological framework, I examined the following four integumentary variables of selected 

fast swimming (e.g., A. pelagicus, A. vulpinus, and Lamna) and slow swimming (e.g., 

Mitsukurina and Megachasma) lamniform sharks to determine whether A. superciliosus is a fast 

swimmer or a slow swimmer: 1) dermis thickness, 2) average interkeel distances of scales, 3) 

scale density, and 4) scale shape. My integumentary data indicate that A. superciliosus is a slow 

swimming lamniform, but it likely employs a simple laterally directed tail slap to capture its 

prey. Its thick dermis layer on the body indicates its extreme body bending capability, perhaps to 

maximize the strike power of the caudal fin in order to compensate for its slow swimming. 

Overall, my study points to an interpretation that A. superciliosus is an ambush predator, rather 

than an active prey-pursuing hunter. When my scale density and average interkeel distance data 

are mapped on to previously published molecular- and morphology-based phylogenetic trees, 

slow swimming is found to be a plesiomorphic condition in Lamniformes, where the evolution of 

fast swimming through lamniform phylogeny is more parsimonious in the morphology-based 

tree than the molecular-based tree. My work is the most extensive comparative study of the 

morphology and variation of integumentary structures, especially placoid scales, conducted so 

far for Lamniformes.



 

1 

INTRODUCTION 

 

 For about 400 million years, elasmobranchs (sharks and rays) have diversified with 

unique anatomical and behavioral adaptations in aquatic environments (Moyle and Cech, 1996). 

One of the more studied attributes of sharks is their morphological adaptations that allow them to 

move with ease through water (Thomson, 1976; Thomson and Simanek, 1977; Webb, 1984; 

Raschi and Tabit, 1992; Gemballa et al., 2006). Swimming through water comes with many 

challenges, most notably high surface drag produced on moving organisms, which can lead to 

increased energetic costs (Helfman et al., 2009). One of the most important anatomical structures 

for sharks is their caudal fin that provides much of the power for swimming. All sharks possess a 

specialized asymmetrical caudal fin called ‘heterocercal,’ characterized by a large upper lobe and 

a small lower lobe (Thomson, 1976). Because the caudal fin has been regarded as a key 

anatomical structure for the evolutionary success in sharks, it has been examined from the 

functional kinematics (Wilga and Lauder, 2004; Lingham‐Soliar, 2005; Oliver et al., 2013) and 

morphological (Thomson and Simanek, 1977; Kim et al., 2013) standpoints. 

 Another important anatomical structure that determines the swimming efficiencies in 

sharks is integument, notably their placoid scales and dermis (Motta, 1977; Meyer and Seegers, 

2012; Tomita et al., 2014; Lauder and Di Santo, 2015). The scales cover the body of all 

chondrichthyans, including sharks, and have been known to assist them in a variety of functions 

from protection, to feeding, and especially to swimming efficiency (Reif, 1982, 1985; Raschi and 

Tabit, 1992; Southall and Sims, 2003). The dermis is a portion of the skin which is composed of 

a dense and highly coiled layer of collagen fibers, and it is generally understood that thicker 

dermis layers correspond to more elastic and flexible skin (Motta, 1977; Lauder and Di Santo, 
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2015). Yet, still, very little is known about the morphological variation in integumentary 

structure and its relation to the caudal fin anatomy and behavior in sharks, including a group of 

sharks called Lamniformes. 

 Lamniformes is an order of sharks with seven living families, comprising 10 genera and 

15 species (Fig. 1). They include 'fast swimming' forms such as the porbeagle and salmon shark 

(Lamna), mako shark (Isurus), and white shark (Carcharodon), and 'slow swimming' forms such 

as the goblin shark (Mitsukurina), megamouth shark (Megachasma), and basking shark 

(Cetorhinus) (Compagno, 2002; Castro, 2010). Alopiidae is a lamniform family with an 

exceptionally elongate caudal fin that is as long as the rest of the body and consists of three 

extant species belonging to the genus Alopias: A. pelagicus (pelagic thresher), A. superciliosus 

(bigeye thresher), and A. vulpinus (common thresher). Alopias pelagicus and A. vulpinus, which 

can reach up to 365 and 610 cm in total length (TL), respectively, are commonly found 

worldwide in tropical to cold-temperate waters and are known to actively feed on small schools 

of fish and squid using their caudal fin to stun prey items (Compagno, 2002; Aalbers et al., 2010; 

Oliver et al., 2013). On the other hand, A. superciliosus, which can reach up to 461 cm TL, is 

rarer compared to the other two thresher sharks (Gruber and Compagno, 1981; Compagno, 

2002). Contrary to A. pelagicus and A. vulpinus, the use of the caudal fin for hunting has never 

been observed directly in A. superciliosus due to its preference for deeper waters (Gruber and 

Compagno, 1981). However, because individuals of A. superciliosus are commonly 'tail-hooked' 

on longline fishing gear, the species is believed to also stun its prey with its caudal fin (Stillwell 

and Casey, 1976; Nakano et al., 2003). 

 Nakano et al. (2003), using acoustic telemetry, discovered that Alopias superciliosus 

practice diel vertical migration, and their calculation suggested that the species may be a 
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relatively slow swimmer. In contrast, Kim et al. (2013) examined the pattern of the caudal fin 

skeleton in lamniforms and suggested that A. superciliosus may be capable of fast swimming 

because its skeletal pattern shows characteristics reminiscent of fast swimming sharks. Under the 

framework of ecomorphology, which seeks to understand the morphological differences among 

species and how the environment may drive these functional differences (Norton et al., 1995), 

the aim of this present study is to determine whether A. superciliosus is a faster swimmer or a 

slower swimmer relative to other lamniforms, including fast swimming A. pelagicus and A. 

vulpinus based on integumentary structures. 

 Integumentary structures, notably placoid scales, of Alopias spp. have been previously 

illustrated or examined time to time (e.g., Welton and Farish, 1993:fig. 20; Castro, 2010:figs. 

59e, 60e, 61d), and based on observed keels, Alopiidae has been generalized as a group of fast 

swimming sharks (Reif and Dinkelacker, 1982). In addition, integumentary structures in other 

lamniform species have been studied or illustrated (e.g., Castro, 2010; Motta et al., 2012; Tomita 

et al., 2014). However, no studies to date have systematically compared the morphology of 

integumentary structures among different species of lamniforms in a phylogenetic context. In 

this study, I specifically examine and compare the following four morphological attributes in the 

three species of Alopias and four other representative lamniform taxa: 1) dermis thickness, 2) 

interkeel distances of scales, 3) scale density, and 4) scale shape. The thickness of the dermis is 

examined because a thicker dermis layer is associated with greater flexibility and 

maneuverability of the body (Motta, 1977; Meyer and Seegers, 2012; Tomita et al., 2014; Lauder 

and Di Santo, 2015). Scale density and interkeel distances are examined because a greater 

number of scales and smaller interkeel distances are considered optimal for surface drag 

reduction in fast swimmers (Klimley, 2013). The shapes of scales are examined because they 
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vary within each individual (Motta, 1977; Reif, 1985) and among different species in sharks 

(Castro, 2010) in which scales with a multi-keeled (complex) broad crown and a simple thorn-

like crown are considered to reflect fast swimming and slow swimming, respectively (Reif, 1982, 

1985; Klimley, 2013). I predict that fast swimming lamniforms would have thick dermis, high 

scale density, small interkeel distances, and complex scale shape relative to lamniforms known 

as slow or sluggish swimmers. My study is anticipated to help deciphering the elusive behavior 

of A. superciliosus and the evolutionary pattern of integument in lamniform sharks. 

 

MATERIALS AND METHODS 

 

Examined Specimens 

 The specimens examined in this study come from the following four institutions 

in the United States: Scripps Institution of Oceanography (SIO), University of California at San 

Diego, La Jolla; Florida Museum of Natural History, University of Florida (UF), Gainesville; 

Field Museum of Natural History (FMNH), Chicago, Illinois; and Museum of Comparative 

Zoology (MCZ), Harvard University, Cambridge, Massachusetts. My samples consist of 

preserved specimens in ethanol and represent non-embryonic, free-swimming individuals. The 

specific species and specimens examined are: Alopias pelagicus (n=1: FMNH 117473, 1,690 

mm TL female caught off Hawaii), A. superciliosus (n=1: UF 178509, 2,007 mm TL male 

caught off Florida), A. vulpinus (n=4: SIO 78-138A, 1,310 mm TL male caught off California; 

SIO 78-138B, 1,290 mm TL male caught off California; SIO 75-379, 1,435 mm TL male caught 

off California; SIO 64-804, 1,448 mm TL male caught off California), Mitsukurina owstoni 

(goblin shark, n=1: FMNH 117742, 1,265 mm TL female caught off Japan), Pseudocarcharias 
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kamoharai (crocodile shark, n=1: FMNH 117474, 1,011 mm TL male caught off Hawaii), 

Megachasma pelagios (megamouth shark, n=1: SIO 07-53, 2,149 mm TL female caught off Baja 

California), and Lamna ditropis (salmon shark, n=1: FMNH 117475, 1,513 mm TL male caught 

off California) (Fig. 1; except for the three species of Alopias, all other species examined are 

generally referred to at the genus-level hereafter). The non-alopiid taxa included in this study 

were strategically selected to encompass phylogenetically basal (Mitsukurina) and derived 

(Lamna) forms relative to Alopias (Shimada, 2005; Naylor et al., 2012). It is worth noting that all 

the examined lamniform samples were roughly of similar sizes, ranging from 101 cm to 215 cm 

in total length (TL). The size range of all samples of Alopias is particularly narrow, spanning 

127‒187 cm TL. Therefore, differences in measurements arising from body size differences are 

considered to be small for the purposes of this study, although possible ontogenetic effects on 

scale data are examined in this study (see below). 

 Whereas swimming can be highly variable within each species with various metrics that 

can be applied (e.g., burst swimming, high speed swimming, and maximal swimming 

performance), large, highly active aquatic vertebrates are generally difficult to study under 

natural ecological conditions (Lowe, 2002; Lauder and Di Santo, 2015). Nevertheless, speed 

characterization of ‘fast’ or ‘slow’ swimming for each species examined in this study were 

determined based on literature (Table 1). Unless otherwise noted, the speeds listed in Table 1 are 

‘routine swimming speeds’ (i.e., average speeds that can be aerobically maintained at relatively 

low energetic costs: Lauder and Di Santo, 2015), that were considered to be equivalent to 

Watanabe et al.’s (2015) ‘cruising speeds.’ For species with specific speed values in literature, I 

classified a ‘fast’ swimming shark as having a routine swimming speed of >2.0 km·h-1 (Alopias 

vulpinus and Lamna ditropis) and ‘slow’ swimming sharks as any shark with a routine 



 

6 

swimming speed of ≤2.0 km·h-1 (Megachasma pelagios) for the purposes of this study. Whereas 

contradictory speed interpretations exist for A. superciliosus (Table 1; hence one of the aims of 

my present study), specific swimming speed values for the following three taxa could not be 

found in literature: Alopias pelagicus, Mitsukurina, and Pseudocarcharias. Alopias pelagicus is 

generally characterized as an ‘active strong swimmer’ capable of repeated leaping (breaching) 

(Compagno, 2002; Ebert et al., 2013), and video footage of its hunting behavior indicates fast 

swimming (Oliver et al., 2013). Based on Oliver et al.’s (2013, fig. 5) depiction, even the early 

stage (specifically frames 3–7 in the illustration) of its tail-slapping hunting motion generated by 

the rotation of the caudal fin over the head as the forward-moving momentum of the body comes 

to a sudden stop is calculated to be already at least 16 km·h-1 in speed, suggesting that it is not 

unreasonable to assume A. pelagicus is a fast swimmer (Table 1). On the other hand, by 

contrasting it with 'swift' lamnid sharks, Nakaya et al. (2016, pp. 6‒8) described Mitsukurina to 

have "flabby body musculature, small and soft fins, and a weak ribbon-like caudal fin" and noted 

it to "swim slowly by undulating the tail region and long caudal fin" based on their in situ 

observations; thus, Mitsukurina is classified as a slow swimmer (Table 1). The swimming mode 

or speed of Pseudocarcharias has never been documented in literature. Where it has simply been 

inferred to be a ‘strong active swimmer’ (Compagno, 2002; Ebert et al., 2013), the skeletal 

pattern of its caudal fin is reminiscent of slow swimming lamniforms (Kim et al., 2013). Because 

of the conflicting interpretations similar to the case with A. superciliosus (Table 1), I chose to 

also include Pseudocarcharias in this study to gain additional insight into its swimming ability. 

In summary, A. pelagicus, A. vulpinus, and L. ditropis are here considered to be fast swimmers, 

Mitsukurina and Megachasma slow swimmers, and A. superciliosus and Pseudocarcharias taxa 

of uncertain swimming ability. 
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Sampling Sites and Data Collecting Methods 

 Approximately 1-cm2 patches of scale-covered skin samples (but deep enough to include 

part of the underlying muscular tissue) were taken from four different regions on each shark 

specimen: one sample from the body and three samples along the upper lobe of the caudal fin. 

The sample from the body is taken from the lateral side of the body between the dorsal fin and 

one of the pectoral fins. For the three samples from the caudal fin, the length of the caudal fin 

was measured for each shark specimen from the caudal peduncle to the terminal end of the upper 

lobe, and a skin patch was removed using a scalpel at 0%, 45%, and 90% of the length of the 

upper lobe. The four integument sampling sites are here referred to as SS-B (for site on the 

body), SS-0, SS-45, and SS-90 (for three sites on the caudal fin), respectively (Fig. 2A). Each 

sample was then divided into two smaller pieces, one for the morphological analysis of placoid 

scales (e.g., Fig. 2B, C) and the other for histological preparation (e.g., Fig. 2D–G). 

For the analysis of dermis thicknesses, collected skin samples (see above) underwent 

histological preparation at the Mouse Histology and Phenotyping Laboratory at Northwestern 

University at Chicago, Illinois. Each sample was sliced through perpendicular to the skin surface, 

including the placoid scales, to reveal the cross-sectional view of the dermis. The standard 

Hemtoxylin and Eosin (H&E) staining protocol (Luna, 1968) was used for each sample to 

enhance microstructure. For each specimen of Alopias, two histological slides were prepared to 

compare the dermis thickness at SS-B and SS-45 (e.g., Fig. 2D–G). In the other four lamniform 

taxa, only SS-45 histological samples were prepared. All specimens were examined using a 

Nikon Eclipse Ts2 Inverted Routine Microscope and were imaged at 4x magnification. For the 

purposes of this study, the two sublayers of the dermis, stratum laxum and stratum compactum 
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(Motta et al., 2012), were not distinguished from one another, and the total dermis thickness for 

all samples were measured using Image J imaging software (Schneider et al., 2012). 

For the morphological analysis of placoid scales, images were generated at FMNH using 

a LEO Zeiss 1550 Scanning Electron Microscope. Each skin sample was placed on a pin mount, 

attached using a carbon adhesive patch, and coated with gold to better increase image quality 

(Fourie, 1982). Two images were generated for each sample. The first image was taken at 60x 

magnification with a viewing area of 2 mm x 1.5 mm for scale density and interkeel distance 

data (Fig. 2C). Using Image J (Schneider et al., 2012), each 60x magnification image had a grid 

overlaid on top of it and nine points were chosen at equidistant locations. The scales closest to 

each of the nine points were selected for interkeel distance data. I measured the distance between 

the central keel and its closest dorsal keel (Fig. 2C) in each of the nine scales, and an average of 

the nine measurements was then taken and recorded. For scale density data, all fully intact scales 

within the viewing area were counted. The second image was taken at 300x magnification (Fig. 

2B) for the scale shape analysis (see below). 

Previous research and texts (e.g., Reif, 1982; Raschi and Muscik, 1986; Klimley, 2013; 

Cooper et al., 2018) have not explicitly alluded to the possible presence of ontogenetic or sexual 

variation in the morphology or size of placoid scales. However, I examined the possible 

ontogenetic effect on the average interkeel distance and scale density that may be present in 

Alopias vulpinus in which multiple samples (n=4) were available. The four samples were all 

males and thus sex-based variation could not be evaluated. I used each measurement taken from 

each of the four integument sampling sites (Fig. 2A) and performed a regression between each 

scale variable and TL among the four specimens (Fig. 3). It is important to note that none of the 

morphological features seems to be significantly affected by growth. Although there seems to be 
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a slight positive correlation within the majority of my scale density data (slopes at -0.158, 0.132, 

0.164, and 0.340), it is hard to support that these patterns are due to ontogenetic effects on scale 

morphological features (r2 range 0.08–0.57). Although it seems to be a field that needs more 

attention, research suggests that in general, my morphological features are not affected by 

ontogeny. 

 

Scale Shape Analytical Methods 

 For the analysis of scale shape, a two-dimensional geometric morphometrics approach 

was used. Geometric morphometrics attempts to describe shape variation through the use of 

coordinate data (Zelditch et al., 2012; Adams et al., 2013). It is particularly useful when 

attempting to use statistical analyses and description to ascertain shape variation within and 

among samples (Rohlf, 1998). In my study, only the posterior half of the scales was examined 

due to some scales having their anterior half obscured by other overlapping scales in the image. 

Whereas morphological differences of scales among sampling sites and among taxa appear to be 

more pronounced in the posterior half of the scale compared to its anterior half, similar 

approaches have been used to examine the geometric morphometrics of partially exposed shapes 

(e.g., Jiang et al., 2016). Using the program TpsDig2 (Rohlf, 1998), three landmarks were chosen 

as definitive local anatomical features common across scale samples among all the examined 

species: Landmark 1, the dorsal-most point on the posterior margin; Landmark 2, the posterior-

most point on the central keel; and Landmark 3, the ventral-most point on the posterior margin 

(Fig. 2C). Fourteen equidistant semi-landmarks, 28 in total, were then placed between 

Landmarks 1 and 2, and between Landmarks 2 and 3 to ensure that reliable tangents were 

computed along the curved shape of each scale (Gunz and Mitteroecker, 2013). Due to the 
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arbitrary spacing of these semi-landmarks, the sliding method was used to minimize the 

procrustes distance of the semi-landmarks relative to the average shape of the entire scale (Fig. 

2C). 

A generalized Procrustes analysis that superimposes the configurations of landmarks 

from all scales onto a common coordinate plane was used. Through using a least squares method, 

all scales were translated to the origin, rotated, and scaled to the same size to generate a set of 

shape variables. Using the program TpsRelw (Rohlf, 1998), the raw coordinate data from my 

landmarks were used for the relative warp analysis, or the principle component analysis (PCA), 

of these shape variables. PCA attempts to find deformations within the examined shape and 

builds a scatterplot to represent shape variation in tangent space (Adams et al., 2013).  

With the averages from my raw PCA data, I calculated Euclidian distances and generated 

dendrograms of relatedness within each integument sampling site and each species. All 

dendrograms were calculated using the program PAST (Paleontological Statistics) from Hammer 

et al. (2001) which adapted the simple Euclidian distance methods from Sokal (1958). My 

Euclidian distance dendrogram is a simple clustering method that involves using Unweighted 

Pair Group Method with Arithmetic Means (UPGMA). A basic cluster analyses such as this can 

partition the objects of analyses within the data (i.e., integument sampling site and species) 

through a multidimensional analytical method. A dendrogram is then generated which can 

graphically depict hierarchical clustering within the data. The “branches” of my dendrograms 

meet at “nodes” which visually fuse at the similarity index of the branches. Length of branches 

and connectedness give no indication to relatedness and can be “swiveled” without affecting the 

information conveyed by the dendrograms (Legendre and Legendre, 2012). 
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Using the program MorphoJ (Klingenberg, 2011), a canonical variate analysis (CVA) 

was used to determine the differences in shape between two separate groups: 1) variation in scale 

shape by sampling site and 2) variation in scale shape by species. Whereas PCA is a useful 

technique that constructs variables that can examine variation among individuals, CVA is useful 

in this study because it constructs variables that describe relative differences between groups 

which can be specified, such as the difference in scale shape when comparing among sampling 

sites or comparing among species. In this study, I used a simple approach to discriminate among 

my CV groups using Mahalanobis distances, which are calculated by measuring the distance of a 

specimen from the group mean. Each distance is adjusted by the pattern of covariation within the 

group. It measures how different shape data of a single point are from a group mean of shape 

data (Zelditch et al., 2012), or the differences among my sampling sites when grouped by species 

and sampling site, giving me an amount that quantifies how different each point is from another 

group. 

 

Character Mapping 

Character mapping (e.g., Harvey and Pagel, 1991; Kim et al., 2013) was used to examine 

the evolutionary pattern of scale morphology within Lamniformes. The scale density and average 

interkeel distances data were mapped for each of the seven lamniform species on previously 

proposed morphology-based (Compagno, 1990) and molecular-based (Martin et al., 2002) 

phylogenetic trees. Although a number of phylogenetic studies that included lamniforms are 

known (e.g., Shirai, 1996; Naylor et al., 1997; Shimada, 2005; Human et al., 2006; Heinicke et 

al., 2009; Vélez-Zuazo and Agnarsson, 2011; Naylor et al., 2012), I chose Compagno (1990) and 

Martin et al.'s (2002) trees because they included all lamniform genera with the most well-
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resolved depiction of their interrelationships. However, it is worth pointing out that the tree 

topology of other morphology-based studies (e.g., Shirai, 1996; Shimada, 2005) overall do not 

contradict that of Compagno's (1990) tree, particularly in regards to the systematic position of 

Alopias with respect to other lamniforms especially Mitsukurina, Megachasma, and Lamna. 

Likewise, the tree topology attained by other molecular-based studies generally agrees with the 

tree topology seen in Martin et al.'s (2002) tree. In addition, it should also be noted that 

Compagno's (1990) morphology-based tree is free of integument-based characters; therefore, 

mapping of integument-based measurements is independent of how the phylogenetic tree was 

constructed in the first place, as for the molecular-based tree. 

For the purpose of this study, the phylogenetic trees were simplified to include only the 

seven lamniform taxa examined. A few molecular studies have shown the non-monophyly of 

Alopias where A. superciliosus fell outside of the Alopias clade (e.g., Vélez-Zuazo and 

Agnarsson, 2011; Naylor et al., 2012:fig. 2.2), but the three species are generally accepted to 

constitute a monophyletic group (e.g., Compagno, 1990; Shimada, 2005; Human et al., 2006; 

Naylor et al., 2012:45). Although A. pelagicus and A. vulpinus are likely sister species (e.g., 

Shimada, 2005; Human et al., 2006; Vélez-Zuazo and Agnarsson, 2011; Naylor et al., 2012), the 

three Alopias spp. are grouped as an unresolved polytomy because Compagno (1990) showed a 

sister relationship between A. pelagicus and A. superciliosus, and because the aim of my 

character mapping is to examine a large-scale (intergeneric) evolutionary pattern in the 

integument of Lamniformes. 
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RESULTS 

 

Scale Density, Interkeel Distances of Scales, and Dermis Thickness by Species 

Alopias pelagicus—In general, scales of A. pelagicus have a more squared teardrop 

shape that becomes rounder towards the distal tip of the caudal fin (Fig. 4A). Scales at SS-B 

have three longitudinal keels defining two valleys. All keels extend posteriorly and remain 

relatively even in length. The average interkeel distance at SS-B is 41 µm with scale density of 

132 scales per 2 mm x 1.5 mm area (Appendices 1, 2). The scale density is relatively high but 

patches of skin are slightly visible around the base of many scales at SS-B. Scales near the 

caudal peduncle (SS-0) have an extended central keel compared to those at SS-B, but the dorsal 

and ventral keels extend progressively and the posterior edge of each scale becomes more 

rounded along the caudal fin posteriorly based on scales at SS-45 and SS-90. In general, scales 

on the caudal fin (SS-0, SS-45, and SS-90) first possess three keels with two valleys and progress 

to five keels with four valleys (Figs. 4A, 5A, B). The average interkeel distances is 38 µm at SS-

0, 34 µm at SS-45, and 27 µm at SS-90, showing a decreasing trend within the caudal fin 

posteriorly. Scale densities are about 184 scales at SS-0, 155 scales at SS-45, and 214 scales at 

SS-90 for each 2 mm x 1.5 mm area. Alopias pelagicus has a similar body dermis thickness to A. 

vulpinus (Fig. 5C) at about 353 µm (Fig. 2D) and a caudal fin dermis thickness of about 305 µm 

(Fig. 2E; Appendix 3). 

Alopias superciliosus—In general, the shape of the scales in this species is triangular and 

dagger shaped (Fig. 4B). Scales at SS-B have a single, sharp, central keel with dorsal and ventral 

keels extensively reduced. The average interkeel distance at SS-B is 56 µm with a scale density 

of 52 scales per 2 mm x 1.5 mm area (Appendices 1, 2). The scale density is relatively low and 



 

14 

patches of skin are highly visible around the base of many scales at SS-B. Scales near the caudal 

peduncle (SS-0) continue to have an extended central keel, but the dorsal and ventral keels are 

more prominent compared to scales at SS-B, with scales becoming flatter and more heavily 

ridged at SS-90. In general, the number of keels on the scales of the caudal fin (SS-0, SS-45, and 

SS-90) increases posteriorly from three keels with two valleys to five keels with four valleys 

(Figs. 4B, 5A, B). The average interkeel distances on scales is 37 µm at SS-0, 33 µm at SS-45, 

and 27 µm at SS-90, showing a decreasing trend within the caudal fin posteriorly. In contrast, 

scale densities, in general, show an increasing trend in which they are about 135 scales at SS-0, 

201 scales at SS-45, and 276 scales at SS-90 for each 2 mm x 1.5 mm area. Alopias superciliosus 

has the most conspicuous of the dermis thickness data, with the largest body dermis thickness 

(451µm: Fig. 2F) and the lowest caudal fin dermis thickness (162µm: Fig. 2G) among examined 

lamniforms (Fig. 5C; Appendix 3). 

Alopias vulpinus—In general, scales of A. vulpinus has a tear-dropped shape (Fig. 4C). 

Scales at SS-B have three longitudinal keels defining two valleys. All keels extend posteriorly, 

but the central keel extends the farthest. The interkeel distances range from about 45–51 µm with 

an average of 47.94 µm. The scale density at SS-B ranges 72–119 scales per 2 mm x 1.5 mm 

area with an average count of 98 scales (Appendices 1, 2). The scale density is relatively low and 

patches of skin are visible around the base of many scales at SS-B. Scales near the caudal 

peduncle (SS-0) are similar in morphology to those at SS-B, but the central keel progressively 

becomes shorter and the posterior edge of each scale becomes more rounded along the caudal fin 

posteriorly based on scales at SS-45 and SS-90. In general, scales on the caudal fin (SS-0, SS-45, 

and SS-90) possess five keels with four valleys (Figs. 4C, 5A, B). The average interkeel 

distances on scales is 45 µm at SS-0, 36 µm at SS-45, and 31 µm at SS-90, showing a decreasing 
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trend within the caudal fin posteriorly. In contrast, scale densities show an increasing trend in 

which they are about 110 scales at SS-0, 172 scales at SS-45, and 214 scales at SS-90 in each 2 

mm x 1.5 mm area. Among the seven lamniform species examined, A. vulpinus has the highest 

dermis thicknesses both in the body (about 383 µm) and caudal fin (about 473 µm) (Fig. 5C; 

Appendix 3). 

Mitsukurina owstoni—In general, scales of M. owstoni have a circular spiked shape (Fig. 

4D). Scales at SS-B have no distinct central keel, are more rounded, and spiked. The average 

interkeel distance at SS-B is 67 µm with a scale density of 13 scales in a 2 mm x 1.5 mm area. 

The scale density is low and scales are large in comparison to the three species of Alopias, with 

patches of skin visible around the base of all scales at SS-B. Scales near the caudal peduncle (SS-

0) continue to remain rounded and spiked, but the central keel becomes more prominent as the 

scale becomes flatter and more streamlined along the skin compared to scales at SS-B. In 

general, scales on the caudal fin (SS-0, SS-45, and SS-90) possess one central keel with two 

valleys on either side (Figs. 4D, 5A, B). The average interkeel distance on scales is 61 µm at SS-

0, 63 µm at SS-45, and 54 µm at SS-90, showing a slight posteriorly decreasing trend within the 

caudal fin (Appendix 1). Scale density, in general, show a decreasing trend in which they are 

about 21 scales at SS-0, 16 scales at SS-45, and 16 scales at SS-90 for each 2 mm x 1.5 mm area 

(Appendix 2). Among the seven lamniform species examined, M. owstoni has the third thinnest 

caudal fin dermis thickness at 240 µm (Fig. 5C; Appendix 3). 

Pseudocarcharias kamoharai—In general, scales of Pseudocarcharias have an 

arrowhead shape that is consistent across the shark (Fig. 4E). Scales at SS-B have an extended 

central keel with dorsal and ventral keels present. The average interkeel distance at SS-B is 80 

µm with scale density of 47 scales in a 2 mm x 1.5 mm area (Appendices 1, 2). The scale density 
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is relatively low and scales are large in comparison to the three species of Alopias with patches 

of skin visible around the base of many scales at SS-B. Scales near the caudal peduncle (SS-0) 

continue to have an extended central keel, but the dorsal and ventral keels become more 

elongated, making scales more triangular compared to scales at SS-B. In general, scales on the 

caudal fin (SS-0, SS-45, and SS-90) possess three keels with two valleys (Figs. 4E, 5A, B). The 

average interkeel distances on scales is 71 µm at SS-0, 59 µm at SS-45, and 59 µm at SS-90, 

showing a slight decreasing trend within the caudal fin posteriorly. In contrast, scale densities, in 

general, show an increasing trend in which they are about 58 scales at SS-0, 72 scales at SS-45, 

and 68 scales at SS-90 for each 2 mm x 1.5 mm area. Pseudocarcharias has a caudal fin dermis 

thickness of only 157 µm that is closest to that in A. superciliosus (Fig. 5C; Appendix 3). 

Megachasma pelagios—In general, scales of Megachasma have a more triangular 

teardrop shape (Fig. 4F). Scales at SS-B have a central keel that extends well past the dorsal and 

ventral keels. The average interkeel distance at SS-B is 107 µm with 27 scales in a 2 mm x 1.5 

mm area (Appendices 1, 2). The scale density is low and scales are large in comparison to the 

three species of Alopias with patches of skin visible around the base of most scales at SS-B. 

Scales near the caudal peduncle (SS-0) retain a similar shape with the dorsal and ventral keels 

extending and scales decreasing in size compared to scales at SS-B. In general, scales on the 

caudal fin (SS-0, SS-45, and SS-90) possess three keels with two valleys (Figs. 4F, 5A, B). The 

average interkeel distance on scales is 98 µm at SS-0, 84 µm at SS-45, and 70 µm at SS-90, 

showing a decreasing trend within the caudal fin posteriorly. Overall scale densities show an 

increasing trend in which they are about 50 scales at SS-0, 34 scales at SS-45, and 58 scales at 

SS-90 for each 2 mm x 1.5 mm area. Megachasma shares a similar caudal fin dermis thickness to 

Mitsukurina, measuring 263 µm (Fig. 5C; Appendix 3). 
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Lamna ditropis—In general, scales of L. ditropis become more rounded towards the 

distal end of the caudal fin (Fig. 4G). Scales at SS-B have a central keel that is even in length 

with the dorsal and ventral keels. In this species, the average interkeel distance at SS-B is 82 µm 

with 72 scales per 2 mm x 1.5 mm area, the largest scale density among the examined non-

Alopias sharks. The scale density is high and scales are large in comparison to the three species 

of Alopias with no skin patches visible around any scales at SS-B. Scales near the caudal 

peduncle (SS-0) retain a similar shape with a slightly more extended central keel and the 

increased prominence of dorsal and lateral keels compared to scales at SS-B. In general, scales 

on the caudal fin (SS-0, SS-45, and SS-90) possess five keels with four valleys (Figs. 4G, 5A, 

B). The average interkeel distance on scales is 77 µm at SS-0, 72 µm at SS-45, and 50 µm at SS-

90, showing a posteriorly decreasing trend within the caudal fin. Scale densities, in general, show 

an increasing trend in which they are about 55 scales at SS-0, 49 scales at SS-45, and 82 scales at 

SS-90 for each 2 mm x 1.5 mm area (Appendices 1, 2). The dermis thickness at SS-45 in Lamna, 

that measures about 342 µm, is similar to the dermis thickness at SS-B in A. pelagicus (Fig. 5C; 

Appendix 3). 

 

Scale Shape 

 Appendix 4 shows my raw coordinate data from PCA. PCA shows that the first two 

principal component axes account for 65.39% of the variation in placoid scale shapes. Principal 

components 1 (PC1), 2 (PC2), and 3 (PC3) account for 49.36%, 16.03%, and 13.36% of 

variation, respectively. Due to the close variation between PC2 and PC3, two separate graphs 

were generated to examine their relationships with PC1 (Fig. 6A, B). In both graphs, species 

clumped in distinct groups. Alopias pelagicus and A. vulpinus are centrally located, whereas 
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those of Lamna has low scores on PC1. Mitsukurina is located in the positive quadrants of PC1 

and variable in scale shape along PC2. Megachasma is confined to the lower limits of PC2 with 

very little variation along PC1 in which they are tightly clustered and do not overlap with any 

other species; however, Megachasma overlap considerably with A. vulpinus and A. pelagicus 

when plotted against PC1 and PC3. Mitsukurina slightly overlaps with A. superciliosus; 

however, when plotted against PC1 and PC3, the vertical range of the plots of Mitsukurina is 

drastically reduced, resulting in greater overlap with Alopias spp. In both sets of PCA, A. 

superciliosus considerably overlap with those of multiple taxa including A. vulpinus, 

Mitsukurina, and Megachasma. Along PC1, the shape of the placoid scales changes by an 

elongation of their posterior tip and a thinning of the dorsal and ventral exterior margins. Along 

PC2, although less variation is observed, the placoid scales generally extend in width along the 

anteroposterior axis. 

 Euclidian distance dendrograms using UPGMA reveal distance relationships found in the 

PCA (Fig. 6C, D). The species with the least distance between them are Alopias superciliosus 

paired with Pseudocarcharias, which has a slightly lower distance index than A. vulpinus paired 

with A. pelagicus (Fig. 6C). Mitsukurina had the farthest distance index from all other examined 

lamniform taxa. For scale sampling sites, the dendrogram revealed a small distance index 

between SS-45 and SS-90 on the caudal fin (Fig. 6D). The next farthest distance index grouped 

all caudal fin scales (SS-0, SS-45, and SS-90) into one cluster, with the body scales (SS-B) 

having the greatest distance index from all other integument sampling sites (Fig. 6C, D).  

 Appendices 5 and 6 show my raw coordinate data from CVA. CVA reveals that CV1 and 

CV2 account for 65.05% and 19.78% of the variation found among integument sampling sites 

and 58.85% and 27.12% of the variation found among species, respectively. Both sets of CVA 
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(Fig. 7A, B) reveal significant differences among all sampling sites and among species 

(Mahalanobis distance: p<<0.0001 for sampling site; p<0.05 for species: Tables 2, 3). For 

sampling sites, the CV1 axis separates the scale shape variation found between SS-90 scales and 

the other three sampling sites (SS-B, SS-0, and SS-45). The CV2 separates SS-B, SS-0, and SS-

45; however, there is greater overlap between plots of SS-B and SS-45 scales than either those of 

SS-B or SS-45 scales with SS-0 scales. For species, the CV1 axis separates scale shape variation 

found between ‘fast’ and ‘slow’ swimmers. Whereas CV2 represents the spread of scale shape 

variation among slow swimmers, it seems that there is far less spread in scale shape variation 

among fast swimmers. Due to the high variation within CV1 found in both of my analyses, one 

by species and another by sampling sites, I combined these two axes to form one analysis 

examining shape variation when species and sampling sites were considered together (Fig. 7C). 

The sampling site plots show a similar pattern, with SS-B, SS-0, and SS-45 clumping near the 

positive coordinates of my sampling site axis (X-axis), whereas plots of SS-90 are all tightly 

clustered in the negative ranges. Similarly, the species axis (Y-axis) shows patterns of fast 

swimmers being confined towards the positive end and slow swimmers being clumped near the 

negative ranges of the axis.  

 

DISCUSSION 

 

Is Alopias superciliosus a fast swimmer? 

Nakano et al. (2003) conducted acoustic telemetry to track the movement of two 

individuals of Alopias superciliosus in the eastern Pacific Ocean for 70–96 hours and found very 

distinct diel vertical migration patterns where they spent in the shallow (80–130 m) water during 
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the night and deep (200–500 m) water during the day. In addition, they calculated the estimated 

mean swimming speed of A. superciliosus to be 1.3–2.0 km·h-1, which can be characterized as 

slow swimming, similar to Megachasma (1.5 km·h-1: see Nelson et al., 1997), and slower than A. 

vulpinus (2.1 km·h-1: Cartamil et al., 2010) and members of Lamnidae (4.2 km·h-1 for Lamna 

nasus: Saunders et al., 2011; 3.9 km·h-1 for L. ditropis: Watanabe et al., 2015; up to 4.4 km·h-1 

for Isurus: Holts and Bedford, 1993; and 3.2 km·h-1 for Carcharodon: Strong et al., 1992). 

Subsequently, Kim et al. (2013) examined the organization of the caudal fin skeleton in all 15 

extant species of lamniforms (Fig. 1) and found that, despite its highly elongate upper lobe, the 

caudal fin of A. superciliosus showed the same skeletal pattern as fast swimming sharks. 

Therefore, Kim et al.’s (2013) results are at odds with Nakano et al.’s (2003) data. My present 

study examines integumentary structures of A. superciliosus and its lamniform relatives that 

include fast swimming (A. pelagicus, A. vulpinus, and Lamna) and slow swimming (Mitsukurina 

and Megachasma) forms to assess the swimming ability of A. superciliosus. 

Ridges and valleys present on placoid scales assist in surface drag reduction because they 

decrease micro-turbulence caused by small water eddies as water flows over a ridged surface 

(Bechert et al., 1985; Reif, 1985; Raschi and Tabit, 1992; Lang et al., 2014; Afroz et al., 2016; 

Du Clos et al., 2018). In general, smaller interkeel distances of placoid scales are ideal for 

optimal surface drag reduction (Reif and Dinkelacker, 1982; Reif, 1985; Klimley, 2013). Thus, I 

predicted that fast swimming lamniforms should possess small interkeel distances (see 

Introduction). My data show that the average interkeel distances (Fig. 5A) are wider in the scales 

on the body (SS-B) than those near the terminal end of their caudal fins (SS-45 and SS-90) 

regardless of taxa, meaning that scale-based surface drag reduction is greater on the caudal fin 

than on the body. When Alopias spp. are compared to other examined lamniforms, the ranges of 
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average interkeel distances in Alopias spp. are generally much smaller (Fig. 5A), indicating the 

specialization of Alopias within Lamniformes. Among the three species of Alopias, the ranges of 

average interkeel distances are small, and the ranges of caudal fin data practically overlap. One 

notable observation is that the average interkeel distance of SS-B in A. superciliosus is 

conspicuously large and occurs separated from the plots of Alopias spp. (Fig. 5A). However, the 

large interkeel distance is deceptive, because scales at SS-B in A. superciliosus are characterized 

by anteroposteriorly short, but rather thorn-like crowns, that are suited for protective function 

(e.g., against predators and ectoparsites) rather than swimming efficiency (Reif, 1982). These 

observations suggest that A. superciliosus is a slower swimmer than A. pelagicus and A. vulpinus 

but can move its caudal fin as efficiently as A. pelagicus and A. vulpinus. Deceptively high 

interkeel distances are also found in thorn-like scales at all the sampling sites in Mitsukurina 

(Fig. 4D), characteristic of scales more suited for protection rather than swimming efficiency. In 

contrast, the average interkeel distances are overall the greatest in Megachasma in my dataset 

(Fig. 5A), which is expected of a slow swimming shark. This observation, in turn, supports that 

slow swimming can be achieved without thorn-like scales, but instead with broadly-keeled 

scales. The interkeel distances in Lamna are found to be similar to, although slightly less than, 

those of Pseudocarcharias (Fig. 5A), indicating that Pseudocarcharias could indeed be a ‘strong 

active swimmer’ (Compagno, 2002; Ebert et al., 2013; but see also below). 

A greater number of placoid scales per unit area, especially combined with scales with 

smaller interkeel distances, is said to also reduce surface drag (Klimley, 2013). Therefore, I 

predicted that fast swimming sharks should exhibit high scale densities (see Introduction). My 

data suggest that the average scale densities vary widely within the family Alopiidae, whereas 

the disparity in scale density is small within the other lamniforms (Fig. 5B). In the scale density 
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data for Alopias vulpinus, standard deviations from body to caudal fin ranges 50–250 scales per 2 

mm x 1.5 mm viewing area, which makes it difficult to make a definitive conclusion as to the 

role scale density plays in swimming speed, however, patterns in scale density are still 

observable. The body (SS-B) has the lowest scale density, whereas the highest density is found 

towards the terminal end of the caudal fin (SS-90). The disparity is particularly high for A. 

superciliosus where the scale densities in its caudal fin are comparable to, or even higher than, 

those in the caudal fin of A. pelagicus and A. vulpinus. The scale density at SS-B for A. 

superciliosus is comparable to that of the body scales for Pseudocarcharias and Lamna. Scale 

density, particularly at SS-B, is lowest in the slow swimming lamniform, Mitsukurina. In the 

other three non-Alopias species, close overlap among all sampling sites makes scale density 

differences difficult to discern from each other; however, their scale densities are all quite low, 

compared to the family Alopiidae. In summary, my scale density data patterns (Fig. 5B) suggest 

that a high density in scales towards the terminal end of the caudal fin, as well as the variation in 

scale density within the family Alopiidae, are unique attributes compared to other lamniforms. 

The biological significance of this variation may be to assist with surface drag reduction of the 

caudal fin or perhaps smaller scales, thus higher scale density, allows for greater flexibility of the 

caudal fin during hunting. The surface drag of the caudal fin in A. superciliosus is inferred to be 

comparable to, or more reduced than, that in A. pelagicus and A. vulpinus. However, patterns 

based on the low scale density in SS-B suggest that A. superciliosus is the slowest swimmer 

among Alopias spp.  

In sharks, a thicker dermis layer is associated with greater flexibility and maneuverability 

of the body (Motta, 1977; Meyer and Seegers, 2012; Tomita et al., 2014; Lauder and Di Santo, 

2015). The body and caudal fin of A. pelagicus and A. vulpinus undergo extreme bending to 
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execute their rapid tail slapping behavior (Aalbers et al., 2010; Oliver et al., 2013). Therefore, 

these fast swimming Alopias spp. are predicted to possess a thick dermis relative to slow 

swimming lamniforms (see Introduction). In my study, histological samples were taken from SS-

B and SS-45 for the three species of Alopias, whereas SS-45 was the only sampling site for the 

four non-Alopias lamniforms examined (Fig. 5C). The exact significance of the dermis thickness 

at SS-45 in the non-Alopias lamniforms is unclear without samples from SS-B. However, 

strikingly, dermis thicknesses between the two sampling sites (SS-B and SS-45) are 

exceptionally different in A. superciliosus, unlike A. pelagicus and A. vulpinus that have similar 

dermis thicknesses between the two sampling sites (Fig. 5C; see also Fig. 2D–G). This result 

indicates that A. superciliosus has a flexible body like A. pelagicus and A. vulpinus, but its caudal 

fin is interpreted to be considerably ‘stiff’ with no extreme bending capability. These dermal 

thickness data are consistent with tactile of the caudal fin of each examined sample of Alopias 

spp. through palpation, where the caudal fin of A. superciliosus lacks substantial flexibility 

observed in the caudal fin of A. pelagicus and A. vulpinus (JAF, personal observation). 

Therefore, the observed stiffness of the caudal fin in the sample of A. superciliosus is interpreted 

to be largely biological, and due not simply to postmortem artificial effects from preservatives. 

Placoid scales that have a broad crown with multiple keels are commonly found in fast 

swimming sharks, whereas those with a simple thorn-like crown are typically found in slow 

swimmers (Reif, 1982, 1985; Klimley, 2013). My quantitative analyses on the shapes of placoid 

scales using PCA show that the scale shapes of Alopias superciliosus are overall more similar to 

Mitsukurina, Pseudocarcharias, and Megachasma (i.e., plots largely clustered in the right half of 

Figure 6A, B) than to A. pelagicus, A. vulpinus, and Lamna (i.e., plots largely clustered in the left 

half of Figure 6A, B). My Euclidian distance dendrogram by sampling sites shows closer 
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similarities in scale shape towards the terminal end of the caudal fin from the body (Fig. 

6C).Also, my dendrogram by taxa indicates that the scale shapes of Mitsukurina are quite 

different from the rest of the six lamniform taxa examined (Fig. 6D), reflecting the unique thorn-

like form in Mitsukurina (Fig. 4D). Nevertheless, A. superciliosus is clustered closely with 

Megachasma (and Pseudocarcharias) and distinctively separated from A. pelagicus, A. vulpinus, 

and Lamna. Therefore, my PCA-based scale shape examination suggests that A. superciliosus 

and Pseudocarcharias are slow swimmers. 

 I used CVA to assess the scale shape variation quantitatively. My CVA scatter plot 

diagram of taxa (Fig. 7A) clearly discriminates the plots of fast swimming lamniforms (A. 

pelagicus, A. vulpinus, and Lamna; i.e., samples in the right half of the graph) from those of slow 

swimmers (Mitsukurina and Megachasma: i.e., samples in the left half of the graph). A. 

superciliosus (and Pseudocarcharias) are clustered closely with the slow swimming lamniforms. 

My CVA scatter plot diagram of integument sampling sites (Fig. 7B) reveals that, generally, 

scale shapes can be discriminated among different sampling sites regardless of taxa, where most 

of the plots of SS-B and those of SS-90 occur on the opposite ends of the graph. When the 

discriminant analysis is grouped by sampling sites and taxa (Fig. 7C), the same location-based 

pattern of plots along the CV1-axis in Figure 7B is discernable. More importantly, the graph 

clearly discriminates plots of fast swimmers (i.e., plots on the upper half) from those of slow 

swimmers (i.e., plots on the bottom half). Again, plots of A. superciliosus (and 

Pseudocarcharias) are clustered closely with the slow swimming lamniforms, Mitsukurina and 

Megachasma. 

The primary diet of A. vulpinus and A. pelagicus is a diverse array of schooling prey 

items, with a heavy emphasis on anchovies (Engrulidae) (Preti et al., 2004) along with others 
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such as herring, sardines, shad, pichards, menhaden (Clupeidae), needlefish (Belonidae), 

mackerels (Scombridae), bluefishes (Pomatorridae), and lanternfishes (Myctophidae) (Preti et 

al., 2001; Compagno, 2002). The tail-slapping hunting method, where the terminal end of the 

caudal fin swings over the head as the forward motion of the body comes to a sudden stop, 

employed by A. pelagicus and A. vulpinus, is particularly ideal for hunting schooling fish, 

because it maximizes the probability of stunning more than one fish per strike (Oliver et al., 

2013). In addition, high scale densities found in all three species of Alopias is perhaps to 

accommodate abrasion during its complex tail-slapping movement during hunting (Reif, 1982; 

Compagno, 2002; Castro, 2010; Meyer and Seegers, 2012; this study). On the other hand, A. 

superciliosus feeds mainly on squids and a variety of pelagic teleost fishes, many of which are 

larger solitary prey, such as lancetfishes (Alepisauridae), mackerel (Scombridae), small billfishes 

(Isiophoridae), and hake (Merluccidae) (Gruber and Compagno, 1981). Because captured 

individuals of A. superciliosus are also commonly tail-hooked, the species most likely uses its 

caudal fin for pray capturing (Stillwell and Casey, 1976; Nakano et al., 2003). However, a very 

thin dermis layer in the caudal fin of A. superciliosus, combined with its stiffness through 

tactility, indicates that A. superciliosus may not employ the 'over-the-head' tail-swing strike seen 

in A. pelagicus and A. vulpinus. Rather, A. superciliosus may swing its tail laterally rather than 

over the head. 

The thorn-like scales with a low scale density at SS-B in Alopias superciliosus (Figs. 5B, 

5A, B) as well as its close clustering of its plots of scale shapes with those of slow swimming 

lamniforms (Figs. 5, 6) strongly suggest that A. superciliosus is a slow swimming shark, at least 

relative to A. pelagicus and A. vulpinus. Yet, the dermis layer on the body (SS-B) in A. 

superciliosus is thicker than that of A. pelagicus and A. vulpinus, meaning that the body of A. 
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superciliosus is capable of extreme bending. Its slow swimming ability would make it difficult to 

initiate the burst of speed necessary to use the caudal fin for hunting as seen in the other two 

species of Alopias. However, its inferred extreme body bending ability would allow A. 

superciliosus to maximize the lateral slapping motion of its stiff caudal fin to stun its prey, 

compensating its slow swimming. Nakano et al. (2003) found that A. superciliosus is more active 

at night and suggested that the upward directed larger eyes would be beneficial for hunting fish 

at night, coming at its prey as it slowly ascends. Along with these behavioral interpretations, its 

slow swimming with a powerful lateral swing of its stiff caudal fin made possible by the extreme 

bending of the body suggests that the primary hunting strategy of A. superciliosus may be by 

ambushing its prey, rather than actively hunting it. 

The swimming ability and prey hunting strategies of Alopias superciliosus inferred from 

my integument-based analyses are consistent with what have been so far observed for the 

species, even though the typical feeding behavior of this species have never been directly 

recorded or observed (e.g., Stillwell and Casey, 1976; Nakano et al., 2003). However, what has 

become even more evident through my study is the need for further observations and analyses on 

the biology of Pseudocarcharias, commonly referred to as a ‘strong active swimmer’ 

(Compagno, 2002; Ebert et al., 2013) but has a caudal fin skeleton reminiscent of slow 

swimming lamniforms (e.g., Kim et al., 2013). For example, my average interkeel distance and 

scale density data of Pseudocarcharias show that they are overall comparable to fast swimming 

Lamna (Fig. 5A, B), whereas plots of Pseudocarcharias in my scale shape analyses are mostly 

clustered closely with plots of slow swimming Mitsukurina and Megachasma. This mosaic of 

conflicting results for Pseudocarcharias not only suggests that further studies are needed to 

elucidate the biology of Pseudocarcharias, but also some aspects of my integumentary variables 
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may not necessarily accurately signal the swimming ability of sharks, warranting further 

investigations. 

 

Evolutionary patterns of lamniform integument 

I used previously published molecular-based and morphology-based phylogenetic trees to 

examine the evolutionary patterns in scale densities and average interkeel distances within the 

order Lamniformes through character mapping (Fig. 8). In both trees, Mitsukurina is the most 

basal lamniform. The average interkeel distance data of Mitsukurina are not reflective of its 

swimming ability (see above). However, Mitsukurina has thorn-like placoid scales (Fig. 4D) that 

have more protective function than swimming efficiency (see above), and the species exhibits the 

lowest scale densities among all the examined taxa in both trees (Fig. 8). Therefore, slow 

swimming is interpreted to be a plesiomorphic condition in Lamniformes. 

The molecular-based tree places the Alopias clade as a sister to a clade consisting of 

Megachasma and Pseudocarcharias, and the two clades together form a clade that is sister to 

Lamna (Fig. 8A). On the other hand, in the morphology-based tree (Fig. 8B), Pseudocarcharias 

is the next successive least derived lamniform to Mitsukurina, followed by Megachasma that is 

sister to a clade consisting of Alopias spp. and Lamna. In both trees (Fig. 8A, B), Alopias spp. 

have exceptionally high scale densities and low average interkeel distances, and the quantitative 

trends are particularly prominent in scales on their caudal fin (i.e., SS-0, SS-45, and SS-90), 

reflecting their tail-slapping behavior which requires high speed. Although the average interkeel 

distance data show no specific pattern, comparisons of scale density data exclusively at SS-B 

reveal that the only lamniform that has comparable measurements to Alopias spp. (values 

ranging 52‒132 among the three species) is Lamna (value of 72). The significance of my 
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integumentary measurements for Pseudocarcharias is rather tenuous (see above), but the 

morphology-based tree overall shows an increase in scale density (= increase in swimming 

efficiency) through lamniform phylogeny. In contrast, in the molecular-based tree, the Alopias 

clade is sister to a clade containing slow swimming Megachasma, rather than to fast swimming 

Lamna, implying that fast swimming evolved more than once in the lamniform phylogeny. 

Therefore, from the standpoint of the possible evolutionary pattern of integumentary structures, 

the morphology-based phylogenetic tree offers a more parsimonious interpretation than the 

molecular-based tree. 

 

CONCLUSION 

 

Morphological examinations have contributed to a multitude of disciplines including 

genetics, phylogeny, ontogeny, ecology, and ethology (Betz, 2006). Ecomorphology is a branch 

of biology that attempts to compare the relationship between an organism’s anatomy and the 

connection to its life history patterns (Motta and Kotrschal, 1991). Although a relatively 

understudied scientific field, ecomorphology has emerged as  an excellent tool for understanding 

functional morphology in a broad ecological and evolutionary framework (Wainwright, 1994; 

Foote, 1997; Ankhelyi et al., 2018). The strength of ecomorphology lies in its ability to connect 

intrinsic characteristics of an organism with the environment in which they live (Norton et al., 

1995). Elasmobranch species are generally difficult to investigate through field studies, including 

estimates of routine swimming speeds (Lauder and Di Santo, 2015). In this present study, I 

inferred the swimming behavior and prey hunting strategy of elusive Alopias superciliosus using 

an ecomorphological approach by relating integumentary structures to known observations and 

information about the swimming ability and hunting behaviors of sharks. 
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 I examined the following four integumentary variables of selected fast swimming (A. 

pelagicus, A. vulpinus, and Lamna) and slow swimming (Mitsukurina and Megachasma) 

lamniform sharks to determine whether A. superciliosus is a fast swimmer or a slow swimmer: 1) 

dermis thickness, 2) average interkeel distances of scales, 3) scale density, and 4) scale shape. 

My interkeel distance and scale density data as well as thorn-like scales on the body indicate that 

A. superciliosus is a slower swimmer than A. pelagicus and A. vulpinus, but can move its caudal 

fin as fast as, or as efficiently as, A. pelagicus and A. vulpinus. My dermis thickness data suggest 

that A. superciliosus has a flexible body like A. pelagicus and A. vulpinus, but its caudal fin is 

interpreted to be considerably ‘stiff’ with no extreme bending capability. PCA-based and CVA-

based quantitative analyses show that the scale shapes of A. superciliosus are overall more 

similar to slow swimming Mitsukurina and Megachasma than to fast swimming A. pelagicus, A. 

vulpinus, and Lamna, although my Euclidian distance tree by taxa demonstrates that the scale 

shapes of Mitsukurina are quite different from the rest of the examined lamniforms by being 

thorn-like. To capture small schooling fish, A. pelagicus and A. vulpinus employ an 'over-the-

head' tail-swing strike as the forward motion of the body comes to a sudden stop (Oliver et al., 

2013). Like A. pelagicus and A. vulpinus, A. superciliosus is commonly tail-hooked through 

longline fishery (Stillwell and Casey, 1976; Nakano et al., 2003) and has high scale densities like 

the other two species of Alopias, suited to accommodate abrasion. These observations suggest 

that A. superciliosus must also use its caudal fin for prey capture. However, a very thin dermis 

layer in the caudal fin of A. superciliosus, combined with its stiffness through tactility, indicates 

that the species is not capable of swinging its caudal fin over the head like A. pelagicus and A. 

vulpinus, but rather must employ a simple laterally directed tail-slap to capture its prey. The 

thick dermis layer on the body in A. superciliosus indicates its extreme body bending capability, 
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perhaps to maximize the strike power of the tail-slap in order to compensate its slow swimming. 

By taking all these pieces of information into account, A. superciliosus is interpreted to be an 

ambush predator, rather than an active prey-pursuing hunter. 

In addition, I mapped my scale density and average interkeel distance data on to 

previously published molecular-based and morphology-based phylogenetic trees to examine their 

evolutionary patterns within the order Lamniformes. My character mapping suggests that the 

slow swimming is a plesiomorphic condition in Lamniformes. The morphology-based tree 

overall suggests an increase in swimming efficiency through lamniform phylogeny, whereas the 

molecular-based tree suggests that fast swimming evolved more than once in the lamniform 

phylogeny. Therefore, from the integumentary standpoint, the morphology-based phylogenetic 

tree offers a more parsimonious interpretation that the molecular-based tree in regards to the 

evolution of swimming efficiency in lamniforms inferred from their integumentary data. 

Future studies should attempt to document the behavior of A. superciliosus to confirm its 

slow swimming and laterally directed tail-slapping behavior through direct observations in the 

wild. Recent studies also examined the ability of sharks being able to flex their scales using 

passive or active scale actuation, known as ‘bristling’ (Bechert et al., 2000), which can also 

reduce the surface drag on sharks in addition to the static effects of scale surface morphology 

(Motta et al., 2012; Lang et al., 2014; Afroz et al., 2016; Du Clos et al., 2018). Whereas these 

studies were primarily focused on the short fin mako shark (Isurus oxyrinchus), future studies 

should attempt to examine the potential of scale flexibility and surface drag reduction not only 

within the family Alopiidae, but a more comprehensive comparison within the order 

Lamniformes, as well. Doing so may help identify the elusive swimming behavior of A. 

superciliosus by further clarifying other morphological features of its scales. Another major 
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morphological attribute of the caudal fin in sharks is the vertebral column, specifically number of 

vertebra, which has been studied extensively regarding its role in locomotion as well as bending 

of the body under stress (Lauder, 1989; Wu, 1997; Brainerd and Patek, 1998; Nowroozi and 

Brainerd, 2014). Future studies could focus on quantifying the number of vertebra within the 

order Lamniformes for another broad examination of how form contributes to function. Another 

noteworthy issue that stems from an unexpected outcome of my study is the realization that the 

swimming efficiency of Pseudocarcharias is even more perplexing. For instance, my average 

interkeel distance and scale density data of Pseudocarcharias indicate that it is a fast swimming 

shark, but my scale shape analyses show the species to be a slow swimmer. These results in turn 

suggest that there may be some species-specific limitations in my integumentary variables that 

may not adequately help decipher the swimming ability of sharks. 

Lamniformes is a small but behaviorally and ecologically diverse order of sharks that 

serve as an excellent example of the diversity of form and function. Although only about half of 

the species within the order Lamniformes were examined (cf. Fig. 1), my present study 

represents the most extensive comparative investigation of the morphology and variation of 

integumentary structures, especially placoid scales, conducted for this shark order. The 

examinations of the biology of these sharks, including my study, will not only help craft a better 

understanding of the evolution of sharks and their morphology in general, but also how to better 

conserve their unique ecological attributes. 
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Table 1. Characterization of swimming speed (‘fast’ vs. ‘slow’) in this study for each lamniform 

species examined and its source (see text for further explanation)  

 

——————————————————————————————————————— 

Species  Speed Source(s) 

——————————————————————————————————————— 

Alopias pelagicus Fast 16 km·h-1–50 km·h-1* (Oliver et al., 2013) 

Alopias superciliosus Uncertain 1.3–2.0 km·h-1 (Nakano et al., 2003) 

  ‘Fast’ (Kim et al., 2013) 

Alopias vulpinus Fast  2.1 km·h-1 (Cartamil et al., 2010) 

Mitsukurina owstoni Slow  ‘Slow’ (Nakaya et al., 2016) 

Pseudocarcharias kamoharai Uncertain  ‘Strong active swimmer’? (Ebert et al., 2013) 

 ‘Slow’ (Kim et al., 2013) 

Megachasma pelagios Slow  1.5 km·h-1 (Nelson et al., 1997) 

Lamna ditropis Fast  Up to at least(?) 2.6 km·h-1 (Weng et al., 2008)** 

  3.9 km·h-1 (Watanabe et al., 2015) 

——————————————————————————————————————— 

* Range of speeds based on extrapolation of early stage of caudal fin movement during prey 

hunting (see text). 

** Weng et al. (2008) reported the minimum and maximum speeds recorded for L. ditropis as 

11–62 km·d-1 (= ca. 0.5–2.6 km·h-1) with a median of 33 km·d-1 (= ca. 1.4 km·h-1) based on 

68 individuals tracked by satellite telemetry for 6–1,335 days; however, their study was based 

on the movement of each shark over a straight-line map distance, thus implying that these 

reported values in general likely represent underrepresented speeds from their actual routine 

swimming speeds, especially considering Watanabe et al.’s (2015) speed estimate of 3.9 

km·h-1 for the species. 
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Table 2. Mahalanobis distances between sampling site groups with distances scaled to 100% and 

their respective p-values from permutations tests (1,000 permutation rounds) 

 

Sampling 

Site 

SS-0 SS-45 SS-90 

SS-45 55% 

p<0.0001 

  

SS-90 83% 

p<0.0001 

84% 

p<0.0001 

 

SS-B 60% 

p<0.0001 

54% 

p<0.0001 

100% 

p<0.0001 
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Table 3. Mahalanobis distances between scale species groups with distances scaled to 100% and 

their respective p-values from permutations tests (1,000 permutation rounds) 

 

 

 

 

  

Species Alopias 

pelagicus 

A. super-

ciliosus 

A. 

vulpinus 

Lamna Mitsukurina Megachasma 

A. superciliosus 79% 

p<0.01 

     

A. vulpinus 25% 

p<0.0005 

86% 

p<0.0001 

    

Lamna 43% 

p<0.0034 

82%  

p<0.03 

40% 

p<0.0001 

   

Mitsukurina  100% 

p<0.02 

95% 

p<0.005 

93% 

p<0.0002 

93% 

p<0.201 

  

Megachasma 75% 

p<0.002 

46% 

p<0.003 

75% 

p<0.0003 

67% 

p<0.005 

79%  

p<0.01 

 

Pseudocarcharias 69% 

p<0.01 

62% 

p<0.008 

65% 

p<0.0001 

66% 

p<0.03 

49%  

p<0.02 

42%  

p<0.01 
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Figure 1. Fifteen species of extant lamniform sharks highlighting thresher sharks (genus 

Alopias; in dark gray) and four comparative species (in light gray) examined in this study (after 

Shimada, 2005; bar scale = 50 cm). A, Mitsukurina owstoni (goblin shark); B, Carcharias taurus 

(sandtiger shark); C, Odontaspis ferox (smalltooth sandtiger shark); D, O. noronhai (bigeye 

sandtiger shark);  E, Pseudocarcharias kamoharai (crocodile shark); F, Megachasma pelagios 

(megamouth shark); G, Alopias pelagicus (pelagic thresher shark); H, A. superciliosus (big eye 

thresher shark); I, A. vulpinus (common thresher shark); J, Cetorhinus maximus (basking shark); 

K, Lamna ditropis (salmon shark); L, L. nasus (porbeagle shark); M, Isurus oxyrinchus (shortfin 

mako shark); N, I. paucus (longfin mako shark); O, Carcharodon carcharias (white shark). 
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Figure 2. Integument sampling sites and example images showing examined integumentary 

variables in this study. A, four integument sampling sites using Alopias pelagicus (FMNH 

117473; bar scale = 10 cm); B, scanning electron micrograph of placoid scales of 

Pseudocarcharias kamoharai (FMNH 117474) from SS-B at 300x magnification (anterior to 

left; bar scale = 200 µm); C, scanning electron micrograph of placoid scale of P. kamoharai 

(FMNH 117474) from SS-B at 60x magnifications (anterior to left; bar scale = 20 µm; cf. Fig. 

2B) showing the dorsal (dk), central (ck), and ventral (vk) keels as well as interkeel distance (ID) 

and geometric morphometric landmarks (large circles = homologous landmarks; small circles = 

semi-landmarks) for quantitative analyses; D–G, histological photographs of vertical section of 

integument at SS-B (D) and SS-45 (E) in A. pelagicus (FMNH 117473; cf. Fig. 2A) and at SS-B 

(F) and SS-45 (G) in A. superciliosus (UF 178509), showing placoid scales (ps) as well as 

epidermis (ed), dermis (d), and muscle tissue (mt) layers (bar scale = 100 µm). 
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Figure 3. Regression analyses of total length by interkeel distances (A–D) and scale density (E–

H; * = in 2 mm x 1.5 mm viewing area) at all sampling sites (Body, SS-0, SS-45, SS-90) among 

the four examined specimens of Alopias vulpinus. 
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Figure 4. Scanning electron micrographs comparing morphology of placoid scales at (from left 

to right) SS-B, SS-0, SS-45, SS-90 (see Fig. 2A) in seven lamniform species examined (bar scale 

= 100 µm). A, Alopias pelagicus; B, A. superciliosus; C, A. vulpinus; D, Mitsukurina owstoni; E, 

Pseudocarcharias kamoharai; F, Megachasma pelagios; G, Lamna ditropis. 
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Figure 5. Graphs showing average interkeel distances (A; see Fig. 2C) and scale density (B; * = 

in 2 mm x 1.5 mm viewing area) at four integument sampling sites (SS; see Fig. 2A; n=4 for 

Alopias vulpinus with standard deviation bars) as well as dermis thickness at SS-B and SS-45 

(C) in seven lamniforms examined (no SS-B data for non-Alopias taxa; unless otherwise 

indicated, n=1 for each species: see Appendices 1, 2, 3). 
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Figure 6. Graphs showing principle component (PC) analysis of placoid scales at four 

integument sampling sites using geometric morphometrics (A, PC1 vs. PC2; B, PC1 vs. PC3: see 

Appendix 4) as well as Euclidian distance trees of placoid scale morphology by sampling site 

(C) and by taxa (D) using Unweighted Pair Group Method with Arithmetic Means. 
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Figure 7. Graphs showing shape variation of placoid scales at four integument sampling sites in 

seven lamniform species examined grouped by species (A) and by integument sampling site (B) 

as well as by sampling site ('Location') and species (C) using canonical variate (CV) analysis. 

(see Appendices 5, 6). 
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Figure 8. Scale density (* = per 2 mm x 1.5 mm area) and average interkeel distances for each 

species examined mapped onto highly simplified (i.e., excluding non-examined taxa) molecular-

based (A) and morphology-based (B) phylogenetic trees of the order Lamniformes (n=1, except 

n=4 for Alopias vulpinus: see Appendices 1, 2). 
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Appendix 1. Raw data of average interkeel distances (in µm) for seven lamniform taxa 

examined (n=1, except n=4 for Alopias vulpinus where standard deviation in parentheses). 

  
Alopias 

pelagicus 

A. super-

ciliosus 

A. vulpinus Mitsu-

kurina  

Pseudo-

carcharias  

Mega-

chasma 

Lamna 

SS-B 41.04 56.15 47.94 (±2.52) 66.39 79.84 107.04 82.42 

SS-0 37.99 36.81 44.57 (±2.46) 61.11 70.58 98.44 77.15 

SS-45 33.88 33.37 35.72(±2.70) 63.42 58.82 83.54 71.77 

SS-90 26.62 26.67 30.65 (±1.11) 54.29 59.28 69.55 50.50 
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Appendix 2. Raw data of scale density per 2 mm x 1.5 mm area for seven lamniform taxa 

examined (n=1, except n=4 for Alopias vulpinus where standard deviation in parentheses). 

  
Alopias 

pelagicus 

A. super-

ciliosus 

A. 

vulpinus 

Mitsukurina Pseudo-

carcharias 

Megachasma Lamna 

SS-B 132 52 98 (±45) 13 47 27 72 

SS-0 184 135 110 

(±37) 

21 58 50 55 

SS-45 155 201 172 

(±46) 

16 72 34 49 

SS-90 214 276 214 

(±20) 

16 68 58 82 
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Appendix 3. Raw dermis thickness measurements taken from seven lamniform taxa examined 

(n=1). 

 

Species SS-B SS-45 

Alopias pelagicus 353.6 305.9 

Alopias superciliosus 450.8 161.8 

Alopias vulpinus 382.8 473.0 

Mitsukurina N/A 239.7 

Pseudocarcharias N/A 157.4 

Megachasma N/A 262.8 

Lamna N/A 342.3 
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Appendix 4. Raw coordinate data for principle component analysis (PCA) on placoid scales. 

 

 
  

Id specimen ID species Scale location PCA 1 PCA 2 PCA 3

1 FMNH117473 Alopias pelagicus SS-B -0.2397 0.0513 -0.0260

2 FMNH117473 Alopias pelagicus SS-0 -0.1619 -0.0261 0.1332

3 FMNH117473 Alopias pelagicus SS-45 -0.0739 0.0509 0.0348

4 FMNH117473 Alopias pelagicus SS-90 0.0558 0.0382 -0.0837

5 FMNH117474 Pseudocarcharias kamokari SS-B 0.0497 -0.1016 -0.0710

6 FMNH117474 Pseudocarcharias kamokari SS-0 0.0996 -0.1016 0.0048

7 FMNH117474 Pseudocarcharias kamokari SS-45 0.1068 -0.0735 -0.0124

8 FMNH117474 Pseudocarcharias kamokari SS-90 0.2143 0.0369 0.0082

9 FMNH117475 Lamna ditropis SS-B -0.3034 -0.0210 0.0867

10 FMNH117475 Lamna ditropis SS-0 -0.1821 -0.1390 -0.0356

11 FMNH117475 Lamna ditropis SS-45 -0.2016 -0.0069 -0.0285

12 FMNH117475 Lamna ditropis SS-90 -0.1608 -0.0495 -0.1435

13 FMNH117742 Mitsukurina owstoni SS-B 0.3653 0.1272 -0.0915

14 FMNH117742 Mitsukurina owstoni SS-0 0.3470 -0.0245 0.1629

15 FMNH117742 Mitsukurina owstoni SS-45 0.3986 0.0457 0.1266

16 FMNH117742 Mitsukurina owstoni SS-90 0.3652 -0.0151 0.0187

17 SIO0753 Megachasma pelagios SS-B -0.0267 -0.1417 0.0436

18 SIO0753 Megachasma pelagios SS-0 0.0454 -0.1467 0.0060

19 SIO0753 Megachasma pelagios SS-45 -0.0543 -0.1384 -0.0276

20 SIO0753 Megachasma pelagios SS-90 0.0014 -0.2020 -0.0131

21 SIO64804 Alopias vulpinus SS-B -0.1876 0.0855 0.0272

22 SIO64804 Alopias vulpinus SS-0 -0.1720 0.0067 0.2098

23 SIO64804 Alopias vulpinus SS-45 -0.0152 0.1390 0.0212

24 SIO64804 Alopias vulpinus SS-90 -0.0274 -0.0107 -0.1359

25 SIO75379 Alopias vulpinus SS-B -0.0881 -0.0211 0.0204

26 SIO75379 Alopias vulpinus SS-0 -0.0769 0.0368 0.0657

27 SIO75379 Alopias vulpinus SS-45 -0.0363 0.1135 -0.0463

28 SIO75379 Alopias vulpinus SS-90 -0.0154 0.0885 -0.0586

29 SIO78138A Alopias vulpinus SS-B -0.0245 -0.1061 0.0730

30 SIO78138A Alopias vulpinus SS-0 -0.0080 0.1396 0.0923

31 SIO78138A Alopias vulpinus SS-45 0.0399 -0.0028 -0.1561

32 SIO78138A Alopias vulpinus SS-90 0.0027 0.1993 -0.0643

33 SIO78138B Alopias vulpinus SS-B -0.1677 0.0673 0.0847

34 SIO78138B Alopias vulpinus SS-0 -0.1525 0.1402 0.0638

35 SIO78138B Alopias vulpinus SS-45 0.0125 0.0347 0.0707

36 SIO78138B Alopias vulpinus SS-90 -0.0466 0.1364 -0.1730

37 UF178509 Alopias superciliosus SS-B 0.0457 -0.1160 -0.0368

38 UF178509 Alopias superciliosus SS-0 0.2398 -0.0175 0.0041

39 UF178509 Alopias superciliosus SS-45 0.0542 -0.0162 -0.0175

40 UF178509 Alopias superciliosus SS-90 -0.0211 -0.0598 -0.1369
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Appendix 5. Raw coordinate data for canonical variate (CV) analyses on placoid scales grouped 

by integument sampling sites (‘Location’). 

 

 

Id Location CV1 CV2 CV3

0 SS-B 1.1614 -0.8048 1.3495

4 SS-B 1.0070 2.5335 0.8979

8 SS-B 3.7928 2.8856 0.8021

12 SS-B 3.9247 1.7731 1.9161

16 SS-B 3.6377 -0.9528 1.2354

20 SS-B 3.8119 1.6044 1.4681

24 SS-B 1.2679 1.8200 1.8696

28 SS-B 3.7507 1.7459 2.4727

32 SS-B 4.4756 2.1526 2.5215

36 SS-B 3.2801 0.6136 2.8775

1 SS-0 -0.3331 -3.3555 -0.6701

5 SS-0 1.7685 -1.4602 -0.5005

9 SS-0 0.5608 -2.4725 -0.1045

13 SS-0 0.5734 -3.9086 0.7400

17 SS-0 1.1973 -3.2036 1.5556

21 SS-0 2.1055 -3.4290 1.0153

25 SS-0 0.9250 -3.1441 -0.0940

29 SS-0 1.6104 -2.7546 -0.1000

33 SS-0 0.6571 -2.3336 0.8121

37 SS-0 -1.0042 -2.7106 -1.4308

2 SS-45 2.5645 -0.6316 -2.0180

6 SS-45 -0.1290 3.3550 0.1647

10 SS-45 1.4295 0.2846 -1.7894

14 SS-45 2.4809 0.7518 -4.0006

18 SS-45 1.6656 0.6974 -2.6158

22 SS-45 0.3146 0.1936 -2.2933

26 SS-45 0.6319 1.0647 -3.0571

30 SS-45 1.9547 1.5322 -3.1506

34 SS-45 0.5169 0.4350 -2.7364

38 SS-45 1.3167 1.9540 -1.7956

3 SS-90 -5.1430 -0.1295 -0.0924

7 SS-90 -4.2842 0.7786 -1.7253

11 SS-90 -4.2667 0.4717 1.9013

15 SS-90 -6.0331 -0.9441 1.9237

19 SS-90 -4.8761 -0.1208 0.4881

23 SS-90 -4.3415 0.9759 0.9673

27 SS-90 -5.0129 1.1971 -0.0634

31 SS-90 -6.3448 0.8450 1.4405

35 SS-90 -5.3083 1.2231 0.8081

39 SS-90 -5.3064 1.4674 -0.9894
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Appendix 6. Raw coordinate data for canonical variate (CV) analysis on placoid scales grouped 

by species.  

 
  

Id Species CV1 CV2 CV3

0 A. pelagicus 5.3012 -1.8759 0.4323

4 P. kamokari -7.0196 2.6927 2.6112

8 L. ditropis 3.8075 0.0651 6.0653

12 M. owstoni -9.1090 9.3621 -0.7109

16 M. pelagios -4.9407 -3.4579 2.3193

20 A. vulpinus 7.1310 1.2878 -1.4062

24 A. vulpinus 6.6841 1.7707 0.4263

28 A. vulpinus 4.6898 0.5815 -0.6785

32 A. vulpinus 5.3807 0.9187 -0.7389

36 A. superciliosus -8.1319 -8.8979 -2.2464

1 A. pelagicus 5.3196 -0.1016 -1.4014

5 P. kamokari -4.6684 2.1240 -1.8709

9 L. ditropis 3.4216 -0.0648 5.3704

13 M. owstoni -10.7324 9.3213 -0.0559

17 M. pelagios -8.0802 -4.5704 2.1781

21 A. vulpinus 5.5458 -0.9104 -0.1429

25 A. vulpinus 4.0547 2.1720 -1.0020

29 A. vulpinus 5.4843 0.9242 -1.7589

33 A. vulpinus 5.6375 0.6805 -0.2512

37 A. superciliosus -7.7490 -6.6367 -1.8142

2 A. pelagicus 4.7535 -2.7161 -3.3849

6 P. kamokari -6.9598 -0.8472 -0.1245

10 L. ditropis 3.1092 -1.4277 5.9633

14 M. owstoni -8.6378 8.4622 -1.3586

18 M. pelagios -8.1067 -3.5200 2.2752

22 A. vulpinus 5.0114 1.8824 -1.4465

26 A. vulpinus 5.4040 0.7072 -0.0482

30 A. vulpinus 5.0827 1.0179 -0.5062

34 A. vulpinus 5.6248 1.1239 -0.9607

38 A. superciliosus -7.9541 -9.1113 -4.2714

3 A. pelagicus 5.8654 -1.5198 -1.9658

7 P. kamokari -7.0646 3.7040 -1.4415

11 L. ditropis 2.5782 -1.0005 4.5463

15 M. owstoni -11.2360 9.2213 -0.4803

19 M. pelagios -6.5793 -5.7515 3.8614

23 A. vulpinus 4.6130 0.4380 -1.0538

27 A. vulpinus 6.5081 1.6400 -0.9296

31 A. vulpinus 5.8108 0.6447 -0.7407

35 A. vulpinus 5.1353 0.9575 -1.3132

39 A. superciliosus -4.9847 -9.2899 -1.9453
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