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ABSTRACT 

Genome -based technologies are being instigated to manipulate the structure and function of 

the genome and to identify the genes of interest for genetic modification of economically 

important species. Genome editing technologies have also been designed for genetic 

manipulation of aquaculture species to increase production and quality with minimum 

investment costs. DNA marker technologies are the most widely used genome technologies. 

DNA fingerprints are used to construct physical maps while genetic maps are based upon 

meiotic recombination. BAC fingerprinting is the commonly used method for physical 

mapping. Next- generation sequencers revolutionized science and allowed the de-novo whole 

genome sequencing. QTL mapping has made it possible to identify the genes responsible for 

a particular trait. Government involvement and better training of aqualturists are direly 

needed to reinforce the practical implications of genome- based technologies.  

Keywords: BAC finger printing, genome editing, microsatellite markers, QTL mapping, 

SNPs. 

INTRODUCTION 

Aquaculture Genomics 

Aquaculture is a recent rather 

rapidly developing field of agriculture, 

having great economic and cultural 

significance. Seafood marks 20% of the 

animal protein intake by the world 

population while in China, aquaculture 

marks the production of 50% of consumed 

seafood (Ruane et al., 2016). 

Aquaculture genomics officially 

started in the 1990s, marked by the first 

Aquaculture genomics workshop held in 

1997 in Dartmouth, Massachusetts, United 

States of America. The workshop aimed to 

commence genomic research on six 

species including: Oysters, Shrimps, 

Tilapia, Salmonids, Catfish, and Striped 

bass. 

Sustained production of any 

species depends upon the understanding of 

biology, ecology, reproduction, nutrition, 

physiology, genetics and genomics. All 

these fields of research are unified by 

understanding the genome of a particular 

species. The draft whole-genome 

sequences provide better insights to 

enhance the production and quality in 

various agricultural sectors. Whole- 

genome sequencing has been done for 

oysters, shrimp, tilapia, rainbow trout, 

catfish, Atlantic salmon, and striped bass.  

Traditional Biotechnologies for 

Aquaculture 

i. Selective Breeding 

It involves the selection of 

individuals with desirable traits to enhance 

the production and quality of farmed 

animals. The traits considered for 

aquaculture species include: faster growth 

rate, disease resistance, increased tolerance 

to abiotic factors, sexual maturation, and 

feed conversion efficiency. In late the 

1960s, selective breeding programs of 

Atlantic salmon were developed in 

Norway (Gjedrem and Baranski, 2010). 

The techniques used in selective breeding 
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include: strain selection, hybridization, 

cross-breeding and within-strain selection. 

This is usually done by measurement of 

traits in selected individuals and pedigree 

analysis (Gutierrez and Houston, 2017). 

Selective breeding programs have 

been carried out for almost 60 species 

which include: Atlantic salmon, tilapia, 

common carp, grass carp, rainbow trout, 

silver carp, sea bream, channel fish, 

European seabass, rohu, yellowtail, Asian 

seabass, Pacific and eastern oyster, 

shrimps, scallops and pearl oysters 

(Gjedrem and Baranski, 2010). Genetically 

improved stocks are rarely used for 

aquaculture with less than 10 percent 

production by genetically modified species  

(Gjedrem and Robinson, 2014). 

ii. Polyploidy 

In polyploidy, the individuals have 

extra chromosome sets (Dunham, 2011). 

Triploid organisms have three pairs of 

homologous chromosomes and are 

commonly observed in wild populations. 

Triploidy can also be introduced in 

cultured organisms by forcefully retaining 

the second polar body  (Chourrout, 1980; 

Lou and Purdom, 1984). The second polar 

body is retained by the application of 

extreme temperature, hydrostatic pressure 

and chemical shocks immediately 

followed by fertilization (Dunham, 2011). 

In rainbow trout, application of high pH 

and calcium to egg or sperm can induce 

triploidy (Ueda et al., 1988). Triploidy 

affects all of the traits considered while 

planning to culture a particular species. 

Triploid fish can also be produced 

from tetraploid fish (Chourrout et al., 

1986). Tetraploids are produced by 

restricting the first cleavage of the embryo 

by applying hydrostatic pressure. In 

rainbow trout, tetraploids do not grow 

normally as compared to diploid controls. 

Mating of these tetraploid males with 

diploid females results in triploid progeny 

that grows normally and has a  high 

survival rate (Chourrout et al., 1986). 

iii. Gynogenesis 

In gynogenesis, the inheritance of 

genetic material to the embryo occurs from 

the female parent. Sperms are inactivated 

by exposure to UV radiations and these 

inactivated sperms induce the process of 

development without the contribution of 

the paternal genome. Sperms from closely 

associated but distinct species lessen the 

risk of actual fertilization, in case if the 

process of sperm inactivation is not 

properly done (Suwa et al., 1994). The 

diploid state can be retained by inhibiting 

the first cleavage or by retaining the 

second polar body. 

Gynogenesis is induced for the 

production of a population with similar 

genetic makeup (Arai, 2001). These clonal 

lines can be used for genome studies as in 

channel catfish, doubled haploid clonal 

line was used to study the whole genome 

(Waldbieser et al., 2010; Liu et al., 2016b). 

Gynogens have been produced for species 

such as ayu (Taniguchi et al., 1996), 

amago salmon (Kobayashi et al., 1994), 

and hirame (Yamamoto, 1999). Gynogens 

are mainly used for research purposes. 

iv. Androgenesis 

Androgens are produced by the 

exposure of eggs to UV radiation. 

Production of androgens is tricky than the 

production of gynogens because irradiated 

eggs have a low survival rate (Scheerer et 

al., 1986). Blocking the first cleavage is 

the only way to recover diploidy (Dunham, 

2011). 

Androgens are produced to get 

clonal lines, mono-sex populations or to 

study sex-determining mechanisms 

(Dunham, 2011). Heterogametic male 

results in the production of population 

with an equal proportion of males and 

females while a homogametic male will 

produce 100 percent YY male progeny. 

Mating of YY males with XX females will 

result in all male population (Parsons and 

Thorgaard, 1985). The mono-sex culture 
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of males is of significant interest as males 

of many species have a faster growth rate 

as compared to females. 

v. Sex Reversal 

Most of the species used in 

aquaculture are sexually dimorphic with a 

different growth rate in males and females. 

Production of mono-sex populations of 

individuals having a higher growth rate is 

of great significance in aquaculture. 

Hormonal treatment is the commonly used 

method for sex reversal. Genotypic sex 

gets determined at fertilization time while 

phenotypic sex is established later on. 

Phenotypic sex of cattle fish establishes on 

the 19
th

 day following fertilization.  

Hormones used for sex reversal are 

androgens and estrogens which are 

administered at a critical period for sex 

determination. Androgens are mostly the 

testosterone derivatives and these are used 

for the production of male mono-sex 

populations (Yamazaki, 1983; Dunham, 

1990).  The most widely used androgen for 

sex reversal is 17-methyltestosterone 

(Dunham, 1990) . 3-estradiol is widely 

used for producing mono-sex populations 

of females (Yamazaki, 1983; Dunham, 

1990). Hormones are usually administered 

by bath soaking (Yamazaki, 1983; 

Donaldson and Hunter, 1982), along with 

feed (Shelton et al., 1981), or by 

implantation (Boney et al., 1984). The 

method used for hormonal administration 

depends upon the development and growth 

of the species (Dunham, 2011). 

vi. Gene Transfer 

It is the process by which a foreign 

gene is transferred into an organism. The 

gene is transferred after a proper 

understanding of its function. After 

extensive studies, the function of growth 

hormone gene was well understood and 

then it was introduced into mice. 

Transgenic mice showed a remarkable 

increase in growth performance, about 2.5 

times higher than the controls (Palmiter et 

al., 1982). 

Techniques used for gene transfer 

into fish include microinjection (Zhu et al., 

1985) and electroporation (Inoue et al., 

1990). Goldfish is the first fish species in 

which gene transfer was successfully 

demonstrated (Zhu et al., 1985). Other 

transgenic fish species include Rainbow 

trout (Chourrout et al., 1986), Channel 

catfish (Dunham et al., 1987), Nile tilapia 

(Brem et al., 1988) and Northern pike 

(Gross et al., 1992). 

DNA Marker Technologies 

Allozyme Markers 

Allozymes are the enzymes 

produced by the genes present on a single 

locus (Kucuktas and Liu, 2007). 

Allozymes are the type I markers because 

their function is known (Liu and Cordes, 

2004). Allozymes are the allelic forms of 

an enzyme encoded by alleles on the same 

locus (Hunter and Markert, 1957; Parker et 

al., 1998; Carvalho, 2004).  

Genetic diversity in natural fish 

populations is mostly studied by the use of 

allozyme electrophoresis. Allozyme data is 

usually used by the fisheries sector but this 

data is also used for the development of 

aquaculture as both these fields cannot be 

separated (Dunham, 2004). The uses of 

allozyme electrophoresis in aquaculture 

include: inbreeding analysis, parentage 

analysis and identification of stock (Liu 

and Cordes, 2004). 

Restriction Fragment Length 

Polymorphism Markers (RFLP) 

Restriction fragment length 

polymorphism (RFLP) markers are the 

first markers (Botstein et al., 1980). In the 

1980s, it was the most common method 

for studying genetic variations. Restriction 

enzymes are used to digest DNA, 

separation of fragments is done agarose 

gel electrophoresis followed by Southern 

blot (Southern, 1975) for the visual display 
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of fragments having different lengths (Liu 

et al., 2007). RFLP can also be analyzed 

by PCR amplification. 

The application of RFLP is limited 

because it can detect only larger changes 

in DNA fragments ignoring point 

mutations. After all agarose gel 

electrophoresis has low resolution.  

Mitochondrial DNA Markers 

The evolutionary rate of 

mitochondrial DNA is higher than the 

nuclear genome due to which mtDNA is 

polymorphic in a species. D-loop of 

mtDNA is highly polymorphic so it can be 

used for genetic analysis of a population 

(Liu, 2007a). 

The analysis of mitochondrial 

markers is usually done by PCR or RFLP 

(Liu and Cordes, 2004). Maternal 

inheritance, high polymorphism and short 

size of mtDNA make RFLP a suitable 

method for a population (Liu and Cordes, 

2004; Okumuş and Çiftci, 2003; 

Billington, 2003). In striped bass (Morone 

saxatilis), addition or deletion is exhibited 

at Xba I restriction site which can be 

analyzed by performing PCR followed by 

the digestion of DNA fragment by 

restriction enzyme (Ravago et al., 2002). 

Analysis of mtDNA is a powerful tool for 

studying genetic diversity in populations 

(Avise, 1995). 

Genetic variations have been 

studied (using mtDNA) in the following 

aquaculture species: striped bass (Wirgin 

and Maceda, 1991; Garber and Sullivan, 

2006), Walleye (Merker and Woodruff, 

1996), channel catfish (Waldbieser et al., 

2003), salmonids (Nielsen et al., 1998; 

Crespi and Fulton, 2004), red snapper 

(Pruett et al., 2005) and bluegill 

(Chapman, 1989). 

DNA Barcoding 

In DNA barcoding, a small 

molecular marker from the  5´ end of 

mitochondrial cytochrome oxidase I (COI) 

gene is used (Hebert et al., 2003; Tavares 

and Baker, 2008).  This method is used to 

differentiate closely related species 

(Dawnay et al., 2007) and in molecular 

systematics (Hardman, 2005). 

The application of DNA barcoding 

in aquaculture includes species 

identification to avoid seafood fraud which 

includes the replacement of lower value 

species with higher value species for profit 

(Wong et al., 2011; Wong and Hanner, 

2008).  

RAPD Markers 

Random amplified polymorphic 

DNA (RAPD) is PCR-based, firstly 

developed in 1990. It uses a single primer 

to amplify unknown regions of DNA 

(Welsh and McClelland, 1990; Williams et 

al., 1990). RAPD markers are produced 

after the amplification of bands from 

closely related species (Liu et al., 1998; 

Liu, 2007b).  

Microsatellite Markers 

These are the repeatedly found 1-6 

base-pair sequences in the genome. In 

most fishes, microsatellites can be found at 

a frequency of one microsatellite per 2-10 

kb of DNA fragment. The most common 

microsatellites are the dinucleotide among 

which AG and AC repeats are abundant. 

AT--rich types are relatively more 

common as compared to GC- rich repeat 

types in trisatellites and tetrasatellites. 

Penta and hexanucleotide microsatellites 

are less frequent and less important (Tóth 

et al., 2000).  

Microsatellites are commonly 

associated with the non-coding region of 

the genome (Metzgar et al., 2000). The 

coding region of the genome contains only 

10-15 percent microsatellites (Moran, 

1993; Edwards et al., 1998; Serapion et al., 

2004). The Presence of dinucleotide 

microsatellites results in the frameshift 

mutation in protein-coding sequences. Due 

to high polymorphism, microsatellites are 

extensively used for pedigree analysis, 

kinship and genetic analysis of fish stocks. 
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SNP Markers 

Single nucleotide polymorphism 

(SNP) is due to alteration in the position of 

an allele at a given locus. SNP results in a 

very minute change in alleles because the 

length of the fragment is same and most 

common base substitutions occur from A 

to G or C to T. Remote technologies are 

required to identify such minute 

differences. Affymetrix Axiom genotyping 

technology is usually used for the analysis 

of SNP arrays. 

Illumina-based RNA sequencing 

has been used to identify SNP markers 

from catfish (Liu et al., 2011). An 

aggregate of 8.4 million SNPs have been 

recognized in four aquaculture and one 

wild population of channel catfish (Sun et 

al., 2014). The frequency of SNPs in the 

catfish genome is one SNP per 93 base 

pairs (Liu et al., 2016b). SNPs have also 

been identified in the genome of common 

carp (Xu et al., 2012), rainbow trout (Palti 

et al., 2015a), pearl oyster (Jones et al., 

2013) and Atlantic salmon (Yáñez et al., 

2016). 

Genome Mapping Technologies 

Genome mapping involves the 

splitting of the genome into smaller pieces 

to identify the relationship between the 

genomes. Physical mapping and genetic 

linkage mapping are the two methods used 

in genome mapping.  

Genetic Linkage Mapping of Aquaculture 

Genomes 

Genetic maps are usually formed 

by the isolation of DNA from blood or 

tissue samples and then marker patterns 

are analyzed. Markers that are located in 

close proximity on the chromosomes are 

inherited together. Recombination is likely 

to occur when markers are located far 

away from each other. Genetic distance in 

centiMorgan (cM) is assigned based on 

recombination frequency.  

Mapping population and genetic 

markers are developed for constructing 

genetic maps. The co-segregation of 

closely located markers is used to 

reconstruct the order of these markers. In 

this way, markers are recorded in parents 

and each of the individuals in progeny. 

The sequences that differ between the two 

parents are used as markers and their genes 

are illustrated by characteristics that can be 

differentiated among two parents. Their 

linkage with other markers is then 

calculated and gene loci are bracketed with 

nearest markers.  

All the genetic markers are 

assigned a linkage group (LG) and co-

segregated markers belong to similar 

linkage group. Distances between linkage 

groups are described by the recombination 

fraction. Genetic linkage mapping is 

suitable for F2 hybrids because of the 

segregation of traits and markers. F1 

generation can also be used for mapping 

when the parents are heterozygous for loci. 

Microsatellites and SNP markers are used 

to construct genetic maps because these 

are abundant in the genome. The number 

and types of markers have been identified 

for a variety of aquaculture species; some 

are described in table 1. 

Physical Mapping of Aquaculture 

Genomes 

Physical maps are constructed by 

smashing the genome into tiny fragments 

which are reassembled and their 

overlapping path is used to predict 

physical distance. Genome fragmentation 

is usually done by restriction enzymes or 

sonication. Isolation of these fragments is 

done with the help of electrophoresis and 

their migration pattern (DNA fingerprint) 

helps to identify the DNA stretch present 

in a clone. 
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Table 1. Genetic linkage maps for some aquaculture species 

Species Number and type of marker 

Asian seabass (Lates calcifer) 790 microsatellites and single SNP (Wang et al., 

2011). 

Atlantic salmon (Salmo salar) 5650 SNPs (Lien et al., 2011). 

Brown trout (Salmo trutta) 288 microsatellites and 13 allozymes (Gharbi et 

al., 2006). 

Catfish (Ictalurus punctatus) 54,342 SNPs (Li et al., 2015). 

Common carp (Cyprinus carpio) 732 microsatellites (Zhang et al., 2013). 

Grass carp (Ctenopharyngodon idella) 279 microsatellites and SNPs (Xia et al., 2010b). 

Japanese flounder (Paralicthys olivaceus) 1375 microsatellites  (Castaño-Sánchez et al., 

2010). 

Pacific oyster (Craasostrea gigas) 1,166 microsatellites and SNPs (Hedgecock et 

al., 2015). 

Rainbow trout (Oncorhynchus mykiss) 2,226 microsatellites and SNPs (Guyomard et al., 

2012). 

Scallop (Mizuhopecten yessoensis) 169 microsatellites (Li et al., 2012). 

Sea bream (Sparus aurata. L) 321 microsatellites, expressed sequence tags and 

SNPs (Tsigenopoulos et al., 2014). 

Shrimp (Penaeus monodon) 3959 SNPs (Baranski et al., 2014). 

Tilapia (Oreochromis mossambicus) 525 microsatellites (Lee et al., 2005). 

Yellowtail (Seriola quinqueradiata & 

Seriola lalandi) 

217 microsatellites (Ohara et al., 2005). 

European seabass (Dicentrarchus labrax) 162 microsatellites (Chistiakov et al., 2005).  

 

Physical mapping is done by 

cloning DNA fragments in cloning vectors 

like Bacterial Artificial Chromosome 

(BAC). 100-200kb long DNA fragments 

are being cloned and the number of BAC 

vectors used depends upon the length of 

genome. BAC clones are then overlapped 

to get an ordered entire genome of the 

organism. Contigs are the overlapping 

restriction patterns where the DNA 

fragments realign to form a physical map. 

Fluorescence methods are used for finger 

printing of BAC clones (Ding et al., 2001; 

Luo et al., 2003). Fingerprint data is then 

transformed into data set by Finger Printed 

Contigs (FPC) software (Soderlund et al., 

2000). Physical maps have been 

established for the following aquaculture 

species: Atlantic salmon (S. salar) (Ng et 

al., 2005), Tilapia (O. mossambicus) 

(Katagiri et al., 2005), Channel catfish (I. 

punctatus) (Xu et al., 2007), Rainbow trout 

(O. mykiss) (Yniv Palti et al., 2009), 

Common carp (C. carpio) (Xu et al., 

2011), Asian seabass (L. calcarifer) (Xia 

et al., 2010a) and Scallop (M. yessoensis) 

(Zhang et al., 2011a).  

Radiation Hybrid Mapping 

Radiation hybrid (RH) mapping 

uses a concept that irradiation induces 

chromosome break between two markers if 

the distance between them is large but if 

the distance between markers is small, 

they will be co-retained in the hybrids. In 

RH mapping, the co-retention of markers 

in the hybrid cell lines is calculated and is 

represented by Ɵ which can be 0 (markers 

always co-retained) or 1 (random co-

retention of markers). Map functions are 

then used to convert this raw value into 

centirays (CR) - RH map unit. Radiation 

hybrid panels are used for screening of 

markers from many hybrid cell lines in a 
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single panel to generate chromosome maps 

of high resolution (Walter et al., 1994). 

RH mapping has been performed for only 

a few aquaculture species: Zebrafish, 

European seabass and Gilthead seabream 

(Senger et al., 2006; Sarropoulou et al., 

2007; Guyon et al., 2010).  

Optical mapping 

In optical mapping, a single DNA 

molecule is used to construct whole-

genome restriction maps (Schwartz et al., 

1993). Restriction endonucleases are used 

to digest the DNA fragment, fluorescent 

dye is then used for visual representation 

to record the length of fragments. These 

ordered restriction fingerprints of the 

genome are referred to as an  optical map. 

Genome Sequencing Technologies 

i. First-generation DNA sequencers 

Chain-termination gene sequencing 

uses di-deoxyribonucleotides which stop 

DNA synthesis upon their addition into 

fragmenst (Sanger et al., 1977). In the 

early 1980s, automated sequencers based 

upon Sanger sequencing method, were 

developed. ABI 3700 or 3730 are the first 

generation sequencers that can sequence 

96 samples per run with 500-800 bp in 

each sample.  

ii. Second-Generation (Next 

Generation) Sequencers 

Roche 454 Genome Sequencer 

FLX system (launched in 2005) and 

Solexa (Illumina) sequencing platform 

(launched in 2006) marked the onset of 

second-generation sequencing. 454 

technology has been used for the 

sequencing of the following aquaculture 

species: Atlantic salmon, Atlantic cod, 

rainbow trout, crucian carp, scallops and 

catfish (Salem et al., 2010; Hou et al., 

2011; Star et al., 2011; Liao et al., 2013). 

Sequencing errors associated with 

pyrosequencing resulted in limited use of 

454 technology. 

iii. Third Generation DNA 

Sequencers 

Single-molecule sequencing (SMS) 

and real-time sequencing are usually done 

in third-generation sequencers (Heather 

and Chain, 2016).  Single molecule real 

time platform from Pacific biosciences is 

currently used third generation technology. 

In PacBio sequencers, 50,000- 100,000 

reads can be generated per flow cell. Upto 

40kb genome sequences can be read with 

each flow. There are 10 percent chances of 

errors in PacBio sequencing due to the 

formation of consensus sequences. 

Nanopore DNA sequencing is another 

third-generation sequencing platform but 

its use is limited. 

Genetic Analysis Techniques 

i. Traits considered for 

aquaculture 

The genetic analysis of aquaculture 

species is used to identify the genetic basis 

of production traits and to use this 

information in breeding programs. This 

information is important for strain 

selection for breeding programs. The traits 

considered while selecting any species for 

aquaculture are growth rate, disease 

resistance; feed conversion efficiency, 

robustness, tolerance to abiotic factors, 

reproductive traits etc. 

ii. Quantitative trait locus 

(QTL) mapping in 

aquaculture species  

 Multiple genes control specific 

traits in aquaculture species and QTL 

mapping helps to identify the genes that 

control a particular trait. QTL analysis for 

various aquaculture species has been 

conducted with remarkable progress. QTL 

studies for aquaculture species are shown 

in table 2. 
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Genome Editing Techniques 

i. Zinc Finger Nuclease 

(ZFN) Technology 

Genome editing involves the 

process of making changes to specific 

portions of the genome. ZFN technology 

involves cutting down target DNA in vivo 

at specific sites by the use of zinc finger 

protein along with its FokI endonuclease 

domain (Kim et al., 1996). The zinc finger 

recognizes the nucleotide triplet. Genome 

editing of culture cells has been done by 

using this technology (Bibikova et al., 

2002; Townsend et al., 2009; Provasi et 

al., 2012).  

ii. TALEN 

Transcription activator-like 

effector nucleases (TALEN) are the 

engineered enzymes used to cut DNA at 

specific sites. They can bind at any site on 

DNA and binding with cleavage domain 

results in the cutting of DNA at specific 

sites (Boch et al., 2009). Double strand 

breaks (DSB) are generated in target DNA 

which is reconstructed by homologous 

recombinations or non-homologous end 

joining (NHEJ). NHEJ causes additions or 

deletions which are then used for gene 

knockout. 

iii. CRISPR/Cas 9 

CRISPR are the clustered regularly 

interspaced short palindromic repeats in 

the bacterial DNA. Cas proteins are the 

nucleases that cut DNA and are associated 

with CRISPR. It is a bacterial immune 

mechanism against pathogens. It was first 

used for genome editing in 2012 and is 

used for modifying the genome of various 

species such as zebrafish (Jao et al., 2013).  

Hurdles in the Practical Application of 

Genome-Based Technologies in 

Aquaculture 

Major provocation in the 

application of genomic research in 

aquaculture include the dissociation of 

genomics from breeding programs, limited 

skill and expertise in bioinformatics, 

computational limitations for the analysis 

of large data sets, funding limitations for 

aquaculture, disparity in genomic research 

in the world, ethical, legislative and 

regulatory issues. 

CONCLUSION 

The use of second-generation 

sequencers has not only revolutionized 

science but has also reduced sequencing 

costs due to which molecular research has 

extended to various aspects. These 

technological advances have made it 

possible to recognize the genes that 

account for economically important traits 

of organisms. Genome editing 

technologies have unfolded novel ways for 

further genetic manipulation of 

aquaculture organisms. However, limited 

skills and expertise in computer science 

and bioinformatics are the basic challenges 

faced by aquaculture researchers. The 

application of novel technologies to 

aquaculture is also limited due to the 

dearth of aquaculture industries. 

Government involvement and a change in 

the training of the next generation of 

scientists are necessary for the practical 

implications of genome- based research. 
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Table 2: QTL studies for aquaculture species. 

Species Traits 

Arctic charr (Salvenlinus alpinus) Body weight and age of sexual maturity (Moghadam et 

al., 2007; Küttner et al., 2011). 

Arctic charr (S.alpinus) Tolerance to salinity (Norman et al., 2011). 

Asian seabass (L.calcarifer) Growth (Wang et al., 2011). 

Asian seabass (L.calcarifer) Resistance to viral nervous necrosis disease (Liu et al., 

2016a).   

Asian seabass (L.calcarifer) Omega-3 fatty acid (Xia et al., 2014). 

Atlantic salmon (S. salar) Body-weight and condition (Reid et al., 2005). 

Atlantic salmon (S. salar) Adapative traits (Boulding et al., 2008). 

Atlantic salmon (S. salar) Resistance against pancreatic necrosis virus (Moen et 

al., 2009; Gheyas et al., 2010). 

Atlantic salmon (S. salar) Resistance against anaemia (Moen et al., 2007). 

Atlantic salmon (S. salar) Delayed sexual maturity (Gutierrez et al., 2014). 

Catfish (I. punctatus) Columnaris disease resistance (Geng et al., 2015). 

Coho salmon (Oncorhynchus kisutch) Hatch timing, growth, length and weight (McClelland 

and Naish, 2010). 

Common carp (C. carpio) Muscle fiber (Zhang et al., 2011b). 

Common carp (C. carpio) Growth rate (Boulton et al., 2011). 

Common carp (C. carpio) Maneuverability (Laghari et al., 2014). 

Eastern oyster (Crassostrea virginica) Resistance to diseases (Yu and Guo, 2006). 

European seabass (D. labrax) Growth (Louro et al., 2016). 

Gilthead sea bream (S. aurata) Growth and sex determination (Loukovitis et al., 2011). 

Gilthead sea bream (S. aurata) Pasteurellosis resistance (Massault et al., 2011). 

Gilthead sea bream (S. aurata) Skeletal abnormalities (Negrín-Báez et al., 2015). 

Japanese flounder (P.olivaceus) Resistance against vibrio anguillarum (Wang et al., 

2014). 

Large yellow croaker (Larimicthys 

crocea) 

Growth (Ye et al., 2014). 

Pacific oyster (Crassostrea gigas) Growth (Guo et al., 2012). 

Pacific oyster (Crassostrea gigas) Summer mortality resistance (Sauvage et al., 2010). 

Rainbow trout (O. mykiss) Temperature tolerance (Perry et al., 2005). 

Rainbow trout (O. mykiss) Life history (Leder et al., 2006). 

Rainbow trout (O. mykiss) Spawning time (Colihueque et al., 2010). 

Rainbow trout (O. mykiss) Osmoregulation capabilities (Bras et al., 2011). 

Rainbow trout (O. mykiss) Resistance to whirling disease (Baerwald et al., 2011). 

Rainbow trout (O. mykiss) Rate of development (Easton et al., 2011). 

Rainbow trout (O. mykiss) Growth (Wringe et al., 2010). 

Rainbow trout (O. mykiss) Smoltification (Nichols et al., 2008). 

Rainbow trout (O. mykiss) Resistance to Flavobacterium psychrophilum (Vallejo et 

al., 2014). 

Rainbow trout (O. mykiss) Cold water bacterial disease resistance (Palti et al., 

2015b). 

Rainbow trout (O. mykiss) Response to crowding stress (Rexroad et al., 2013). 

Rainbow trout (O. mykiss) Sex determination (Cnaani et al., 2007). 
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