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Abstract:

This master thesis aims to make a first step in the research of using simula-
tion for UAVs in the domain for computer vision applications. We will compare
passive vision and active vision paradigms. Passive vision is a system where the
computer takes a decision depending on the actual image it receives. Active
vision, on the other hand, manipulates the viewpoint to investigate the envi-
ronment and retrieve better pieces of information. We were able to achieve a
fully running passive vision U-Net model. That model can successfully navigate
around a pylon following a path that covers the whole pylon. The active ap-
proach was more complicated. It was only possible to do a reflection plus some
unsuccessful tests. A time comparison was made. We have also compared the
complexity of modifying in case of enterprise use. U-Net showed to be easier to
use and change compared to the active vision paradigm by a far hand. Finally,
we open the possibilities of future researches in that still yet to exploit domain.

Keywords: Computer vision, Active vision, Passive vision, Autonomous
UAV, Intelligent system, Artificial intelligence, U-Net, CTRNN

Résumé:

Ce mémoire vise à faire un premier pas dans la recherche de l’utilisation de
la simulation pour les drones dans le domaine des applications de la ”computer
vision”. Nous comparerons également deux paradigmes de vision, respective-
ment la vision passive et la vision active. La vision passive est un système
dans lequel l’ordinateur prend une décision en fonction de l’image réelle qu’il
reçoit. La vision active, en revanche, manipule le point de vue pour étudier
l’environnement et récupérer de meilleures informations. Nous avons pu réaliser
un modèle U-Net de vision passive entièrement fonctionnel qui peut naviguer
avec succès autour d’un pylône en suivant un chemin qui couvre l’ensemble du
pylône. L’approche active était plus compliquée et n’a donné lieu qu’à une
réflexion et à des tests infructueux. Une comparaison a été faite par rapport
au temps d’entrainement et à la complexité de modification en cas d’utilisation
dans une entreprise. U-Net s’est avéré plus facile à utiliser et à modifier que
le paradigme de la vision active de loin. Enfin, nous ouvrons les possibilités de
recherches futures dans ce domaine qui n’a pas encore été exploité.

Mots-clefs: Computer vision, Vision active, Vision passive, Drone au-
tonome, System intelligent, Intelligence artificiel, U-Net, CTRNN
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Chapter 1

Introduction

This work has for objective to make a first step in the research of transforming
the electrical pylon flaws analysis and detection fully autonomous. The growing
grid infrastructure o↵ers a vast market in need of a faster and reliable way of
detecting the flaws in their infrastructures. This work aims to look at two ap-
proaches that can potentially solve the problem of moving around an electrical
pylon safely while only using computer vision.

Currently, power line pylon inspection is a critical and costly task due to the
time and e↵ort required. The inspection requires a helicopter, a <4k camera
with a professional photographer to take long-range photos from the helicopter,
an expert to analyse the photos. This means that electrical companies can be
interested in a newer way of analysing power line pylons. For example, by having
the possibilities to do multiple power lines at the same time without requiring a
lot of human resources or extremely expensive equipment’s. Especially for the
electrical installations that are in remote access location such as in a forest or
mountain. Like so, the use of unmanned aerial vehicles (UAVs) is a potential
way to reduce the cost and avoid to use a helicopter, Automate the system to
have multiple UAVs doing the same power line or other power lines.

Taking photos can be done either by a pilot using the UAV remote-controller
to move the camera and takes the required images. Or it can also be possible
to work on an automated system that also controls the camera to take photos
automatically. A script could make this outside of the movement-based Artificial
Intelligence(AI) or a script embedded in the movement’s AI.

Then, the image captured could be analysed by AI onboard by another model
looking at errors and then discard images that do not have a sign of problems.

An autonomous UAVs could also detect problems and store each potential
damage detected (such as rust, crack, broken insulator) on a pylon in a dedicated
database for further analysis. This can helps avoid wasting time looking at
pictures of pylons that do not have any problem.

Working on such a complete system could be an extensive research that can
take some times. So we will stay on the movement AI to start this extensive
research that could be continued for future works by the end of this work. This
continuity can be done in collaboration of Qualitics (a Belgian start-up that does
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CHAPTER 1. INTRODUCTION

electrical instalment audit) to transform their UAVs fleet into an autonomous
power-line pylon analysis system.

In this master thesis, we will attempt to compare a state of the art approach
of image segmentation AI system called U-Net to detect the pylon and make all
the movement required for the analysis and a system based on the active vision
paradigm.

The U-Net model is well known to be capable of good results on object de-
tection and localisation without a lot of segmented training data. This is an
interesting model because the domain we are researching is quite unexplored,
and the few data-set that could exist are kept for private use. Thanks to Qual-
itics we can have a nice amount of electrical pylon image that we can make
the segmentation on to train our model. We will also train our model on a
simulator. This can also be very useful to generate a huge amount of images to
train our U-Net model with simulated data. The system using U-Net is going
to detect the pylon and from that decides to move around the pylon the best
way possible to ensure the smooth execution of the pylon analysis

After, we will create a new model based on active vision principle that will
use a genetic algorithm (GA). GA is a method of computer learning inspired by
evolution in biology [1]. It searches for one of the best solutions of a function by
calculating the fitness of parameters represented by a gene. We mutate the best
genes to optimise it. GAs will be used to generate e�cient movement strategies
according to the input from the camera. The approach will be based on the
gaze system and continuous-time recurrent neural network(CTRNN). CTRNN
is a fully interconnected artificial neural network where a system of di↵eren-
tial equations chose when the nodes are activated. CTRNN is used to solve
this complex problem of movement in a heavily constrained three-dimensional
movement space without having to rely on a training data set of segmented
images.

Also, the final section for the research part will compare the two models over
what we were able to achieve this time constraint and the accessibility of each
model to perform modification on them.
In terms of results, the U-Net model was straightforward to create and train
with a short time of learning thank to the RTX GPU. The downside of U-Net
was the creation of the data set with segmented images. Here, it is avoided
with the simulation generating segmented images. The intelligent fly controller
receiving information from our U-Net model was able to perform a full analysis
of a simulated electrical pylon in a mean time of 5.13 minutes.

The CTRNN active vision model, on the other hand, ended up being way too
long to train and optimise. It has resulted in the inability to make a working
model able to analyse a whole pylon. We decided to stop the training after
multiple failures and the learning speed being of more than twenty-four hours
per test. The main advantage here is the capabilities to train directly on the
simulated scenarios and the fact that we do not need to segment the images.

The comparison has shown that the U-Net model is a better option for
enterprises. This is due to its simplicity and ease to modify and adapt to new
constraints. The CTRNN is still a domain to explore that could deliver better
results for the reality gap. But, it requires a lot of time of training and is not

UNamur - 2019-2020 7



CHAPTER 1. INTRODUCTION

the most suitable option in a domain that could request a frequent change in
constraints.

For the reality gap, we can only talk about the U-Net model that was
testable. The model was showing di�culties to adapt to real pylon detection
of multiple forms, for some never seen. We lost around twenty per cent of the
F1-score between the results of the U-Net model on simulated pylons and real
pylons.

Finally, we will explain what can be done for further research on the two
computer vision paradigms to make the autonomous UAVs a robust solution
to do the whole analysis of a pylon. We will also discuss the other possibilities
that can be explored with more time, especially for the active vision paradigm
that is open for a lot more works.

UNamur - 2019-2020 8



Chapter 2

State of the art

In this chapter, we will list all the technologies related to UAVs from the actual
history of how they ended up as we know them right now. We will also describe
each module, such as sensors, that can be put on them to make them more
autonomous and aware of their environment. This list of technologies is created
thanks to a large literature review made for this research.

By the end of this chapter, you will have the knowledge necessary to under-
stand all the decisions made in this master thesis and the theory behind them.

2.1 UAV

In this section, we will explain what the UAVs are. This includes everything
related to them, such as the definition, the history and what is composing a
UAV.

2.1.1 Definition

In this thesis, drones or UAVs are air crafts without an onboard human pilot.
Most often, the control of the UAV is done through remote control and a human
operator on the ground. Sometimes, a UAV can be controlled by a computer
(either onboard or outboard).

The size and shape of a UAV can vary depending on what the UAV will
be used. From around 10 × 2.5 cm for a Black Hornet Nano [2] for example
to about 39.9 meters wingspan for a Global Hawk military UAV [3](both being
controlled by human). The shape can be categorised as follow:

9



CHAPTER 2. STATE OF THE ART

Type Number of propellers Example
Rotor UAVs Single-rotor UAVs Helicopter UAV

Multi-rotor UAVs Civilian’s quad-copter UAV
Fixed-wing UAVs Single motor Delta wing UAV for

agricultural surveillance
Multi-motor Model making of real plane
Jet engine Military UAV for long-distance

operation

2.1.2 Controlling UAVs in history

UAVs have a vast history of military usage since 1849. Those were proper tools
for training, attack and recon activities.

UAVs have made their first apparition July of 1849 as balloons carrying fire-
bombs. They were moving with the wind in the desired orientation. Austrians
used them to bomb Venice during the 1849 siege of Venice. But, this technique
failed due to changing wind condition. UAVs of that kind were rapidly forgotten
due to the lack of control and e�ciency. [4][5]

During World War 1 and World War 2, UAVs had begun to be reused, first
for training, and then for attacking (German V1 flying bomb). For both uses,
most of them were mock plane with no remote control and straight flying air-
craft that would either be destroyed in flight (for training) or explode on landing
(for attacking). A large amount of them was calibrated before the fly to stay in
the air for a precise time before a mechanism would push them to dive on the
ground. Each nation and UAV using a di↵erent approach for how to perform
that action.[4][5]

After World War 2, remote controlling begun to be more common, with
wireless technologies getting more robust and reliable. It’s also at that moment
that richer aircraft-model enthusiast got into remote controlling and UAV.[4][5]

Then in 1975, the Israelis have shown a UAV capable of live video streaming
at long range to helps the pilot manoeuvring the UAV. Which is still the most
commonly used way to fly a UAV around.[4][5]

From 2000 and onward, thanks to the miniaturisation and prices dropping
for complex electronics system, UAV were more accessible to civilians. Which
led to more common usage in agricultural, recreational, aerial photography and
scientific domains. At the same times, researches started on autonomous UAV
using either distance sensors, cameras, GPS, barometer, gyroscope or all of them
at the same time for various utilities.[5]

2.1.3 Civilians UAV components

Other than the frame, motors, batteries, antenna that you would expect on
UAV, the more advanced one like we will be using further have some intersecting
electronic devices to help without having to program them. Those components
have been explained to us by Qualitics.

UNamur - 2019-2020 10
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• Flight Controller (FC), the core of the UAV, it translates the instructions
from the pilot/AI and the data from sensors to control the power of each
motor. The FC helps the UAV to fly as requested by the pilot.

• Electronic Speed Control (ESC) is managed by the FC to regulate the
electrical power supplied to one motor. It is requested to have one for
each motor.

• Inertial Measurement Unit (IMU), this is a chip with an accelerometer, a
gyroscope and other tools that can help to determine the current moving
state of the UAV. If the UAV is not moving and commands are not sup-
plied, the IMU will send data to the FC to keep the UAV hover at the
same position.

• GPS, it is helping the UAV to know its world position, and also retain his
take-o↵ position so it can get back to this starting position autonomously
in case of trouble.

• Sensor, LiDAR, radar, sonar, camera, those devices can generate multiple
inputs for the security of the UAV. It can be communicated to the FC and
the pilot of the UAV. Those data can be interpreted by both the human
and computer to help them avoid an obstacle or to follow a detected object.

With all those components associate together, we can obtain a well designed
and very secure UAV capable of performing a large range of actions depending
on the pilot and the task to be done. Each year, the miniaturisation of sensors
and computing power bring more and more capabilities to the UAV to perform
new complex tasks that were previously not achievable.

2.1.4 Conclusion on UAVs

The UAVs are becoming more and more capable. They are now getting more
attention in the industrial sector and from artists such as photographers or even
painters. This mainly military technology is growing in the public sector, with
a wide range of use from recreational hobby to highly complex tasks execution
such as search and rescue in dangerous places to navigate.

This technology also went from a high di�culty to control to a more semi-
autonomous flying machine capable of taking decisions over the pilot. The AIs
can avoid objects, stabilise itself and even capable of returning to their starting
point autonomously in case the signal between the pilot and the UAV is lost.

UAVs have changed the way some photographers can take photos by giving
a whole new level of perspective to work on. Artists do not have to pay a huge
amount of money to use them. We can now see a lot of shooting of landscape
and city skyline by professional that would have required the use of a plane or
a helicopter ride to be done before.[6]

Those UAVs are becoming a really useful resource to use to accomplish tasks
in remote locations or requiring to fly over particular areas that are not typically
easy to access (indoor or outdoor). This rapidly growing piece of technology
has still a lot of abilities that are yet to be discovered.

UNamur - 2019-2020 11
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2.2 LiDAR & human, the current approach of
Qualitics

Qualitics use LiDAR for checking the distance between the UAV and the pylon
during an analysis. But, the LiDAR does fail to be used in a situation where the
UAV and the object being analysed are separated from more than 10 meters.
This failure is due to the quality of the LiDAR and the object being often too
thin. This can be explained by the LiDAR being unable to echo the light on
the object continuously leading to instabilities (getting noises on LiDAR seg-
ments, detecting further objects and detecting nothing) in the detection. We
have tested several configurations with the LiDAR used by Qualitics for cable
detection to optimise and augment the distance at which we detect the cable
with enough stability. Those tests, realised on real cables, were able to get
enough stability up to 6.5 meters, over this, the number of instabilities would
grow exponentially until the complete loss of the cable detection.

As for the pylon analysis, the pilot does everything. He is just helped to
keep the right distance between the pylon and the UAV thanks to the LiDAR.

The advantages of this approach are:

• Extremely safe to use, LiDAR is an exact way of calculating the distance
every 0.04 second without needing much post-processing. This leads to a
very smooth control of the UAV to life adjusts its position according to
the eight projected segments by the LiDAR.

• The pilot can make smalls adjustments if he thinks that the photos taken
during the analysis are not correct (ISO, brightness).

The problems with this approach are:

• Problems related to stability issues over longer distances between the pylon
and the UAV.

• It requires the pilot to be near the pylon at a correct distance to judge
how the inspection is going. Leading to need to move with a car between
each pylon. It can sometimes be di�cult when accessing some pylons in
the middle of a forest, a field or any remote locations that are not close of
a road.

• The UAV can do autonomous electric line following, but then, the pilot
needs to land the UAV, to start the procedure of pylon analysis. Which
lead to a time lost and battery lost.

Even if this method is correct, it is showing some cons that cannot be
avoided. Also, we know that we are already pushing the UAV’s LiDAR to
its maximum, so the only way we could make it better would be to change to
another LiDAR with better performance. But this change would result in more
weight on the UAV, more power consumption and reduce the flying time.

UNamur - 2019-2020 12
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2.3 Other classic approaches

2.3.1 Flying with Path planning

Most of the other companies working in autonomous UAVs for electrical in-
frastructures inspection use a less complicated approach that asks the pilot to
prepare the flying path before going to the mission. This solution is similar to
[7]. This approach is the easiest one to create but also results in many troubles.
Because the UAV is just able to perform basic obstacle avoidance while following
the traced path on a computer, the UAV is just going straight to high-interest
points marked on the map and proceed to take photos requested depending on
the parameters without adjustments.

If everything is correct and well placed without errors of the UAV positioning
sensors, this technique would clearly be the best. Still, unfortunately, even high
precision GPS tend to have di�culties when getting close to the high voltage
cable, sometimes creating a small error in positioning.

Those small errors can make a mission a total failure, by having photos out of
point, incorrect centring or even photos without the point of interest requested
visible. This can lead to the remake of a mission from the beginning to redo
all those failed photos. Most of the times, this request some days to prepare
and get the correct weather. Since UAVs are not able to fly in some complex
weather conditions.

Those hazardous comportment’s make this technique not enough reliable for
large scale inspection, especially in term of reliability and quality of photos for
post-analysis.

2.3.2 Fully sensors-driven system

This project [8] shows a sensors way to interact with the world for the UAVs.
This software uses proximity sensors and distance sensors of each type possible
to verify if the UAV will not make any lousy movements that could result in
a crash. This software is meant to be used in an inside loop with an AI or a
human. The human or AI will decide on the movement, and the software will
start to overwrite the command that can cause a crash or be too dangerous.
For example, if the UAV is getting to close to the cable. The software will make
the UAV slightly goes on the opposite way. This piece of software is developed
to be as reusable as possible.

This software would be a nice add-on for a version of our U-Net model. It
would add the capability of objects avoidance without requiring much work from
our side.

2.3.3 Single camera environment perception

In [9], they put in place a first attempt of autonomous flight in a forest without
aids from the path following system or any additional sensors or GPS. The
approach here is to identify clear flight areas and predict the behaviour of the
UAV in this unknown environment. To do so, the model as to extract from
the image by a first model the NED (North, East, Down) position and the
orientation quaternions with the second model. This multitasks Regression-
based learning takes advantage of having di↵erent neural networks for each task.
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When they are all combined, they are capable of showing promising results in
unseen environments. This method is suitable for search and rescue missions
since it is having a very aggressive exploratory behaviour and do very well in
term of obstacle avoidance.

This technique can be interesting to adapt in term of navigating around the
pylon without needing any distance sensor and thus reducing the weight and
battery usage for our use case. One important thing is to consider is the fact
that we need to decide the precise objective of analysing pylon compared to this
type of problems where you just have one point to go to.

2.3.4 Using stereo-vision

Stereo-vision and visual optometry is also a great way to achieve a decent obsta-
cle avoidance and taking explicit photos at the same time [10]. Still, it requires
to have precise intrinsic parameters and calibration before obtaining favourable
results. It also has a cost in term of autonomy because it requires two cameras
to work. Those stereo-vision systems give a cloud of points created by two cam-
eras. When those two images are interpolated together, the system is able to
tell the distance of the pixels in the images. As an output, most cameras give a
heatmap or a grayscale image with darker points being closer and lighter point
being further. The system then enables the UAV to navigate while avoiding the
obstacle easily. The main problem with this technique is the need for precise
parameters to obtain correct data. This is creating considerable complexity and
making the UAV more complicated and expensive.

This technique will not be used in this master thesis, but it is worth to
be aware of it. For example, this could be useful for other tasks or if other
techniques fail to provide correct results, stereo-visionè could be an alternative.

2.4 Machine learning techniques

In this section, we will go through some machine learning methods that can be
interesting to use.

Right now, there are already algorithms that proceed to detect a pylon with
boosted decision trees joined together to make a strong classifier to localise a py-
lon in a variety of background [11]. They use Aggregate Channel Features(ACF)
to get a di↵erent channel of the RGB image as input for the decision trees and
train the ACF with AdaBoost optimiser to help with the training time. All the
decision trees are made to detect a particular feature in the image. By doing
so it makes each one of them strong at one object detection. When they are
combined, they detect all the part of a pylon. They do end up with very good
accuracy and with a false-negative rate of 2%.

Some deep-learning approaches were tested in [12], where 4 di↵erent types
of models (SSD, F R-CNN, YOLO, R-FCN) were tested to compare their e�-
ciencies at detecting di↵erent kinds of insulators on a pylon. The results of this
paper show that R-FCN (Region-based Fully Convolutional Network) and SSD
(Single Shot MultiBox Detector) tend to have better results than the two other.
This type of models could also be interesting for future works. In example, the
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detection of di↵erent parts of the pylon for advanced analysis could be made
following this paper.

No U-Net implementation for this usage as been tested even if this deep
neural network performs very well [13] on classification problems. Usually, where
little to no data are existing in terms of annotation and masked image for
segmentation. It is also a model that can learn quite fast on modern consumer-
grade GPU. This model will be considered since it can be trained with a very
low number of images if needed. This is a very important aspect because the
availability of a segmented data set of pylons is non-existent. It is also time-
consuming to create a segmented data-set.

In term of computer vision, Genetic Algorithms (GA) are not frequently
used. Some GAs appeared for hyper-parameters optimisation [14].

Also, there are now libraries that make GA able to run on GPU to parallelise
the work and make it faster to learn [15]. They are using folders and multiple
genomes comparison at the same time. Simultaneously, they update the folders
which contain the model by removing the eliminated ones and keeping the win-
ner and its o↵spring. If the simulator enables to run multiple instances at the
same time, this technique will be very useful to accelerate the training time of
our GA system.

Finally, there is also an approach to neuro-evolution called NEAT (Neural
Networks through Augmenting Topologies) [16] that can be useful after further
reading. But this is not in our time frame for this master thesis.

2.5 Reinforcement Learning (RL) and Evolution-
ary Learning (EL) for optimisation.

For full autonomous movements control that can be represented by a Markov
decision process [17], it can be interesting to use algorithms that can help to
dynamically optimise the decision process such as the weight of the branch
between di↵erent state. For example, Reinforcement Learning [18] is one of
the most popular ways of doing that in the artificial intelligence domain. RL
will repeat the same type of mission to learn from it with a system of reward
per good tasks done. Depending on di↵erent chosen parameters, a function
can be created to calculate the amount of reward given to the algorithm that
just performed the mission. In example, time, energy, collision, area constraints
can be applied to the reward function to optimise the algorithm at its finest.
As for the cycle of learning in RL, the robot will perform an action, then the
environment of where the robot is will be analysed and interpreted. Depending
on this environment, a bonus or a penalty will be given to the total reward.
After that, the next action is assigned and done. At the end of a mission, the
total reward will tell how well the robot performed. It will then make some
back-propagation on the model weight to do the optimisation of parameters.
Then, it will test the new form and see if it works better. After a moment,
RL should have explored the map of possible parameters by optimising at each
step. RL is also used in game theory and operational research since it shows
excellent results in optimisation.

As for Evolutionary Learning [19], like RL, it aims to optimise a solution to
solve a problem, but this time, it is a population-based meta-heuristic optimi-
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sation algorithm that will research one of the optimised solutions. Depending
on the genes pool generated, the algorithm will start to compare the strength of
each individual depending on a fitness function. Then it will make a selection
of the best one and use a mechanism such as mutation, reproduction, recombi-
nation to generate a new-gene pool to find the new best fit for the problem. It
can go for a long time depending on the need and complexity. Every run can
keep x number of the best solutions of the previous iteration.

To know which one between RL and EL is to use for our case, we can look
at [9]. This paper explains to us that RL shows extremely good result in all
the Markov decision process task and explain why it is used so much. Since a
lot of problems can be transformed into a potential Markov chain, but when it
comes to non-Markov chain task, for example, multitask decision making, the
EL paradigm is performing better in term of training and final solution reaching.
This gives us the right pieces of information of which type of algorithm we will
need to choose to train our active vision version of the pylon analysis.

2.6 U-Net

U-net [13] is a powerful deep neural network that first does a convolution of the
image it gets in input for object detection. This convolution is used to extract
features. Then, it starts a deconvolution path to make a precise positioning of
the detected object by reconstructing the image. It is a great tool that performs
well in the detection of malicious cells in the human body. U-net has the great
advantage of being able to be trained on a reduced data-set. It can also run
in less than a second per image on a 2015 GPU (NVIDIA GTX Titan 6Gb).
The performance on a 2019 RTX GPU (NVIDIA RTX 2080 8Gb) using the
TPU’s (Tensor Processing Unit) in it are better. If we use an implementation
of U-Net using the library Keras [20] and TensorFlow [21]. The training on a
one thousand images data set can be done in less than forty minutes.

U-net is going to be used to make the prototype of a pylon detection and
used as a benchmark for other implementations. It aims to give the position of
each part of the pylon on the image. Then, it can generate action depending on
the positions of them.

2.6.1 Moving with U-Net

U-Net can be used for movement in the passive vision paradigm. We detect
the pylon with our neural network, and we use that prediction to take decisions
related to it to make the best movement possible. This requires to create a set
of rules to interpret the image and take a movement decision.

2.6.2 Convolution neural network for UAVs movement

In recent year, a new way of looking at the control of robot and UAVs as been
researched. The aim is to get a system that can be trained in simulation and
also be used in real life in various environments. There is variability in terrains
such as going from forest to field environment and vice versa that can be met
when using UAVs. For example, the use of UAVs in search and rescue mission
is something fundamental and to be looked at. Autonomous UAVs tends to be
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well appreciated for this kind of task due to their capacity of covering a lot of
space without requiring to have a human piloting them.

Online Deep Reinforcement Learning [22], as showed promising results of
being able to navigate through multiple unseen environments that can be dan-
gerous of access from humans. In their research, they developed a model in
AirSim that has to find one of the best ways to get to a certain point on the
map without having a GPS and can only use camera and accelerometer to un-
derstand its position in the world from the starting point. They believe that
having a simple approach can help the model to get better adaptability than
the classic Q-learning system and Long Short-term memory. Since those had
shown di�culties to overcome unseen place and scenarios. The trained model
in the paper, Extended Double Deep Q-Network (EDDQN) show nice results
of adaptability and capacity to be used on di↵erent UAVs, either specialised or
commercial one on many forms of terrain and weather condition. EDDQN use
a double inputs model, one that takes the 84*84pixels grayscale image to gen-
erate a vector of it thank to multiple convolutions. In the same manner as the
convolution phase of the U-Net model. Then it concatenates this vector with
the second network output from the local map fed to obtain the four outputs
that will decide the action taken. The reinforcement learning is then applied
during the learning part, and they do use a reward function depending on going
to already visited places, getting to the objective and time. We will follow the
advice of staying as simple as possible by only using the basic U-Net model
without much modification to its way of working. It is also important for us to
stay simple since we have to also work on the active vision paradigm.

2.7 Active vision.

2.7.1 Definition and explanation.

To fully explain the active vision, ”Adaptive active vision” [23] is a fascinating
PhD thesis to read. To summaries this paradigm, we need to go back to basic
biology, as to how living creatures work and how we are learning to move in the
world. [24] helps to understand the facts behind how we are learning to inter-
act with the world by a passive and active way. Our vision and movement for
decision making are bounded together and it is very important. As the paper
shows, multiple pair of kittens are put into a carousel to learn how to move and
interact. Half the kittens are learning actively to move around the carousel and
the other half is learning in a passive way by being stuck and moved around the
carousel by the active learning kitten. Then, they have to go through di↵er-
ent experiments such as paw opening reflex, chose the right ascending surface
(swallow or direct), eyes reaction to incoming objects.

The results of this experiment show that the active learning kitten can per-
form every test easily and correctly and the passive learning kitten as a lot of
di�culties to perform well into the world when facing the real world.

Getting back to [23], vision can be divided by 3 part. First, there is the gaze
stabilisation such as head movement to keep your gaze on a specific object and
compensate for any movement of the body. The second part, especially with
primates, is the object following gaze which is smooth, like looking at a car
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passing next to us, our brain predicts the future position of the looked object.
That’s also why some unpredictable objects are often harder to follow smoothly
since our brain will make false predictions. The last part is what [23] calls
intentional shaking, which is the fact, for example, to move your eyes around
a new room and pointing without realising di↵erent points of interest. Human
most often does not realise that they are doing eyes movement or controlling
them when they are not focused especially on that. A lot of UX expert, for
example, are looking into this field of vision when developing a new interface to
avoid or catch the gaze of the user on something.

So, for active computer vision [25], we can consider an observer as active
when it can control itself over di↵erent geometric parameters of its sensor or
gaze. Those controls have the capability to manipulate the sensor to reduce some
constraints related to the observer phenomena, like turning around, changing
the angle of the sensor, change its position and even the sensor parameters. [25]
shows results that active vision is able to solve fundamental computer vision
problem way more e�ciently. In short, some issues which are non-linear for
passive vision can end up linear with the active vision paradigm, like depth
computation and shaping contour.

2.7.2 How does it work with autonomous vehicles?

The active vision or at least the use of evolutionary learning such has genetic
algorithms has been used to control UAVs for navigation. In particular, when
you need to navigate to a position or an area in the scenario of search and
rescue, see [22]. In [25], they explain a model in chapter 5 that use active vision
to control a car on a simulator that needs to stay on the road and avoid obstacles
that are on the road. To do so, the model uses two sub-models, one for the car
control and the other for the gaze control. The two models are fed with the
same input, which is the image in greyscale and four parameters, the speed, the
three others are relative to the gaze and camera controller.

Figure 2.1: Single input, Multiple neural network system

This chapter also helps us by giving some information about the type of
network to put in place. They have tested in a first time feed-forward neural
network but without success in term of control. They then tested Continuous
Time Recurrent Neural Network (CTRNN) for the controller. Thanks to this
type of network, they were able to keep a certain memory of previous states
without having to use long short term memory neural network. CTRNN is
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also a type of artificial neural network characterised by the use of a system of
di↵erential equations for the node’s activation.

As for output, the first model for the control of the car is straightforward
and have two outputs, the acceleration can be positive and negative and the
steering [-1, 1]

The second model extracts three outputs. The first two are for the exact
future coordinate of the gaze on the image. The third one is the features ex-
traction method. Like either, take the average greyscale or the centre.

In this dissertation, we will try to achieve the active vision paradigm by
using CTRNN since this seems to work for a car quite well. The main problem
here will be to create one and try to find out if it works on a UAV vehicle that
can move in multiple ways compared to a car. The complexity of movement
that UAV are su↵ering from might be causing this model to struggle to work
well.

2.8 Reality Gap

The reality gap e↵ect [26] in robotic is an e↵ect caused by the divergence between
a simulated environment and a real environment due to the lack of realism. It
will be interesting to study how our working model can perform in real life pylon,
while only being trained on simulation. This is a critical paradigm to take into
account when you are working on production AI trained on simulation.

In the paper, the author talks about abstraction around the sensors and
actuators to facilitate the development of robots in simulations that can directly
be used in real life, by reducing the behaviours and leaving the control to an
abstracted fly controller. For example, with a fly controller that possess all the
information related to the UAVs, we can just send a simpler order to it. It
would be like ”go up one meter” and makes us able to avoid sending complete
information to each motor and everything related to movements. Abstraction
helps to reduce the gap between reality and simulation with tools that can
simplify the communication between the AI and the body of the robot.

The gap can come from the visual e↵ect and the fidelity of the simulation.
Usually, the simulation does not have good visual e↵ects and good quality graph-
ics. It can grow the reality gap in computer vision systems. Nowadays, graphics
are getting a huge improvement. But, it equipped to be equipped with a good
GPU. However, there is still place for improvement over the visual and quality
of three-dimensional models. We need to keep in mind that more we want to
look like the reality, the more resource it will consume and thus take resources
that could be used for the AI model.

Also, the gap can come from the physic engine deployed in the simulation.
The physic is crucial for robot simulation because it can alter the way the robot
will perform in the real world. Having a lousy physics would involve trouble in
power sent to the UAV for a particular movement. In the case of RL or EL, it
is essential to have a physics as close as possible to reality. Since everything will
be optimised to the simulation physic and not the real world. It is important
to watch and test how well the model performs on real-life before sending the
UAV with the trained model in production.

After that, some events can occur in the real world that does not happen in
simulation or are harder to simulate. For example, dynamic obstacles, it is not
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complicated to develop static obstacles such a fence, wall, trees in a simulation.
But, some objects that have the ability to move can be harder to generate in
simulation. For example, birds, leaves and branches from trees moving to the
wind. Those can be very dangerous for a UAV and change drastically the way
the UAV interacts with the real world.

2.9 Image processing

Image processing will be an important task in the master thesis to extract
information from what we receive in the U-Net version of this project. From
the image preparation to the post prediction analysis, multiple stages, pre and
post-processing, had to be performed to get all the requested results to make a
decision.
In this section, we will explain some techniques that will be used during the
master thesis to extract pieces of information from the 2500x2500 pixels image
taken by the UAV.

2.9.1 Pre-processing

For this part, we take the full RGB classic image and start by making a simple
resizing of the image from 2500*2500 pixels to a more usable 256*256 pixels
size, that can be analysed faster and still have enough data to distinguish the
pylon. After that, all the pixels are divided by 255, so we now have a float array.
Dividing the array by 255 makes the RGB value be between zero and one. By
doing so, we can now make our image go trough model for prediction.

2.9.2 Post-processing

After the prediction, the masks of the image are extracted, and a clarification of
the image is done. So depending on the probability of a pixel, we either gave it
the value one or zero. If the pixel as a probability of more than .75, it’s changed
to a one else it’s zero. Like that, we end up with three arrays corresponding to
the three objects that we want to detect, with either 1 or 0 as pixels value.

Now that the prediction is fully processed, we can start to create a coordinate
box of our detected pylon. To do so, multiple techniques are used to do so. To
detect the left and right edge of our pylon, we combine two algorithms (Canny
Edge Detection and Hough Line detection) to extract those coordinates. As for
the top and bottom part of the pylon, we simply extract the lowest and highest
point of the detected Upper part of the pylon.

2.9.3 Canny Edge Detection

We will use Canny Edge Detection to produce edges extraction. This algorithm
will be useful to help the second algorithm (Probabilistic Hough transforms for
lines) to extract the lines needed to create a position box of the pylon. By doing
so, we will be able to centre the UAV by positioning the box in the centre of
the image.
Canny Edge Detection[27] is a popular and robust way to extract the edge of
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an image and goes through multiple stages to do so.

First, it will make a noises reduction by using a 5x5 Gaussian filter. This will
smooth the image and remove some noisy pixels that could have been faultily
detected by our model.

Then the algorithm goes to find the intensity gradient of the image. It does
so by filtering the smoothed image with a Sobel Kernel in both horizontal and
vertical direction. In that way, we can have two images (Gx) for the horizontal
direction and (Gy) for the vertical direction. With both images, we can extract
the edge gradient and direction for all the pixels.
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Then, a non-maximum suppression is done; in this part, the algorithm cleans
the image only to leave all the edge of the image. To do so, it checks for every
pixel if it’s a local maximum compared to its neighbours in the direction of the
gradient calculated in the second part. This removes all the pixels that are not
an edge in the image.

The last stage decides if the detected edges are real or not. To do so, two
threshold values are used to determine it. Depending on the selected values,
the algorithm decides if an edge is worth keeping depending on its intensity
gradient.

Three cases can be considered:

• The intensity gradient of the edge is higher than the maximum value of
the threshold. The edge is a ”sure edge” and kept.

• The intensity gradient of the edge is between the two threshold value, but
one part of it is higher than the maximum threshold value. Then this edge
is also considered as a ”sure edge”.

• If the edge is always under the maximum threshold value, then, it’s re-
moved as it’s not an edge.

Those manipulations should make the image remove the remaining noisy
pixels that could have survived if the minimum length of edge value is not to
small.

2.9.4 Probabilistic Hough transform for lines

Probabilistic Hough transforms for lines will be used in the master thesis to
extract all existing vertical lines. This algorithm will use the image processed
by the Canny Edge Detection algorithm to detect the lines. This will help us
remove the left and right side position of the pylon.
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Hough transform [28] is a well-known algorithm for natural shape (such as
lines, circles and ellipses) detection in digital images for objects detection. Those
standard shapes can fully describe an object. Due to imperfection in either the
image or the edge detector, some shape might have some basic deviation or
noises that make them harder to detect. So Hough algorithm uses a grouping
of possible candidates and makes a voting system to extract which one is the
right object from all the available possibilities.

The probabilistic version of the Hough transform algorithm will not go
through all the possible points but instead, just take di↵erent random subsets
of points that are su�cient for line detection. This is making the line detection
as good as the classic approach while also taking less computer power.

2.10 Three-dimensional space

UAVs are flying objects that use spacial rotation and the speed of their rotors
to move in the air. As such, this section will introduce you to two di↵erent
ways to interpret the three-dimensional space for movements that are used in
the simulation AirSim.

2.10.1 Euler angles

Euler angles are going to be the system we use to communicate with our UAV.
They have the advantage of being simple and require less input to work. The
AirSim APIs does use already Euler angle for half of its APIs related to move-
ment.

Euler angles are the most comment way and easiest way for humans to
interpret angle in the space. It is made out of three specific angles named Yaw,
Pitch and Roll. An angle is characterised by a radiant number representing the
value of the object position compared to its spacial origin position. AirSim uses
those value such as comprise in the interval of [�⇡,⇡] which can be interpreted
in degree as [�180, 180]. Whenever the pitch is positive, it means that the nose
is facing up and vice versa. A positive roll means that we are rolling on the
right side (right side facing down) and when we have positive yaw, we rotate
around the centre axis of the object on the right.
Fig:2.2 is an excellent example to understand how Euler angles works.

Euler angles are straightforward to understand and to manipulate in term of
human understanding, but mathematically, they are limited by the phenomenon
called ”gimbal lock”. This phenomenon happens when the pitch axis gets too
close to +/- ⇡

2 . This result in the two other angles to not be correctly calcu-
lated. Therefore, it is impossible to determine which one of the two is changing,
resulting in errors than can block the gimbal.

2.10.2 Quaternions

Quaternions are the second type of system to describe the orientation and di-
rection of an object in AirSim. We will encounter quaternion in AirSim when
retrieving outputs from our accelerometer and positioning system.
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Figure 2.2: Yaw, Pitch, Roll angle interpretation

In [29], we have an in-depth explanation of what a quaternion is, How to
use it and finally how to transform it in a more readable format such as Euler
angles.

In short, we could describe it as a quadruple of real numbers. The first
three numbers (x, y, z) can be interpreted as a vector. Those three numbers are
considered the imaginary part by the mathematician Hamilton. w is the scalar
of the quaternion. It is the purely real part. The main particularity of these
complex numbers is the loss of the commutativity of the multiplication.

In this master thesis, we are interested in the rotation quaternion that can be
represented by its imaginary part as a vector. That vector has its origin at the
origin of the Euler’s Cartesian plane. If we take into account the Euler’s rotation
theorem, any rotation in a three-dimensional space can be interpreted as a given
angle ✓ around the Euler axis. The vector ~u can represent the direction. This
means that our vector can represent a rotation as our imaginary part and ✓ as
our w.

Like so, we can deduce the radiant angles in the Euler plane by doing those
three functions:

• Yaw: arctan( 2(wx+yz)
w2�x2�y2+z2 )

• Pitch: � arcsin(2 (xz � wy))

• Roll: arctan( 2(wz+ya)
w2+x2�y2�z2 )

2.11 Ways of moving

In this section, we will introduce you to what Qualitics uses to move the UAV
during the analysis of a pylon. We will then proceed to explain our way of
thinking on how our IA should move to analyse the pylon completely without
requesting the need of a human to interact or move the UAV to some specific
places.
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2.11.1 The actual way

Fig 2.3 is showing the way Qualitics is doing this right now. Qualitics is using
a LiDAR that estimates the distance to the pylon and keeps it to a certain
minimum. The pilot manually does the rest, there are 3 phases, the first one
calibrating the UAV and taking front-facing images, the second gets the top-
down photos and the last one the bottom-up photos.

Figure 2.3: The actual way of doing the pylon analysis

We can interpret fig 2.3 with the arrow representing the direction of the
UAV. Here is an explanation:

1. The red arrow, this is the first step of the analysis. The UAV is on the
ground, approximately four meters away of the pylon and the camera
gimbal is locked at 0 degrees of pitch. The UAV will take-o↵ and ascend
following the pylon. The UAV will keep the same distance until it reaches
a certain level below the first insulator. I will then proceed to move away
from the pylon until they are approximately four meters away from the
first cable. The UAV will then continue to do its ascending until it reaches
the top of the pylon. this step is used to calibrate the UAV for the rest of
the inspection.

2. The green arrow is the second step of the analysis. The UAV will descend
vertically at the same security distance of four meters and follow the same
path taken by the red arrow. The di↵erence here is the pitch angle of
the gimbal will be locked at �30 degree to get the top-down angle images
from the pylon.

3. The blue arrow is the last step. Like the other two, it will follow the same
path in the ascending way. This time, the pitch of the gimbal will be
locked at +30 degree to get bottom-up images of the pylon. After that
third step, the analysis of the side of the pylon is done, the UAV can land
while keeping the security distance with the pylon.
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Figure 2.4: A supposed way of doing the full analysis in one fly.

4. this technique has to be repeated for the second side face. Since going
between two cable is not compliant to safety measure due to interference
caused by the cable to radio signals. So only two faces can be analysed.

2.11.2 How we would like to proceed with the analysis

Fig 2.4 is about a new possible way of moving. Here, we can stop descending
when we are at the top of the base structure and go around the pylon. This
approach can be interesting in the case of the use of the electric line following
system. We would directly start from the top of the pylon where the UAV would
normally arrive. By directly starting from the line following system, UAV would
take less time and battery loss since it would be able to directly start from a
better positioning to actually avoid the first step of the previous technique. This
would also require an autonomous calibration system to avoid the first step.

The interpretation of fig 2.4 is a follow:

1. This is the point where we switch from the line following system to the
pylon analysis system. This can be done by using a pylon detection model
in the line following interface and make it stop when the pylon ends up
being detected in the middle of the image resulting in the UAV stopping.
It would stabilise itself and start to go a bit lower to adjust the UAV to
the height of the pylon before starting the analysis.

2. This is the starting point of the pylon analysis. It’s important to have
a very specific starting point related to a precise point of the pylon to
calibrate the rest. So, when an image is taken with a flaw, we can precisely
tell where the flaw is by referring to the movements that the UAV have
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done during the analysis. It as to be calculated from a specific point since
most sensors are subject to noises when getting to close of the high tension
cable leading to bad flaws positioning after the analysis.

3. This is the descending part of the pylon analysis movement. During this
period, the UAV uses the U-Net model to estimate the distance and the
position of the pylon to centre himself as best as possible. The UAV
will descend to a certain level, approximate to four meters lower than the
upper part of the pylon, to stop its descending and stabilise itself before
going to the next step.

4. This is the most delicate phase of the pylon analysis. The UAV will drift
on the left while pitching forward to advance. It will advance until it
reaches the middle of the front face of the pylon. Once it is there, the
UAV will yaw to look directly at the pylon, proceed to centre himself and
adjust the height. During that time, the gimbals can make take multiple
photos of the front face of the pylon by changing its pitch value. Then, it
would start to drift again on the left to finish this task. After drifting on
the left, the UAV will centre itself to the pylon and prepare for the next
step.

5. This is the last step of the first half of the loop. We ascend on the other
side of the pylon by always keeping it to the centre. The UAV will always
adjust the distance to the pylon. The UAV will continue until it reaches
the top of the dome of the pylon.

6. After all those steps, the UAV will do the step 3, 4, 5 again. By doing so,
we can achieve a complete scan of the pylon. Those are the same steps so
we can just program rules for the points above and not for the rest of the
pylon.

Thanks to this manner, we can make a scan as complete as the actual one,
without needing to land and take-o↵ multiple times. This solution could also be
adapted in the case of the UAV not being able to go too low due to obstacle or
potential dangers that could result in a crash. For example, if there is a forest
under the UAV that block its analysis. The UAV could stop to descend and
start to ascend to go by the top of the pylon to performs the switch.
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For this master thesis, we need to get a list of all the constraints that are required
to specify and train our autonomous UAV properly. It is important to take into
account hose constraints, so our model fits the laws and security rules. First, to
know the liberty of freedom we get access to when moving around the pylon. It
is also helping us shape the core of our solution and its feasibility. After that, the
pylon itself has a structure somewhat complex to analyse and navigate around.
The fact that we are flying around high voltage infrastructure can cause harm
to some sensors and generate noises and electromagnetic interferences.

3.1 Constraints related to moving around a py-
lon

• Always keep a safe distance from the pylon. It is requested to stay at a
minimum of 4 meters away from cables and insulators. This constraint is
highly important due to the high voltage capacity of those cables that can
cause serious harm to the UAV and generate unpredictable comportment
if too many noises are generated.

It is also important to keep a safe distance in case of a UAV hardware
malfunction. For example, if one rotor break, the UAV can crash and
might lose control, which could result in a propeller hitting the cable, this
might not be capable of cutting through the cable. Still, it can cause
heavy damages resulting in the need for changing that damaged cable.
This security distance should continuously be followed.

• Always use the same starting point. This constraint is more related to
the inability of the GPS or the barometer to produce precise information
related to the positioning. It is then essential to find a way to always
start at the same relative point and calculate all the movement with to
the accelerometer. This is one of the sensors that is not infected by the
noise generated by the high voltage proximity. So, by using the same
point every-time, we can expect to get precise positioning of the UAV
with trusty information.

For this master thesis, we will use the top of the pylon as a starting point.
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When we are coming from the wire following AI system, it is the most
unique part of the pylon we can find easily and close to where we arrive.

• Get top-down and bottom-up angle photos from each side face to get all
the possible problems that can be detected. It is essential to have di↵erent
angles to get as many information as possible on the corner pieces that
compose the pylon. Getting those bottom-up and top-down image can
help us get the most information on the pylon by only doing two types of
photos. And like so, produce a nice map of each pylon with the localisation
of flaws.

• Obstacle avoidance. While the UAV is on high altitude, the probability
of touching an object is low; But, we still have to take into account active
(moving objects like birds and leaves) and passive (non-moving object such
as fences and threes) obstacles. Especially when the UAV is descending
along the pylon.

This constraint is logic and essential to keep in mind since it would require
to detect all the possible objects related in the pylon analysis that could
be obstacles. It would need to create a safe zone of detection with sensors
all around the UAV to detect any incoming objects as fast as possible to
avoid any contact.

Most of the time, sensors can be more useful for the passive obstacles
than when it comes to active obstacles which require a longer distance
of detection to compensate the potential speed of both the UAV and the
incoming object.

The risk is getting more important when we get closer to the ground.
There are much more obstacles, such as threes and potential fences that
can get in contact with our UAV.

• The camera is mounted on a three motor gimbal able to stabilise in all
directions and change the orientation of the camera on all three angles
(roll, pitch, yaw). But, the pitch angle is limited. It can only go on [�90],
[+45] degrees vertically and 360degrees horizontally.

The camera also has a maximum resolution. This means we can not
get more details passed the resolution of the camera, which is 5280x3956
pixels. We can interact with the field of view angle, ISO, HDR and other
related function related to photography to make some details more visible
or change the perception of the camera.

• Centring the UAV to the pylon is also essential. The more we are centred
to the pylon, the better it will be for complete analysis. Being too much
out of focus of the pylon can results in the camera not retrieving enough
data. This can lead to a higher possibility of not detecting flaws due to
the angle generated by the perspective.

• One of the most important constraints is the time taken to analyse the
pylon, going too fast can result in blurry images or going too slow can
make the UAV unable to perform the whole pylon analysis with a single
battery. It can also cause the UAV not to be able to make more than one
pylon between two charges. This would require an operator to be always
close to the UAV to change the battery at every pylon.
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From those constraints, we can see that there are two optimisations possible.
One is the distance between the UAV and the power line and the pylon. The
distance needs to be of at least 4 meters and be stable to help with the focus of
the photos for further investigation in the image.

The second would be the path of the drone around the pylon, to take as much
correct top-down and bottom-up photos of the pylon. It is also interesting to
get as many di↵erent images and the fastest way possible while respecting all
the constraints.

3.2 The electrical pylon conception

Figure 3.1: Two parts of the pylon conception

As we can see in Fig 3.1, the pylon is divided into two-part. There is the base
structure, commonly inclined from a larger base to a smaller top edge. It usually
has no cables or dangerous part linked to the base structure. It is used to elevate
and make sure the upper structure is stable and high enough to avoid problems
with ground obstacles.

The second part, the main structure, is the most important piece of the
pylon, it is composed of a straight central structure with a pointy top edge
named the dome and multiples arms. The main part of the structure can widely
vary in shape and size depending on the country and where it is situated. On
the side edge of every arm is situated insulator that is linked to the high voltage
cables. The top cable, on the dome, is commonly named the ground cable.

As stated earlier, the starting point could be the Dome as it is always at the
top level. It will be the thing we see every time we do get in contact with a
pylon while following cables. We have to correctly place the UAV with the top
edge of the dome at the centre of the images flow of the UAV to get a precise
positioning related to the pylon.

UNamur - 2019-2020 29



Chapter 4

Data collection

In this section, we discuss how the data set was created and what kind of data
we extracted from it. We first talk about the camera that the UAV is going
to be using during the whole dissertation. To help us understand the format
of the photos that we will use. Then, we are going through the creation of the
data set and the choice made in it to get as many di↵erent types of images as
possible.

4.1 Camera settings

First of all, it is important to talk about how the photos are taken to know
the size and shape of each image extracted for analysis. The simulation has
multiple settings that we can be tweaked to obtain whatever type of photos we
want. The camera parameters that we used to take the photo in the simulation
whereas following:

• Height: 2500 pixels

• Width: 2500 pixels

• FOV: 80°

• AutoExposureSpeed: 1000

• MotionBlurAmount: 0

The high resolution is because the UAV takes photos with the same camera
for control and the analysis. So the image has to be on a higher resolution to be
able to zoom in as much as possible. This is needed to search for flaws (either
by AI or UAVs by humans) with precision.

It was decided to go for a square shape for the image to avoid distortion
when transforming the photo for the movement algorithm that use the resized
photo of 250x250 pixels resolution.

The FOV or field of view is the area the camera can cover at a given time.
By using a FOV of 80 degrees we are able at 4 meters to see the pylon and the
surrounding correctly, making it easy to navigate back to the pylon in the case
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the wind would push the UAV on the side, making the UAV not centred to the
pylon.

AutoExposureSpeed is the speed at which the camera can adapt on a mil-
lisecond scale [30]. Still, if it is put too low, it can generate artefacts on photos.
In order to reduce the danger of having artefacts and also because we are in an
environment where we don’t change luminosity and distance often, we can set
it to 1000 which is correct for us and high enough (ArSim ask to not go under
100 on this parameter) to avoid any artefacts.

The motion blur was also deactivated because of it as a tendency of making
the simulator more unstable due to computational power requested for such a
useless parameter. It can also cause artefact when it is on, as [30] state in its
documentation.

4.2 creation of a simulated data set for the U-
Net system

The training data and the validation data are all coming from the same three-
dimensional pylon model taken from di↵erent angles, distances and light sources
in the AirSim simulation [30] with a di↵erent background. We then proceed to
execute a simple algorithm of data augmentation to boost the number of images
generated rapidly by making a horizontal inversion of all the pixels.

The images provided by AirSim are made to be realistic, especially for the
pylon, which is photo-realistic. For this data set, we took some liberties by mak-
ing one of the background less realistic by putting nothing but a raw dirt terrain
without anything around. We then have made a more natural background for
the same pylon with some threes and houses.

Here is a more in-depth explanation of the di↵erent backgrounds that can
be seen on fig 4.1:

1. The ”plain ground” is made to be the simplest environment possible.
Thanks to this environment, it is possible for us to get a full view of
the pylon without any obstacles. The pylon is popping-out with this con-
trasting background. This makes nice and clean images. It is interesting
to have those kinds of non-complex images for the U-Net system to train
on. We can compare this environment to a pylon in a field or a plain that
we can see when going around in real life. There is a lot of pylons that
are crossing countries by going through fields.

2. The second environment is surrounded by dense vegetation composed of
threes. This enables some photos with pylon semi-visible through threes
and background with colour ranging from dark green to light brown. The
complex shapes of the threes are useful to get branches that go on the field
of view of the camera. We can compare this background to the power lines
that need to go through a European forest. This is also making the pylon
contrast well with the background.

3. The last environment is representing a suburb place. This is where you
get a mix of small houses and threes. The environment is familiar in real
life since power lines are mean to bring electricity to villages and cities.
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The gray wall houses and brown to black roofs make the pylon contrast
less with its background. This environment is created to be the most
challenging one for the AI to train.

All those environments are subjects to lighting variation, from colour (sim-
ulating sunrise and sundown) to luminosity intensity. Like so we can make
di↵erent contrast and even change the colour of the pylon by making the sun
and sky look more orange just like a morning sun.

Other e↵ects can be produced, falling leaves, fog, rain, snow. All of them be-
ing sensible to tree parameters, wind direction, wind intensity and the intensity
of the e↵ect itself. The e↵ect can generate a nice amount of noise for the data
set to create more di�cult images where di↵erent objects can obstruct pylon
visibility. We did not go too far on the intensity of fog and rain e↵ect since
UAVs require a clean weather to fly. But we can still expect some fog from time
to time just like a small rain can happen while doing an inspection.

(a) plain background (b) village (c) leaves

(d) sunrise (e) forest (f) village

Figure 4.1: Example of images from our data set

It was then easy and fast, with the help of the simulation and all the environ-
ment created, to generate images for the data set representing various scenarios
and possible positioning of the UAV. After one hour, the data set was filled with
1483 di↵erent images. Half of them being generated by the data augmentation
algorithm in 27 minutes.

To add to the utility of those scenarios, the simulation directly gives the
segmented image related to the photo. On this segmented image, we can choose
each object or group of objects a specific colour. In that way, we were able to
generate segmented images that take the pylon in two parts, the main structure
and base structure, on di↵erent colours, then put the rest of the segmentation
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in black. This gain of time is precious in our restricted time windows for this
dissertation, making the precise segmentation alone can take up to 40 minutes
per pylon to do it properly, so being able to generate instantly segmented masks
of an image is a non-negligible point for the simulation.

From this data set, around twenty per cent of the images (297 images) were
chosen to be validation data, and then the rest of the data set was taken to be
the training set (1186 images). Typically, that number of images is more than
enough to train a model such as U-Net since this model was made to be reliable
on a minimal data set of around 30 images at the beginning [31] to predict the
segmentation mask of one object (cell).

Finally, to test our model on real images, we can create a minimal data set
of real images, but this requires to make proper masking by hand that takes
an hour as stated before around 40 minutes per images. Having about 30 real
images masked to test our model precision in real life is a very interesting thing
to have for results analysis. This would be mainly used to test the capabilities
to be directly used in the real world.
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Implementation of the
passive vision paradigm
with the U-Net model

In this chapter, we are talking about our passive vision system that is going to
be an implementation of the state of the art U-Net model like [13] describe it
and a set of rules. We will analyse the first results we had and all the step we
have made during this master thesis to obtain our final model.

We are also discussing the controller part of the U-Net implementation, how
we achieve to get a UAV to fly autonomously around an electric pylon. This
includes the approaches taken, analysis of the outputs of our U-Net model and
di�culties encountered during this part of the project.

5.1 The model architecture

Our architecture is the most common U-Net architecture you can found. This
architecture is adapted to our needs and data. This has been chosen due to its
capabilities to be adjusted easily with any forms of feeding. This is also a very
e↵ective architecture to learn on a low quantity of images.

Our model is implemented in python 3.14 and extensively use the library
TensorFlow and Keras. Those two libraries are useful and full of resources to
help us construct an optimised convolution neural network ready for GPU com-
putation.

Here is a complete explanation of our architecture:
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Figure 5.1: the beginning of you convolution network. Since we have numerous
layers (16), we are not showing it completely.

1. We start our CNN with our resized base image. The shape of our image
is 256x256 pixels square image and composed of three layers. Those three
layers represent the RGB colour spectrum. It as to be noted that our
RGB spectrum goes from [0, 1] as a R and not from [0, 255] as an Z. So
if someone wants to use our trained model, this is important to note that
all the channels must be divided by 255.

2. After that, we start a loop of Convolution and Max-pooling to realise
our features extractions and detection. Each step will be made of one
convolution and one max-pooling

Our convolution work by multiple of 16 for layers and square filters of size
three. This result in the number of layers at each convolution step to grow
by sixteen. During the convolution part, we can see the number of layer
going from [16, 32, 64, 128, 256].

With the Max-Polling, we divide the size of the layer per two at each step
by using a square filter of two pixels. In case the number of the pixels is
odd, we do add a pixel padding so we can divide it per two. This padding
is represented by a column of zero at the end and a row of zero at the
bottom. We do not use the max-pooling at the last convolution when the
number of layers is at 256.

3. Now that the convolution is finished, we can proceed to do the inverse and
Upscale our image to its original size and extract three layers representing
the background, the main structure and the base structure. We are using
a loop of convolution to reduce the number of layers at the end and some
up-sampling to make the reduced image bigger.

Our deconvolution works the same as the previous point but this time we
go with a number of layers ranging like so [256, 128, 64, 32, 16, 3]. Thanks
to those steps, we can reduce the amount of layer to the three needed
layer.

The up-sampling is here to multiply the size of our image to the initial
one. We do this by concatenating the up-sampled image from the previous
step to the related image from the convolution phase and the up-sampling
result. This gives us a better result than simple up-sampling.

When reducing the layer from 16 to 3, we use the activation called ”soft-
max”. This means that the addition of the values present at the same
place in the three layers should be equals to one. We can then assume
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that each pixel has a precise role and not all three possible roles. A pixel
can not be predicted at 80% background and at the same time predicted
80% main structure. This has been the most interesting and logic final
activation found.

When the convolution and deconvolution have been done, we obtain an out-
put representing the prediction of the three masks: the main structure, the base
structure and the background. As explained earlier, each pixel can only be one
thing and not the other two. After getting our outputs, we can now leave the
U-Net model on the side and go to the image analysis part of the fly controller
system.

5.2 Fly controller

The fly controller receives a live feed of images from the UAV’s camera that can
be processed. The controller works like a state machine when the pylon analysis
is started.

This approach is rules-based, which mean that we have to insert rules for
every behaviour that the UAV needs to respect or to control the action the UAV
will do now and then. This technique is friendly to use when there are not too
many rules. For a more complex system, this can turn into a puzzle of rules
that can be counterproductive.

Since we are limited in the thesis to only use the camera live feed, we can
only make rules that can be related to it. No other levels of rules from sensors
have to be taken into account. We also don’t have to worry about the battery
in the simulation. This reduces the scope of rules necessary to complete the
challenge. But, it is also making it more challenging to analyse distances or to
detect obstacles.

Our fly-controller work like this:

1. The camera takes an image. The image taken is 2500x2500 pixels and use
the RGB spectrum; we proceed to resize it to the size of 256x256 pixels.
Like explained before, the system divides all three layers by 255. Like so,
we get an image ready to be fed into our U-Net model.

2. Now the system will be making the prediction. During this step, we use
our U-Net model to extract the three masks by giving the resized image
as input and getting those three masks in output. The details on how it
works being explained earlier, we are not talking much about it here.

3. From the output, the system is going to extract the information of the py-
lon. We can start to precisely calculate the position of the main structure
of the pylon. The processing of the image is done with a canny function
to get only the edges in the image. As explained in the state of the art,
this function is very e�cient to extract the borderlines of forms present in
an image. We feed the canny algorithm with the mask representing the
main structure of our pylon. This algorithm cleans our image, removing
some noises and also making borders out of the shape of the pylon.

Then, a Hough lines algorithm made to extract lines proceeds to detect if
there is any line of more than seven pixels long while being one pixel wide.
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Those lines have to be vertical, to do so, we take only the lines that have
their both edges on approximately the same X-axis coordinate. Like that,
we get the coordinate of every vertical line in the image. The processing
then proceeds to find the vertical line that is the most on the left and the
one the most on the right to have the horizontal limits of the pylon.

After that, we try to detect the most upper point on the image processed
by canny to know where the top is. Then we check to find the point that
is the most on the bottom of the main structure prediction to see where
it end.

Finally, we end up with a proper box that gave us all the coordinate of
the position and the relative size of the pylon in the image.

4. Now that we have the position of our pylon. The controller can start
to move the UAV by rolling either left or right to centre the UAV. The
controller is continuously looking at the new position of the pylon to keep
it centred. If the UAV is already centred, we don’t have to move, and we
can go to the next step.

This step can counter the e↵ects of the wind and potential unbalance of
the UAV that can make it drift slowly on one side.

5. Now that UAV is centred, it is time to adjust the distance between the
pylon and the UAV. The system is doing it with the width of the predicted
box of the pylon. Just like the last step, we use the width of the predicted
position of the main structure to guess the distance between the UAV and
the pylon. This step would be safer and more reliable if some sensors were
used.

This step also fights the e↵ect of the wind, and the unbalance of the UAV
that can make it drift passively. This is doing it passively while checking
the security distance.

6. Finally, we Check if the UAV is not too high or too low compared to the
main structure of the pylon. This is done by looking at the position of the
prediction box. It then proceeds to take one of those decisions:

• Depending on what part of the pylon analysis the UAV is at, it can
move either down or up. This action only occurs when we are on the
outer side of the pylon. Those movements are mean to be the one used
when doing the bottom-up and top-down inspection of the pylon. We
always use the same rotors speed and same time of execution, so no
parameters have to be taken from the position of the pylon to adjust
the climbing speed.

• If the UAV is low enough, it can proceed to go around the pylon to
start analysing a new face of the pylon. It is necessary to be low
enough compared to the main structure of the pylon to go around
the pylon to avoid any collision with cable. There is also risks of
collisions with objects unrelated to the pylon.

• If the UAV is too high compared to the main structure, We can start
to analyse the top-down view analysis and proceed to go down. This
how we know when to switch from the bottom-up to top-down pylon
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analysis. We wait for the dome of the main structure to be around
the same height as the UAV by looking at its position box.

• If all the faces have been analysed, the UAV can go back to the wire
following AI. by elevating itself back to its original starting position
and start back to follow cables.

By choosing to work that way, we can have a UAV doing a full pylon in-
spection without colliding with the pylon. We have also avoided going multiple
times on the same path. We theoretically reduced the potential time taken to
do the analysis. All those movements can make us respect all the constraints
related directly to the pylon and enable us to do all the requested action to
complete the full pylon analysis. Of course, optimisation and adding rules is
possible, especially the one related to obstacle avoidance. It would require to get
proximity sensors to generate data to verify the rules developed for this topic.
Also, it has been chosen to be slow for the ascend and descend to be the most
secure and stable as possible.

We can see on [31] the very first implementation of the fly controller control-
ling the drone as an example. As we can see, there is still a lot of optimisation
possible.

5.3 Training

This section will be dedicated to talking about the di↵erent training steps that
we went through to achieve the model capable of doing the full pylon analysis
[31].

For the training, we are going to be using our training data set composed
of 1186 high-resolution images. Since those images are too huge to enter in our
model, we load all the images in our instance and resize them to a 256x256
pixel’s size image.

We resize the image to 256x256 pixels because our GPU memory is not able
to support a bigger file size. Once we have the outputs of the fed image in the
model, we can compare it to the real masks of the image since it is supposed
to be the same value in the image array. The accuracy is calculated on the
comparison of the predicted output and the actual output that it should make.

To analyse the results, we are using the F1-score and the accuracy to deduce
the correctness of the model. First, here is the explanation of the two approaches
tested in terms of objects detection, only pylon detection or background and
pylon detection.

5.3.1 The first model, only detecting the pylon

The first approach used for the U-Net model was made by just trying to predict
the pylon’s main structure and the pylon’s base structure. They are the only
parts of interest to us for guessing the movements. The last deconvolution used
is a softmax activation which means that a mask is an independent prediction
to the other one.

The model has resulted in poor results. The analysis shows that this might
be because it is trying to give meaning to the background. An observation of
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the results was showing some opposition on the two layers of detection, and the
model was ”finding” potential pylons everywhere on the image.

5.3.2 The second model, background and pylon detection

For our second model, we decided to use the results of our first model to think
about what was going wrong. It was then decided to go for an approach where
we would detect not only the two part of the pylon but also the background. It
was also decided to switch from softmax to sigmoid, where we would have an
additive proportion between the masks of the outputs. The probabilities would
be closer to either one or the other than independent results for each mask, like
softmax would make.

The data set had to be rebuilt with a third mask extracted from the simu-
lation. It was easy to get this information thanks to the easy to use function
from the simulator APIs. It requested just an hour to prepare everything to be
ready to train again.

The obtained results were more precise than the first version, and we can
now precisely distinct each part of the pylon. This is possible thank to the fact
that we use the background detection and also the sigmoid activation. Our AI
is trained to give some meaning to the background now.

5.3.3 Comparison of the two models

We will shortly discuss the results of the two approaches in term of accuracy
and F1-score.

Test function Accuracy F1-score
Softmax (without background) 0.445874 0.213562
Sigmoid (with background) 0.997854 0.876616

As we can see, the results are drastically di↵erent and reflect what we were
seeing during the training of each model. This shows us two things to analyse:

• The first is the di↵erence between the two models. This huge gap is
undoubtedly due to the fact that we use the sigmoid activation, leading to
either one of the mask dominating the two others. If we had used softmax
on a three masks detection, this would have resulted in a worse result.
This is important for our model to get one distinct element to pop out
per pixel. Also, using sigmoid without the background would have been a
terrible idea since we don’t want to detect anything else than the pylon.
With sigmoid, the algorithm does the addition to reach one on all the
pixels.

• The second point we can look at is the di↵erence between the Accuracy
score and the F1-score. The results of the F1-score are low because it is
taking into account the false negative as a relevant element to calculate
the mean precision of our function.

The false-negative is the fact that an element that should be considered
positive but it showed negative. In our case, it means parts of the pylon
are ignored or too little for detection or not seen because of the low-quality
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image. But, at this point, we don’t have many pieces of information to
deduce how the false-negative a↵ect our score.

5.3.4 Optimiser choice

After this, we proceeded to test di↵erent optimisers on our sigmoid system to
see if we would get better results. It would be interesting to have a reduction
in the di↵erence between the accuracy score and the F1-score.

To do that, we test multiple optimisers: Adam, Nadam, AdaMax and AdaDelta.
We test them on the same training data set and verification data set.

From the four tested optimisers, here are the results:

Test function Accuracy F1-score
Adam 0.997854 0.876616
Nadam 0.989625 0.844557
AdaMax 0.964584 0.765917
AdaDelta 0.756952 0.423695

The results are showing that we have two optimisers that perform better,
Adam and Nadam, the two other optimisers are performing worst. The di↵er-
ence is highly visible when we look at the F1-score, where we get an eleven per
cent di↵erence between the first (Adam) and the third (AdaMax).

All the optimisers are an adapted version of Adam. Those gradients descend
optimisers are di↵erent but still use some of the same features. But one thing
that makes Adam stronger, and considered the default one in most of the case,
is that Adam uses bias-correction help toward the end of the optimisation. ¿hen
the gradients start to be sparser. It can also be said that Adam can tend to be
better at getting out of local minimum during the gradients descend.

We have observed during the training that some optimisers have di�culties
to improve their results over the multiple epoch. AdaMax and AdaDetla are the
two optimisers that showed the most problems. On the other hand, Adam and
Nadam have shown outstanding capacities to obtain better accuracy at every
epoch. They stopped getting a better score at around 0.97-0.99 of accuracy.

We stop the training with an early stopper to avoid the model to overfit
when the model doesn’t perform better after five epoch.

Finally, on those results, we can see that the di↵erence between the accuracy
and the F1-score is even more marked in this second experiment. We can see
that the number of false-negatives goes even more up. This means that we can
say that one mask might be able to tanks the accuracy for the other, while the
two other masks are making a considerable amount of false negatives. Next, we
are going to try to clarify this hypothesis.

5.3.5 The false-negative hypothesis

This hypothesis is that false-negatives cause a lower score in terms of f1-score.
Because they are taken into account, those false-negatives happen when a pixel
in one mask is not marked false while being true or 0 while being 1. The
accuracy checks just the percentage of similarities. So having one layer with
good precision with a lot of true pixels belonging to that mask can lead to
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higher accuracy while other layers with lower accuracy have way less weight in
the accuracy calculation.

While analysing the di↵erent masks, we can see that the background detec-
tion is the one taking most of the space in an image.

We can clearly state that when the background is taken into account in the
accuracy. It makes the accuracy goes way higher because it takes most of the
image space. For example, sky, house, threes around pylon parts.

Also, the detection between the upper and lower parts can lead to more
errors. They are very similar and cause the model to have more di�culties
in separating them well. This is resulting in a higher potential false-negative
between the two. It results in the model to make more errors that are hidden
by the accuracy from the background detection.

The results can explain the di↵erence in the F1-score that we met at the
next step of the training of our neural network. The next step will be to test
our model on real images and also check test the di↵erence.

5.3.6 Pylon detection on real image

Now we are trying our model on a small test data set with 10 real images
annotated by hand. It was made during the master thesis to see how e↵ective
the models are on real images. The lack of images is evident for this part. But
creating the masks for the segmentation to calculate the score is a long task.
We don’t have much time to prepare more images during this master thesis.

A result of prediction in fig 5.2 shows the same image with its di↵erent
predicted masks. We can see the shape of the pylon, but there are still some
errors appearing. Artefacts appear on the intern part and the arms. Those
parts of the pylon are very thin in general compared to the four central vertical
beams.

Here we can see the accuracy of the detection on real pylon with and without
the background prediction taken into account an the F1-score next to it.

Accuracy With background without Background F1-score
Adam 0.842190 0.603505 0.585651
Nadam 0.800957 0.403360 0.374902

We can see that the background is tanking the score of accuracy. When it
is removed, it looks more like the F1-score.

Also, we can see an impact of the reality gap here with the score clearly
dropping lower and making the use of our models certainly not stable enough
for the real usage.

The results can be explained because, in this real pylon data set, the im-
ages have pylons of di↵erent architectures. The di↵erences helps us to test the
capacity of the model to adapt and resist the reality gap. So most of the best
detections are from pylons that have the same architecture as the ones in the
simulation. Just like the one on fig 5.2.

So pylons with really di↵erent shapes of the main structure tend to be very
badly detected. Most often, the base part is well detected. But the model tends
to get artefacts of base pylon where there is none. Most of the time, this is the
background being detected as a pylon part.
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(a) Bottom part pylon
prediction

(b) Background predic-
tion

(c) Upper part pylon pre-
diction

(d) Bottom part pylon
prediction

Figure 5.2: Result of detection on a real normal shape pylon.

5.4 Conclusion on passive vision

From all those experiments that we have tested during the training of our U-Net
model, we can deduct that the best model is the Adam model with background
detection and sigmoid activation at the last deconvolution. This model can
get pretty good results on the simulation. It can help us to build a robust fly
controller but is going to lack precision when it comes to real pylons.

It might be possible to obtain better real-world results by adding real images
to the training data set. By doing so, we want to make the model recognise
the real and simulated pylon correctly by only doing one training. This could
minimise the e↵ects of the reality gap on the fly controller.
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Chapter 6

Research around the active
vision

This chapter will talk about the research done in this master thesis. We will
go through the pre-processing of the image to make it understandable for the
neural network. After that, we will talk about di↵erent gaze approaches. Then
we will explain in depth our model architecture and how the training went.

6.1 Preparing the four gaze approaches

First, we need some images modification process for the implementation of our
active vision system. In a first attempt, we are looking at the gaze system just
like in chapter 5 of [23]. Four gaze versions can be looked at. Those four ap-
proaches can be trained to find the most e↵ective way to get a solution to our
problem.

First of all, the image is set to a dimension of 250*250 pixels in grayscale.
The scale for the intensity of grey is [-1. 1]. -1 being black and 1 being white.
The grey intensity makes the pixel be one value and not an array of 3 values for
RGB. This is a good way to transform our data into an easy to interpret tensor.

The three first models will use the same CTRNN to be trained with. Only
the input data set to the neural network will be di↵erent. This neural network
will consist of two subs neural network that will have the same inputs image.

The UAV control neural network will consist of 29 inputs. The first 25 inputs
for each pixel from the gaze window and 4 inputs for the gimbal quaternion.
For the outputs, we are looking at five outputs, four for the new directional
quaternion and one for the motor control.

The gaze control neural network will have 29 inputs, 25 inputs from each
pixel of the gaze windows and 4 inputs for the gimbal quaternion. As for the
outputs, two inputs will be retrieved. Those will be the new movement of the
gaze.

The first approach, named ZOOMED-GAZE, will be using a system of gaze
on a window of 25*25 pixels. From that 25*25 pixels window, we will make 25
distinct ”pixels” composed of 5*5 pixels of the gaze window. Then, we calculate

43



CHAPTER 6. RESEARCH AROUND THE ACTIVE VISION

their value by doing the means of all the pixel’s value in the 5*5 square. This
technique will be used to determine if a smaller gaze window is essential for the
results. The method should help the algorithm by reducing the loss of quality in
the image. Because, if you are going for bigger windows but keep that 25 pixels
inputs, you can lose pieces of information in the reduction. This technique can
also enable more gaze movement possibilities.

The second approach, named NORMAL-GAZE, will be using the same size
of gaze windows as [23]. We will consider this approach as the ”State of the
Art” approach. This technique will focus on a 50*50 pixels window for the gaze.
That gaze will be divided in a 5*5 pixels size image. Just like ZOOMED-GAZE,
NORMAL-GAZE will calculate the value of each pixel of the 5*5 image by doing
the means of the pixels in that zone. This approach will check if the standard
state of the art gaze parameters can work for our problem to solve compared to
an autonomous car on the road.

ZOOMED-GAZE and NORMAL-GAZE aim to see if the size of the gaze
can influence the result. We can also see if the gaze parameters are useful to
optimise in the future.

The third approach, named GIMBAL-GAZE, would be to make no modifi-
cation to the image but generate output to move the gimbals so the UAV can
change its sight without yawing around. This technique would make the UAV
work like it had eyes to look around with a certain degree of freedom.

The last approach, named NO-GAZE, will just use the resized grayscale im-
age to develop a solution without using ”gaze”. It will be used as a sort of
benchmark. We will still reduce the number of inputs by reducing the image
to a 10*10 pixels image. The value of one pixel of the image will represent the
mean value of greyscale of a square of 25*25 pixels at the same position in the
picture. The method will result in a hundred inputs to be sent into the CTRNN.

Due to the time it takes for the training and the time-related restriction of
the master thesis, only the latter approach will be tested. Considering that [23]
shown that gaze control does not give much improvement in car control. Further
studies could check if that type of model with gaze control can be e↵ective for
the three-dimensional capabilities of movement from the UAV.

6.2 Neural Network

Continuous-Time Recurrent Neural Network (CTRNN) is the type of neural
network selected. This fully connected neural network had to be made from
scratch in python since no standard libraries exist that could help us on the
creation of such a network. In order to use GPU, we have to keep in mind the
use of tensors. The library PyTorch will be used to manipulate the di↵erent
tensors generated to create the CTRNN. By creating our library for this neural
network, some abstractions have been possible to be made to help at the creation
of very custom and easy to modify CTRNN. By doing so, some modification
can be made very easily to the neural network such as changing the number
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of inputs, hidden-layer nodes and outputs and other parameters that will be
explained in further details. In those next sections, we will discuss the di↵erent
parts that make the neural network.

6.2.1 Gene file

This JSON file will provide the DNA of our UAV. Those genotypes represent
the di↵erent parameters like the bias, the gain, the weight of each connection in
the neural network. By using a JSON file and python, we can easily read and
write in it through a library called pandas that directly transform the JSON file
into an entirely usable data frame. This file has two variables:

• gene: this is a list of a decided length by the user. Each item of the list is
a float of value in range [0, 1] that represent a gene.

• fitness: This variable is either None or a float representing the fitness
obtained after testing that genotype. The fitness is the mean of the six
fitness score calculated during the test of the genotype. This value is
always checked before running the test, so we do not waste time testing
the same genotype twice.

Here is a small example of the file for a genotype of length 3:

{
”gene ” :{”0” : 0 .3221 , ”1” : �0 ,453 , ”2” : �0 ,00443224} ,
” f i t n e s s ” : None

}

6.2.2 Configuration file

This file is the core of how the neural network will be after being generated.
This file is in JSON format for the ease of use. From this configuration file, we
can extract information such as how much inputs we want in our system. How
much hidden-layer nodes are going to be present. How much outputs we want
to have. Thanks to this file, we can either test di↵erent configuration but also
making it easier to interact with each layer without having to go through all the
code of the neural network. This helps us to avoid making mistakes in the code
of the neural network. It is still enabling us to have some freedom to change
meta parameters of the neural network.

The JSON is represented as such:

[{
”updateSec ” : 0 . 13 ,
”numberInput ” : 100 ,
”numberHidden ” : 16 ,
”numberOut ” : 8 ,
” lowInputWts ” : �8.0 ,
”highInputWts ” : 8 . 0 ,
” lowInputBias ” : �4.0 ,
” h ighInputBias ” : 4 . 0 ,
” lowHiddenWts ” : �10.0 ,
”highHiddenWts ” : 1 0 . 0 ,
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”lowHiddenTau ” : �1.0 ,
”highHiddenTau ” : 2 . 2 ,
” lowHiddenBias ”:�5.0 ,
” highHiddenBias ” : 5 . 0 ,
” lowOutputBias” : �5.0 ,
”highOutputBias ” : 5 . 0 ,
” lowSensorsGain ” : 1 . 0 ,
” highSensorsGain ” : 13 .0

} ]

6.2.3 CTRNN

As stated earlier, our neural network had to be created from scratch since there
were no available libraries to fulfil our request to create a CTRNN. This is
partially due to the complexity of that type of neural network.

First of all, we start by resizing the 2500x2500 pixels image we are getting
from the UAV’s camera to obtain a lower resolution 250x250 pixels image, so
we don’t have too much data to process afterwards. Also, the model does not
request that many pixels to work as we will explain in further details next.

The reduced image is then transformed from RGB to a grayscale image. Like
so, we can end up using fewer channels layer, this helps us reduce the size of
the potential vector to use when we feed it to the CTRNN.

The next action taken is to transform the image into the vector that we will
be feeding the CTRNN. We are simply doing this, by Average Pooling, Fig:6.2,
the 250x250 pixels image and using a filter of 25x25. The pooling helps us reduce
the size of the image to a 10x10 pixels image using the average value of each pixel
in each filter. As a small explanation, the Average Pooling is a method used to
reduce the size of an image. It is helping to reduce the computational power
necessary to compute an image. It can also produce some features extraction.
They are two crucial ways on how to do it, like here the Average Pooling, as
shown in fig:6.1. We take the size of the selected filter and complete the new
image by taking the average of each pixels value in the filter. We can then
recreate the minimised image by putting the average value at the corresponding
relative place of the filtered square in the new image array. The other pooling
solution is Max Pooling. This one uses the same system of filters. This time, it
is the maximum value of the pixels present in the filter square that is taken as
the new value.

Figure 6.1: Result of an Average Pooling on a 1@4x4 image to a 1@2x2 image
using a 2x2 filter

Once the Average Pooling is done, we end up with an image of 10x10 pixels
that we can flatten into a vector. We put that extracted vector into a tensor

UNamur - 2019-2020 46



CHAPTER 6. RESEARCH AROUND THE ACTIVE VISION

ready for GPU usage. After all those steps, our vector is set to be fed into our
CTRNN.

Figure 6.2: The image transformation to a 100 values vector

We can now use our vector in our CTRNN by inserting it as an input. After
that, we use our API to do a step in our CTRNN to obtain the output needed
to move the drone. We will now explain how our CTRNN is built. We can
have a look at fig:6.3 to see the structure. As explained in the state of the
art, the CTRNN is a fully interconnected neural network. This means that
inputs propagate to each one of the hidden layer nodes, and each hidden layer
nodes are connected to each other. This last constraint of the CTRNN explains
why it was needed to create the neural network from scratch to achieve this in
python. Then, all the hidden layers nodes are connected to all the outputs. The
network’s nodes are activated using a system of di↵erential equations. With
that complex system, we get a sort of memory between the activation of nodes
and the last output vector. Like it is explained in [23]. //

Structurally speaking, All layers are represented by its own tensor. The
tensor is itself composed of tensor that represents a node. A node is composed
of its di↵erent parameters that are updated during a step.

• State: this is the actual state of the node.

• Outputs weight of current layer: It is an array of size of the number of
nodes in the next layer that is composed of each weight.

• Self-weight of current layer: This is an array of size of the number of nodes
in the actual layer. Only used for the hidden layer. The size is null for
the rest.

• S: this is the output of the node when it is activated.

• Tau: it is the activation time parameter.

• Bias: it represents the bias value of the node.

• Gain: this is the gain value of the node.

We use the gene file to complete the values of those nodes’ tensors, one element
of the gene data frame goes to only one of the node. This makes us have a large
spectrum of possibilities in term of genotype to search from.
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Figure 6.3: The CTRNN simplified structure

6.3 Genotype modification

One important thing in the training of a genetic algorithm is the way the best
members of the population are mutated to reach the optimisation goal. Just
like in the biological evolution, the o↵spring is created by either direct mutation
(mimicking the comportment of some cellular organisms like bacteria) or the
genes mixing like an organism that need two members to reproduce the race.
To do so, we have defined four versions of the creation of a new gene that take
one or two parents. This section will talk in-depth on all of the four di↵erent
approaches used in the master thesis.

6.3.1 simple random mixing

This first approach of mixing two genes is the simplest one of the four. We
generate a new gene by randomly choosing with a fifty-fifty probability at each
index either the first or second gene to extract the gene element at the given
index. Like so, we get a gentle mixing that does not take into account the fitness
level of the two parent’s genes. It makes us explore a certain range of solution
without going to close to the same tested solution that could dominate if the
partitioning was proportional to the fitness score.

Figure 6.4: Example of simple genes mixing

6.3.2 Ten folding mixing

This second approach is a ten elements folding system combining two genes.
This means that just like the first approach, we randomly pick the new genotypes
every ten elements on one of the two parent’s genes. The folding can be a useful
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method if some genotypes get some good relationships with each other. In
that case, taking ten elements by ten elements reduce separation risk of those
correlated elements.

Figure 6.5: Example of folding genes mixing

6.3.3 Complex random mixing

This third approach is made to help the gene with the best fitness of the par-
ents to propagate better. This technique allows the best parent to take more
importance and get more chance to be the one giving its genotypes to the newly
created gene. To calculate the proportion of mixing we use this function:
If �fitness <= 0:

Proportion = ( |�fitness|
fitness2

)
Else:

Proportion = 1� ( |�fitness|
fitness1

)

By doing so, the best of the two get more a bigger probability to have its
genotypes sectioned for the creation of the o↵spring. The folding makes the new
gene continue to research optimum closer to that parent’s gene in the solutions
range.

Figure 6.6: Example of complex genes mixing, gene1 having a probability of
80% of being choosen

6.3.4 Mutation

This last approach is the only one that only gets one gene in the process. It is
made to produce a smaller mutation on a gene to expect potential better results
in the same scope as the parent gene. The new element is calculated as follow:
If randomNumber <= 0:

newGene[i] = (oldGene[i] + (oldGene[i] ⇤ randomNumber))
Else:

newGene[i] = (oldGene[i] + ((1� oldGene[i]) ⇤ randomNumber))
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6.4 Abstracted simple fly controller

During the first iteration of the training the model, we went for very low-level
control of the IA. We had four outputs on the model representing the three
Euler angles and the rotor strength. but it has shown di�culties to keep the
UAV flying properly or losing the control and crashing too often.

Those problems can be easily explained. First, we had the problem of having
one output for the rotation speed of the rotors, which would lead to a crash of
the UAV if the rotor speed would be set to less than 20% which result in a
stalling situation. Stalling leads to the need for a higher rotor speed for an
extended period to compensate for the dropping speed of the UAV. This can
also lead to the UAV starting to roll over while falling. Rolling over is happening
when the motor stops and the UAV does not have the roll and pitch set to zero
degrees. Those behaviours are hard to compensate for that type of heavy UAV
and a professional pilot.

Other behaviours related to the Pitch, Yaw and Roll were seen when using
the low-level control system. For example, if all the controls were changed at the
same times. This drastic change can lead to some instabilities and sometimes
push the UAV to lose all the controls. Losing control can finish in either a crash
or spin around without gaining back the stability.

It can be explained that the control’s parameters can have a big impact on
stability. This situation is not comparable to papers related to the autonomous
car. Car system can simply give the acceleration and steering without a big
chance of losing the integrity of the control. Here, we have to move around a
three-dimensional movement space. We thus have to take into account the grav-
ity that can result in trouble maintaining the stability of the UAV. So having
movement every 0.13-second result in having a lot of risks related to stability if
only one output is too excessive.

It was decided to switch to a more high-level control system with more out-
puts compared to the first model.
First, four di↵erent functions were created, each one having 0.13 second of ac-
tion time. They are run in a sequence to avoid two or more parameters to be
executed at the same time. This should help with the previous stability issues.

One function that controls the rotation of the rotor to help it go either up
or down. It takes two inputs [�1, 1] and [0, 1], for the UAV to go up. The first
input would have to be > 0 and second input would need to be > 0.55(the hov-
ering speed). The second input would represent the speed of the motor. Like
that, we have to get two inputs to have the UAV to go up or down.

Then a function that controls the yaw of the UAV. It would also use a system
of dual input. Here, both of them are in the interval [�1, 1]. The first acting
more like a confirmation to access the yaw and the second one being the yaw
parameter. In example, to be able to yaw right, both inputs have to be < 1 to
make the UAV yaw for a maximum of 1 radiant/second during 0.13 second.

The third function controls the roll of the UAV. It enables the UAV to drift
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left and right during 0.13 second at a given radiant. To do so, like the yaw, we
use a double inputs system. The two inputs are both values between [�1, 1].

The fourth function controls the pitch to make the drone move forward or
backward at a given rate for 0.13 second again.

The three last functions are made to keep the actual altitude to the UAV.
For every function, if no consensus is reached between the two inputs. The UAV
enters a state of hovering until the next action.

By using the first version of the fitness function with the high-level control
system. The UAV had two distinct behaviour going on:

• Yawing around. The UAV starts to yaw in one direction. And sometimes,
the UAV can balances left and right. The UAV would not even lose or
gain altitude.

• The balancing e↵ect. The UAV balances himself when it is close to being
centred to the pylon. Sometimes, the UAV would slowly go up by small
steps when balancing.

6.5 Fitness function

Our fitness function will be one of the hardest parts to create and test due to the
di�culties to describe the task. The di�culties are coming from maintaining
distance, the multiple checkpoints to reach.

Some of the important things to keep in mind are:

• Time constraint

• Keeping the right distance

• Avoiding to crash

• keep an eye on the pylon

• Distance to the checkpoint

Those parameters can be either optimised like time and keeping the right dis-
tance or directly be disqualifying such as crashing. Thanks to the simulation,
we can have access to data such as the distance between objects by calculating
a delta between the two objects. We can also have information related to the
number of collisions. We can extract the direction of the UAV and check if
he is facing the pylon. The time taken to execute one task can be calculated
externally to the simulation. This solution will first be trained in an incredibly
simple simulation like the one for the U-Net model. The scenarios will be with-
out object close to the pylon. We will reuse the decorative background created
for the data set creation.
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6.5.1 Multiple-Objective functions

By making this approach, we will have to deconstruct the pylon analysis move-
ments into multiple functions. Then, it would require to optimise all of them
during di↵erent training. For example, we can divide the pylon analysis into
multiple types of movement. For example, it would be: descend looking at a side
face, ascend looking at a side face, switch from a side face to a front face, switch
from front face to side face. We would have a system with one fitness function
per type of movements and one general function that would sum each one of
the sub-fitness functions. The pivot from one function to an another would be
to get to a certain checkpoint that would be the end objective to reach for the
sub-function and the starting point of the next sub-function.

6.5.2 Single objective function

In this approach, the function will have all the checkpoints for the pylon analysis.
Since it’s not a linear problem that we are facing, it’s more likely to be quite
a challenge to solve such a complex approach. One similar thing that could be
done would be to use a state machine. It would require to have multiple single
objective function and switch between the di↵erent AIs. Like so, we would have
an IA for ascending, one for descending and one for turning the UAV around.
Those being more linear problems to optimise.

6.6 Training

In this section, we will discuss the results of our experiments with the active
vision paradigm. We will talk about what we can extract out of it and what we
can be deduced.
Unfortunately, The time required to perform a test and try one version of the
model takes around twenty-one hours to get enough epochs to reach a local min-
imum or the global minimum. We are not able to test all the possible fitness
functions either.

By using the single objective function, we will need to create one function
for each objective of the pylon analysis. Meaning it will require many training
to have our UAV do the whole pylon analysis. Due to the time constraint, we
will try to optimise the single objective method with a state machine. The state
machine is the less complex one that could lead to a possible result. We will,
as explained earlier, use the NO-GAZE approach as our studied approach since
this is the one that requires the smallest neural network.

The training was done the same way for each try. The population will be of
ten members in the population. Each gene is tested six times on two di↵erent
setups of a pylon (the plain setup and the village setup). We will go through
fifteen epochs while reproducing the two best members.

6.6.1 The first version of our function fitness

The first version of the fitness function was tested on both low and high-level
control system.
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To create the reward for each movement decision, we use �
�
x2
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function to calculate a result reward for each di↵erent parameters to optimise.
It gets us a nice and homogeneous distribution of reward when we are at either
side of the best possible position. Out of having a fitness function, crashing
would result in the test run to automatically stop and go to the next test and
give a -100 score to the fitness score to punish an action that normally would
result on the UAV not being usable again.

We can describe the fitness function like this:
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As for the results, it is harder to discuss the obtained results since there is
no real value besides the completion of the task. The fitness score does not tell
anything real on how the model performs in-depth.

First, we will analyse the one obtained on the low-level fly control system.
This model was a failure with no genotypes being able to perform our first task.
The task was to descend the first side of the pylon. The objective of the task
is to be at the correct altitude to go around and respect the constraints. The
fitness function results, after three full tests with di↵erent starting population,
are on an overall score of -74,4 each time for the two best members of the final
population. Visually speaking, the UAV would just balance itself left and right
centred to the pylon but without going up or down and yawing left or right
indefinitely.

From those results, it was clear that the controls were to complex for learn-
ing and the overall stability. So the creation of the high-level control system
was put in place and tested on the same fitness function.

The results from the second experiment were more interesting to look at
but still failing to generate correct results. The overall stability of the UAV
was better. The UAV su↵ers less from balancing and a better centring, but we
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were still a victim of the UAV not being able to go down. At least, we get a
fix on the infinite yawing. Our fitness score after three tests over di↵erent pop-
ulation ended up on an average of -3 for the two best members of the population.

After seeing those results and since our fitness function was not giving proper
results but making sense logistically, it was decided to try a di↵erent configura-
tion file to see if the results would be di↵erent. Depending on those results, the
first refraction of the fitness function would be done. Because we also have to
check if the fitness function would be the cause of our problems.

6.6.2 Configuration file tests

In this section, we are looking at the hypothesis of wrong parameters. They
can lead to an unstable neural network. We are making seven di↵erent configu-
ration files with four files to proceed into resolving our hypothesis. From those
seven files, four files have a common part in the parameters with the original
one. Then we have three di↵erent files with no common elements. Also, it is
to note that numberInput, numberHidden, numberOut are going to always be
the same for all the configuration files.

For this section, we only have made one test for each configuration file due
to the training time taken. This has required five days to train all those config-
urations.

We did not have any better results than the original configuration file. The
results from those di↵erent configurations were in the interval [�6,�3]. The
result means the activation of the neurons is not much a↵ected with di↵erent
configurations, or our fitness function is the problem. The fitness function can
lead us to a local minimum that always locks us during the genetic algorithm
optimisation.

6.6.3 Second fitness function

Due to the poor results obtained during the last experiment. Our fitness function
is possibly not on point. Here is a list of the behaviours seen during the analysis
of the results of the UAVs.

• Balancing, di�culties to keep itself in the centre

• UAV maintains a steady security distance to the pylon

• UAV is not able to go down or up (some models have shown the abilities
to do it but finish to disappear).

• Random yawing, The pylon ends up out of sight.

From those behaviours, we can deduct that some of the parameters do not
weight enough in the final fitness score. We will try for this version of the
fitness function to make the centring, and the distance to the objective be more
important and weighted more in the equation.

Since we are using the base equation of �
�
x2

�
+ 1, we can easily control its

curve. By doing so, it can make a parameter more aggressive or less aggressive,
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depending on how it performs. We will try to adjust �, � and touch a bit at ↵

Here is our new fitness function:
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Unfortunately, we did not have better results by testing this solution. The
results of the fitness function were now positive. This means at least one of the
augmented parameters is being correct compared to before. Or, it is compen-
sating more the loss generated by the other parameters.

In terms of number, we end up with an average score in the interval [2, 73, 3, 81].
This is not a huge di↵erence from the last experiment. But we have to take into
account that some parameters weight more now.

Visually speaking, the UAVs tend to have lowered their balancing e↵ect. We
even get our second-best member of the population being a UAV that stabilises
itself close to the centre of the pylon and hovers without changing its altitude.

We could go further into the optimisation of our fitness function. For exam-
ple, to try to make our UAVs go down since this the most problematic thing
happening right now.

Unfortunately, due to the time constraint of our master thesis, the pursuit
of a functional fitness function wasn’t reached. Some discussions about this
chapter will be made later. We have some ideas on how to better accomplish
this task by using a better and correct fitness function.
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Chapter 7

Comparison of passive and
active vision

In this section, we will review what the di↵erences are between active and passive
vision. Unfortunately, due to the inability to finish the research on the active
vision paradigm. We can only compare the data related to the time taken to
train the two paradigms and capacity to obtain a working result. We are going
to compare the capabilities of the two techniques and try to guess which one is
the best related to what kind of expectations you can have.

7.1 Training time comparison

First, we will talk about the training time required to create a solution for both
versions. We are going to do it as much as possible. We will revue multiple
points related to the time taken in the di↵erent steps of the training:

• Creation of the simulations scenarios.

• Creation of a ready to use data set (segmented images).

• Training of the model.

7.1.1 Creating simulation scenarios

Creating correct scenarios in the simulation is an important task to be done.
It is at the core of the training for a researched algorithm. The scenarios must
stay consistent and close to the reality to ensure that the reality gap will be as
much as possible reduced.

Here the time di↵erence is the same since we can generate the same type
of scenarios for both models. AirSim is a simulation based on the game engine
Unreal Engine. It is easy to find assets of cities or other types of places. It is
just essential to find the correct assets that are the most realistic as possible.
Assets usually cost money but make us gain a lot of time. Once the assets are
in possession, it is relatively easy to create a scenario. Even though it takes
times, Unreal Engine is made around a drag and drops world creation, meaning
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Figure 7.1: Time taken in hour to create five realistic scenarios

it does not require specific skills.

The time it takes to generate five correct scenarios would be of around fifty
hours. The time is the same for both models since those does are for the same
task.

7.1.2 Creation of the data set

The generation of the data set is something only related to the passive vision
paradigm. We need to train our model to recognise pylons. For that, we need
proper images so the controller can extract where the pylon is located. To
train it, we also need a data set of images with the segmentation of the images
included.

Segmenting an image requires precision to the pixel. Segmenting can take an
incredible amount of time for such a ”simple” task. This can be subcontracted
if a large number of images need segmentation for not much money. It requires
software such as Photoshop or Paint.net to do the segmentation by hand.

The amount of time considered here is the time taken by someone that
know how to use masks on paint.net. But, it also considers that the user is
not necessarily comfortable with that kind of tools. As stated earlier, it takes
approximately forty minutes per image to be precisely segmented. To obtain a
nice data set usable for U-Net on one object detection system, it would require
fifty images to be segmented requiring thirty-four hours.
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Figure 7.2: Time taken to create 50 segmented images

As we can see on Fig 7.2, the active-vision model gets the advantage on this
part of the comparison over time. The di↵erence is because it does not require
to use segmented images during the training at all.

7.1.3 training the model

Now we are looking at the time required to train both models. To make clear
what is taken into the training here is some explanation:

• U-Net: we count the training the model with the data-set, adjustments
and test to obtain a functioning fly-controller.

• Active vision: We count the training of the model with genetic algorithm
until it performs the requested task.

The procedure for the training of the U-Net model is an iterative process. It
runs through the cycle of ”train AI ! analyse results ! check the compatibility
with the fly-controller ! adjust the fly controller ! Test on all scenarios”. If
one step does not meet our standard, we go back again from the beginning.

Thanks to the fact that U-Net is optimised on GPU. The training of the AI
for the pylon detection takes a maximum of an hour of training. We then have
to check the result and compatibility with the fly-controller. Checking takes
around an hour to do. The longest step is adjusting the fly-controller to the
results. We have to make the UAV more smooth in its movements. It takes
multiple trials for each parameter for adjustment. The testing on all scenarios
takes less than an hour in our case.

The total resulted approximatively to a time of training of 23 hours. This
time is necessary to obtain a UAV capable of going around a pylon. It is also
considering multiple iterations of all the cycle.

The procedure to generate a functional model with the active vision is a bit
more complicated to estimate. Partially because we were not able to obtain a
working model. From what we have experimented we can at least say that it
does take weeks, for those reasons:

• We can only run one instance of the simulation and one model at a time.
It is unstable to simulate a server. This means that only one genotype can
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be tested at a time. That flaw led to a huge amount of time being used
to do one epoch. One epoch requires multiple tests per genotype to get a
mean of the fitness score on di↵erent scenarios.

• The iterative process that adjusts the fitness function or detects errors in
the fly-controller program. We can only detect problems on those two by
testing and training our model. It does take time to iterate this process.
It is also complicated to detect what is going wrong most of the time.
The problem most often comes from either the fly-controller or the fitness
function.

From what we have experimented, we can clearly state that more than a
hundred hours have been taken without arriving at any results. But it was
realised by someone unfamiliar with this approach. So, someone having more
experience with this kind of method can potentially perform something working
in that lap of time.

Figure 7.3: Time taken to train a model capable of making a pylon analysis.

Looking at fig 7.3, we can see that our U-Net model is faster to train. It is
thanks to the fact that this model is straightforward to understand. Also, we
put most of the e↵ort into the rules systems and also the creation of the data
set. We can also train the U-Net model on a server easily and make multiple
models at each cycle to test. When, on the other hand, you can only have a
single instance to train the active vision.

7.1.4 Overall time comparison

We will look at the average total time to finish this comparison between the
time requested during the training. It has to be taken into account that this
is an approximated time. The active vision would request to properly work,
especially for the training of the model to have a precise estimation.

It is also important to remember that this does not take into account the
coding time for both fly controller, the programming the two neural networks
and every test of the fly-controller done before to experiment it. Since all those
activities are not really related and can vary depending on the person behind
and the coding capabilities.
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Figure 7.4: Total time taken for the training of a pylon analysis.

First of all, the U-Net model beat the active vision. Thanks to the fact that
the training is exceptionally long for the active vision. That time di↵erence
is due to the long and complicated process that it needs to go through to try
to find a solution. It also requires some iterations to find the correct fitness
function parameters. The complexity is caused by the fact that we don’t give
any direct information to the UAV. The UAV does not know what it has to do
when flying. Everything has to be taken into account in the fitness function
since this is the only thing giving ”rules” to the UAV. If the fitness function
is to complex, this might make it impossible to optimise the solution correctly.
The optimisation can end up jammed in a local minimum and making the UAV
never perform its task correctly.

After that, we can also discuss the number of segmented images. Here, our
U-Net model is made to work with one and only one type of pylon. This makes
it have less chance to be adaptive to di↵erent types of pylons. That means that
for every kind of pylons, we will need to remake a new data set with the new
pylon that we want to add. It also considers that fifty images are enough to
train the model with a correct score. We can generate images from the fifty ex-
isting image with data augmentation also. By using data augmentation, we can
easily get a two hundred images data set from the fifty base images. Normally,
the active vision model would be able to adapt better to a new form of pylons
to a certain extent. It does not base its fly control to the ability to detect a
pylon precisely.

Finally, We will say that the U-Net model is the most viable option for pylon
analysis. It still requires much more work to be able to avoid obstacles. It also
requires to rely on sensors to detect potential objects on the side, below and up.

Unfortunately, we can not know how the active vision supports the frontal
object avoidance from scratch. But, surely, it would also require some sensors
to handle at least the safe descend. Having sensors would need to get an upper
framework checking distances to avoid any crashes.
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7.2 Comparison on the modification ease

This section will be about the complexity of modifications and new training
capabilities. In example, if someone wants to modify the system. This person
might not have the same amount of capabilities than the creator.

To begin with, when you are modifying the system. The availability of
tutorials, forums, and external explanation is essential to get some knowledge.
Those sources are also important if the person that created the model is not
available, and the documentation is not clear enough.

For U-Net, it is simple to find an enormous quantity of websites with tu-
torials, advises and libraries in multiple languages. This makes modifications
achievable for a lot of good software engineers. Also, the actual control is done
by a set of programmed rules; those modifications are elementary to perform
and does not require any retraining of the AI part.

For the active vision paradigm, there is way less information besides scien-
tific papers and no basic libraries are supporting CTRNN from scratch. It is
then requested to have deeper knowledge in case some modifications have to be
done. The person must be able to work on a system programmed from scratch
that can sometimes be less accessible. Also, retraining is mandatory in case of
any change that can result in di↵erent output or any neural network architec-
ture modification.

Next, the retraining and modification time is also reduced in U-Net thanks
to the whole system being modular and not being one big unit that does ev-
erything. This makes adjustment way faster and only related to one part of
the system. In comparison, it takes time to perform small modifications on the
active vision due to the higher training time that will need to be done.

In a nutshell, The U-Net model is interesting in the case of usage in an
enterprise. It is due to the facility to change the rules and the lower complexity
of the system. This means it does not require an expert to train back the model.
An easy process can be made to adjust the model to the security requirement of
a client. For active vision, it di↵ers since it would require a whole new training
cycle. It can lead to a lot of work to recreate a new fitness function that matches
the requirements. A modification on the fitness function demands an expert in
the domain to perform it.
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Future works and
discussions

In this chapter, we are talking about what could have been done to improve
the research. The multiple possibilities to obtain better results or even points
that were not tested in this master thesis. We are also discussing some of the
problems met during this work.

8.1 Simulation and work environments problems

AirSim is our first and main environment, this powerful tool is handy and pos-
sesses a lot of options, but with all of this, comes some flaws that made our life
harder during some steps.

• The impossibility to use AirSim on a server with stability for visual tasks
(computer vision). Due to this impossibility, the training of our active
vision system ended up being extremely long. When we are doing genet-
ics algorithms related system, it is essential to divide the tests of each
genotype to get those fitness results faster. Threading makes us able to
perform a comparison between the fitness of the population to select the
best ones. This environment flaw did not a↵ect us during the test done
with the U-Net model.

• There is a lack of documentation on complex functionalities. AirSim is a
huge piece of software that require a reasonably big documentations. Un-
fortunately, AirSim does not own detailed and complete documentation.
This has led us to either find documentation made by someone else or
either run around the source code.

• The high computational cost of the simulator. Using a realistic visual
simulation is something that requests an excellent CPU and GPU. Both
are needed to support the calculation of the physics and also compute the
graphical part of the simulation. The more realistic the simulation will
be, the more resources it is going to require. This takes resources from
our computer that are also used by the models. So, it is important to
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limit the memory usage on the GPU. It is important to avoid crashes of
the computer running out of resources.

After this, the second environment to be considered is our programming
environment. This environment is where our used libraries are installed. For
this project, two environments where requested, one for each paradigm.

We did have lost a lot of time with those coding environment. That loss of
time is due to the NVIDIA drivers and CUDA version. They are both necessary
to use our GPU for computational needs. Libraries are usually stable for a cer-
tain range of version of CUDA and NVIDIA drivers. This can leads to issues of
two libraries requesting di↵erent versions of CUDA to work. This led us to mess
the installation of our Windows installation due to driver malfunction. Usually,
those malfunctions are coming from modifying the driver. It can happen when
updating to a previous version of a driver or badly uninstalling a version of
CUDA.

We also encountered libraries having requirement of other libraries but with
di↵erent versions. It was leading to multiple malfunctions of libraries. It re-
quested time to find where the problem was and to combine libraries to achieve
the best stability possible.

Making everything work perfectly and stable is something that requested
more than one week for each paradigm. That libraries optimisation has been
requested many times for such a short time given. It is also a tricky task to
do when you are not used to that kind of installations. In example, CUDA
is an add-on the NVIDIA GPU driver that requires Windows command path
modification.

8.2 U-Net model’s future works

U-Net is an exciting model to study, and it is straight forward to get into it. In
this section, we are going to discuss all the ideas of possible improvements that
can be done to make this model better.

First of all, adding sensors is mandatory to make this solution more robust
to obstacle avoidance. It was requested for this master thesis to perform a pylon
analysis with a system composed of computer vision only. Those sensors can
either be LiDAR, RaDAR or sonic sensor. The most important thing is that
those sensors have to be extremely reliable and do not weight too much. Like
so, they do not impact too much the UAV flying time. It is our main flaw in
the U-Net model since right now, we are unable to achieve any form of obstacle
avoidance.
Thanks to the sensors, we would be able to perform a way safer distance con-
trolling. They can potentially make the model work better on di↵erent types of
pylons. By performing better, we can also assume that we will be able to do the
analysis faster. The safety will not only rely on computer vision. The computer
vision has a cycle time of around half a second compared to a sensor capable of
making updates every couple of milliseconds.

After that, we can test to stop detecting the two part of the pylon di↵er-
ently. This would be interesting to see how the model is getting better F1-Score
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in general since that was a very complicated task to divide the pylon into two
distinct parts. It will also make the segmentation easier to be subcontracted.
Seeing how the model would be able to be more robust is a nice hypothesis to
follow.
This technique would require to change some of the rules related to the height
detection and ability to know when it can make a side switch. Before, we were
using two parts to know when to switch. But, here we would need a new way to
know when to switch. The thought method would be to now detect the cable
in our model. Like so, when the camera detects a low number of cables on the
upper part of the image and none on the bottom part. We can potentially say
that we are low enough to perform the side switch. This technique would need
to get extensive tests to make the best fly-controller possible. We need to see
how it could work in term of stability and safety. But, this technique is a very
interesting way to do the pylon analysis with the U-Net model.

Then, the use of real images in the training data set could be an interesting
way of doing the training. Either only use real images or goes for a mix of simu-
lated and real images. Those would be two manners to try that can compensate
for the reality gap. We would also test the opposite of what we are doing right
now. Test if a model trained on real images can perform well on a simulated
environment. Of course, this makes us lose one of the important points of the
simulation, which is to obtain data set easily. But if we can get a model that is
performing well in simulation and real life, this would be great.
Using real data is also an interesting point to see how the model would adapt to
di↵erent pylons of the same family. For example, a pylon which has only arms
on one side of the pylon.
This would make a nice study on the reality gap in a U-Net based system.

Next, it would be interesting to detect precise pieces of the pylon to make
analysis on them or do photos of those pieces with precise angle during the pylon
analysis. U-Net would be an awesome tool to detect some pieces like insulator
and joint that compose the pylon. Those pieces might require photos in precise
angles to analyse them correctly. Using our already made neural network and
feeding it with more object to detect would not be that hard. We can also
train a separated neural network and make it work next to our model of pylon
detection.
This model would be able to detect those pieces and take control for a short
period of time. During that time, it would perform the analysis of the piece
before returning the UAV to the place it has left the pylon analysis. Such a
model is a potential added value for such a project. It can make the pylon
analysis professional and precise.

Finally, detecting flaws on the pylon is also important. It would be interest-
ing to perform a complete pylon analysis to detect flaws and their localisation.
For that, U-Net is a perfect fit, thanks to its capability to achieve a nice seg-
mentation of any requested object. This flaw detection could be for rust, crack,
broken pieces and excessive wear of a piece. Having all those flaws detected
would request a lot of data to be generated to achieve it. Still, it can make the
pylon analysis autonomous from start to finish.
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8.3 Active vision model’s future works

The potential of the active vision was not explored due to the di�culties to
obtain our first working model. So in our future works with this model, we can
clearly and firstly finish what we have started to get a first glance at how it
performs.

After that, it would be a must to study how the di↵erent type of active
vision models that we have explained would perform to the same problem. This
would make a nice study on the comparison of other models on an autonomous
UAV. We could also highlight if the gaze is as important in our kind of problem.
Active vision is a very uncommon paradigm that can lead to a lot of researches
for UAVs.

Next, it would also be interesting to use this system to control the UAV
decisions but also use a layer of U-Net to make some precise object detection
and use some sensors to extract more inputs that could help the system maybe.
Making a hybrid system could be an interesting challenge and lead to a network.
This hybrid network can increase the stability and capability of modifying its
actual task to perform another one. That can be useful for the pylon analysis.
It might help to reduce the number of rules that we use to control the UAV.

8.4 Other possibilities

In this section, we will discuss what can be done with the idea of autonomous
UAVs related to the pylon analysis. Those reflections aim to add more value to
a project like that.

First, after detecting a flaw on a pylon, it would be interesting to have a
multi-UAV-system. A second UAV would take o↵ and fly to the detected defect
and start repairing it. This UAV would have a multi-function arm capable of
restoring some of the flaws that can found on a pylon. That system would be
a great challenge and make the system even more autonomous. It could help
the worker avoid to go up a pylon where it is dangerous to do some repairs. It
would require a new system to be created, with a general controller that controls
the fleet of UAVs and after that one to controls the repair UAV. It would also
require some research to create miniaturised tools to perform the repair.

After that, it would be interesting to have a fleet system for the UAV that
analyse the pylon. UAVs would go and analyse the same power line but propa-
gate them-self to cover a maximum of that power line without checking twice the
same place. This would be the optimum way of using totally autonomous UAVs
to analyse the grid system at a large scale while reducing the considerably the
time requested and the human cost. It would require either an interconnected
online system with the main server calculating where each UAVs need to go or
an o✏ine system where a UAV gets a sector before taking o↵ and as to only do
that sector then leave back to the starting point.

With those two last points, it would make the system a complete solution
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for fully autonomous electrical pylon analysis, capable of doing everything au-
tonomously and even repair what is possible to be repaired with a UAV.
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Chapter 9

Conclusion

We can now conclude our work axed on the creation and research over the in-
spection of electrical pylon by autonomous UAVs.

This work was composed of four parts:

• Get a simulator working. We have to create scenarios. We have to generate
a simulated data set and environments to train our two models. Then, if
possible, experiment to see how they work on real-life data.

• Research on the passive vision. A U-Net neural network represents this
part. This model uses the strength of image convolution and a set of rules
to achieve the task.

• Research on the active vision. A CTRNN represents this part. A neural
network fully interconnected that uses genetic algorithms to evolve.

• Make a Comparison the two paradigms as much as possible by the given
results of the two above points. We then have to decide the one that is
the most interesting for scientific and production point of view.

We have successfully created scenarios on the simulator AirSim. We also
have made a realistic simulated data set. Thanks to AirSim easy to use APIs,
both points were easy to do. Qualitics helped us by giving some pieces of advice
on the di↵erent constraints that exist for pylon analysis and in result make our
data set more realistic.
We then proceed to create our first model of AI that can perform a full electri-
cal pylon analysis. That part was a success. U-Net is a very basic convolution
neural network that can be done easily with both PyTorch and Keras. Thanks
to that less complicated paradigm. This first model was achieved in a month.
During this first part, we were able to familiarise with the simulator di↵erent
ways of controlling the UAVs. We had the opportunity to create our first simple
fly-controller.
U-Net is also known to be easy to train, which we verified by needing less than
an hour to train our neural network. This model was able to move around
the pylon without trouble by always keeping itself centred. It was also able to
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adjust the distance to a minimum of four meters of the closest part of the pylon.

After that, we started the research on active vision. This more complex
paradigm possesses a di↵erent way of thinking about the AI-powered control
system. The fact that a neural network had to be created from scratch was
already a big challenge to go through. This showed us a flaw, the complexity
and unavailability of tutorials accessible to everybody. Then the complexity in
terms of the fitness function for such a task. It requested much more training.
That training time made us unable to finish the research on this paradigm.
The biggest flaw from this paradigm is the overall complexity and that doing
a change in the constraints request to retrain the whole CTRNN model. It
requires at least to run the GA for twenty-four hours.

Finally, a comparison was made on the time and capacity to modify each
model to check how those two paradigms performed. From this comparison, we
have concluded that U-Net is a better model to work on production right now.
It is easier to manipulate and faster to train. But in terms of research value,
the active vision is way more interesting with that entirely unexplored method
for such task. The time taken to train goes in favour of the U-Net model. Even
with the image segmentation, U-Net can train faster than the CTRNN model.
Also, the fact that we can change the constraints without retraining with U-Net
is important to take into account for a production system. It requires to adapt
to di↵erent constraints depending on the laws and clients.

In term of scientific added values, this project accomplishes tasks that were
not made on any papers that we know. We used untested approaches to resolve
the problem on a UAVs. For example, U-Net is used in the detection of objects
such as cell or can be useful for a basic self-driving car. In our research, we
do apply more dimensions to the controller than just a car would have. The
di�culty to always focus on the same object is also present. We also managed
to calculate the approximate distance from an object and the centring using
U-Net and some image computation algorithms.
We also started the research on the active vision in this field, which is also not
much explored in public publication. As stated in the future work chapter, there
is still plenty of things to discover down this path. Some ideas were stated in
this master thesis in case we would have had the time. We are more on reflection
research for this part of the dissertation.

Thanks to this research, we can also state that for someone that would like
to continue this work, the passive vision and U-Net are worth the time for a
fast and robust implementation of the system for an enterprise that would like
to get involved in the domain.
On the other hand, the active vision paradigm would suit more the academic
world, with many possibilities in a complex research field that look promising.
For both paradigms, the reality gaps is an exciting field that can be explored. It
is possible to research how to counter it or at least make it have a smaller e↵ect
on the fly-controller. We can imagine the capacity of a system being created
and tested in a simulation that would be directly working correctly without any
flaws nor risks in reality. In this sector, that would be an enormous gain of time,
especially during seasons that are not favourable to UAV fly test.
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CHAPTER 9. CONCLUSION

In a nutshell, This work was the first step in possible future researches to
see what is likely to be done and how e↵ective it is. There are yet many things
that need to be researched. We now have a clear view of the possible paths that
can be followed. It only depends on the time given and the interest in science.
This master thesis shows that this is possible to complete a full pylon analysis
with a fully autonomous UAV.
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